JP2006253027A - Method for manufacturing secondary battery - Google Patents

Method for manufacturing secondary battery Download PDF

Info

Publication number
JP2006253027A
JP2006253027A JP2005069704A JP2005069704A JP2006253027A JP 2006253027 A JP2006253027 A JP 2006253027A JP 2005069704 A JP2005069704 A JP 2005069704A JP 2005069704 A JP2005069704 A JP 2005069704A JP 2006253027 A JP2006253027 A JP 2006253027A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
battery
value
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005069704A
Other languages
Japanese (ja)
Other versions
JP4720221B2 (en
Inventor
Masato Onishi
正人 大西
Yuichi Itoi
雄一 井樋
Katsuyuki Tomioka
克行 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005069704A priority Critical patent/JP4720221B2/en
Publication of JP2006253027A publication Critical patent/JP2006253027A/en
Application granted granted Critical
Publication of JP4720221B2 publication Critical patent/JP4720221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a secondary battery precisely determining the quality of electric characteristics in the secondary battery. <P>SOLUTION: An average value ΔVam is calculated for a voltage difference ΔV between a first voltage V1 across terminals and a second voltage V2 across terminals for each group of batteries (step SA1). Standard deviation σmΔV of the voltage difference ΔV is calculated (step SA2). It is determined that the secondary battery, where the absolute value of the difference between the voltage difference ΔV and the average value ΔVam exceeds a value obtained by multiplying the value of the standard deviation σmΔV by a prescribed value (n), has poor quality in the secondary batteries belonging to the group of batteries (step SA3). A loop determination process is provided. In the loop determination process, a determination cycle for performing the processes SA1-SA3 is newly repeated by a regulated number of times to other secondary batteries except one having poor quality in the secondary batteries belonging to the group of batteries. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池の製造方法、特に、二次電池の電気特性の良否を判定する判定工程を備える二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a secondary battery, and more particularly, to a method for manufacturing a secondary battery including a determination step for determining the quality of the electrical characteristics of the secondary battery.

近年、携帯電話や携帯パソコンなどのモバイル機器の発達や、電気自動車やハイブリッド自動車などの実用化に伴って、ニッケル水素電池やリチウムイオン電池などの二次電池の需要が拡大している。二次電池は、電池を組み立てた後、初期充電工程、充放電工程、エージング工程等を経た後に出荷されるが、製造過程において、微小短絡等に起因する電気特性の不良を判別し、かかる不良電池を出荷しないようにしている。(例えば、特許文献1,特許文献2,特許文献3参照)。   In recent years, with the development of mobile devices such as mobile phones and mobile personal computers, and the practical application of electric vehicles and hybrid vehicles, demand for secondary batteries such as nickel metal hydride batteries and lithium ion batteries is increasing. Secondary batteries are shipped after the initial assembly process, charging / discharging process, aging process, etc. after the battery is assembled. I try not to ship batteries. (For example, see Patent Document 1, Patent Document 2, and Patent Document 3).

特開2001−228224号公報JP 2001-228224 A 特開2001−266956号公報Japanese Patent Laid-Open No. 2001-266956 特開2004−132776号公報Japanese Patent Laid-Open No. 2004-13276

特許文献1では、各電池についてエージング前後の端子間電圧を測定し、エージング後の端子間電圧が、電池の製造単位毎に定めた下限規格値よりも低いものを不良品と判定する。また、端子間電圧が基準規格値以上の電池について端子間電圧の平均値を求め、端子間電圧が、この平均値から予め定めた偏差を差し引いた値以上の電池については、合格品とする。一方、端子間電圧が、この平均値から予め定めた偏差を差し引いた値を下回る電池については、エージング前後の端子間電圧の差を求め、端子間電圧差が、その平均値から予め定めた偏差を差し引いた値を下回る電池については、不良品と判定する。   In Patent Document 1, the voltage between terminals before and after aging is measured for each battery, and a battery whose terminal voltage after aging is lower than the lower limit standard value determined for each battery manufacturing unit is determined as a defective product. Moreover, the average value of the voltage between terminals is calculated | required about the battery whose voltage between terminals is more than a reference standard value, and it is considered as a pass product about the battery whose voltage between terminals is more than the value which deducted the predetermined deviation from this average value. On the other hand, for a battery whose voltage between terminals is less than a value obtained by subtracting a predetermined deviation from this average value, the difference in voltage between terminals before and after aging is obtained, and the voltage difference between terminals is a predetermined deviation from the average value. A battery that is less than the value obtained by subtracting is determined as a defective product.

特許文献2では、各電池についてエージング前後の電気特性値を測定し、エージング前後の電気特性値の差を求める。次いで、電気特性値の差の関数として、電気特性値の減衰率または増加率を求め、これに基づいて電池を選別検査する。具体的には、例えば、エージング前後の端子間電圧と内部抵抗を測定し、端子間電圧差と内部抵抗差に基づいて、電圧降下率と内部抵抗上昇率を算出する。次いで、電圧降下率と内部抵抗上昇率とのバラツキから統計的手法を用いてシグマ値(標準偏差)を計算し、電圧降下率の平均値からシグマ値(電圧降下率の標準偏差)の3倍の値を差し引いた値を下限値とし、下限値を下回る電池を不良として選別する。さらに、内部抵抗上昇率の平均値からシグマ値(内部抵抗上昇率の標準偏差)の3倍の値を加えた値を上限値とし、上限値を上回る電池を不良として選別する。   In Patent Document 2, the electrical property value before and after aging is measured for each battery, and the difference between the electrical property values before and after aging is obtained. Next, the decay rate or increase rate of the electrical property value is obtained as a function of the difference between the electrical property values, and the battery is screened based on this. Specifically, for example, the voltage between terminals and the internal resistance before and after aging are measured, and the voltage drop rate and the internal resistance increase rate are calculated based on the voltage difference between terminals and the internal resistance difference. Next, calculate the sigma value (standard deviation) from the variation of the voltage drop rate and the internal resistance rise rate using a statistical method, and calculate the sigma value (standard deviation of the voltage drop rate) by 3 times from the average value of the voltage drop rate. The value obtained by subtracting this value is set as the lower limit value, and batteries that fall below the lower limit value are selected as defective. Further, a value obtained by adding three times the sigma value (standard deviation of the internal resistance increase rate) from the average value of the internal resistance increase rate is set as the upper limit value, and a battery exceeding the upper limit value is selected as defective.

また、特許文献3では、まず、エージング前の端子間電圧V1とエージング後の端子間電圧V2との端子間電圧差ΔVを算出すると共に、検査のロット単位毎に、ΔVの平均値ΔVAを算出する。また、微小内部短絡した不良電池の端子間電圧降下を想定した基準値ΔVBを絶対値として予め設定しておく。次いで、ΔVの値が、ΔVA−ΔVBの値より小さい電池を不良品と判定する。   In Patent Document 3, first, the terminal voltage difference ΔV between the terminal voltage V1 before aging and the terminal voltage V2 after aging is calculated, and the average value ΔVA of ΔV is calculated for each lot of inspection. To do. Further, a reference value ΔVB that assumes a voltage drop between terminals of a defective battery that has been internally short-circuited is set in advance as an absolute value. Next, a battery having a value of ΔV smaller than the value of ΔVA−ΔVB is determined as a defective product.

しかしながら、特許文献1,2の手法では、端子間電圧測定時の環境温度による誤差や、電池材料・工程等のロット間変動による誤差が大きく、検査精度を高くできなかった。すなわち、不良と判定した電池の中に良品が含まれていたり、これとは逆に、良品と判定した電池の中に不良品が含まれることがあった。また、特許文献3の手法では、特許文献1,2の手法に比べて、微小内部短絡等に起因する不良の識別精度が向上するものの、やはり、端子間電圧測定時の環境温度による誤差や、電池材料・工程等のロット間変動による誤差の影響を受けるため、十分な判定精度が得られなかった。   However, in the methods of Patent Documents 1 and 2, the error due to the environmental temperature at the time of measuring the voltage between the terminals and the error due to the variation between lots of battery materials and processes, etc. are large, and the inspection accuracy cannot be increased. That is, a non-defective battery may be included in a battery determined to be defective, or conversely, a defective product may be included in a battery determined to be non-defective. Further, in the method of Patent Document 3, although the accuracy of identifying defects due to a minute internal short circuit or the like is improved as compared with the methods of Patent Documents 1 and 2, an error due to the environmental temperature at the time of measuring the voltage between terminals, Sufficient judgment accuracy could not be obtained due to the effect of errors due to variations between lots of battery materials and processes.

本発明は、かかる現状に鑑みてなされたものであって、二次電池の電気特性の良否を精度良く判定できる、二次電池の製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the manufacturing method of a secondary battery which can determine the quality of the electrical property of a secondary battery accurately.

その解決手段は、所定数の二次電池を1組とした電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第1端子間電圧V1を測定する第1電圧測定工程と、上記第1電圧測定工程の後に、上記電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第2端子間電圧V2を測定する第2電圧測定工程と、上記電池グループ毎に、上記電池グループに属する各々の二次電池について、上記第1端子間電圧V1及び上記第2端子間電圧V2に基づいて、当該二次電池の電気特性の良否を判定する判定工程と、を備える二次電池の製造方法であって、上記第1電圧測定工程及び上記第2電圧測定工程を、共に、上記二次電池を所定期間にわたり高温雰囲気下に安置するエージング工程内に備え、あるいは、上記第1電圧測定工程を上記エージング工程の前に、上記第2電圧測定工程を上記エージング工程の後に備え、上記判定工程は、上記電池グループ毎に、上記第1端子間電圧V1、上記第2端子間電圧V2、及び上記第1端子間電圧V1と上記第2端子間電圧V2との電圧差ΔVの、3つの電気特性値から選択したいずれかの電気特性値について、平均値を算出すると共に、選択した上記電気特性値の標準偏差を算出し、上記電池グループに属する二次電池のうち、当該電気特性値と上記平均値との差の絶対値が、上記標準偏差の値に所定値nを乗じた値を上回る二次電池を不良と判定した後、上記電池グループに属する二次電池のうち上記不良と判定した二次電池を除いた他の二次電池について、改めて、上記電気特性値の平均値を算出すると共に、上記電気特性値の標準偏差を算出し、上記二次電池のうち、当該電気特性値と上記平均値との差の絶対値が、上記標準偏差の値に上記所定値nを乗じた値を上回る二次電池を不良と判定する判定サイクルを、複数回繰り返し行うループ判定工程を含む二次電池の製造方法である。   The solution means that, for each battery group including a predetermined number of secondary batteries as a set, for each secondary battery belonging to the battery group, a first inter-terminal voltage V1 that is a voltage between the terminals is measured. After the voltage measurement step and the first voltage measurement step, for each battery group, for each secondary battery belonging to the battery group, a second voltage for measuring a second inter-terminal voltage V2 that is a voltage between the terminals. For each secondary battery belonging to the battery group for each battery group, the electrical characteristics of the secondary battery are determined based on the first inter-terminal voltage V1 and the second inter-terminal voltage V2. A determination step of determining a secondary battery, wherein the first voltage measurement step and the second voltage measurement step are both placed in a high temperature atmosphere for a predetermined period. Or the first voltage measurement step is provided before the aging step, the second voltage measurement step is provided after the aging step, and the determination step is performed for each battery group. Any electrical characteristic value selected from three electrical characteristic values: terminal voltage V1, second terminal voltage V2, and voltage difference ΔV between first terminal voltage V1 and second terminal voltage V2. For the secondary battery belonging to the battery group, the absolute value of the difference between the electrical characteristic value and the average value is calculated as the average value and the standard deviation of the selected electrical characteristic value. Other secondary batteries excluding the secondary battery determined to be defective among the secondary batteries belonging to the battery group after determining that the secondary battery exceeding the value obtained by multiplying the standard deviation value by the predetermined value n as defective About again Calculating an average value of the electrical characteristic values, and calculating a standard deviation of the electrical characteristic values, and among the secondary batteries, an absolute value of a difference between the electrical characteristic value and the average value is the standard deviation. This is a method of manufacturing a secondary battery including a loop determination step in which a determination cycle for determining a secondary battery exceeding the value obtained by multiplying the above value by the predetermined value n as defective is repeated a plurality of times.

本発明の製造方法では、第1端子間電圧V1、第2端子間電圧V2、及び電圧差ΔVの3つの電気特性値から選択したいずれかの電気特性値にかかる標準偏差を利用して、統計的に電気特性の不良を判定する判定サイクルを、複数回繰り返し行うループ判定工程を備えている。このように、標準偏差を利用した判定サイクルを、複数回繰り返し行うことにより、二次電池の電気特性の良否の判定精度を高めることができる。すなわち、判定サイクルを繰り返すにしたがって、電気特性値が平均値から大きく外れた二次電池を除外して、判定対象となる二次電池の電気特性値のバラツキを小さくできる。このため、最終的には、電気特性値のバラツキの小さな二次電池のグループを対象として、標準偏差を利用した良否判定を行うことができるので、判定精度を高めることができる。従って、本発明の製造方法によれば、二次電池の電気特性の良否を、精度良く判定することができる。   In the manufacturing method of the present invention, a statistical deviation is obtained by using a standard deviation of one of the electrical characteristic values selected from the three electrical characteristic values of the first terminal voltage V1, the second terminal voltage V2, and the voltage difference ΔV. In particular, there is provided a loop determination step in which a determination cycle for determining defective electrical characteristics is repeated a plurality of times. As described above, by repeating the determination cycle using the standard deviation a plurality of times, it is possible to improve the accuracy of determining the quality of the secondary battery. That is, as the determination cycle is repeated, the secondary battery whose electrical characteristic value is significantly different from the average value is excluded, and the variation in the electrical characteristic value of the secondary battery to be determined can be reduced. For this reason, finally, it is possible to perform pass / fail determination using the standard deviation for a group of secondary batteries with small variations in electrical characteristic values, so that the determination accuracy can be improved. Therefore, according to the manufacturing method of the present invention, the quality of the secondary battery can be accurately determined.

なお、ループ判定工程は、例えば、第1端子間電圧V1、第2端子間電圧V2、及び電圧差ΔVの3つの電気特性値から選択した、1つの電気特性値(例えば、電圧差ΔV)について行うことができる。また、3つの電気特性値から1つの電気特性値(例えば、第1端子間電圧V1)を選択して、ループ判定工程を行った後、他の電気特性値(例えば、第2端子間電圧V2)を選択して、ループ判定工程を行うようにしても良い。   In the loop determination step, for example, one electrical characteristic value (for example, voltage difference ΔV) selected from the three electrical characteristic values of the first terminal voltage V1, the second terminal voltage V2, and the voltage difference ΔV is used. It can be carried out. Further, after one electrical characteristic value (for example, the first terminal voltage V1) is selected from the three electrical characteristic values and the loop determination step is performed, another electrical characteristic value (for example, the second terminal voltage V2) is selected. ) May be selected to perform the loop determination step.

また、第1端子間電圧V1及び第2端子間電圧V2に基づいて、二次電池の不良を判定する手法としては、例えば、第1端子間電圧V1及び第2端子間電圧V2のそれぞれの値によって判定する手法が挙げられる。具体的には、例えば、第1端子間電圧V1が、予め設定した第1端子間電圧V1の適正範囲から外れている二次電池を不良と判定し、さらに、第2端子間電圧V2が、予め設定した第2端子間電圧V2の適正範囲から外れている二次電池を不良と判定する手法である。
また、第1端子間電圧V1と第2端子間電圧V2との電圧差ΔVの値(第1端子間電圧V1及び第2端子間電圧V2に基づく値に相当する)により、二次電池の不良を判定する手法を用いても良い。具体的には、例えば、電圧差ΔVが、予め設定した電圧差ΔVの適正範囲から外れている二次電池を不良と判定する手法である。
Moreover, as a method of determining the defect of the secondary battery based on the first terminal voltage V1 and the second terminal voltage V2, for example, the respective values of the first terminal voltage V1 and the second terminal voltage V2 The method of judging by is mentioned. Specifically, for example, a secondary battery in which the first terminal voltage V1 is out of the appropriate range of the preset first terminal voltage V1 is determined to be defective, and the second terminal voltage V2 is This is a method of determining a secondary battery that is out of the appropriate range of the preset second terminal voltage V2 as defective.
Further, the secondary battery is defective due to the value of the voltage difference ΔV between the first terminal voltage V1 and the second terminal voltage V2 (corresponding to the value based on the first terminal voltage V1 and the second terminal voltage V2). A method for determining the above may be used. Specifically, for example, a secondary battery in which the voltage difference ΔV is outside the appropriate range of the preset voltage difference ΔV is determined to be defective.

さらに、上記の二次電池の製造方法であって、前記ループ判定工程は、前記電圧差ΔVについて、前記判定サイクルを行う二次電池の製造方法とすると良い。   Furthermore, in the above method for manufacturing a secondary battery, the loop determination step may be a method for manufacturing a secondary battery that performs the determination cycle for the voltage difference ΔV.

二次電池の微小内部短絡は、二次電池を高温雰囲気下に置くことより促進されるため、微小内部短絡が生じている電池と、生じていない(ほとんど生じていない)電池とでは、エージングが進むにしたがって、端子間電圧の電圧差ΔVが大きく拡がることになる。このため、電圧差ΔVに基づいて、二次電池の良否を判定すれば、微小内部短絡が生じている電池と、生じていない(ほとんど生じていない)電池との差が明確となるので、判定精度を高めることができる。従って、本発明の製造方法によれば、二次電池の良否判定を、精度良く行うことができる。   Since the minute internal short circuit of the secondary battery is promoted by placing the secondary battery in a high temperature atmosphere, aging occurs between the battery in which the minute internal short circuit occurs and the battery in which the minute internal short circuit does not occur (almost never occurs). As the process proceeds, the voltage difference ΔV between the terminals increases greatly. For this reason, if the quality of the secondary battery is judged based on the voltage difference ΔV, the difference between the battery in which a minute internal short circuit has occurred and the battery in which it has not occurred (almost never occurs) becomes clear. Accuracy can be increased. Therefore, according to the manufacturing method of the present invention, the quality of the secondary battery can be determined with high accuracy.

さらに、上記いずれかの二次電池の製造方法であって、前記第1電圧測定工程及び前記第2電圧測定工程を、共に、前記エージング工程内に備える二次電池の製造方法とすると良い。   Furthermore, in any one of the above secondary battery manufacturing methods, both the first voltage measuring step and the second voltage measuring step may be a secondary battery manufacturing method provided in the aging step.

従来の二次電池の製造方法では、第1電圧測定工程をエージング工程の前に備え、第2電圧測定工程をエージング工程の後に備えていた。ところが、二次電池は、エージング工程において、所定期間にわたり高温雰囲気下に置かれるため、二次電池の温度が大きく上昇する。従って、エージング工程の前後において、同等の条件下で端子間電圧を測定するには、エージング工程後、二次電池の温度が、エージング工程前の温度にまで低下するのを待った後でなければ、第2端子間電圧V2を測定できなかった。   In the conventional secondary battery manufacturing method, the first voltage measurement step is provided before the aging step, and the second voltage measurement step is provided after the aging step. However, since the secondary battery is placed in a high-temperature atmosphere for a predetermined period in the aging process, the temperature of the secondary battery greatly increases. Therefore, in order to measure the voltage between the terminals under the same conditions before and after the aging process, after waiting for the temperature of the secondary battery to drop to the temperature before the aging process after the aging process, The voltage V2 between the second terminals could not be measured.

これに対し、本発明の二次電池の製造方法では、第1電圧測定工程と第2電圧測定工程とを、共に、エージング工程内に備えている。このため、第1電圧測定工程と第2電圧測定工程とにおいて、共に、二次電池の温度が高温で安定した状態で端子間電圧を測定することが可能となる。従って、従来の手法とは異なり、エージング工程後、二次電池の温度が、エージング工程前の温度にまで低下するのを待つことなく、第2端子間電圧V2を測定できる。しかも、第1電圧測定工程及び第2電圧測定工程を、共に、エージング工程中に済ますことができるので、工程時間を大幅に短縮することができ、二次電池の生産性を高めることができる。   On the other hand, in the manufacturing method of the secondary battery of this invention, both the 1st voltage measurement process and the 2nd voltage measurement process are provided in the aging process. For this reason, in both the first voltage measurement step and the second voltage measurement step, it is possible to measure the inter-terminal voltage while the temperature of the secondary battery is stable at a high temperature. Therefore, unlike the conventional method, the second inter-terminal voltage V2 can be measured without waiting for the temperature of the secondary battery to drop to the temperature before the aging process after the aging process. Moreover, since both the first voltage measurement process and the second voltage measurement process can be completed during the aging process, the process time can be greatly shortened, and the productivity of the secondary battery can be increased.

さらに、上記の二次電池の製造方法であって、前記エージング工程のうち、前記二次電池の温度が所定の温度に安定した後に、前記第1電圧測定工程を行う二次電池の製造方法とすると良い。   Furthermore, in the method for manufacturing a secondary battery described above, a method for manufacturing the secondary battery in which the first voltage measurement step is performed after the temperature of the secondary battery is stabilized at a predetermined temperature in the aging step. Good.

エージング工程を開始した後、しばらくの間は、二次電池の温度は上昇を続けるため、安定しない。これに対し、本発明の二次電池の製造方法では、エージング工程内で二次電池の温度が所定の温度に安定した後に、第1端子間電圧V1を測定する。これにより、第1端子間電圧V1及び第2端子間電圧V2を、共に、二次電池の温度が所定の温度に安定した状態で測定することができるので、測定値V1,V2の信頼性を高め、ひいては、二次電池の良否判定の精度を高めることができる。   Since the temperature of the secondary battery continues to rise for a while after starting the aging process, it is not stable. On the other hand, in the method for manufacturing a secondary battery of the present invention, the voltage V1 between the first terminals is measured after the temperature of the secondary battery is stabilized at a predetermined temperature in the aging process. As a result, both the voltage V1 between the first terminals and the voltage V2 between the second terminals can be measured in a state where the temperature of the secondary battery is stable at a predetermined temperature, so that the reliability of the measured values V1 and V2 is improved. As a result, the accuracy of the quality determination of the secondary battery can be increased.

さらに、上記いずれかの二次電池の製造方法であって、前記エージング工程及び前記第1電圧測定工程の前に、前記二次電池に充放電を施す充放電工程を備え、前記電池グループは、上記充放電工程において、同一の充放電装置により同時に充放電を施した、所定数の二次電池の組である二次電池の製造方法とすると良い。   Furthermore, in any of the above secondary battery manufacturing methods, the battery group includes a charge / discharge step of charging / discharging the secondary battery before the aging step and the first voltage measurement step. In the charging / discharging process, a method for manufacturing a secondary battery that is a set of a predetermined number of secondary batteries that are simultaneously charged and discharged by the same charging / discharging device may be used.

二次電池の端子間電圧は、充放電を施してから電圧を測定するまでの時間、充放電を行う環境(気温、湿度など)等の影響により、微妙に異なってしまう。このため、異なるタイミングで充放電を行った二次電池や、異なる充放電装置で充放電を行った二次電池などを混在させた電池グループを対象に、二次電池の良否を判定する場合には、電池グループに属する各二次電池の端子間電圧のバラツキが大きくなるために、判定精度が低下する虞がある。   The voltage between the terminals of the secondary battery is slightly different due to the influence of the time from charging / discharging to measuring the voltage, the charging / discharging environment (temperature, humidity, etc.) and the like. For this reason, when judging the quality of secondary batteries for battery groups in which secondary batteries that have been charged / discharged at different timings or secondary batteries that have been charged / discharged by different charge / discharge devices are mixed. Since the variation in the voltage between terminals of each secondary battery which belongs to a battery group becomes large, there exists a possibility that determination accuracy may fall.

これに対し、本発明の製造方法では、同一の充放電装置により同時に充放電を施した、所定数の二次電池の組を、1組の電池グループとして、第1電圧測定工程、第2電圧測定工程、判定工程を行い、二次電池の良否を判定する。同一の充放電装置により同時に充放電を施した電池グループにおいては、当該電池グループに属する各二次電池の端子間電圧のバラツキが小さくなるので、当該電池グループごとに、第1電圧測定工程、第2電圧測定工程、判定工程を行うことにより、判定精度を良好にできる。   On the other hand, in the manufacturing method of the present invention, the first voltage measuring step, the second voltage, and the like, in which a set of a predetermined number of secondary batteries that are simultaneously charged and discharged by the same charging / discharging device are set as one battery group. A measurement process and a determination process are performed, and the quality of the secondary battery is determined. In a battery group that has been charged and discharged simultaneously by the same charging / discharging device, variation in the voltage between terminals of each secondary battery belonging to the battery group is reduced. Therefore, for each battery group, the first voltage measurement step, The determination accuracy can be improved by performing the two voltage measurement process and the determination process.

他の解決手段は、所定数の二次電池を1組とした電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第1端子間電圧V1を測定する第1電圧測定工程と、上記第1電圧測定工程の後に、上記電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第2端子間電圧V2を測定する第2電圧測定工程と、上記電池グループ毎に、上記電池グループに属する各々の二次電池について、上記第1端子間電圧V1及び上記第2端子間電圧V2に基づいて、当該二次電池の電気特性の良否を判定する判定工程と、を備える二次電池の製造方法であって、上記第1電圧測定工程及び上記第2電圧測定工程を、共に、上記二次電池を所定期間にわたり高温雰囲気下に安置するエージング工程内に備える二次電池の製造方法である。   Another solution is to measure a first inter-terminal voltage V1 which is a voltage between terminals of each secondary battery belonging to the battery group for each battery group including a predetermined number of secondary batteries as a set. After the first voltage measurement step and the first voltage measurement step, a second voltage V2 that is a voltage between the terminals of each secondary battery belonging to the battery group is measured for each battery group. For each secondary battery belonging to the battery group for each battery group, a voltage measurement step is performed on the basis of the voltage V1 between the first terminals and the voltage V2 between the second terminals. A determination process for determining pass / fail, wherein the first voltage measurement process and the second voltage measurement process are both placed in a high temperature atmosphere for a predetermined period of time. Do A method of manufacturing a secondary battery including in Jingu process.

従来の二次電池の製造方法では、第1電圧測定工程をエージング工程の前に備え、第2電圧測定工程をエージング工程の後に備えていた。ところが、二次電池は、エージング工程において、所定期間にわたり高温雰囲気下に置かれるため、二次電池の温度が大きく上昇する。従って、エージング工程の前後において、同等の条件下で端子間電圧を測定するには、エージング工程後、二次電池の温度が、エージング工程前の温度にまで低下するのを待った後でなければ、第2端子間電圧V2を測定できなかった。   In the conventional secondary battery manufacturing method, the first voltage measurement step is provided before the aging step, and the second voltage measurement step is provided after the aging step. However, since the secondary battery is placed in a high-temperature atmosphere for a predetermined period in the aging process, the temperature of the secondary battery greatly increases. Therefore, in order to measure the voltage between the terminals under the same conditions before and after the aging process, after waiting for the temperature of the secondary battery to drop to the temperature before the aging process after the aging process, The voltage V2 between the second terminals could not be measured.

これに対し、本発明の二次電池の製造方法では、第1電圧測定工程及び第2電圧測定工程を、共に、エージング工程内に備えている。このため、第1電圧測定工程と第2電圧測定工程とにおいて、共に、二次電池の温度が高温で安定した状態で端子間電圧を測定することが可能となる。従って、従来の手法とは異なり、エージング工程後、二次電池の温度が、エージング工程前の温度にまで低下するのを待つことなく、第2端子間電圧V2を測定できる。しかも、第1電圧測定工程及び第2電圧測定工程を、共に、エージング工程中に済ますことができるので、工程時間を大幅に短縮することができ、二次電池の生産性を高めることができる。   On the other hand, in the manufacturing method of the secondary battery of this invention, both the 1st voltage measurement process and the 2nd voltage measurement process are provided in the aging process. For this reason, in both the first voltage measurement step and the second voltage measurement step, it is possible to measure the inter-terminal voltage while the temperature of the secondary battery is stable at a high temperature. Therefore, unlike the conventional method, the second inter-terminal voltage V2 can be measured without waiting for the temperature of the secondary battery to drop to the temperature before the aging process after the aging process. Moreover, since both the first voltage measurement process and the second voltage measurement process can be completed during the aging process, the process time can be greatly shortened, and the productivity of the secondary battery can be increased.

なお、第1端子間電圧V1及び第2端子間電圧V2に基づいて、二次電池の不良を判定する手法としては、例えば、第1端子間電圧V1及び第2端子間電圧V2のそれぞれの値によって判定する手法が挙げられる。また、第1端子間電圧V1と第2端子間電圧V2との電圧差ΔVの値(第1端子間電圧V1及び第2端子間電圧V2に基づく値に相当する)により、二次電池の不良を判定する手法を用いても良い。   In addition, as a method of determining the defect of the secondary battery based on the voltage V1 between the first terminals and the voltage V2 between the second terminals, for example, each value of the voltage V1 between the first terminals and the voltage V2 between the second terminals The method of judging by is mentioned. Further, the secondary battery is defective due to the value of the voltage difference ΔV between the first terminal voltage V1 and the second terminal voltage V2 (corresponding to the value based on the first terminal voltage V1 and the second terminal voltage V2). A method for determining the above may be used.

さらに、上記の二次電池の製造方法であって、前記エージング工程のうち、前記二次電池の温度が所定の温度に安定した後に、前記第1電圧測定工程を行う二次電池の製造方法とすると良い。   Furthermore, in the method for manufacturing a secondary battery described above, a method for manufacturing the secondary battery in which the first voltage measurement step is performed after the temperature of the secondary battery is stabilized at a predetermined temperature in the aging step. Good.

エージング工程を開始した後、しばらくの間は、二次電池の温度は上昇を続けるため、安定しない。これに対し、本発明の二次電池の製造方法では、エージング工程内で二次電池の温度が所定の温度に安定した後に、第1端子間電圧V1を測定する。これにより、第1端子間電圧V1及び第2端子間電圧V2を、共に、二次電池の温度が所定の温度に安定した状態で測定することができるので、測定値V1,V2の信頼性を高め、ひいては、二次電池の良否判定の精度を高めることができる。   Since the temperature of the secondary battery continues to rise for a while after starting the aging process, it is not stable. On the other hand, in the method for manufacturing a secondary battery of the present invention, the voltage V1 between the first terminals is measured after the temperature of the secondary battery is stabilized at a predetermined temperature in the aging process. As a result, both the voltage V1 between the first terminals and the voltage V2 between the second terminals can be measured in a state where the temperature of the secondary battery is stable at a predetermined temperature, so that the reliability of the measured values V1 and V2 is improved. As a result, the accuracy of the quality determination of the secondary battery can be increased.

(実施形態)
図1は、本実施形態にかかる二次電池100の正面図、図2はその側面図、図3はその断面図(図2のA−A断面図に相当する)である。
本実施形態にかかる二次電池100は、金属製(具体的には、ニッケルめっき鋼板)の電池ケース110と、安全弁装置113と、電池ケース110内に配置された、極板群120(図3参照)及び電解液(図示しない)とを備える角形密閉式ニッケル水素蓄電池である。
(Embodiment)
1 is a front view of a secondary battery 100 according to the present embodiment, FIG. 2 is a side view thereof, and FIG. 3 is a cross-sectional view thereof (corresponding to a cross-sectional view taken along line AA in FIG. 2).
The secondary battery 100 according to the present embodiment includes a battery case 110 made of metal (specifically, a nickel-plated steel plate), a safety valve device 113, and an electrode plate group 120 disposed in the battery case 110 (FIG. 3). And a sealed nickel-metal hydride storage battery including an electrolyte solution (not shown).

極板群120は、図3に示すように、正極活物質層121sを有する複数の正極板121と、負極活物質層123sを有する複数の負極板123とが、セパレータ125を介して交互に積層されることにより構成されている。負極板123のうち、負極活物質層123sが形成されていない負極リード部123rは、いずれも所定方向(図3中、左側)に延出している。一方、正極板121のうち、正極活物質層121sが形成されていない正極リード部121rは、いずれも負極リード部123rとは反対方向(図3中、右側)に延出している。   As shown in FIG. 3, the electrode plate group 120 includes a plurality of positive electrode plates 121 having positive electrode active material layers 121 s and a plurality of negative electrode plates 123 having negative electrode active material layers 123 s stacked alternately via separators 125. Is configured. Of the negative electrode plate 123, the negative electrode lead portion 123r in which the negative electrode active material layer 123s is not formed extends in a predetermined direction (left side in FIG. 3). On the other hand, in the positive electrode plate 121, the positive electrode lead portion 121r in which the positive electrode active material layer 121s is not formed extends in the opposite direction (right side in FIG. 3) to the negative electrode lead portion 123r.

なお、正極板121としては、例えば、発泡ニッケルからなる活物質支持体に、水酸化ニッケルを含む活物質(正極活物質層121sをなす)を担持させた電極板を用いることができる。また、負極板123としては、例えば、電極支持体に水素吸蔵合金等を含む活物質(負極活物質層123sをなす)を担持させた電極板を用いることができる。また、セパレータ125としては、例えば、親水化処理された合成繊維からなる不織布を用いることができる。電解液としては、例えば、KOHを主成分とする比重1.2〜1.4のアルカリ水溶液を用いることができる。   As the positive electrode plate 121, for example, an electrode plate in which an active material support made of foamed nickel is supported with an active material containing nickel hydroxide (forming the positive electrode active material layer 121s) can be used. As the negative electrode plate 123, for example, an electrode plate in which an active material containing a hydrogen storage alloy or the like (forming the negative electrode active material layer 123s) is supported on an electrode support can be used. Moreover, as the separator 125, the nonwoven fabric which consists of a synthetic fiber by which the hydrophilic treatment was carried out can be used, for example. As the electrolytic solution, for example, an alkaline aqueous solution having a specific gravity of 1.2 to 1.4 containing KOH as a main component can be used.

電池ケース110は、図3に示すように、金属(具体的には、ニッケルめっき鋼板)からなり、矩形箱形状をなす電槽111と、金属(具体的には、ニッケルめっき鋼板)からなり、矩形略板形状を有する封口部材115とを有している。このうち、電槽111の第3側壁部111eには、2つの貫通孔111hが形成されている。この2つの貫通孔111hには、電気絶縁性のシール部材145を介在させて、第1正極端子140bと第2正極端子140cとが挿設されている。封口部材115は、電槽111の開口端面111f上(図3参照)に当接した状態で全周溶接され、電槽111の開口部111gを封止している。これにより、封口部材115と電槽111とが一体化して、電池ケース110をなしている。   As shown in FIG. 3, the battery case 110 is made of a metal (specifically, a nickel-plated steel plate), a battery case 111 having a rectangular box shape, and a metal (specifically, a nickel-plated steel plate). And a sealing member 115 having a substantially rectangular plate shape. Among these, two through holes 111 h are formed in the third side wall 111 e of the battery case 111. A first positive terminal 140b and a second positive terminal 140c are inserted into the two through holes 111h with an electrically insulating seal member 145 interposed therebetween. The sealing member 115 is welded all around in a state where the sealing member 115 is in contact with the opening end surface 111f of the battery case 111 (see FIG. 3), and seals the opening 111g of the battery case 111. Thereby, the sealing member 115 and the battery case 111 are integrated to form the battery case 110.

なお、図3に示すように、負極板123の負極リード部123rは、いずれも、封口部材115の内側面115bに、電子ビーム溶接等により接合されている。これにより、本実施形態の二次電池100では、封口部材115を含めた電池ケース110全体が負極となる。また、正極板121の正極リード部121rは、いずれも、正極集電板130の内側面130bに、電子ビーム溶接等により接合されている。さらに、正極集電板130は、レーザー溶接等により、第1正極端子140b及び第2正極端子140cに接合されている。これにより、第1正極端子140b及び第2正極端子140cと正極板121とが、電気的に接続される。   As shown in FIG. 3, each of the negative electrode lead portions 123r of the negative electrode plate 123 is joined to the inner side surface 115b of the sealing member 115 by electron beam welding or the like. Thereby, in the secondary battery 100 of this embodiment, the battery case 110 whole including the sealing member 115 becomes a negative electrode. Further, all of the positive electrode lead portions 121r of the positive electrode plate 121 are joined to the inner side surface 130b of the positive electrode current collector plate 130 by electron beam welding or the like. Furthermore, the positive electrode current collector plate 130 is joined to the first positive electrode terminal 140b and the second positive electrode terminal 140c by laser welding or the like. Thereby, the 1st positive electrode terminal 140b and the 2nd positive electrode terminal 140c, and the positive electrode plate 121 are electrically connected.

次に、本実施形態の二次電池100の製造方法について、以下に説明する。
(組立工程)
まず、正極板121と負極板123との間にセパレータ125を介在させつつ、正極板121と負極板123とを交互に積層して、極板群120を作成する。次いで、極板群120のうち負極板123の負極リード部123rを、封口部材115の内側面115b側に、電子ビーム溶接により接合する。また、正極板121の正極リード部121rを、正極集電板130の内側面130b側に、電子ビーム溶接により接合する。
Next, a method for manufacturing the secondary battery 100 of the present embodiment will be described below.
(Assembly process)
First, the positive electrode plate 121 and the negative electrode plate 123 are alternately laminated while the separator 125 is interposed between the positive electrode plate 121 and the negative electrode plate 123 to form the electrode plate group 120. Next, the negative electrode lead portion 123r of the negative electrode plate 123 in the electrode plate group 120 is joined to the inner surface 115b side of the sealing member 115 by electron beam welding. Further, the positive electrode lead portion 121r of the positive electrode plate 121 is joined to the inner side surface 130b side of the positive electrode current collector plate 130 by electron beam welding.

また、これとは別に、電槽111に第1正極端子140b及び第2正極端子140cを固着する。具体的には、電槽111の貫通穴111hにシール部材145を装着すると共に、第1正極端子140b及び第2正極端子140cの極柱部141を外側から挿入する。次いで、極柱部141の筒内に流体圧をかけて、極柱部141の一端側を径方向外側に膨出させ、更に軸方向に圧縮変形させて、圧縮変形部141hを形成する。これにより、第1正極端子140b及び第2正極端子140cが、電槽111と電気的に絶縁しつつ、電槽111に固着される。   Separately, the first positive terminal 140 b and the second positive terminal 140 c are fixed to the battery case 111. Specifically, the seal member 145 is attached to the through hole 111h of the battery case 111, and the pole column portions 141 of the first positive terminal 140b and the second positive terminal 140c are inserted from the outside. Next, fluid pressure is applied to the inside of the pole column portion 141 to bulge one end side of the pole column portion 141 radially outward and further compressively deform in the axial direction to form a compression deformed portion 141h. Accordingly, the first positive terminal 140b and the second positive terminal 140c are fixed to the battery case 111 while being electrically insulated from the battery case 111.

次に、極板群120と封口部材115と正極集電板130とが接合されてなる接合体のうち、正極集電板130及び極板群120を、開口部111gから電槽111内に挿入すると共に、封口部材115で電槽111に蓋をする。次いで、外部からレーザを照射して、封口部材115と電槽111とを接合し、電槽111を封口する。次いで、第1正極端子140b及び第2正極端子140cの外側からその極柱部141の凹みに向けてレーザを照射し、極柱部141の圧縮変形部141hと正極集電板130とを接合する。次いで、電槽111の天井部111aに位置する注入口111kから電解液を注入し、注入口111kを閉鎖するように安全弁113を取り付ける。   Next, among the joined body formed by joining the electrode plate group 120, the sealing member 115, and the positive electrode current collector plate 130, the positive electrode current collector plate 130 and the electrode plate group 120 are inserted into the battery case 111 from the opening 111g. At the same time, the battery case 111 is covered with the sealing member 115. Next, laser is irradiated from the outside, the sealing member 115 and the battery case 111 are joined, and the battery case 111 is sealed. Next, the laser is irradiated from the outside of the first positive electrode terminal 140b and the second positive electrode terminal 140c toward the depression of the pole column portion 141, and the compression deformation portion 141h of the pole column portion 141 and the positive electrode current collector plate 130 are joined. . Next, an electrolyte is injected from an inlet 111k located in the ceiling 111a of the battery case 111, and a safety valve 113 is attached so as to close the inlet 111k.

(電池配置工程)
次に、上記のようにして組み立てた複数の二次電池100を、図5に示すように、制限治具200に配置し固定する。
ここで、本実施形態にかかる制限治具200について説明する。制限治具200は、図4に示すように、略矩形板状の側板210,220と、断面正六角形をなす4本の連結棒230と、8本の締結ボルト240と、両側板210,220の間に位置する複数の膨張制限部材250,260とを備えている。側板210と側板220とは、それぞれの角部の位置で、締結ボルト240により固着された4本の連結棒230により、連結されている。
(Battery placement process)
Next, the plurality of secondary batteries 100 assembled as described above are arranged and fixed on a limiting jig 200 as shown in FIG.
Here, the limiting jig 200 according to the present embodiment will be described. As shown in FIG. 4, the limiting jig 200 includes substantially rectangular plate-like side plates 210 and 220, four connecting rods 230 having a regular hexagonal cross section, eight fastening bolts 240, and both side plates 210 and 220. And a plurality of expansion limiting members 250 and 260 located between the two. The side plate 210 and the side plate 220 are connected by four connecting rods 230 fixed by fastening bolts 240 at the respective corners.

膨張制限部材250は、電気絶縁性の樹脂からなり、図4(a)、(b)に示すように、上面視略E字型で紙面に直交する方向に延びる側壁部251と、矩形板状の底部252とを有している。膨張制限部材260は、電気絶縁性の樹脂からなり、図4(a)、(b)に示すように、略平板形状を有している。本実施形態では、膨張制限部材260と、50ヶの膨張制限部材250とが、互いに隙間を空けて、側板210と側板220との間に、一列に並んで配置されている。これにより、本実施形態の制限治具200には、100ヶの電池収容部Sが形成される。   The expansion limiting member 250 is made of an electrically insulating resin, and as shown in FIGS. 4 (a) and 4 (b), a side wall portion 251 that is substantially E-shaped when viewed from above and extends in a direction perpendicular to the paper surface, and a rectangular plate shape And a bottom portion 252 of the main body. The expansion limiting member 260 is made of an electrically insulating resin and has a substantially flat plate shape as shown in FIGS. 4 (a) and 4 (b). In the present embodiment, the expansion limiting member 260 and the 50 expansion limiting members 250 are arranged in a line between the side plate 210 and the side plate 220 with a gap therebetween. Thereby, 100 battery accommodating parts S are formed in the limiting jig 200 of this embodiment.

また、膨張制限部材250には、それぞれ、膨張制限部材250の配列方向(図4(a)、(b)において左右方向)に延びる貫通孔254が穿孔されている。従って、図4(b)に示すように、膨張制限部材250を所定の位置に配置したときに、それぞれの膨張制限部材250の貫通孔254が、同一軸線上に一列に並ぶ。さらに、膨張制限部材260にも、所定の位置に配置したときに、膨張制限部材250の貫通孔254と同一軸線上に並ぶ位置に、貫通孔264が穿孔されている。さらに、側板210と側板220とにも、所定の位置に配置された膨張制限部材250の貫通孔254と同一軸線上に並ぶ位置に、それぞれ、貫通孔214と貫通孔224とが穿孔されている。   The expansion limiting member 250 is formed with through holes 254 that extend in the direction in which the expansion limiting members 250 are arranged (left and right in FIGS. 4A and 4B). Therefore, as shown in FIG. 4B, when the expansion limiting member 250 is disposed at a predetermined position, the through holes 254 of the respective expansion limiting members 250 are arranged in a line on the same axis. Further, the expansion limiting member 260 is also provided with a through hole 264 at a position aligned with the through hole 254 of the expansion limiting member 250 on the same axis line when arranged at a predetermined position. Furthermore, a through hole 214 and a through hole 224 are drilled in the side plate 210 and the side plate 220, respectively, at positions aligned on the same axis as the through hole 254 of the expansion limiting member 250 arranged at a predetermined position. .

さらに、制限治具200では、一本の挿通棒272が、同一軸線上に並ぶ、側板210の貫通孔214と、膨張制限部材260の貫通孔264と、膨張制限部材250の貫通孔254と、側板220の貫通孔224とを挿通し、側板210,220に固定されている。これにより、膨張制限部材260と50ヶの膨張制限部材250とが、側板210と側板220との間において、挿通棒272が延びる方向(図4(a)において左右方向)に移動可能としつつ、固定される。   Furthermore, in the limiting jig 200, one insertion rod 272 is arranged on the same axis, the through hole 214 of the side plate 210, the through hole 264 of the expansion limiting member 260, the through hole 254 of the expansion limiting member 250, The through hole 224 of the side plate 220 is inserted and fixed to the side plates 210 and 220. Thereby, the expansion limiting member 260 and the 50 expansion limiting members 250 are movable between the side plate 210 and the side plate 220 in the direction in which the insertion rod 272 extends (left and right in FIG. 4A), Fixed.

本実施形態の電池配置工程では、まず、制限治具200の電池収容部S内(図4参照)に、100ヶの二次電池100を挿入配置する。次いで、締結ボルト240を締結することにより、側板210と側板220との間隙を縮め、二次電池100の第1側壁部111c、第2側壁部111dと、膨張制限部材250,260とを密接させる。これにより、図5に示すように、100ヶの二次電池100を、互いの電気的な絶縁を図りつつ、制限治具100に固定することができる。   In the battery arrangement process of the present embodiment, first, 100 secondary batteries 100 are inserted and arranged in the battery accommodating portion S (see FIG. 4) of the limiting jig 200. Next, by fastening the fastening bolt 240, the gap between the side plate 210 and the side plate 220 is reduced, and the first side wall portion 111c and the second side wall portion 111d of the secondary battery 100 and the expansion limiting members 250 and 260 are brought into close contact with each other. . As a result, as shown in FIG. 5, 100 secondary batteries 100 can be fixed to the limiting jig 100 while being electrically insulated from each other.

ところで、一般に、二次電池は、充電を施したり、電池温度を上昇させると、その内圧が上昇することにより、膨張する傾向にある。特に、本実施形態の二次電池100では、電池ケース111のうち最も外表面の面積が大きな第1側壁部111c及び第2側壁部111dが、最も膨張する傾向にある。これに対し、本実施形態では、上記のように、100ヶの二次電池100を制限治具100に配置し固定することにより、それぞれの二次電池100(電池ケース110)の膨張を、最も膨張する傾向にある第1側壁部111c及び第2側壁部111dについて制限することができる。このため、後述する初期充電工程、充放電工程、及びエージング工程において、二次電池100(電池ケース110)の膨張を適切に抑制することができる。   By the way, generally, when a secondary battery is charged or the battery temperature is increased, the internal pressure tends to expand due to an increase in internal pressure. In particular, in the secondary battery 100 of the present embodiment, the first side wall part 111c and the second side wall part 111d having the largest outer surface area in the battery case 111 tend to expand most. On the other hand, in this embodiment, as described above, by placing and fixing 100 secondary batteries 100 on the limiting jig 100, the expansion of each secondary battery 100 (battery case 110) is the most. It can restrict about the 1st side wall part 111c and the 2nd side wall part 111d which tend to expand. For this reason, expansion of the secondary battery 100 (battery case 110) can be appropriately suppressed in an initial charging process, a charging / discharging process, and an aging process described later.

なお、制限治具200の膨張制限部材250には、図4(b)に示すように、側方両側の位置に、開口部256が形成されている。これにより、制限治具200の電池収容部S内(図4参照)に、二次電池100を挿入配置したとき、図5(b)に示すように、開口部256から、電池ケース111の第3側壁部111e(負極)と、第1,第2正極端子140b、140cとを外部に露出させることができる。このため、後述する初期充電工程、充放電工程、第1電圧測定工程、及び第2電圧測定工程において、各装置の正極用端子と負極用端子とを、二次電池100の側方から、容易に、第3側壁部111e(負極)と、第1,第2正極端子140b、140cとに接続させることができる。   Note that, as shown in FIG. 4B, openings 256 are formed at positions on both sides of the expansion limiting member 250 of the limiting jig 200. As a result, when the secondary battery 100 is inserted and arranged in the battery housing portion S (see FIG. 4) of the limiting jig 200, as shown in FIG. The three side wall portions 111e (negative electrode) and the first and second positive electrode terminals 140b and 140c can be exposed to the outside. Therefore, in the initial charging step, the charging / discharging step, the first voltage measuring step, and the second voltage measuring step, which will be described later, the positive electrode terminal and the negative electrode terminal of each device can be easily set from the side of the secondary battery 100. In addition, the third side wall portion 111e (negative electrode) and the first and second positive electrode terminals 140b and 140c can be connected.

(初期充電工程)
次に、二次電池100を配置した制限治具200(図5参照)を、図示しない初期充電装置に装着し、制限治具200に二次電池100を配置した状態のまま、二次電池100に初期充電を施した。具体的には、二次電池100を配置した制限治具200を、初期充電装置に装着した後、図示しない初期充電装置の負極用端子を、二次電池100の側方(図5(a)において上方と下方)から、二次電池100の第3側壁部111e(負極)に、それぞれ接続させる。これと共に、図示しない初期充電装置の正極用端子を、二次電池100の側方(図5(a)において上方と下方)から、二次電池100の第2正極端子140cに、それぞれ接続させる。
(Initial charging process)
Next, the limiting jig 200 (see FIG. 5) in which the secondary battery 100 is disposed is attached to an initial charging device (not shown), and the secondary battery 100 is disposed in the state in which the secondary battery 100 is disposed in the limiting jig 200. The initial charge was applied. Specifically, after the limiting jig 200 in which the secondary battery 100 is arranged is attached to the initial charging device, the negative electrode terminal of the initial charging device (not shown) is connected to the side of the secondary battery 100 (FIG. 5A). Are connected to the third side wall 111e (negative electrode) of the secondary battery 100 from above and below. At the same time, the positive terminal of the initial charging device (not shown) is connected to the second positive terminal 140c of the secondary battery 100 from the side of the secondary battery 100 (upper and lower in FIG. 5A).

次いで、図示しない電源装置を用いて、それぞれの二次電池100について、0.1Cの電流でSOC(State Of Charge)20〜50%まで充電を施した。その後、さらに、0.5Cの電流でSOC100%まで充電を施した。なお、本実施形態では、1C=6.5A,SOC100%=6.5Ahである。その後、制限治具200を、二次電池100を配置した状態のまま、初期充電装置から取り外した。
ところで、本実施形態の初期充電工程では、上述のように、二次電池100を制限治具200に配置し固定した状態(具体的には、電池ケース110の膨張を、最も膨張する傾向にある第1側壁部111c及び第2側壁部111dについて制限した状態)で、初期充電を行っている。このため、初期充電時における電池ケース111の膨張を、適切に抑制することができ、電池ケース110の歪みや、電解液の漏れなどを防止することができた。
Next, using a power supply device (not shown), each secondary battery 100 was charged to a SOC (State Of Charge) of 20 to 50% with a current of 0.1 C. Thereafter, the battery was further charged to 100% SOC at a current of 0.5C. In the present embodiment, 1C = 6.5A and SOC 100% = 6.5Ah. Thereafter, the limiting jig 200 was removed from the initial charging device while the secondary battery 100 was placed.
By the way, in the initial charging step of the present embodiment, as described above, the secondary battery 100 is arranged and fixed on the limiting jig 200 (specifically, the expansion of the battery case 110 tends to expand most). Initial charging is performed in a state where the first side wall 111c and the second side wall 111d are limited. For this reason, the expansion of the battery case 111 at the time of initial charge can be appropriately suppressed, and the distortion of the battery case 110 and the leakage of the electrolyte solution can be prevented.

(充放電工程)
次に、二次電池100を、制限治具200に配置した状態のまま、図示しない充放電装置に装着し、二次電池100に充放電を施した。具体的には、まず、100ヶの二次電池100を配置した制限治具200を、初期充電装置から取り外した後、100ヶの二次電池100を制限治具200に配置した状態のまま、充放電装置に装着した。次いで、図示しない充放電装置の負極用端子を、二次電池100の側方(図5(a)において上方と下方)から、二次電池100の第3側壁部111e(負極)に、それぞれ接続させる。これと共に、図示しない充放電装置の正極用端子を、二次電池100の側方(図5(a)において上方と下方)から、二次電池100の第1,第2正極端子140b,140cに、それぞれ接続させる。
(Charge / discharge process)
Next, the secondary battery 100 was mounted on a charging / discharging device (not shown) while being placed on the limiting jig 200, and the secondary battery 100 was charged / discharged. Specifically, first, after the restriction jig 200 in which 100 secondary batteries 100 are arranged is removed from the initial charging device, the 100 secondary batteries 100 are placed in the restriction jig 200, Attached to a charge / discharge device. Next, the negative electrode terminal of the charging / discharging device (not shown) is connected to the third side wall portion 111e (negative electrode) of the secondary battery 100 from the side of the secondary battery 100 (upper and lower in FIG. 5A). Let At the same time, the positive electrode terminal of the charging / discharging device (not shown) is connected to the first and second positive electrode terminals 140b and 140c of the secondary battery 100 from the side of the secondary battery 100 (above and below in FIG. 5A). , Connect them respectively.

次いで、図示しない電源装置を用いて、それぞれの二次電池100に、充放電を繰り返し行った。具体的には、2〜5Cの電流でSOC100%まで充電を施し、その後、5Cの電流で電池電圧が1.0Vになるまで放電する充放電サイクルを、数十サイクル繰り返し行った。その後、制限治具200を、二次電池100を配置した状態のまま、充放電装置から取り外した。
ところで、本実施形態の充放電工程では、上述のように、二次電池100を制限治具200に配置し固定した状態(具体的には、電池ケース110の膨張を、最も膨張する傾向にある第1側壁部111c及び第2側壁部111dについて制限した状態)で、充放電を行っている。このため、充放電時における電池ケース111の膨張を、適切に抑制することができ、電池ケース110の歪みや、電解液の漏れなどを防止することができた。
Next, each secondary battery 100 was repeatedly charged and discharged using a power supply device (not shown). Specifically, a charge / discharge cycle of charging to SOC 100% with a current of 2 to 5C and then discharging until the battery voltage became 1.0V with a current of 5C was repeated several tens of cycles. Thereafter, the limiting jig 200 was removed from the charging / discharging device while the secondary battery 100 was disposed.
By the way, in the charging / discharging process of the present embodiment, as described above, the secondary battery 100 is arranged and fixed on the limiting jig 200 (specifically, the expansion of the battery case 110 tends to expand most). Charging / discharging is performed in a state where the first side wall 111c and the second side wall 111d are limited. For this reason, expansion of the battery case 111 at the time of charging / discharging can be suppressed appropriately, and distortion of the battery case 110, leakage of the electrolyte, and the like can be prevented.

(エージング工程)
次に、エージング工程に進み、充放電を施した二次電池100を、図6に示すエージング装置500内に配置した。具体的には、100ヶの二次電池100を配置した制限治具200を、充放電装置から取り外した後、図6に示すように、100ヶの二次電池100を制限治具200に配置した状態のまま、35〜60℃の範囲内のほぼ一定温度の高温雰囲気に保持されたエージング装置500内に配置し、5〜10日間にわたり安置した。
(Aging process)
Next, it progressed to the aging process and the secondary battery 100 which performed charging / discharging was arrange | positioned in the aging apparatus 500 shown in FIG. Specifically, after the restriction jig 200 in which 100 secondary batteries 100 are arranged is removed from the charging / discharging device, 100 secondary batteries 100 are arranged in the restriction jig 200 as shown in FIG. As it was, it was placed in an aging device 500 maintained in a high temperature atmosphere at a substantially constant temperature within a range of 35-60 ° C., and placed for 5-10 days.

本実施形態のエージング装置500は、図6に示すように、エージング装置500の入口501から出口502にわたって延びるコンベア510を有している。このコンベア510は、二次電池100を配置した制限治具200を、5〜10日間かけてゆっくりと、エージング装置500の入口501から出口502まで搬送する。従って、100ヶの二次電池100を配置した制限治具200は、入口501からコンベア510上に載置されると、その5〜10日間後に、出口502から搬出される。すなわち、二次電池100は、制限治具200に配置された状態のまま、5〜10日間にわたり、35〜60℃の範囲内のほぼ一定温度の高温雰囲気に保持されたエージング装置500内に安置されることとなる。   As shown in FIG. 6, the aging device 500 of the present embodiment includes a conveyor 510 that extends from the inlet 501 to the outlet 502 of the aging device 500. The conveyor 510 slowly conveys the limiting jig 200 on which the secondary battery 100 is arranged from the inlet 501 to the outlet 502 of the aging device 500 over 5 to 10 days. Therefore, when the limiting jig 200 in which 100 secondary batteries 100 are arranged is placed on the conveyor 510 from the inlet 501, it is carried out from the outlet 502 after five to ten days. That is, the secondary battery 100 is placed in the aging apparatus 500 held in a high-temperature atmosphere at a substantially constant temperature in the range of 35 to 60 ° C. for 5 to 10 days while being placed in the limiting jig 200. Will be.

さらに、本実施形態のエージング装置500は、第1電圧測定位置C1(図6参照)に、図示しない第1電圧測定装置を備えている。これにより、100ヶの二次電池100を配置した制限治具200が、コンベア510で搬送されて、第1電圧測定位置C1に到達すると、第1電圧測定装置により、各二次電池100の端子間電圧である第1端子間電圧V1を測定することができる。具体的には、二次電池100の側方(図6において紙面手前側と奥側)から、図示しない第1電圧測定装置の負極用端子を、各二次電池100の第3側壁部111e(負極)に接続させると共に、図示しない第1電圧測定装置の正極用端子を、各二次電池100の第2正極端子140cに接続させて、第1端子間電圧V1を測定する。   Furthermore, the aging device 500 of this embodiment includes a first voltage measurement device (not shown) at the first voltage measurement position C1 (see FIG. 6). Thereby, when the limiting jig 200 in which 100 secondary batteries 100 are arranged is conveyed by the conveyor 510 and reaches the first voltage measurement position C1, the terminal of each secondary battery 100 is received by the first voltage measurement device. The first inter-terminal voltage V1 that is an inter-voltage can be measured. Specifically, from the side of the secondary battery 100 (the front side and the back side in FIG. 6), the negative electrode terminal of the first voltage measuring device (not shown) is connected to the third side wall portion 111e ( In addition, the positive terminal of the first voltage measuring device (not shown) is connected to the second positive terminal 140c of each secondary battery 100, and the first inter-terminal voltage V1 is measured.

さらに、本実施形態のエージング装置500は、第2電圧測定位置C2(図6参照)に、図示しない第2電圧測定装置を備えている。これにより、100ヶの二次電池100を配置した制限治具200が、コンベア510で搬送されて、第2電圧測定位置C2に到達すると、第2電圧測定装置により、各二次電池100の端子間電圧である第2端子間電圧V2を測定することができる。具体的には、二次電池100の側方(図6において紙面手前側と奥側)から、図示しない第2電圧測定装置の負極用端子を、各二次電池100の第3側壁部111e(負極)に接続させると共に、図示しない第2電圧測定装置の正極用端子を、各二次電池100の第2正極端子140cに接続させて、第2端子間電圧V2を測定する。   Furthermore, the aging device 500 of this embodiment includes a second voltage measurement device (not shown) at the second voltage measurement position C2 (see FIG. 6). Thereby, when the limiting jig 200 in which 100 secondary batteries 100 are arranged is conveyed by the conveyor 510 and reaches the second voltage measurement position C2, the terminal of each secondary battery 100 is obtained by the second voltage measurement device. The voltage V2 between the 2nd terminals which is an inter-voltage can be measured. Specifically, from the side of the secondary battery 100 (the front side and the back side in FIG. 6), the negative electrode terminal of the second voltage measuring device (not shown) is connected to the third side wall portion 111e ( And a positive electrode terminal of a second voltage measuring device (not shown) is connected to the second positive electrode terminal 140c of each secondary battery 100 to measure the voltage V2 between the second terminals.

なお、本実施形態では、二次電池100を配置した制限治具200が、エージング装置500内に安置(入口501から搬入)されてから1〜3日間経過した後に、第1電圧測定位置C1に到達し、例えば5〜10日間経過した後に、第2電圧測定位置C2に到達するように調整されている。従って、エージング装置500内(約40℃の高温雰囲気下)に1〜3日間安置した100ヶの二次電池100について、それぞれ、第1端子間電圧V1を測定することができる。さらに、エージング装置500内(約40℃の高温雰囲気下)に、例えば5〜10日間安置した100ヶの二次電池100について、それぞれ、第2端子間電圧V2を測定することができる。   In the present embodiment, after 1 to 3 days have elapsed since the limiting jig 200 in which the secondary battery 100 is disposed is placed in the aging device 500 (loaded from the inlet 501), the first jig is measured at the first voltage measurement position C1. For example, after 5 to 10 days have passed, the second voltage measurement position C2 is adjusted. Therefore, the first terminal voltage V1 can be measured for each of the 100 secondary batteries 100 placed in the aging device 500 (in a high temperature atmosphere of about 40 ° C.) for 1 to 3 days. Further, the second inter-terminal voltage V2 can be measured for each of the 100 secondary batteries 100 placed in the aging device 500 (in a high temperature atmosphere of about 40 ° C.) for 5 to 10 days, for example.

さらに、本実施形態では、制限治具200に配置された100ヶの二次電池100のグループ毎に、第1端子間電圧V1及び第2端子間電圧V2に基づいて、当該二次電池100の電気特性の良否を判定し、良品と不良品を判別する。ここで、本実施形態にかかる第1電圧測定工程、第2電圧測定工程、及び判定工程のフローチャートを、図7及び図8に示し、このフローチャートを参照しつつ、第1電圧測定工程、第2電圧測定工程、及び判定工程について、詳細に説明する。なお、本実施形態では、ステップS1が第1電圧測定工程に相当し、ステップS3が第2電圧測定工程に相当し、ステップS2,S4〜SDが判定工程に相当する。   Furthermore, in this embodiment, for each group of 100 secondary batteries 100 arranged in the limiting jig 200, the secondary battery 100 of the secondary battery 100 is based on the first terminal voltage V1 and the second terminal voltage V2. Judge the quality of electrical characteristics, and discriminate between good and defective products. Here, flowcharts of the first voltage measurement process, the second voltage measurement process, and the determination process according to the present embodiment are shown in FIGS. 7 and 8, and the first voltage measurement process, The voltage measurement process and the determination process will be described in detail. In the present embodiment, step S1 corresponds to the first voltage measurement process, step S3 corresponds to the second voltage measurement process, and steps S2 and S4 to SD correspond to the determination process.

まず、100ヶの二次電池100を配置した制限治具200が、第1電圧測定位置C1に到達すると、図7に示すように、ステップS1において、100ヶの二次電池100について、それぞれ、第1端子間電圧V1を測定する。次いで、ステップS2に進み、100ヶの二次電池100のそれぞれについて、測定した第1端子間電圧V1が、適正範囲内にあるか否かを判定する。具体的には、測定した第1端子間電圧V1が、予め設定した第1端子間電圧V1の下限値V1minと上限値V1maxとの間の値であるか否か(V1min<V1<V1maxの関係を満たすか否か)を判定する。第1端子間電圧V1が上記適正範囲内の値でない(NO)二次電池100は、不良品と判定し、以降の判定対象から除外する。なお、本実施形態では、V1min=1.0(V)、V1max=1.3(V)に設定している。   First, when the limiting jig 200 in which 100 secondary batteries 100 are arranged reaches the first voltage measurement position C1, as shown in FIG. 7, in step S1, about 100 secondary batteries 100, respectively. The first terminal voltage V1 is measured. Subsequently, it progresses to step S2 and it is determined about each of the 100 secondary batteries 100 whether the measured 1st terminal voltage V1 exists in an appropriate range. Specifically, whether or not the measured first terminal voltage V1 is a value between a preset lower limit value V1min and upper limit value V1max of the first terminal voltage V1 (relationship of V1min <V1 <V1max). Or not) is determined. The secondary battery 100 in which the voltage V1 between the first terminals is not within the above-described appropriate range (NO) is determined as a defective product and excluded from the subsequent determination targets. In this embodiment, V1min = 1.0 (V) and V1max = 1.3 (V) are set.

その後、100ヶの二次電池100を配置した制限治具200が、第2電圧測定位置C2に到達すると、ステップS3に進み、V1min<V1<V1maxの関係を満たす(ステップS2においてYES)二次電池100について、それぞれ、第2端子間電圧V2を測定する。次いで、ステップS4に進み、当該二次電池100のそれぞれについて、測定した第2端子間電圧V2が、適正範囲内にあるか否かを判定する。具体的には、測定した第2端子間電圧V2が、予め設定した第2端子間電圧V2の下限値V2minと上限値V2maxとの間の値であるか否か(V2min<V2<V2maxの関係を満たすか否か)を判定する。ここで、第2端子間電圧V2が上記範囲内の値でない二次電池100(NO)は、不良品と判定し、以降の判定対象から除外する。なお、本実施形態では、V2min=1.0(V)、V2max=1.3(V)に設定した。   After that, when the limiting jig 200 in which 100 secondary batteries 100 are arranged reaches the second voltage measurement position C2, the process proceeds to step S3 and satisfies the relationship V1min <V1 <V1max (YES in step S2). For each of the batteries 100, the second terminal voltage V2 is measured. Subsequently, it progresses to step S4 and it is determined about each of the said secondary batteries 100 whether the measured 2nd terminal voltage V2 exists in an appropriate range. Specifically, whether or not the measured second terminal voltage V2 is a value between a preset lower limit value V2min and upper limit value V2max of the second terminal voltage V2 (relationship of V2min <V2 <V2max). Or not) is determined. Here, the secondary battery 100 (NO) in which the voltage V2 between the second terminals is not a value within the above range is determined as a defective product and excluded from the subsequent determination targets. In the present embodiment, V2min = 1.0 (V) and V2max = 1.3 (V) are set.

次いで、ステップS5に進み、V2min<V2<V2maxの関係を満たす(ステップS4においてYES)二次電池100を対象として、第2端子間電圧V2の平均値V2aを算出した。さらに、ステップS6に進み、当該二次電池100のグループを対象として、第2端子間電圧V2の標準偏差σV2を算出した。次いで、ステップS7に進み、平均値V2a及び標準偏差σV2に基づいて、二次電池100の電気特性の良否を判定した。具体的には、当該グループに属する二次電池100について、それぞれ、第2端子間電圧V2と平均値V2aとの差の絶対値|V2−V2a|が、標準偏差σV2の値に所定値nを乗じた値n(σV2)以下の値であるか否か(|V2−V2a|≦n(σV2)の関係を満たすか否か)を判定する。ここで、絶対値|V2−V2a|がn(σV2)を上回る二次電池100(NO)は、不良品と判定し、以降の判定対象から除外する。なお、所定値nは、例えば、3〜5の範囲内の値に設定する。   Next, the process proceeds to step S5, and the average value V2a of the second terminal voltage V2 is calculated for the secondary battery 100 that satisfies the relationship of V2min <V2 <V2max (YES in step S4). In step S6, the standard deviation σV2 of the second terminal voltage V2 was calculated for the group of the secondary batteries 100. Subsequently, it progressed to step S7 and the quality of the electrical property of the secondary battery 100 was determined based on average value V2a and standard deviation (sigma) V2. Specifically, for the secondary batteries 100 belonging to the group, the absolute value | V2−V2a | of the difference between the voltage V2 between the second terminals and the average value V2a is a predetermined value n as the value of the standard deviation σV2. It is determined whether or not the value is less than or equal to the multiplied value n (σV2) (whether or not the relationship of | V2−V2a | ≦ n (σV2) is satisfied). Here, the secondary battery 100 (NO) in which the absolute value | V2−V2a | exceeds n (σV2) is determined as a defective product and excluded from the subsequent determination targets. The predetermined value n is set to a value in the range of 3 to 5, for example.

次いで、ステップS8に進み、|V2−V2a|≦n(σV2)の関係を満たす(ステップS7においてYES)二次電池100について、それぞれ、第1端子間電圧V1と第2端子間電圧V2との電圧差ΔV=|V1−V2|を算出する。次いで、ステップS9に進み、当該二次電池100のそれぞれについて、算出した電圧差ΔVが、適正範囲内にあるか否かを判定する。具体的には、算出した電圧差ΔVが、予め設定した電圧差ΔVの下限値ΔVminと上限値ΔVmaxとの間の値であるか否か(ΔVmin<ΔV<ΔVmaxの関係を満たすか否か)を判定する。ここで、電圧差ΔVが上記範囲内の値でない二次電池100(NO)は、不良品と判定し、以降の判定対象から除外する。なお、本実施形態では、ΔVmin=0(V)、ΔVmax=0.2(V)に設定した。   Next, the process proceeds to step S8, and the secondary battery 100 satisfying the relationship of | V2−V2a | ≦ n (σV2) (YES in step S7), the voltage V1 between the first terminals and the voltage V2 between the second terminals, respectively. The voltage difference ΔV = | V1−V2 | is calculated. Next, the process proceeds to step S9, and it is determined whether or not the calculated voltage difference ΔV is within an appropriate range for each of the secondary batteries 100. Specifically, whether or not the calculated voltage difference ΔV is a value between a lower limit value ΔVmin and an upper limit value ΔVmax of the preset voltage difference ΔV (whether or not the relationship of ΔVmin <ΔV <ΔVmax is satisfied). Determine. Here, the secondary battery 100 (NO) in which the voltage difference ΔV is not a value within the above range is determined as a defective product and excluded from the subsequent determination targets. In this embodiment, ΔVmin = 0 (V) and ΔVmax = 0.2 (V) are set.

次いで、ステップSAに進み、ΔVmin<ΔV<ΔVmaxの関係を満たす(ステップS9においてYES)二次電池100について、ループ判定を行う。具体的には、図8に示すように、ステップSA1〜ステップSA4の判定サイクルを、予め設定した規程回数だけ、繰り返し行った。なお、本実施形態では、ステップSAが、ループ判定工程に相当する。
まず、ステップSA1において、ΔVmin<ΔV<ΔVmaxの関係を満たす(ステップS9においてYES)二次電池100を対象として、電圧差ΔVの平均値ΔVamを算出する。次いで、ステップSA2に進み、当該二次電池100のグループを対象として、電圧差ΔVの標準偏差σmΔVを算出する。
Next, the process proceeds to step SA, and loop determination is performed for the secondary battery 100 that satisfies the relationship of ΔVmin <ΔV <ΔVmax (YES in step S9). Specifically, as shown in FIG. 8, the determination cycle of step SA1 to step SA4 was repeated for a preset number of times. In the present embodiment, step SA corresponds to a loop determination process.
First, in step SA1, the average value ΔVam of the voltage difference ΔV is calculated for the secondary battery 100 that satisfies the relationship ΔVmin <ΔV <ΔVmax (YES in step S9). Next, the process proceeds to step SA2, and the standard deviation σmΔV of the voltage difference ΔV is calculated for the group of secondary batteries 100.

次いで、ステップSA3に進み、平均値ΔVam及び標準偏差σmΔVに基づいて、二次電池100の電気特性の良否を判定する。具体的には、当該グループに属する二次電池100について、それぞれ、電圧差ΔVと平均値ΔVamとの差の絶対値|ΔV−ΔVam|が、標準偏差σmΔVの値に所定値nを乗じた値n(σmΔV)以下の値であるか否か(|ΔV−ΔVam|≦n(σmΔV)の関係を満たすか否か)を判定する。ここで、絶対値|ΔV−ΔVam|がn(σmΔV)を上回る二次電池100(NO)は、不良品と判定し、以降の判定対象から除外する。なお、所定値nは、前述のように、例えば、3〜5の範囲内の値に設定している。   Next, the process proceeds to step SA3, and the quality of the electrical characteristics of the secondary battery 100 is determined based on the average value ΔVam and the standard deviation σmΔV. Specifically, for the secondary batteries 100 belonging to the group, the absolute value | ΔV−ΔVam | of the difference between the voltage difference ΔV and the average value ΔVam is a value obtained by multiplying the value of the standard deviation σmΔV by a predetermined value n. It is determined whether or not the value is equal to or less than n (σmΔV) (whether or not the relationship | ΔV−ΔVam | ≦ n (σmΔV) is satisfied). Here, the secondary battery 100 (NO) in which the absolute value | ΔV−ΔVam | exceeds n (σmΔV) is determined as a defective product and excluded from the subsequent determination targets. Note that the predetermined value n is set to a value in the range of 3 to 5, for example, as described above.

次いで、ステップSA4に進み、ステップSA1〜ステップSA3の判定サイクルのサイクル回数mが、予め設定した規程回数に達したか否かを判定する。未だ、サイクル回数mが、規程回数に達していない場合(NO)には、再び、ステップSA1に戻り、先のステップSA3で|ΔV−ΔVam|≦n(σmΔV)の関係を満たす(YES)と判定された二次電池100のグループについて、改めて、上述したステップSA1〜ステップSA3の処理を行う。そして、上記判定サイクルを規程回数だけ繰り返し行うと、ステップSA4において、サイクル回数mが規程回数に達したと判定され(YES)、ステップSAのループ判定を終了し、図7のメインルーチンに戻る。
なお、サイクル回数mの規程回数は、例えば、5〜10回の範囲内の回数に設定する。
Next, the process proceeds to step SA4, and it is determined whether or not the cycle number m of the determination cycle of steps SA1 to SA3 has reached a preset number of rules. If the number of cycles m has not yet reached the prescribed number (NO), the process returns to step SA1 again, and satisfies the relationship | ΔV−ΔVam | ≦ n (σmΔV) in the previous step SA3 (YES). For the determined group of secondary batteries 100, the above-described processing of Step SA1 to Step SA3 is performed again. When the determination cycle is repeated for the specified number of times, it is determined in step SA4 that the cycle number m has reached the specified number of times (YES), the loop determination in step SA is terminated, and the process returns to the main routine of FIG.
In addition, the regulation number of the cycle number m is set to a number within a range of 5 to 10 times, for example.

次に、ステップSBに進み、ステップSAのループ判定において、最後まで|ΔV−ΔVam|≦n(σmΔV)の関係を満たした(最終サイクルのステップSA3においてYES)二次電池100を対象として、最終的なΔVの平均値ΔVaを算出する。次いで、ステップSCに進み、当該二次電池100のグループを対象として、最終的なΔVの標準偏差σΔVを算出する。   Next, the process proceeds to step SB, and in the loop determination at step SA, the relationship | ΔV−ΔVam | ≦ n (σmΔV) is satisfied until the end (YES in step SA3 of the final cycle). An average value ΔVa of ΔV is calculated. Next, the process proceeds to step SC, and a final standard deviation σΔV of ΔV is calculated for the group of secondary batteries 100.

次いで、ステップSDに進み、平均値ΔVa及び標準偏差σΔVに基づいて、二次電池100の電気特性の良否を最終判定する。具体的には、当該グループに属する二次電池100について、それぞれ、電圧差ΔVと平均値ΔVaとの差の絶対値|ΔV−ΔVa|が、標準偏差σΔVの値に所定値nを乗じた値n(σΔV)以下の値であるか否か(|ΔV−ΔVa|≦n(σΔV)の関係を満たすか否か)を判定する。ここで、絶対値|ΔV−ΔVa|がn(σΔV)を上回った二次電池100(NO)は、不良品と判定する。これとは逆に、|ΔV−ΔVa|≦n(σΔV)の関係を満たす(YES)と判定された二次電池100は、良品と判定する。なお、所定値nは、前述のように、例えば、3〜5の範囲内の値に設定している。   Next, the process proceeds to step SD, and finally the quality of the electrical characteristics of the secondary battery 100 is determined based on the average value ΔVa and the standard deviation σΔV. Specifically, for the secondary batteries 100 belonging to the group, the absolute value | ΔV−ΔVa | of the difference between the voltage difference ΔV and the average value ΔVa is a value obtained by multiplying the value of the standard deviation σΔV by a predetermined value n. It is determined whether or not the value is equal to or less than n (σΔV) (whether or not the relationship | ΔV−ΔVa | ≦ n (σΔV) is satisfied). Here, the secondary battery 100 (NO) in which the absolute value | ΔV−ΔVa | exceeds n (σΔV) is determined as a defective product. On the contrary, the secondary battery 100 determined to satisfy the relationship of | ΔV−ΔVa | ≦ n (σΔV) (YES) is determined as a non-defective product. Note that the predetermined value n is set to a value in the range of 3 to 5, for example, as described above.

次いで、100ヶの二次電池100を配置した制限治具200が、エージング装置500の出口502から搬出された後(図6参照)、制限治具200から100ヶの二次電池100を取り出す。そして、これらの二次電池100について、判定工程(ステップS2,S4〜SD)において不良品と判定された二次電池100と、良品と判定された二次電池100とに判別する。このうち、良品と判定された二次電池100は、電気特性が良好と言えるので、その後の工程を経た後、出荷される。これとは逆に、不良品と判定された二次電池100については、電気特性が不良と言えるので、廃棄処分する。   Next, after the restriction jig 200 in which 100 secondary batteries 100 are arranged is carried out from the outlet 502 of the aging device 500 (see FIG. 6), the 100 secondary batteries 100 are taken out from the restriction jig 200. And about these secondary batteries 100, it discriminate | determines into the secondary battery 100 determined to be inferior goods in the determination process (step S2, S4-SD), and the secondary battery 100 determined to be good goods. Among these, the secondary battery 100 determined to be a non-defective product can be said to have good electrical characteristics, and is shipped after passing through the subsequent steps. On the contrary, the secondary battery 100 determined to be defective is discarded because it has a poor electrical characteristic.

なお、本実施形態では、制限治具200に配置した100ヶの二次電池100に対し、例えば、1〜100の識別番号を付与しておくのが好ましい。このようにすれば、判定工程(ステップS2,S4〜SD)において、不良品と判定された二次電池100及び良品と判定された二次電池100を、識別番号で管理することができるので、良品と不良品との判別を正確、且つ迅速に行うことが可能となる。   In the present embodiment, it is preferable to assign, for example, identification numbers of 1 to 100 to the 100 secondary batteries 100 arranged in the limiting jig 200. In this way, in the determination step (steps S2, S4 to SD), the secondary battery 100 determined to be defective and the secondary battery 100 determined to be non-defective can be managed by the identification number. It becomes possible to accurately and quickly discriminate between good and defective products.

以上のようにして、二次電池100を製造したところ、不良品と判定した二次電池100の中に良品が含まれていたり、これとは逆に、良品と判定した二次電池100の中に不良品が含まれることはほとんどなかった。すなわち、本実施形態の製造方法を用いることで、二次電池100の電気特性の良否の判定精度を高めることができた。これは、以下の要因によるものと考えられる。   When the secondary battery 100 is manufactured as described above, a non-defective product is included in the secondary battery 100 determined to be defective, and conversely, the secondary battery 100 is determined to be non-defective. There was almost no defective product. That is, by using the manufacturing method of the present embodiment, the accuracy of determining the quality of the secondary battery 100 can be improved. This is thought to be due to the following factors.

まず、ステップSAにおいて、ステップSA1〜ステップSA4の判定サイクルを、規程回数(例えば、5〜10回)繰り返し行うことにより、二次電池100の電気特性の良否の判定精度を高めることができたと考えられる。具体的には、ステップSA1〜ステップSA4の判定サイクルを繰り返すにしたがって、電圧差ΔVが平均値ΔVamから所定値(具体的には、n(σmΔV))より大きく外れた二次電池100を除外できるので、判定対象となる二次電池100の電圧差ΔVのバラツキを小さくできる。このため、最終的には、ステップSDにおいて、電圧差ΔVのバラツキの小さな二次電池100のグループを対象として、標準偏差σΔVを利用した良否判定を行うことができるので、判定精度を高めることができたと考えられる。   First, in step SA, the determination cycle of step SA1 to step SA4 is repeatedly performed a specified number of times (for example, 5 to 10 times), so that the determination accuracy of the electrical characteristics of the secondary battery 100 can be improved. It is done. Specifically, as the determination cycle of Step SA1 to Step SA4 is repeated, the secondary battery 100 in which the voltage difference ΔV deviates from the average value ΔVam by more than a predetermined value (specifically, n (σmΔV)) can be excluded. Therefore, the variation in the voltage difference ΔV of the secondary battery 100 to be determined can be reduced. Therefore, finally, in step SD, the quality determination using the standard deviation σΔV can be performed for the group of the secondary batteries 100 having a small variation in the voltage difference ΔV, so that the determination accuracy can be improved. It is thought that it was made.

また、ステップSAにおいて、ステップSA1〜ステップSA4の判定サイクルを、電圧差ΔVについて行うことにより、判定精度を高めることができたと考えられる。これは、二次電池100の微小内部短絡が、二次電池100を高温雰囲気下に置くことにより促進されるため、微小内部短絡が生じている二次電池100と、生じていない(ほとんど生じていない)二次電池100とでは、エージングが進むにしたがって、電圧差ΔVが大きく拡がるためである。すなわち、ステップSA1〜ステップSA4の判定サイクルを、電圧差ΔVについて行うことにより、微小内部短絡が生じている電池と、生じていない(ほとんど生じていない)電池との差が明確となるので、判定精度を高めることができたと考えられる。   In step SA, it is considered that the determination accuracy can be improved by performing the determination cycle of steps SA1 to SA4 for the voltage difference ΔV. This is not caused by the secondary battery 100 in which the minute internal short circuit occurs because the minute internal short circuit of the secondary battery 100 is promoted by placing the secondary battery 100 in a high-temperature atmosphere. This is because, with the secondary battery 100, the voltage difference ΔV greatly increases as aging progresses. That is, by performing the determination cycle of step SA1 to step SA4 with respect to the voltage difference ΔV, the difference between a battery in which a minute internal short circuit has occurred and a battery that has not occurred (almost does not occur) becomes clear. It is thought that the accuracy could be improved.

また、本実施形態では、図6に示すように、第1電圧測定位置C1と、第2電圧測定位置C2とを、共に、エージング装置500内に配置している。すなわち、第1電圧測定工程(ステップS1)と第2電圧測定工程(ステップS3)とを、共に、エージング工程内に備えている。特に、第1電圧測定位置C1を、二次電池100を配置した制限治具200が、エージング装置500内に搬入されてから1〜3日間経過した後に、到達する位置に配置させている。エージング装置500内に搬入した後、しばらくの間は、二次電池100の温度は上昇を続けるため安定しないが、1〜3日間経過した後には、エージング装置内の温度(約40℃)に達し、安定した状態となる。   In the present embodiment, as shown in FIG. 6, both the first voltage measurement position C1 and the second voltage measurement position C2 are arranged in the aging device 500. That is, the first voltage measurement process (step S1) and the second voltage measurement process (step S3) are both provided in the aging process. In particular, the first voltage measurement position C <b> 1 is arranged at a position that reaches after the elapse of 1 to 3 days after the limiting jig 200 in which the secondary battery 100 is arranged is carried into the aging device 500. Although the temperature of the secondary battery 100 continues to rise for a while after being carried into the aging device 500, it is not stable. However, after 1 to 3 days have passed, the temperature reaches the temperature inside the aging device (about 40 ° C.). , Become stable.

このため、本実施形態では、第1電圧測定工程(ステップS1)及び第2電圧測定工程(ステップS3)において、共に、二次電池100の温度が高温(約40℃)で安定した状態で、第1端子間電圧V1及び第2端子間電圧V2を測定することができた。これにより、第1端子間電圧V1及び第2端子間電圧V2の測定値の信頼性を高めることができた。このように、信頼性の高い測定値、第1端子間電圧V1及び第2端子間電圧V2に基づいて、二次電池100の良否判定を行ったことも、良否判定の精度を高めることができた要因の1つであると考えられる。   For this reason, in this embodiment, in the first voltage measurement step (step S1) and the second voltage measurement step (step S3), the temperature of the secondary battery 100 is stable at a high temperature (about 40 ° C.). The first terminal voltage V1 and the second terminal voltage V2 could be measured. Thereby, the reliability of the measured value of the voltage V1 between 1st terminals and the voltage V2 between 2nd terminals was able to be improved. Thus, the quality determination of the secondary battery 100 based on the highly reliable measurement values, the first inter-terminal voltage V1 and the second inter-terminal voltage V2 can also improve the accuracy of the quality determination. This is considered to be one of the factors.

また、従来の手法では、エージング工程の前後において、二次電池の端子間電圧を測定していたので、エージング工程後、二次電池の温度が、エージング工程前の温度にまで低下するのを待った後に、端子間電圧を測定していた。これに対し、本実施形態では、上述のように、第1電圧測定位置C1及び第2電圧測定位置C2では、共に、二次電池100の温度が高温(約40℃)で安定した状態となっているので、速やかに、第1端子間電圧V1及び第2端子間電圧V2を測定することができた。
しかも、第1電圧測定工程(ステップS1)及び第2電圧測定工程(ステップS3)を、共に、エージング工程中に済ますことができるので、工程時間を大幅に短縮することができ、二次電池の生産性を高めることができた。
Further, in the conventional method, the voltage between the terminals of the secondary battery was measured before and after the aging process, so after the aging process, the temperature of the secondary battery waited for the temperature to drop to the temperature before the aging process. Later, the voltage between terminals was measured. On the other hand, in the present embodiment, as described above, the temperature of the secondary battery 100 is stable at a high temperature (about 40 ° C.) at the first voltage measurement position C1 and the second voltage measurement position C2. Therefore, the voltage V1 between the first terminals and the voltage V2 between the second terminals could be measured promptly.
In addition, since both the first voltage measurement process (step S1) and the second voltage measurement process (step S3) can be completed during the aging process, the process time can be greatly reduced, and the secondary battery Productivity was improved.

また、本実施形態では、制限治具200に配置した100ヶの二次電池100を、1組の電池グループとして、初期充電工程、充放電工程、エージング工程(第1電圧測定工程、第2電圧測定工程を含む)、及び判定工程を行っている。換言すれば、同一条件で、初期充電、充放電、エージングを行った二次電池100のグループを対象として、判定工程(ステップS2,S4〜SD)を行っている。このように、同一条件で、初期充電、充放電、エージングを行った二次電池100のグループは、第1端子間電圧V1及び第2端子間電圧V2のバラツキが小さくなるので、当該グループを対象として判定工程(ステップS2,S4〜SD)を行ったことも、良否判定の精度を高めることができた要因の1つであると考えられる。   In the present embodiment, the 100 secondary batteries 100 arranged in the limiting jig 200 are set as one set of battery groups, and the initial charging process, the charging / discharging process, the aging process (the first voltage measuring process, the second voltage). Including a measurement process) and a determination process. In other words, the determination process (steps S2, S4 to SD) is performed on the group of the secondary batteries 100 that has been initially charged, charged / discharged, and aged under the same conditions. As described above, the group of the secondary batteries 100 that has been initially charged, charged / discharged, and aged under the same conditions has a small variation in the voltage V1 between the first terminals and the voltage V2 between the second terminals. The determination process (steps S2, S4 to SD) is also considered to be one of the factors that can improve the accuracy of the quality determination.

ところで、一般に、二次電池の温度が高温となるエージング工程においても、電池の内圧が上昇するため、電池ケースが膨張する虞がある。これに対し、本実施形態のエージング工程では、図6に示すように、二次電池100を制限治具200に配置し固定した状態(具体的には、電池ケース110の膨張を、最も膨張する傾向にある第1側壁部111c及び第2側壁部111dについて制限した状態)で、エージングを行っている。これにより、エージング工程においても、電池ケース111の膨張を適切に抑制することができ、電池ケース110の歪みや、電解液の漏れなどを防止することができた。   By the way, in general, even in an aging process in which the temperature of the secondary battery becomes high, the internal pressure of the battery increases, so that the battery case may expand. In contrast, in the aging process of the present embodiment, as shown in FIG. 6, the secondary battery 100 is disposed and fixed on the limiting jig 200 (specifically, the expansion of the battery case 110 is expanded most). Aging is performed in a state where the first side wall 111c and the second side wall 111d tend to be in a tendency). Thereby, also in the aging process, the expansion of the battery case 111 can be appropriately suppressed, and distortion of the battery case 110, leakage of the electrolytic solution, and the like can be prevented.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態では、ステップSAにおいて、ステップSA1〜ステップSA4の判定サイクルを、電圧差ΔVについて行うようにした。しかしながら、ステップSA1〜ステップSA4の判定サイクルにかかる電気特性値は、電圧差ΔVに限定されるものではなく、第2端子間電圧V2としても良い。具体的には、ステップSA1において第2端子間電圧V2の平均値V2maを算出し、ステップSA2において第2端子間電圧V2の標準偏差(σmV2)を算出する。そして、ステップSA3において|V2−V2ma|≦n(σmV2)を満たすか否かを判定するようにしても良い。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, in step SA, the determination cycle of steps SA1 to SA4 is performed for the voltage difference ΔV. However, the electrical characteristic value concerning the determination cycle of Step SA1 to Step SA4 is not limited to the voltage difference ΔV, and may be the second terminal voltage V2. Specifically, an average value V2ma of the second terminal voltage V2 is calculated in step SA1, and a standard deviation (σmV2) of the second terminal voltage V2 is calculated in step SA2. In step SA3, it may be determined whether or not | V2−V2ma | ≦ n (σmV2) is satisfied.

また、第1端子間電圧V1について、ステップSA1〜ステップSA4の判定サイクルを行うようにしても良い。さらには、電圧差ΔVについて行う判定サイクル、第1端子間電圧V1について行う判定サイクル、及び第2端子間電圧V2について行う判定サイクルから選択した2以上の判定サイクルを、組み合わせるようにしても良い。   Moreover, you may make it perform the determination cycle of step SA1-step SA4 about the voltage V1 between 1st terminals. Furthermore, two or more determination cycles selected from the determination cycle performed for the voltage difference ΔV, the determination cycle performed for the first inter-terminal voltage V1, and the determination cycle performed for the second inter-terminal voltage V2 may be combined.

また、実施形態では、ニッケル水素蓄電池(二次電池100)の製造方法について説明したが、本発明の製造方法は、ニッケル水素蓄電池に限らず、他の二次電池(リチウムイオン電池など)についても、適用することができる。具体的には、第1電圧測定工程(ステップS1)、第2電圧測定工程(ステップS3)、及び判定工程(ステップS2,S4〜SD)を行うことにより、二次電池の電気特性の良否を精度良く判定できる。   Moreover, although embodiment demonstrated the manufacturing method of the nickel hydride storage battery (secondary battery 100), the manufacturing method of this invention is not limited to a nickel hydride storage battery, but also about other secondary batteries (lithium ion battery etc.). Can be applied. Specifically, the quality of the secondary battery can be determined by performing the first voltage measurement process (step S1), the second voltage measurement process (step S3), and the determination process (steps S2, S4 to SD). Judgment can be made with high accuracy.

また、実施形態では、二次電池100を、50ヶずつ2列に並べて配置できる制限治具200を用いて、エージング工程(第1電圧測定工程及び第2電圧測定工程を含む)を行った。しかしながら、制限治具に配置する二次電池の数は、いくつであっても良く、また、制限治具に二次電池を配置する形態も、いずれの形態であっても良い。また、二次電池100を制限治具に配置することなく、エージング工程を行うようにしても良い。   Moreover, in the embodiment, the aging process (including the first voltage measurement process and the second voltage measurement process) was performed using the limiting jig 200 that can arrange the secondary batteries 100 in two rows of 50 pieces. However, the number of secondary batteries arranged in the limiting jig may be any number, and the form in which the secondary battery is arranged in the limiting jig may be any form. Moreover, you may make it perform an aging process, without arrange | positioning the secondary battery 100 to a restriction | limiting jig | tool.

実施形態にかかる二次電池100の正面図である。1 is a front view of a secondary battery 100 according to an embodiment. 実施形態にかかる二次電池100の側面図である。1 is a side view of a secondary battery 100 according to an embodiment. 実施形態にかかる二次電池100の断面図であり、図2のA−A断面図に相当する。It is sectional drawing of the secondary battery 100 concerning embodiment, and is equivalent to AA sectional drawing of FIG. 実施形態にかかる制限治具200を示す図であり、(a)は上面図、(b)は側面図である。It is a figure which shows the limiting jig | tool 200 concerning embodiment, (a) is a top view, (b) is a side view. 制限治具200に二次電池100を配置し固定した状態を示す図であり、(a)は上面図、(b)は側面図である。It is a figure which shows the state which has arrange | positioned and fixed the secondary battery 100 to the limiting jig | tool 200, (a) is a top view, (b) is a side view. 実施形態にかかるエージング工程(第1電圧測定工程及び第2電圧測定工程を含む)の様子を示す説明図である。It is explanatory drawing which shows the mode of the aging process (a 1st voltage measurement process and a 2nd voltage measurement process) concerning embodiment. 実施形態にかかる第1電圧測定工程、第2電圧測定工程、及び判定工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the 1st voltage measurement process concerning embodiment, the 2nd voltage measurement process, and the determination process. 実施形態にかかるループ判定工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the loop determination process concerning embodiment.

符号の説明Explanation of symbols

100 二次電池
111e 第3側壁部(負極)
140b 第1正極端子
140c 第2正極端子
200 制限治具
500 エージング装置
C1 第1電圧測定位置
C2 第2電圧測定位置
100 Secondary battery 111e Third side wall (negative electrode)
140b First positive terminal 140c Second positive terminal 200 Limiting jig 500 Aging device C1 First voltage measurement position C2 Second voltage measurement position

Claims (7)

所定数の二次電池を1組とした電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第1端子間電圧V1を測定する第1電圧測定工程と、
上記第1電圧測定工程の後に、上記電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第2端子間電圧V2を測定する第2電圧測定工程と、
上記電池グループ毎に、上記電池グループに属する各々の二次電池について、上記第1端子間電圧V1及び上記第2端子間電圧V2に基づいて、当該二次電池の電気特性の良否を判定する判定工程と、
を備える二次電池の製造方法であって、
上記第1電圧測定工程及び上記第2電圧測定工程を、共に、上記二次電池を所定期間にわたり高温雰囲気下に安置するエージング工程内に備え、あるいは、
上記第1電圧測定工程を上記エージング工程の前に、上記第2電圧測定工程を上記エージング工程の後に備え、
上記判定工程は、
上記電池グループ毎に、上記第1端子間電圧V1、上記第2端子間電圧V2、及び上記第1端子間電圧V1と上記第2端子間電圧V2との電圧差ΔVの、3つの電気特性値から選択したいずれかの電気特性値について、平均値を算出すると共に、選択した上記電気特性値の標準偏差を算出し、上記電池グループに属する二次電池のうち、当該電気特性値と上記平均値との差の絶対値が、上記標準偏差の値に所定値nを乗じた値を上回る二次電池を不良と判定した後、
上記電池グループに属する二次電池のうち上記不良と判定した二次電池を除いた他の二次電池について、改めて、上記電気特性値の平均値を算出すると共に、上記電気特性値の標準偏差を算出し、上記二次電池のうち、当該電気特性値と上記平均値との差の絶対値が、上記標準偏差の値に上記所定値nを乗じた値を上回る二次電池を不良と判定する判定サイクルを、複数回繰り返し行う
ループ判定工程を含む
二次電池の製造方法。
A first voltage measuring step for measuring, for each secondary battery belonging to the battery group, a first inter-terminal voltage V1 which is a voltage between terminals for each battery group including a predetermined number of secondary batteries as a set;
After the first voltage measurement step, for each battery group, for each secondary battery belonging to the battery group, a second voltage measurement step of measuring a voltage V2 between the second terminals, which is a voltage between the terminals,
For each of the battery groups, for each of the secondary batteries belonging to the battery group, determination for determining whether the electrical characteristics of the secondary battery are good or not based on the first inter-terminal voltage V1 and the second inter-terminal voltage V2. Process,
A method for producing a secondary battery comprising:
The first voltage measurement step and the second voltage measurement step are both provided in an aging step in which the secondary battery is placed in a high temperature atmosphere for a predetermined period, or
The first voltage measuring step is provided before the aging step, and the second voltage measuring step is provided after the aging step,
The determination process is as follows:
For each battery group, three electrical characteristic values are the first inter-terminal voltage V1, the second inter-terminal voltage V2, and the voltage difference ΔV between the first inter-terminal voltage V1 and the second inter-terminal voltage V2. For each of the electrical characteristic values selected from the above, the average value is calculated, the standard deviation of the selected electrical characteristic value is calculated, and among the secondary batteries belonging to the battery group, the electrical characteristic value and the average value are calculated. A secondary battery having an absolute value greater than the standard deviation value multiplied by a predetermined value n is determined to be defective,
For the other secondary batteries excluding the secondary battery determined to be defective among the secondary batteries belonging to the battery group, the average value of the electrical characteristic values is calculated again, and the standard deviation of the electrical characteristic values is calculated. Of the secondary batteries, a secondary battery in which the absolute value of the difference between the electrical characteristic value and the average value exceeds a value obtained by multiplying the standard deviation value by the predetermined value n is determined to be defective. A method for manufacturing a secondary battery including a loop determination step in which a determination cycle is repeated a plurality of times.
請求項1に記載の二次電池の製造方法であって、
前記ループ判定工程は、前記電圧差ΔVについて、前記判定サイクルを行う
二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1,
The loop determination step is a method of manufacturing a secondary battery in which the determination cycle is performed for the voltage difference ΔV.
請求項1または請求項2に記載の二次電池の製造方法であって、
前記第1電圧測定工程及び前記第2電圧測定工程を、共に、前記エージング工程内に備える
二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1 or claim 2,
A method for manufacturing a secondary battery, wherein both the first voltage measurement step and the second voltage measurement step are included in the aging step.
請求項3に記載の二次電池の製造方法であって、
前記エージング工程のうち、前記二次電池の温度が所定の温度に安定した後に、前記第1電圧測定工程を行う
二次電池の製造方法。
It is a manufacturing method of the rechargeable battery according to claim 3,
The manufacturing method of the secondary battery which performs a said 1st voltage measurement process after the temperature of the said secondary battery is stabilized to predetermined | prescribed temperature among the said aging processes.
請求項1〜請求項4のいずれか一項に記載の二次電池の製造方法であって、
前記エージング工程及び前記第1電圧測定工程の前に、前記二次電池に充放電を施す充放電工程を備え、
前記電池グループは、上記充放電工程において、同一の充放電装置により同時に充放電を施した、所定数の二次電池の組である
二次電池の製造方法。
It is a manufacturing method of the rechargeable battery according to any one of claims 1 to 4,
Before the aging step and the first voltage measurement step, a charge / discharge step of charging / discharging the secondary battery is provided,
The said battery group is the manufacturing method of the secondary battery which is the group of the predetermined number of secondary batteries which performed charging / discharging simultaneously by the same charging / discharging apparatus in the said charging / discharging process.
所定数の二次電池を1組とした電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第1端子間電圧V1を測定する第1電圧測定工程と、
上記第1電圧測定工程の後に、上記電池グループ毎に、上記電池グループに属する各々の二次電池について、その端子間電圧である第2端子間電圧V2を測定する第2電圧測定工程と、
上記電池グループ毎に、上記電池グループに属する各々の二次電池について、上記第1端子間電圧V1及び上記第2端子間電圧V2に基づいて、当該二次電池の電気特性の良否を判定する判定工程と、
を備える二次電池の製造方法であって、
上記第1電圧測定工程及び上記第2電圧測定工程を、共に、上記二次電池を所定期間にわたり高温雰囲気下に安置するエージング工程内に備える
二次電池の製造方法。
A first voltage measuring step for measuring, for each secondary battery belonging to the battery group, a first inter-terminal voltage V1 which is a voltage between terminals for each battery group including a predetermined number of secondary batteries as a set;
After the first voltage measurement step, for each battery group, for each secondary battery belonging to the battery group, a second voltage measurement step of measuring a voltage V2 between the second terminals, which is a voltage between the terminals,
For each of the battery groups, for each of the secondary batteries belonging to the battery group, determination for determining whether the electrical characteristics of the secondary battery are good or not based on the first inter-terminal voltage V1 and the second inter-terminal voltage V2. Process,
A method for producing a secondary battery comprising:
A method of manufacturing a secondary battery, wherein the first voltage measurement step and the second voltage measurement step are both included in an aging step in which the secondary battery is placed in a high temperature atmosphere for a predetermined period.
請求項6に記載の二次電池の製造方法であって、
前記エージング工程のうち、前記二次電池の温度が所定の温度に安定した後に、前記第1電圧測定工程を行う
二次電池の製造方法。
It is a manufacturing method of the rechargeable battery according to claim 6,
The manufacturing method of the secondary battery which performs a said 1st voltage measurement process after the temperature of the said secondary battery is stabilized to predetermined | prescribed temperature among the said aging processes.
JP2005069704A 2005-03-11 2005-03-11 Manufacturing method of secondary battery Active JP4720221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069704A JP4720221B2 (en) 2005-03-11 2005-03-11 Manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069704A JP4720221B2 (en) 2005-03-11 2005-03-11 Manufacturing method of secondary battery

Publications (2)

Publication Number Publication Date
JP2006253027A true JP2006253027A (en) 2006-09-21
JP4720221B2 JP4720221B2 (en) 2011-07-13

Family

ID=37093272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069704A Active JP4720221B2 (en) 2005-03-11 2005-03-11 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP4720221B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2011216328A (en) * 2010-03-31 2011-10-27 Primearth Ev Energy Co Ltd Method for reusing secondary battery
JP2012221648A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2014032918A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Inspection method of secondary battery
JP2015106475A (en) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 Inspection method of secondary battery
KR101818515B1 (en) * 2014-05-30 2018-01-15 주식회사 엘지화학 Apparatus for fault detection in battery pack production process and method thereof
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JP2002298925A (en) * 2001-03-30 2002-10-11 Toyota Motor Corp Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same
JP2002334722A (en) * 2001-05-09 2002-11-22 Matsushita Electric Ind Co Ltd Method for inspecting secondary battery
JP2003077527A (en) * 2001-06-18 2003-03-14 Matsushita Electric Ind Co Ltd Method of manufacturing alkaline storage battery
JP2004234896A (en) * 2003-01-28 2004-08-19 Sharp Corp Inspection method of secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JP2002298925A (en) * 2001-03-30 2002-10-11 Toyota Motor Corp Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same
JP2002334722A (en) * 2001-05-09 2002-11-22 Matsushita Electric Ind Co Ltd Method for inspecting secondary battery
JP2003077527A (en) * 2001-06-18 2003-03-14 Matsushita Electric Ind Co Ltd Method of manufacturing alkaline storage battery
JP2004234896A (en) * 2003-01-28 2004-08-19 Sharp Corp Inspection method of secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2011216328A (en) * 2010-03-31 2011-10-27 Primearth Ev Energy Co Ltd Method for reusing secondary battery
JP2012221648A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2014032918A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Inspection method of secondary battery
JP2015106475A (en) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 Inspection method of secondary battery
KR101818515B1 (en) * 2014-05-30 2018-01-15 주식회사 엘지화학 Apparatus for fault detection in battery pack production process and method thereof
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells

Also Published As

Publication number Publication date
JP4720221B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5172579B2 (en) Cylindrical battery inspection method
JP4720221B2 (en) Manufacturing method of secondary battery
US9091733B2 (en) Method of inspecting secondary battery
JP5541288B2 (en) Manufacturing method of secondary battery
US10466306B2 (en) Method of manufacturing battery pack
JP4529364B2 (en) Cylindrical battery inspection method
KR102072481B1 (en) Method of Inspecting Welding State Using Pressure Gauge
JP2009252459A (en) Alkali storage battery inspecting method
US9577294B2 (en) Manufacturing method for secondary battery
JP4048905B2 (en) Battery inspection method
JP2017106867A (en) Manufacturing method for secondary batteries
JP5985280B2 (en) Inspection method for lithium ion secondary battery
JP6032485B2 (en) Non-aqueous electrolyte secondary battery inspection method
KR20120121488A (en) Manufacturing method for battery
JP6374193B2 (en) Self-discharge inspection method for non-aqueous electrolyte secondary battery
JP2021034348A (en) Inspection method of power storage device and manufacturing method of power storage device
JP2018067498A (en) Method of manufacturing battery
JP7011782B2 (en) Secondary battery inspection method
JP2017126539A (en) Method for manufacturing secondary battery
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JP7222308B2 (en) Inspection method
KR20160088585A (en) Beading-free Cylindrical Battery and Manufacturing Method for the Same
JP7192581B2 (en) Voltage measurement method
JP2004006420A (en) Manufacturing method of battery
US20240103096A1 (en) Method for inspecting a power storage device, method for manufacturing a power storage device, and method for manufacturing a device stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4720221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3