JP2002298925A - Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same - Google Patents

Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same

Info

Publication number
JP2002298925A
JP2002298925A JP2001099153A JP2001099153A JP2002298925A JP 2002298925 A JP2002298925 A JP 2002298925A JP 2001099153 A JP2001099153 A JP 2001099153A JP 2001099153 A JP2001099153 A JP 2001099153A JP 2002298925 A JP2002298925 A JP 2002298925A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
aging
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001099153A
Other languages
Japanese (ja)
Other versions
JP3870707B2 (en
Inventor
Shinobu Okayama
忍 岡山
Fusayoshi Miura
房美 三浦
Toru Saeki
徹 佐伯
Akio Ito
明生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001099153A priority Critical patent/JP3870707B2/en
Publication of JP2002298925A publication Critical patent/JP2002298925A/en
Application granted granted Critical
Publication of JP3870707B2 publication Critical patent/JP3870707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an aging method that can easily determine the optimum aging time of individual batteries without damaging electrodes, and to provide a manufacturing method for a lithium secondary battery having a small quantity of self-discharging and restrained from the increase of internal resistance. SOLUTION: Aging processing performed to make a nonaqueous electrolyte permeate an electrode body until the time immediately before conditioning for preparing the battery into an actually usable sate by charging and discharging after forming the battery, is performed while monitoring the aging effect of negative electrode potential V. The manufacturing method for the lithium secondary battery comprises a battery forming process; an aging process for performing the aging of the battery after formed while monitoring the aging effect of the negative electrode potential V; and a conditioning process for preparing the battery into the actually usable state by charging and discharging the battery immediately after aging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池に対し、電池形成
後に電極体に非水電解液を浸潤させるために行うエージ
ング処理方法に関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to an aging treatment method for performing infiltration of a non-aqueous electrolyte into an electrode body of a lithium secondary battery utilizing a desorption phenomenon after the formation of the battery.

【0002】[0002]

【従来の技術】携帯電話、パソコン等の小型化に伴い、
通信機器、情報関連機器の分野では、これらの機器に用
いる電源として、高エネルギー密度であるという理由か
ら、リチウム二次電池が実用化され広く普及するに至っ
ている。また、自動車の分野においても、資源問題、環
境問題から電気自動車の開発が急がれており、この電気
自動車用の電源としても、リチウム二次電池が検討され
ている。
2. Description of the Related Art As mobile phones and personal computers become smaller,
In the field of communication devices and information-related devices, lithium secondary batteries have been commercialized and widely used because of their high energy densities as power sources for these devices. Also, in the field of automobiles, the development of electric vehicles is urgent due to resource and environmental issues, and lithium secondary batteries are being studied as power sources for electric vehicles.

【0003】一般に、リチウム二次電池は、正極および
負極を備えてなる電極体を電池ケースに挿設し、非水電
解液を注入した後電池ケースを密閉して形成される。そ
して、電池形成後、そのまま所定の温度下で保存するい
わゆるエージング処理を行い、その後、充放電を行うこ
とにより電池を実使用可能な状態に調整するコンディシ
ョニング処理を行って製造される。
Generally, a lithium secondary battery is formed by inserting an electrode body having a positive electrode and a negative electrode into a battery case, injecting a non-aqueous electrolyte, and sealing the battery case. Then, after the battery is formed, a so-called aging process for preserving the battery at a predetermined temperature is performed, and then a conditioning process for adjusting the battery to a practically usable state by performing charging and discharging is performed.

【0004】ここで、エージング処理は、電極体に非水
電解液を充分に浸潤させるために行う処理であり、電池
形成直後に開始し、次のコンディショニング処理を開始
する時、具体的には、初回の充電を開始する時に終了す
る。このエージング処理に必要な時間は、個々の電池の
形状、電極の大きさ、電極間の圧迫状態、セパレータへ
の電解液の浸透性、および電解液の注入時の温度、圧力
等によって種々異なるものである。そして、エージング
処理を行う時間は、製造した電池の自己放電のし易さ、
内部抵抗の大きさ等の電池特性に大きく影響することが
知られている。
Here, the aging treatment is a treatment performed to sufficiently infiltrate the non-aqueous electrolyte into the electrode body. The aging treatment is started immediately after the battery is formed, and when the next conditioning treatment is started, specifically, It ends when the first charge is started. The time required for the aging process varies depending on the shape of each battery, the size of the electrodes, the pressure between the electrodes, the permeability of the electrolyte to the separator, and the temperature and pressure at the time of injection of the electrolyte. It is. And the time for performing the aging process is easy for the manufactured battery to self-discharge,
It is known that it greatly affects battery characteristics such as the magnitude of internal resistance.

【0005】例えば、エージング処理を行う時間が短す
ぎる場合には、電極体に非水電解液が充分浸潤しないた
め、電解液の不足によって活物質がダメージを受け、電
池の内部抵抗の増加を招く。また、局部的に充放電が不
足するために、電池の自己放電量が大きくなる原因とも
なる。すなわち、電極体に非水電解液を浸潤させるため
には、エージング処理の時間を充分に確保することが必
要となるが、エージング処理の時間を長くしすぎると、
製造した電池の自己放電量は大きくなってしまう。
[0005] For example, if the aging treatment time is too short, the non-aqueous electrolyte does not sufficiently infiltrate the electrode body, so that the active material is damaged due to the lack of the electrolyte and the internal resistance of the battery is increased. . In addition, since the charge / discharge is locally insufficient, the self-discharge amount of the battery may be increased. That is, in order to infiltrate the non-aqueous electrolyte into the electrode body, it is necessary to ensure sufficient time for the aging treatment, but if the time for the aging treatment is too long,
The self-discharge amount of the manufactured battery becomes large.

【0006】一方、実際に電池を製造する際には、製造
する電池と同様の電池を予備的に作製し、その予備的に
作製した電池の特性を解析した結果をもとに、製造する
電池のエージング処理時間を一律に決定しているのが現
状である。しかしながら、この予備検討では充分ではな
い場合、あるいは、電池を保存する恒温槽の内部に温度
分布が存在する等の保存条件のばらつきが生じる場合が
ある。そのため、上記予備検討に基づいてエージング処
理を行った場合であっても、電池によって非水電解液の
浸潤状態が異なり、結果的に、製造された電池の自己放
電のし易さや内部抵抗の大きさ等の電池特性に大きなば
らつきが生じるという問題があった。
On the other hand, when actually manufacturing a battery, a battery similar to the battery to be manufactured is preliminarily manufactured, and the battery to be manufactured is analyzed based on the result of analyzing the characteristics of the preliminarily manufactured battery. At present, the aging processing time is determined uniformly. However, this preliminary study may not be sufficient, or there may be variations in storage conditions, such as the presence of a temperature distribution inside a thermostat for storing batteries. Therefore, even when the aging treatment is performed based on the above preliminary study, the infiltration state of the non-aqueous electrolyte differs depending on the battery, and as a result, the self-discharge of the manufactured battery and the magnitude of the internal resistance are large. However, there has been a problem that a large variation occurs in the battery characteristics such as the battery characteristics.

【0007】[0007]

【発明が解決しようとする課題】上記問題に鑑み、個々
の電池について最適なエージング処理時間を見出すため
の試みとして、エージング中に正負極間のAC抵抗値を
測定し、その値から電解液の浸潤状態を判断して、個々
の電池のエージング終了時を決めるという方法を検討し
た。しかし、この方法は複雑な装置を必要とし、また、
全電池に交流電流を電極にダメージを与えない電圧振幅
範囲で長時間、あるいは適時流すことは困難であるため
実用的ではない。
In view of the above problems, as an attempt to find the optimum aging time for each battery, the AC resistance between the positive and negative electrodes was measured during aging, and the value of the electrolyte solution was determined from the measured value. A method of determining the end of aging of each battery by judging the infiltration state was studied. However, this method requires complicated equipment, and
It is not practical because it is difficult to apply an alternating current to all batteries for a long time or in a timely manner within a voltage amplitude range that does not damage the electrodes.

【0008】本発明者は、エージング処理に関して幾多
の実験を行い、エージング処理時間と電池特性との関係
を調査した。その結果、エージング処理時間が長すぎる
と、負極の銅製集電体や銅製の負極端子等からCuイオ
ンが溶出し、溶出したCuイオンが、次のコンディショ
ニング処理である充放電の際に析出して、電池の微少短
絡(マイクロショート)を起こしたり、また、酸化還元
反応のシャトル物質となることによって、電池の自己放
電量を大きくすることがわかった。そして、エージング
中に負極電位は変化し、その負極電位の変化にCuイオ
ンの溶出反応が関係しているという知見を得た。
The present inventor conducted a number of experiments on the aging process and investigated the relationship between the aging process time and the battery characteristics. As a result, if the aging treatment time is too long, Cu ions elute from the copper current collector of the negative electrode, the copper negative electrode terminal, and the like, and the eluted Cu ions precipitate during charge / discharge as the next conditioning process. It has been found that the self-discharge amount of the battery is increased by causing a micro short circuit (micro short-circuit) of the battery or by becoming a shuttle substance for an oxidation-reduction reaction. Then, it was found that the potential of the negative electrode changed during aging, and the change in the negative electrode potential was related to the elution reaction of Cu ions.

【0009】本発明は、上記知見に基づいてなされたも
のであり、負極電位の経時変化に着目することで、電極
にダメージを与えることなく、個々の電池の最適なエー
ジング処理時間を簡単に決定できるエージング処理方法
を提供することを課題とする。
The present invention has been made on the basis of the above findings. By focusing on the change over time of the negative electrode potential, the optimum aging treatment time for each battery can be easily determined without damaging the electrodes. An object of the present invention is to provide an aging treatment method that can perform the aging treatment.

【0010】また、そのエージング処理方法を含んで構
成することにより、自己放電量の小さい、かつ内部抵抗
の増加が抑制されたリチウム二次電池を製造する方法を
提供することを課題とする。
It is another object of the present invention to provide a method of manufacturing a lithium secondary battery having a small self-discharge amount and a suppressed increase in internal resistance by including the aging treatment method.

【0011】[0011]

【課題を解決するための手段】(1)本発明のリチウム
二次電池のエージング処理方法は、リチウムを吸蔵・脱
離可能な物質を正極活物質とする正極および負極活物質
を含む負極合材が銅製集電体の表面に層状に形成されて
なる負極を備えてなる電極体と、リチウム塩を有機溶媒
に溶解した非水電解液とを電池ケースに収納して形成さ
れるリチウム二次電池に対し、電池形成後、充放電を行
うことにより電池を実使用可能な状態に調整するコンデ
ィショニング処理の直前までの間、前記電極体に前記非
水電解液を浸潤させるために行うエージング処理方法で
あって、負極電位Vの経時変化をモニターしながらエー
ジングを行うことを特徴とする。
(1) An aging treatment method for a lithium secondary battery according to the present invention is directed to a negative electrode mixture containing a positive electrode and a negative electrode active material using a material capable of occluding and releasing lithium as a positive electrode active material. Secondary battery formed by housing a battery case with an electrode body having a negative electrode formed in a layer shape on the surface of a copper current collector, and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent On the other hand, after forming the battery, the aging treatment method performed to infiltrate the non-aqueous electrolyte into the electrode body until immediately before the conditioning process of adjusting the battery to a practically usable state by performing charging and discharging. Aging is performed while monitoring a change over time in the negative electrode potential V.

【0012】つまり、本発明のリチウム二次電池のエー
ジング処理方法は、エージング中の負極電位の経時変化
に着目し、負極電位の経時変化をモニターしながらエー
ジングを行うものである。
That is, the aging treatment method for a lithium secondary battery of the present invention focuses on the aging of the negative electrode potential during aging and performs aging while monitoring the aging of the negative electrode potential.

【0013】上述したように、負極電位はエージング中
に変化する。後に詳しく説明するが、エージング開始
後、負極電位は上昇を続け、ある時点で最大となった後
やや下降して、その後は略一定の値に安定する。つま
り、負極電位の経時変化は、上昇領域と安定領域との大
きく2つに分けることができる。負極等からのCuイオ
ンの溶出は、負極電位の上昇が終わった後、すなわち負
極電位が下降に転じ、その後安定する領域において生じ
ると考えられる。なお、予備的検討において、負極電位
が安定領域に至った電池を解体して、電解液の電極体へ
の浸潤状態を調べたところ、電極全体が電解液に濡れて
いた。すなわち、電極が電解液と良く馴染み、安定な電
位を示したと考えられる。よって、負極電位が最大とな
った時点では、すでに電解液は電極体に充分浸潤してい
ると考えられる。したがって、Cuイオンの溶出を抑制
し、かつ電解液を電極体に充分浸潤させるためには、上
昇した負極電位が低下する直前にエージングを終了させ
ればよいことになる。
As described above, the negative electrode potential changes during aging. As will be described later in detail, after the start of aging, the negative electrode potential continues to increase, reaches a maximum at a certain point, slightly decreases, and thereafter stabilizes to a substantially constant value. That is, the change over time of the negative electrode potential can be roughly divided into a rising region and a stable region. The elution of Cu ions from the negative electrode or the like is considered to occur after the negative electrode potential has finished rising, that is, in a region where the negative electrode potential starts to fall and stabilizes thereafter. In a preliminary study, the battery in which the negative electrode potential reached the stable region was disassembled, and the state of infiltration of the electrolyte into the electrode body was examined. As a result, the entire electrode was wet with the electrolyte. That is, it is considered that the electrode was well adapted to the electrolyte and exhibited a stable potential. Therefore, it is considered that the electrolyte has already sufficiently infiltrated the electrode body at the time when the negative electrode potential becomes maximum. Therefore, in order to suppress the elution of Cu ions and sufficiently infiltrate the electrolyte into the electrode body, aging may be terminated immediately before the increased negative electrode potential decreases.

【0014】このように、負極電位の経時変化をモニタ
ーしながらエージングを行うことで、本発明のエージン
グ処理方法は、個々の電池のエージング終了のタイミン
グが簡単にわかり、各電池の最適なエージング処理時間
を確保できる方法となる。
As described above, by performing aging while monitoring the time-dependent change in the negative electrode potential, the aging method of the present invention makes it possible to easily determine the timing of the end of aging of each battery, and to optimize the aging process for each battery. This is a way to secure time.

【0015】また、負極電位の経時変化は、エージング
を行う温度によって挙動が異なる。例えば、高温下でエ
ージングを行うと、負極電位の上昇は早くなり、反対
に、室温程度の温度下では、負極電位の上昇はゆっくり
したものとなる。したがって、例えばエージングを早く
終わらせたい場合には、高温下でエージングを行う等、
本発明のエージング処理方法は、エージング処理時間の
コントロールを自在に行うことができる方法となる。
The behavior of the negative electrode potential with time varies depending on the aging temperature. For example, when aging is performed at a high temperature, the negative electrode potential rises quickly, and conversely, at a temperature around room temperature, the negative electrode potential rises slowly. Therefore, for example, if you want to end aging early, such as performing aging at high temperature,
The aging treatment method of the present invention is a method capable of freely controlling the aging treatment time.

【0016】(2)上記エージング処理方法を含む本発
明のリチウム二次電池の製造方法は、リチウムを吸蔵・
脱離可能な物質を正極活物質とする正極および負極活物
質を含む負極合材が銅製集電体の表面に層状に形成され
てなる負極を備えてなる電極体と、リチウム塩を有機溶
媒に溶解した非水電解液とを電池ケースに収納して形成
されるリチウム二次電池の製造方法であって、前記電極
体を前記非水電解液とともに前記電池ケースに収納して
電池を形成する電池形成工程と、負極電位Vの経時変化
をモニターしながら前記電極体に前記非水電解液を浸潤
させて形成した前記電池のエージングを行うエージング
処理工程と、エージング処理直後の前記電池に対し充放
電を行うことにより電池を実使用可能な状態に調整する
コンディショニング処理工程とを含んで構成される。
(2) In the method for manufacturing a lithium secondary battery of the present invention including the above-mentioned aging treatment method, the method for storing lithium
An electrode body including a negative electrode in which a negative electrode mixture containing a positive electrode and a negative electrode active material, which have a removable substance as a positive electrode active material, is formed in a layer on the surface of a copper current collector, and a lithium salt in an organic solvent. A method for manufacturing a lithium secondary battery formed by housing a dissolved nonaqueous electrolyte in a battery case, wherein the battery is formed by housing the electrode body in the battery case together with the nonaqueous electrolyte. A forming step, an aging step of aging the battery formed by infiltrating the non-aqueous electrolyte into the electrode body while monitoring a change over time of the negative electrode potential V, and charging and discharging the battery immediately after the aging process And a conditioning process for adjusting the battery to a practically usable state.

【0017】つまり、本発明のリチウム二次電池の製造
方法は、電池形成工程とコンディショニング処理工程と
の間に上記エージング処理方法を含んで構成される。本
発明のリチウム二次電池の製造方法は、個々の電池につ
いてのエージング処理時間を最適なものとすることがで
きるため、自己放電量の小さい、かつ内部抵抗の増加が
抑制されたリチウム二次電池を簡単に製造する方法とな
る。
That is, the method for manufacturing a lithium secondary battery of the present invention includes the above-mentioned aging method between the battery forming step and the conditioning step. The method for producing a lithium secondary battery according to the present invention can optimize the aging time for each battery, and thus has a small self-discharge amount and a suppressed increase in internal resistance. Can be easily manufactured.

【0018】(3)以下に、エージング処理における電
池内の反応と負極電位との関係を説明する。
(3) The relationship between the reaction in the battery during the aging process and the negative electrode potential will be described below.

【0019】一般に、電極には不可避的な水分が吸着し
ており、この水分が非水電解液中の電解質と反応して、
HFやH3PO4等の酸成分を生成する。例えば、電解質
にLiPF6を用いた場合の反応式を(式1)、(式
2)に示す。
In general, unavoidable moisture is adsorbed on the electrode, and this moisture reacts with the electrolyte in the non-aqueous electrolyte,
Generates acid components such as HF and H 3 PO 4 . For example, the reaction formulas when LiPF 6 is used as the electrolyte are shown in (Formula 1) and (Formula 2).

【0020】 LiPF6+H2O→LiF+2HF+POF3 ・・・(式1) POF3+3H2O→H3PO4+3HF ・・・(式2) 一方、負極を構成する銅製集電体の表面は、大気中で生
成したCu2Oで覆われている。したがって、負極と電
解液との界面では、上記酸成分のH+イオン濃度に対応
した金属/酸化物の平衡電位となる。Cu/Cu2Oの
平衡反応の反応式を(式3)に示す。また、その時の電
位E0も併せて示す。
LiPF 6 + H 2 O → LiF + 2HF + POF 3 (Formula 1) POF 3 + 3H 2 O → H 3 PO 4 + 3HF (Formula 2) On the other hand, the surface of the copper current collector constituting the negative electrode is: It is covered with Cu 2 O generated in the atmosphere. Therefore, at the interface between the negative electrode and the electrolytic solution, the metal / oxide equilibrium potential corresponding to the H + ion concentration of the acid component is obtained. The reaction equation of the equilibrium reaction of Cu / Cu 2 O is shown in (Equation 3). The potential E 0 at that time is also shown.

【0021】 2Cu+H2O→Cu2O+2H++2e ・・・(式3) E0=0.471−0.059pH (H/H+基準) また、pHが大きく低下すると、銅製集電体のCuがC
2+イオンとなって溶出し(アノード反応)、H+イオ
ン濃度に関係なくCu/Cu2+の平衡電位となる。この
反応式を(式4)に示す。また、その時の電位E0も併
せて示す。
2Cu + H 2 O → Cu 2 O + 2H + + 2e (Equation 3) E 0 = 0.471−0.059pH (H / H + standard) When the pH is greatly reduced, Cu of the copper current collector is reduced. Is C
It elutes as u 2+ ions (anode reaction) and reaches the equilibrium potential of Cu / Cu 2+ regardless of the H + ion concentration. This reaction formula is shown in (Formula 4). The potential E 0 at that time is also shown.

【0022】Cu→Cu2++2e ・・・(式4) E0=0.337−0.0295Log[Cu2+
(H/H+基準) 他方、カソード反応としては、上記酸成分のH+からの
2発生反応、および非水電解液中の溶存酸素と電極に
付着した水分との反応が考えられる。各反応式を(式
5)、(式6)に示す。また、その時の電位E0も併せ
て示す。
Cu → Cu 2+ + 2e (Equation 4) E 0 = 0.337-0.0295 Log [Cu 2+ ]
(H / H + standard) On the other hand, as the cathode reaction, a reaction of generating H 2 from H + of the acid component and a reaction between dissolved oxygen in the non-aqueous electrolyte and water attached to the electrode are considered. Each reaction formula is shown in (Formula 5) and (Formula 6). The potential E 0 at that time is also shown.

【0023】2H++2e→H2 ・・・(式5) E0=0.059Log[H+]−0.0296p
[H2] (H/H+基準、p[H2]は水素分圧) O2+2H2O+4e→4OH- ・・・(式6) E0=0.401−0.0147Log[OH-]+0.
0591p[O2] (H/H+基準、p[O2]は酸素分圧) 負極の電解液浸潤状態での電極反応は、上述の種々の反
応がアノード反応とカソード反応の総和として釣り合っ
たものであり、負極電位は、いわゆるアノード/カソー
ド混成電位としての自然浸漬電位となっている。
2H + + 2e → H 2 (Equation 5) E 0 = 0.059 Log [H + ] −0.0296p
[H 2] (H / H + reference, p [H 2] is the hydrogen partial pressure) O 2 + 2H 2 O + 4e → 4OH - ··· ( Equation 6) E 0 = 0.401-0.0147Log [OH -] +0.
0591 p [O 2 ] (H / H + standard, p [O 2 ] is oxygen partial pressure) In the electrode reaction in the electrolyte infiltration state of the negative electrode, the various reactions described above were balanced as the sum of the anodic reaction and the cathodic reaction. The negative electrode potential is a natural immersion potential as a so-called hybrid anode / cathode potential.

【0024】エージング処理を開始すると、例えば、
(式1)、(式2)に示した反応により酸成分(HF、
3PO4等)が生成し、そのH+イオンの作用により
(式3)に示す平衡反応は左方向に進行し、Cu2Oは
還元除去される。このCu2Oの還元反応は、負極の電
位変化として現れ、反応の進行とともに、負極電位は上
昇する。 図1に、エージング処理における負極電位の
経時変化を示す。図1中、実線は温度25℃下でエージ
ングを行った結果を、また、破線は温度60℃下でエー
ジングを行った結果を示す。Cu2Oの還元反応は、図
1に示す負極電位の経時変化において、電位の上昇領域
(a)として現れる。なお、この反応は、高温下では比
較的短時間で終了するため、高温下でエージングを行う
と、破線で示すように、負極の電位は急激に上昇する。
反対に、室温程度の温度では、電極内部に吸着した水分
が除々に反応するため、実線で示すように、負極の電位
上昇は緩慢なものとなる。そして、Cu2Oの還元反応
は、電極の大きさ、電極間の圧迫状態、セパレータへの
電解液の浸透性、電極からの気泡の脱離し易さ等のいわ
ゆる電解液の電極体への浸潤し易さと関係するため、負
極の電位変化は、電解液の浸潤の程度を判断する有効な
パラメータとなる。
When the aging process is started, for example,
By the reaction shown in (Equation 1) and (Equation 2), the acid component (HF,
H 3 PO 4 ) is generated, and the equilibrium reaction shown in (Equation 3) proceeds to the left by the action of the H + ion, and Cu 2 O is reduced and removed. The reduction reaction of Cu 2 O appears as a change in potential of the negative electrode, and the potential of the negative electrode increases as the reaction proceeds. FIG. 1 shows a change with time of the negative electrode potential in the aging treatment. In FIG. 1, the solid line shows the result of aging at a temperature of 25 ° C., and the broken line shows the result of aging at a temperature of 60 ° C. The reduction reaction of Cu 2 O appears as a potential increase region (a) in the time-dependent change of the negative electrode potential shown in FIG. Since this reaction is completed in a relatively short time at a high temperature, when aging is performed at a high temperature, the potential of the negative electrode sharply increases as shown by a broken line.
Conversely, at a temperature of about room temperature, the moisture adsorbed inside the electrode gradually reacts, so that the potential of the negative electrode slowly rises as shown by the solid line. The reduction reaction of Cu 2 O is caused by the so-called infiltration of the electrolyte into the electrode body, such as the size of the electrodes, the state of pressure between the electrodes, the permeability of the electrolyte to the separator, and the ease with which bubbles are removed from the electrodes. Therefore, the change in the potential of the negative electrode is an effective parameter for judging the degree of infiltration of the electrolytic solution.

【0025】負極の集電体表面におけるCu2Oが無く
なると、上記Cu2Oの還元反応は終了する。一方、酸
成分の存在により負極近傍のpHは低下するため、(式
4)に示す反応が進行し、銅製集電体からCuイオンが
溶出する。そして、Cuイオンの溶出反応の進行によ
り、アノード反応の分極抵抗が小さくなり、負極電位は
低下する。つまり、上記図1に示す負極電位の経時変化
では、Cuイオンの溶出反応は、電位の下降を含む安定
領域(b)として現れる。したがって、負極電位が低下
する直前にエージングを終了すれば、Cuイオンの溶出
を抑制することができる。
When the Cu 2 O on the surface of the current collector of the negative electrode disappears, the above-mentioned reduction reaction of Cu 2 O ends. On the other hand, since the pH near the negative electrode decreases due to the presence of the acid component, the reaction shown in (Equation 4) proceeds, and Cu ions are eluted from the copper current collector. Then, as the Cu ion elution reaction proceeds, the polarization resistance of the anodic reaction decreases, and the negative electrode potential decreases. That is, in the change with time of the negative electrode potential shown in FIG. 1, the elution reaction of Cu ions appears as a stable region (b) including a decrease in potential. Therefore, if aging is terminated immediately before the negative electrode potential decreases, elution of Cu ions can be suppressed.

【0026】以上説明したように、負極電位をモニター
することで、過剰なエージングを抑制することができ、
Cuイオンの溶出を抑制しつつ、電解液を電極体に充分
浸潤させるエージング処理が可能となる。
As described above, by monitoring the negative electrode potential, excessive aging can be suppressed.
An aging treatment for sufficiently infiltrating the electrolyte into the electrode body while suppressing the elution of Cu ions can be performed.

【0027】[0027]

【発明の実施の形態】以下に、本発明のリチウム二次電
池のエージング処理方法の実施形態について詳しく説明
する。まず、本発明のエージング処理方法が適用される
リチウム二次電池の構成および構造を説明し、次いで、
本発明のエージング処理方法を含んで構成されるリチウ
ム二次電池の製造方法の実施形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the aging treatment method for a lithium secondary battery according to the present invention will be described in detail. First, the configuration and structure of a lithium secondary battery to which the aging method of the present invention is applied will be described.
An embodiment of a method for manufacturing a lithium secondary battery including the aging treatment method of the present invention will be described.

【0028】〈リチウム二次電池の構成〉一般にリチウ
ム二次電池は、リチウムを吸蔵・脱離する正極および負
極と、この正極と負極との間に挟装されるセパレータ
と、正極と負極との間にリチウムを移動させる非水電解
液とから構成され、本発明のエージング処理方法が適用
できるリチウム二次電池もこの構成に従うものである。
以下、各構成要素について説明する。
<Structure of Lithium Secondary Battery> In general, a lithium secondary battery has a positive electrode and a negative electrode that occlude and desorb lithium, a separator sandwiched between the positive electrode and the negative electrode, and a positive electrode and a negative electrode. A non-aqueous electrolyte for transferring lithium between them, and a lithium secondary battery to which the aging treatment method of the present invention can be applied also complies with this configuration.
Hereinafter, each component will be described.

【0029】正極は、正極活物質に導電材および結着剤
を混合し、必要に応じ適当な溶剤を加えて、ペースト状
の正極合材としたものを、アルミニウム等の金属箔製の
集電体表面に塗布、乾燥し、その後プレスによって活物
質密度を高めることによって形成することができる。
The positive electrode is prepared by mixing a conductive material and a binder with a positive electrode active material, adding an appropriate solvent as needed, and forming a paste-like positive electrode mixture into a current collector made of a metal foil such as aluminum. It can be formed by applying to the body surface, drying, and then increasing the active material density by pressing.

【0030】正極活物質には、リチウムを吸蔵・脱離可
能な物質を採用する。例えば、4V級の二次電池を構成
できるという観点から、基本組成をLiCoO2、Li
NiO2、LiMnO2等とする層状岩塩構造のリチウム
遷移金属複合酸化物、基本組成をLiMn24等とする
スピネル構造のリチウム遷移金属複合酸化物を用いるこ
とができる。なかでも、基本組成をLiNiO2とする
層状岩塩構造のリチウム遷移金属複合酸化物は、Coを
中心金属としたリチウム遷移金属複合酸化物より低価格
であり、単位重量あたりの放電容量が大きい二次電池を
構成できることから好適である。
As the positive electrode active material, a material capable of inserting and extracting lithium is used. For example, from the viewpoint that a 4V class secondary battery can be formed, the basic composition is LiCoO 2 , Li
A lithium transition metal composite oxide having a layered rock salt structure such as NiO 2 and LiMnO 2 and a lithium transition metal composite oxide having a spinel structure having a basic composition such as LiMn 2 O 4 can be used. Above all, a lithium transition metal composite oxide having a layered rock salt structure having a basic composition of LiNiO 2 is lower in price than a lithium transition metal composite oxide having Co as a central metal, and has a higher secondary discharge capacity per unit weight. This is preferable because a battery can be configured.

【0031】なお、基本組成とは、上記各複合酸化物の
代表的な組成という意味であり、上記組成式で表される
ものの他、例えば、リチウムサイトや遷移金属サイトを
他の1種または2種以上の元素で一部置換したもの等の
組成をも含む。また、必ずしも化学量論組成のものに限
定されるわけではなく、例えば、製造上不可避的に生じ
るLi、Ni等の陽イオン元素が欠損した、あるいは酸
素原素が欠損した非化学量論組成のもの等をも含む。さ
らに、リチウム遷移金属複合酸化物のうち1種類のもの
を用いることも、また、2種類以上のものを混合して用
いることもできる。
The basic composition means a typical composition of each of the above composite oxides. In addition to the one represented by the above composition formula, for example, a lithium site or a transition metal site may be replaced with one or more other types. It also includes compositions such as those partially substituted with more than one kind of element. Further, the stoichiometric composition is not necessarily limited to the stoichiometric composition. For example, a non-stoichiometric composition in which a cation element such as Li or Ni which is inevitably produced in the manufacturing process is deficient, or an oxygen element is deficient. Including things. Further, one of the lithium transition metal composite oxides may be used, or two or more of them may be used in combination.

【0032】正極に用いる導電材は、正極活物質層の電
子伝導性を確保するためのものであり、カーボンブラッ
ク、アセチレンブラック、黒鉛等の炭素物質紛状体の1
種または2種以上を混合したものを用いることができ
る。結着剤は、活物質粒子を繋ぎ止める役割を果たすも
ので、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、
ポリエチレン等の熱可塑性樹脂を用いることができる。
これら活物質、導電材、結着剤を分散させる溶剤として
は、N−メチル−2−ピロリドン等の有機溶剤を用いる
ことができる。
The conductive material used for the positive electrode is for ensuring the electron conductivity of the positive electrode active material layer, and is made of a carbon material powder such as carbon black, acetylene black, and graphite.
A species or a mixture of two or more species can be used. The binder plays a role of binding the active material particles, and is made of polytetrafluoroethylene, polyvinylidene fluoride, a fluorine-containing resin such as fluororubber, polypropylene,
A thermoplastic resin such as polyethylene can be used.
An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent in which the active material, the conductive material, and the binder are dispersed.

【0033】負極は、リチウムを吸蔵・脱離できる負極
活物質に結着剤を混合し、適当な溶剤を加えてペースト
状にした負極合材を集電体の表面に層状に積層して形成
することができる。ここで、集電体には比較的貴な金属
である銅を用いることとし、「銅製」とは、純銅の他、
他の元素が若干添加されているような銅合金等をも含む
概念である。例えば、銅箔製の集電体の表面に負極合材
を塗布、乾燥、プレスして負極を形成すればよい。負極
活物質として、例えば、天然黒鉛、球状あるいは繊維状
の人造黒鉛、コークス等の易黒鉛化性炭素、フェノール
樹脂焼成体等の難黒鉛化性炭素等を用いることができ
る。なお、正極同様、負極結着剤としてはポリフッ化ビ
ニリデン等の含フッ素樹脂等を、溶剤としてはN−メチ
ル−2−ピロリドン等の有機溶剤を用いることができ
る。
The negative electrode is formed by mixing a binder with a negative electrode active material capable of inserting and extracting lithium, adding an appropriate solvent, and forming a paste-like negative electrode mixture on the surface of the current collector in a layered manner. can do. Here, copper, which is a relatively noble metal, is used for the current collector, and “made of copper” means pure copper,
This concept includes a copper alloy to which other elements are slightly added. For example, a negative electrode mixture may be applied to the surface of a copper foil current collector, dried, and pressed to form a negative electrode. As the negative electrode active material, for example, natural graphite, spherical or fibrous artificial graphite, easily graphitizable carbon such as coke, hardly graphitizable carbon such as a phenol resin fired body, or the like can be used. As in the case of the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride or the like can be used as the negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.

【0034】正極と負極の間に挟装されるセパレータ
は、正極と負極とを隔離しつつ電解液を保持してイオン
を通過させるものであり、ポリエチレン、ポリプロピレ
ン等の薄い微多孔膜を用いることができる。
The separator sandwiched between the positive electrode and the negative electrode separates the positive electrode from the negative electrode and holds the electrolyte while allowing ions to pass therethrough. Use a thin microporous membrane such as polyethylene or polypropylene. Can be.

【0035】非水電解液は、有機溶媒に電解質を溶解さ
せたもので、有機溶媒としては、非プロトン性有機溶
媒、例えばエチレンカーボネート、プロピレンカーボネ
ート、ジメチルカーボネート、ジエチルカーボネート、
γブチロラクトン、アセトニトリル、ジメトキシエタ
ン、テトラヒドロフラン、ジオキソラン、塩化メチレン
等の1種またはこれらの2種以上の混合液を用いること
ができる。また、溶解させる電解質としては、溶解させ
ることによりリチウムイオンを生じるLiI、LiCl
4、LiAsF6、LiBF4、LiPF6等を用いるこ
とができる。
The non-aqueous electrolyte is obtained by dissolving an electrolyte in an organic solvent. Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and the like.
One kind of γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride and the like, or a mixture of two or more kinds thereof can be used. As the electrolyte to be dissolved, LiI, LiCl which generates lithium ions when dissolved are used.
O 4 , LiAsF 6 , LiBF 4 , LiPF 6 and the like can be used.

【0036】〈リチウム二次電池の構造〉上記構成要素
を有する本発明のエージング処理方法が適用できるリチ
ウム二次電池の一例として、図2に円筒型のリチウム二
次電池の断面を示す。本リチウム二次電池1は、電極体
10と、電極体10を非水電解液とともに密封する電池
ケース20と、電池容器20に付設され電極体10に導
通する正極端子30および負極端子40とから構成され
ている。
<Structure of Lithium Secondary Battery> FIG. 2 shows a cross section of a cylindrical lithium secondary battery as an example of a lithium secondary battery having the above-mentioned components and to which the aging treatment method of the present invention can be applied. The present lithium secondary battery 1 includes an electrode body 10, a battery case 20 for sealing the electrode body 10 together with a non-aqueous electrolyte, and a positive electrode terminal 30 and a negative electrode terminal 40 attached to the battery container 20 and conducting to the electrode body 10. It is configured.

【0037】電極体10は、シート状の正極11とシー
ト状の負極12とをセパレータ13を挟装し捲回芯14
を中心に捲回したロール状のものとなっている。ちなみ
に、正極11は、アルミニウム箔集電体の両面に活物質
としてリチウム遷移金属複合酸化物を含む正極合材層を
形成してなり、負極12は、銅箔集電体の両面に活物質
として炭素物質を含む負極合材層を形成してなり、そし
て、セパレータ13は、多孔質ポリエチレン製シートか
らなる。捲回芯14は、正極端子側に位置するアルミニ
ウム合金製のアルミ捲回芯部14aと、アルミ捲回芯部
14aに同軸的に螺合連結され負極端子側に位置する樹
脂製の樹脂捲回芯部14bとからなる。電池容器20
は、ステンレス製の円筒状の外装缶21と、外装缶21
の両開口端にそれぞれ接合されるステンレス製の円盤状
の正極側蓋板22および負極側蓋板23とからなる。正
極側蓋板22および負極側蓋板23にはそれぞれ電池ケ
ース20の内部圧力が所定圧を超える場合に開弁する安
全弁24が付設されており(正極側は図示していな
い)、また、負極側蓋板23には、さらに電解液注入口
25が設けられ、電解液注入口25を封口する注入孔栓
26が螺合して取付けられている。
The electrode body 10 includes a sheet-shaped positive electrode 11 and a sheet-shaped negative electrode 12 sandwiched between a separator 13 and a wound core 14.
In the form of a roll wound around. Incidentally, the positive electrode 11 is formed by forming a positive electrode mixture layer containing a lithium transition metal composite oxide as an active material on both surfaces of an aluminum foil current collector, and the negative electrode 12 is formed on both surfaces of a copper foil current collector as an active material. A negative electrode mixture layer containing a carbon material is formed, and the separator 13 is made of a porous polyethylene sheet. The winding core 14 is formed of an aluminum alloy winding core 14a located on the positive electrode terminal side, and a resin winding wound coaxially and screwed to the aluminum winding core 14a and located on the negative electrode terminal side. And a core 14b. Battery case 20
A cylindrical outer can 21 made of stainless steel;
And a stainless disk-shaped positive-side cover plate 22 and a negative-side cover plate 23, which are joined to the two open ends, respectively. Each of the positive-side cover plate 22 and the negative-side cover plate 23 is provided with a safety valve 24 that opens when the internal pressure of the battery case 20 exceeds a predetermined pressure (the positive electrode side is not shown). The side cover plate 23 is further provided with an electrolyte injection port 25, and an injection hole plug 26 for sealing the electrolyte injection port 25 is screwed and attached thereto.

【0038】正極端子30は、アルミニウム製で、集電
部30aと、ボルト状の外部端子部30bとからなり、
集電部30aは、捲回芯14のアルミ捲回芯部14aに
螺合連結され、また、外部端子部30bは、先端を電池
外部に突出する状態で電池ケース20の正極側蓋板22
に設けられた正極端子取付穴22aに、ガスケット31
を介し、ワッシャ32、ナット33によって付設されて
おり、電池容器20とは絶縁されている。集電部30a
には正極11より延出する帯状のアルミニウム製正極リ
ード11aがその周囲に接合され、正極端子30と電極
体10の正極11との電気的導通が確保されている。
The positive electrode terminal 30 is made of aluminum and includes a current collector 30a and a bolt-shaped external terminal 30b.
The current collecting portion 30a is screwed and connected to the aluminum winding core portion 14a of the winding core 14, and the external terminal portion 30b is connected to the positive electrode side cover plate 22 of the battery case 20 with its tip protruding outside the battery.
Gasket 31 into positive electrode terminal mounting hole 22a provided in
, And is attached by a washer 32 and a nut 33, and is insulated from the battery container 20. Current collector 30a
A strip-shaped aluminum positive electrode lead 11a extending from the positive electrode 11 is joined to the periphery thereof, and electrical conduction between the positive electrode terminal 30 and the positive electrode 11 of the electrode body 10 is secured.

【0039】負極端子40は、銅製で、集電部40a
と、ボルト状の外部端子部40bとからなり、集電部4
0aは、捲回芯14の樹脂捲回芯部14bに螺合連結さ
れ、また、外部端子部40bは、先端を電池外部に突出
する状態で電池ケース20の負極側蓋板23に設けられ
た負極端子取付穴23aに、ガスケット41を介し、ワ
ッシャ42、ナット43によって付設されており、電池
容器20とは絶縁されている。集電部40aには負極1
2より延出する帯状の銅製負極リード12aがその周囲
に接合され、負極端子40と電極体10の負極12との
電気的導通が確保されている。
The negative electrode terminal 40 is made of copper and has a current collector 40a.
And a bolt-shaped external terminal portion 40b.
Numeral 0a is screwed and connected to the resin winding core portion 14b of the winding core 14, and the external terminal portion 40b is provided on the negative electrode side cover plate 23 of the battery case 20 with its tip protruding outside the battery. It is attached to the negative electrode terminal mounting hole 23a by a washer 42 and a nut 43 via a gasket 41, and is insulated from the battery container 20. Negative electrode 1 is provided in current collector 40a.
A strip-shaped copper negative electrode lead 12 a extending from the second electrode 2 is joined to the periphery thereof, and electrical conduction between the negative electrode terminal 40 and the negative electrode 12 of the electrode body 10 is secured.

【0040】〈リチウム二次電池の製造方法〉本発明の
エージング処理方法が適用できるリチウム二次電池の一
例として、上記構造を有するリチウム二次電池の製造方
法を、電池形成工程、エージング処理工程、コンディシ
ョニング処理工程の順に説明する。
<Method of Manufacturing Lithium Secondary Battery> As an example of a lithium secondary battery to which the aging method of the present invention can be applied, a method of manufacturing a lithium secondary battery having the above structure includes a battery forming process, an aging process, The description will be made in the order of the conditioning processing steps.

【0041】(1)電池形成工程 本工程は、電極体を非水電解液とともに電池ケースに収
納して、上記図2に示したように電池を形成する工程で
ある。まず、上述のように形成した正極および負極をセ
パレータを介して積層させて電極体とし、正極集電体お
よび負極集電体から外部に通ずる正極端子および負極端
子までの間を集電用リード等を用いて接続し、電池ケー
スに挿設する。そして、非水電解液を電解液注入口から
注入し、電池ケースを密閉して電池を形成する。
(1) Battery Forming Step This step is a step of forming a battery as shown in FIG. 2 above by housing the electrode body together with the non-aqueous electrolyte in a battery case. First, the positive electrode and the negative electrode formed as described above are laminated via a separator to form an electrode body, and a current collecting lead or the like is provided between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside. And connect it to the battery case. Then, a non-aqueous electrolyte is injected from the electrolyte injection port, and the battery case is sealed to form a battery.

【0042】(2)エージング処理工程 本工程は、負極電位Vの経時変化をモニターしながら電
極体に非水電解液を浸潤させて電池のエージングを行う
工程である。エージング処理は、上記電池形成工程にお
いて非水電解液を電池ケースに注入した直後に開始し、
本工程の後に行われるコンディショニング処理工程にお
いて初回の充電を開始する時に終了する。
(2) Aging Treatment Step This step is a step of aging the battery by infiltrating the electrode body with a non-aqueous electrolyte while monitoring the change with time of the negative electrode potential V. Aging treatment is started immediately after the non-aqueous electrolyte is injected into the battery case in the battery forming step,
The process ends when the first charging is started in the conditioning process performed after this process.

【0043】エージングは、電池形成後の電池を負極電
位Vの経時変化をモニターしながら所定の温度下で保存
することにより行う。負極電位のモニター方法は、特に
制限するものではない。例えば、正負極以外の第3極
(参照極)を電池ケースに挿入することのできるような
構造の電池を形成して、その参照極を基準とした負極電
位を測定すればよい。負極電位は、例えば、入力抵抗の
大きい(≧1010Ω電圧計であるエレクトロメータ等を
用いて測定すればよい。
Aging is performed by storing the battery after forming the battery at a predetermined temperature while monitoring the change over time of the negative electrode potential V. The method for monitoring the negative electrode potential is not particularly limited. For example, a battery having a structure in which a third electrode (reference electrode) other than the positive and negative electrodes can be inserted into the battery case may be formed, and the negative electrode potential may be measured with reference to the reference electrode. The negative electrode potential may be measured using, for example, an electrometer having a large input resistance (≧ 10 10 Ω voltmeter).

【0044】なお、端子間電圧(正負極間電圧)は、
(式7)に示すように、正極電位と負極電位との差で表
される。端子間電圧=正極電位−負極電位 ・・・(式
7)ここで、正極電位はエージング中略一定であるとみ
なすことができるため、負極の電位変化はそのまま端子
間電圧の変化に反映される。したがって、より実用的な
方法として、エージング中の負極電位を測定する代わり
に、端子間電圧を電圧計等で測定して、端子間電圧の経
時変化をモニターしながらエージングを行う態様を採用
することができる。
The voltage between terminals (voltage between positive and negative electrodes) is
As shown in (Equation 7), it is represented by the difference between the positive electrode potential and the negative electrode potential. Voltage between terminals = positive electrode potential−negative electrode potential (Equation 7) Here, since the positive electrode potential can be considered to be substantially constant during aging, a change in the potential of the negative electrode is directly reflected in a change in the voltage between terminals. Therefore, as a more practical method, instead of measuring the negative electrode potential during aging, an aspect in which aging is performed while measuring the inter-terminal voltage with a voltmeter or the like and monitoring the temporal change in the inter-terminal voltage is adopted. Can be.

【0045】また、電池を保存する温度を特に制限する
ものではなく、例えば、室温程度等、適宜保存温度を決
定すればよい。特に、エージングを早く終わらせたい場
合には、上述したように、例えば60℃程度の高温下で
保存することが望ましい。なお、保存方法も、特に制限
するものではなく、例えば、電池を恒温槽に入れて保存
することができる。
The temperature at which the battery is stored is not particularly limited, and the storage temperature may be appropriately determined, for example, about room temperature. In particular, when it is desired to end the aging early, it is desirable to store at a high temperature of, for example, about 60 ° C. as described above. The storage method is not particularly limited. For example, the battery can be stored in a thermostat.

【0046】上述の通り、負極電位は、エージング開始
後上昇を続け、ある時点で最大となった後やや下降し
て、その後は略一定の値となる。したがって、負極から
のCuイオンの溶出を抑制しつつ、電解液を電極体に充
分浸潤させるためには、エージングを負極電位の変曲点
近傍で終了させればよい。より具体的には、負極電位V
の時間変化率が|dV/dt|≦10(mV/hr)と
なった時点で終了させることが望ましい。なお、エージ
ングを続けると、最終的に負極電位は略一定値をとり安
定するため、その安定領域においても|dV/dt|≦
10(mV/hr)を満たす場合が生じるが、エージン
グの終了時はその時を意図するものではない。エージン
グの望ましい終了時は、あくまでも負極電位の変曲点近
傍である。エージングを終了するためには、次のコンデ
ィショニング処理工程における充電を開始すればよい。
As described above, the negative electrode potential continues to increase after the start of aging, reaches a maximum at a certain point, slightly decreases, and thereafter becomes a substantially constant value. Therefore, in order to sufficiently infiltrate the electrolyte into the electrode body while suppressing the elution of Cu ions from the negative electrode, aging may be terminated near the inflection point of the negative electrode potential. More specifically, the negative electrode potential V
Is desirably terminated when the time change rate of | dV / dt | ≦ 10 (mV / hr). If aging is continued, the negative electrode potential eventually takes a substantially constant value and stabilizes, so that | dV / dt | ≦
In some cases, 10 (mV / hr) is satisfied, but the end of aging is not intended. The desired end of the aging is near the inflection point of the negative electrode potential. To end the aging, charging in the next conditioning processing step may be started.

【0047】(3)コンディショニング処理工程 本工程は、前のエージング処理直後の電池に対し、充放
電を行うことにより電池を実使用可能な状態に調整する
工程である。充放電は、通常、コンディショニング処理
として行われている方法で行えばよく、所定の温度下
で、できるだけ小さな電流密度で所定の電圧まで充電
し、同様に、できるだけ小さな電流密度で所定の電圧ま
で放電を行えばよい。例えば、4V級の電池であれば、
電流密度0.2〜2mA/cm2の定電流で、電池電圧
約4Vまで充電を行い、次いで、電流密度1〜2mA/
cm2の定電流で電池電圧約3Vまで放電を行えばよ
い。充放電の回数は、特に制限するものではなく、1回
のみならず複数回行うものであってもよい。
(3) Conditioning Treatment Step This step is a step of charging and discharging the battery immediately after the previous aging treatment to adjust the battery to a practically usable state. The charge and discharge may be performed by a method usually performed as a conditioning process.The battery is charged to a predetermined voltage with a current density as small as possible at a predetermined temperature and similarly discharged to a predetermined voltage with a current density as small as possible. Should be performed. For example, if it is a 4V class battery,
The battery was charged at a constant current of 0.2 to 2 mA / cm 2 to a battery voltage of about 4 V, and then charged at a current density of 1 to 2 mA / cm 2.
Discharge may be performed to a battery voltage of about 3 V at a constant current of cm 2 . The number of times of charging / discharging is not particularly limited, and may be one or more times.

【0048】〈他の実施形態の許容〉以上、本発明のリ
チウム二次電池のエージング処理方法およびそれを含む
リチウム二次電池の製造方法の実施形態について説明し
たが、上述した実施形態は一実施形態にすぎず、本発明
のリチウム二次電池のエージング処理方法およびそれを
含むリチウム二次電池の製造方法は、上記実施形態を始
めとして、当業者の知識に基づいて種々の変更、改良を
施した種々の形態で実施することができる。
<Allowance of Other Embodiments> The embodiments of the aging treatment method for the lithium secondary battery and the method for manufacturing the lithium secondary battery including the same according to the present invention have been described above. The aging treatment method for a lithium secondary battery and the method for manufacturing a lithium secondary battery including the same according to the present invention include various modifications and improvements based on the knowledge of those skilled in the art, including the above embodiment. It can be implemented in various forms described above.

【0049】[0049]

【実施例】上記実施形態に基づいて、実際にリチウム二
次電池を形成後、エージング処理、コンディショニング
処理を行って、種々の電池を作製した。そして、それら
の電池の放電容量および内部抵抗を測定し、電池特性を
評価した。以下、これらの内容について説明する。
EXAMPLES Based on the above embodiment, after actually forming a lithium secondary battery, an aging treatment and a conditioning treatment were performed to produce various batteries. Then, the discharge capacity and the internal resistance of those batteries were measured, and the battery characteristics were evaluated. Hereinafter, these contents will be described.

【0050】〈実験1〉 (1)リチウム二次電池の作製 (a)電池の形成 本実験1では、上述した図2に示す構造のリチウム二次
電池を複数個作製した。正極11は、正極活物質として
LiNiO2を用いて形成した。まず、活物質であるL
iNiO285重量部に、導電材としてカーボンブラッ
クを10重量部、および結着剤としてポリフッ化ビニリ
デンを5重量部混合し、溶剤としてN−メチル−2−ピ
ロリドンを添加して、混練してペースト状の正極合材を
調整した。次に、この正極合材を厚さ15μmのアルミ
ニウム箔集電体の両面に塗布し、乾燥し、ロールプレス
を施してシート状の正極11とした。正極11の大きさ
は124mm×3050mmで、正極合材の乾燥プレス
後の塗膜厚は片側当たり70μmとした。
<Experiment 1> (1) Production of Lithium Secondary Battery (a) Formation of Battery In Experiment 1, a plurality of lithium secondary batteries having the structure shown in FIG. 2 described above were produced. The positive electrode 11 was formed using LiNiO 2 as a positive electrode active material. First, the active material L
85 parts by weight of iNiO 2 , 10 parts by weight of carbon black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent was added, and the mixture was kneaded to obtain a paste. A positive electrode mixture was prepared. Next, this positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 15 μm, dried, and roll-pressed to obtain a sheet-shaped positive electrode 11. The size of the positive electrode 11 was 124 mm × 3050 mm, and the coating thickness of the positive electrode mixture after dry pressing was 70 μm per side.

【0051】負極12は、負極活物質として黒鉛化メソ
カーボンマイクロビーズ(MCMB)を用いて形成し
た。まず、活物質であるMCMB90重量部に、結着剤
としてポリフッ化ビニリデンを10重量部混合し、溶剤
としてN−メチル−2−ピロリドンを添加して、混練し
てペースト状の負極合材を調整した。次に、この負極合
材を厚さ10μmの銅箔集電体の両面に塗布し、乾燥
し、ロールプレスを施してシート状の負極12とした。
負極12の大きさは128mm×3200mmで、負極
合材の乾燥プレス後の塗膜厚は片側当たり75μmとし
た。
The negative electrode 12 was formed using graphitized mesocarbon microbeads (MCMB) as a negative electrode active material. First, 90 parts by weight of MCMB as an active material, 10 parts by weight of polyvinylidene fluoride as a binder are mixed, N-methyl-2-pyrrolidone is added as a solvent, and the mixture is kneaded to prepare a paste-like negative electrode mixture. did. Next, this negative electrode mixture was applied to both sides of a copper foil current collector having a thickness of 10 μm, dried, and roll-pressed to obtain a sheet-shaped negative electrode 12.
The size of the negative electrode 12 was 128 mm × 3200 mm, and the coating thickness of the negative electrode mixture after dry pressing was 75 μm per side.

【0052】上記正極11および負極12を、その間に
厚さ25μm、幅132mmのポリエチレン製のセパレ
ータ13を挟装して倦回し、ロール状の電極体10とし
た。電極体10をSUS304製の円筒状の電池ケース
20に挿設し、非水電解液を電解液注入口25より50
cc注入し、電池ケース20を密閉して電池を形成し
た。非水電解液は、エチレンカーボネートとジエチルカ
ーボネートとを体積比3:7に混合した混合溶媒にLi
PF6を1Mの濃度で溶解したものを用いた。なお、電
池ケース20の外装缶21は、板厚0.3mm、外径3
3mm、長さ150mmとし、正極側蓋板22、負極側
蓋板23は、板厚が0.5mmであり、外装缶21の内
径に略等しい外径の円盤形状を成している。
The positive electrode 11 and the negative electrode 12 were sandwiched between them, and a polyethylene separator 13 having a thickness of 25 μm and a width of 132 mm was sandwiched therebetween to form a roll-shaped electrode body 10. The electrode body 10 is inserted into the cylindrical battery case 20 made of SUS304, and the non-aqueous electrolyte is supplied through the electrolyte injection port 25 by 50.
Then, the battery case 20 was sealed to form a battery. The non-aqueous electrolyte is prepared by mixing Li in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7.
The PF 6 was used at a concentration of 1M. The outer case 21 of the battery case 20 has a thickness of 0.3 mm and an outer diameter of 3 mm.
The positive-side cover plate 22 and the negative-side cover plate 23 have a thickness of 0.5 mm and an outer diameter substantially equal to the inner diameter of the outer can 21.

【0053】(b)エージング処理 形成した二次電池を、各々10個ずつ、3つのグループ
(#1〜#3)に分けてエージングを行った。エージン
グは、各グループの電池を20℃の恒温槽に入れ、所定
の時間保存することにより行った。
(B) Aging treatment The formed secondary batteries were aged in 10 groups each, divided into three groups (# 1 to # 3). The aging was performed by putting the batteries of each group in a thermostat at 20 ° C. and storing them for a predetermined time.

【0054】#1グループの電池は、エージング時間を
すべて10時間とした。これは、予備的に、形成した電
池を用いて端子間電圧の経時変化をモニターしながらエ
ージングを行った結果、端子間電圧が安定するまでの時
間が10時間であったため、その時間をエージング時間
として一律に採用したものである。#2グループの電池
は、個々の電池について端子間電圧を電圧計でモニター
しながらエージングを行い、|dV/dt|≦5(mV
/hr)となった時点でそれぞれエージングを終了し
た。#3グループの電池はエージング時間を一律に72
時間とした。
The batteries of the # 1 group all had an aging time of 10 hours. This is because, as a result of preliminarily performing aging while monitoring the temporal change of the inter-terminal voltage using the formed battery, the time required for the inter-terminal voltage to stabilize was 10 hours. It is adopted uniformly. The batteries of the # 2 group were aged while monitoring the voltage between terminals of each battery with a voltmeter, and | dV / dt | ≦ 5 (mV
/ Hr), the aging was terminated. The batteries of the # 3 group have a uniform aging time of 72
Time.

【0055】(c)コンディショニング処理 上記所定のエージング時間経過後、#1〜#3の各グル
ープの電池についてコンディショニング処理を行った。
充放電は25℃の温度下で行い、まず、電流密度0.2
5mA/cm2の定電流で電池電圧4.2Vまで充電を
行い、さらにその電池電圧で定電圧充電を行い(充電合
計時間6時間)、次いで、電流密度1mA/cm2の定
電流で電池電圧3.0Vまで放電を行うものを1サイク
ルとして、合計4サイクル行った。そして4回目のサイ
クルの放電容量をもって、この容量をそれぞれのリチウ
ム二次電池の初期放電容量とした。
(C) Conditioning Processing After the aging time, the conditioning processing was performed on the batteries of each group of # 1 to # 3.
Charging and discharging were performed at a temperature of 25 ° C.
The battery was charged at a constant current of 5 mA / cm 2 up to a battery voltage of 4.2 V, and the battery voltage was charged at a constant voltage (total charging time: 6 hours). Then, the battery voltage was charged at a constant current of 1 mA / cm 2 at a current density of 1 mA / cm 2. One cycle of discharging to 3.0 V was performed for a total of 4 cycles. The discharge capacity of the fourth cycle was used as the initial discharge capacity of each lithium secondary battery.

【0056】(2)電池特性の評価 作製した上記#1〜#3グループの各電池を、保存温度
25℃の恒温槽に1ヶ月間保存し、保存後の放電容量を
測定した。そして、式[(1−放電容量/初期放電容
量)×100](%)を用いて、自己放電率を計算し
た。各グループの自己放電率を表1に示す。
(2) Evaluation of Battery Characteristics Each of the batteries of the above-described # 1 to # 3 groups was stored in a thermostat at a storage temperature of 25 ° C. for one month, and the discharge capacity after storage was measured. Then, the self-discharge rate was calculated using the formula [(1−discharge capacity / initial discharge capacity) × 100] (%). Table 1 shows the self-discharge rate of each group.

【0057】[0057]

【表1】 [Table 1]

【0058】表1から明らかなように、#1および#2
グループの電池は自己放電率が小さく、自己放電率が5
0%以上である不良電池の発生は認められなかった。一
方、#3グループの電池は、自己放電率が大きく、自己
放電率が50%以上である不良電池は10個中2個認め
られた。したがって、端子間電圧、すなわち負極電位を
モニターしながらエージングを行うエージング処理工程
を含む本発明のリチウム二次電池の製造方法によれば、
自己放電量の小さい二次電池を製造することができるこ
とが確認できた。
As is clear from Table 1, # 1 and # 2
The batteries in the group have a low self-discharge rate and a self-discharge rate of 5
The occurrence of defective batteries of 0% or more was not observed. On the other hand, the batteries of the # 3 group had a large self-discharge rate, and two out of ten defective batteries having a self-discharge rate of 50% or more were recognized. Therefore, according to the method for manufacturing a lithium secondary battery of the present invention including the aging step of performing aging while monitoring the voltage between terminals, that is, the negative electrode potential,
It was confirmed that a secondary battery having a small amount of self-discharge can be manufactured.

【0059】〈実験2〉 (1)リチウム二次電池の作製 (a)電池の形成 本実験2では、参照極を挿入できる構造の二次電池を複
数個作製した。正極は、正極活物質としてLiNi0.8
Co0.15Al0.052を用いて形成した。まず、活物質
であるLiNi0.8Co0.15Al0.05285重量部に、
導電材としてカーボンブラックを10重量部、および結
着剤としてポリフッ化ビニリデンを5重量部混合し、溶
剤としてN−メチル−2−ピロリドンを添加して、混練
してペースト状の正極合材を調整した。次に、この正極
合材を厚さ15μmのアルミニウム箔集電体の両面に塗
布し、乾燥し、ロールプレスを施してシート状の正極と
した。正極の大きさは77mm×3750mmで、正極
合材の乾燥プレス後の塗膜厚は片側当たり52μmとし
た。
<Experiment 2> (1) Production of Lithium Secondary Battery (a) Formation of Battery In Experiment 2, a plurality of secondary batteries having a structure in which a reference electrode can be inserted were produced. The positive electrode is LiNi 0.8 as a positive electrode active material.
It was formed using Co 0.15 Al 0.05 O 2 . First, to 85 parts by weight of LiNi 0.8 Co 0.15 Al 0.05 O 2 as an active material,
10 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone is added as a solvent and kneaded to prepare a paste-like positive electrode mixture. did. Next, this positive electrode mixture was applied to both surfaces of a 15 μm-thick aluminum foil current collector, dried, and roll-pressed to obtain a sheet-shaped positive electrode. The size of the positive electrode was 77 mm × 3750 mm, and the coating thickness of the positive electrode mixture after dry pressing was 52 μm per side.

【0060】負極は、負極活物質として天然黒鉛を用い
て形成した。まず、活物質である天然黒鉛92.5重量
部に、結着剤としてポリフッ化ビニリデンを7.5重量
部混合し、溶剤としてN−メチル−2−ピロリドンを添
加して、混練してペースト状の負極合材を調整した。次
に、この負極合材を厚さ10μmの銅箔集電体の両面に
塗布し、乾燥し、ロールプレスを施してシート状の負極
とした。負極の大きさは81mm×4650mmで、負
極合材の乾燥プレス後の塗膜厚は片側当たり58μmと
した。
The negative electrode was formed using natural graphite as a negative electrode active material. First, 7.5 parts by weight of polyvinylidene fluoride as a binder is mixed with 92.5 parts by weight of natural graphite as an active material, N-methyl-2-pyrrolidone is added as a solvent, and the mixture is kneaded to form a paste. Was prepared. Next, this negative electrode mixture was applied to both sides of a copper foil current collector having a thickness of 10 μm, dried, and roll-pressed to obtain a sheet-shaped negative electrode. The size of the negative electrode was 81 mm × 4650 mm, and the coating thickness of the negative electrode mixture after dry pressing was 58 μm per side.

【0061】上記正極および負極を、その間に厚さ25
μm、幅85mmのポリエチレン製のセパレータを挟装
して倦回し、ロール状の電極体とした。なお、参照極に
は金属Li片を用いた。電極体および参照極を、外径3
5mm、長さ12mmのガラスセルに挿設し、非水電解
液を40cc注入し、密閉して電池を形成した。非水電
解液は、エチレンカーボネートとジエチルカーボネート
とを体積比3:7に混合した混合溶媒にLiPF6を1
Mの濃度で溶解したものを用いた。
The above positive electrode and negative electrode were placed between them with a thickness of 25 mm.
A separator made of polyethylene having a width of 85 mm and a width of 85 mm was sandwiched between the separators to form a roll-shaped electrode body. Note that a metal Li piece was used for the reference electrode. The electrode body and the reference electrode have an outer diameter of 3
The battery was inserted into a glass cell having a length of 5 mm and a length of 12 mm, and 40 cc of a non-aqueous electrolyte was injected and sealed to form a battery. The non-aqueous electrolyte was prepared by mixing LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7.
A solution dissolved at a concentration of M was used.

【0062】(b)エージング処理 形成した二次電池を2つのグループに分けて、一方を2
5℃の恒温槽に入れ、他方を60℃の恒温槽に入れて、
負極電位の経時変化をそれぞれモニターしながらエージ
ングを開始した。
(B) Aging treatment The formed secondary batteries are divided into two groups,
Put in a 5 ° C thermostat, and put the other in a 60 ° C thermostat,
Aging was started while monitoring the time-dependent changes in the negative electrode potential.

【0063】図3に、25℃の恒温槽に入れてエージン
グを行った電池の負極電位および端子間電圧の経時変化
の一例を示す。また、図4に、60℃の恒温槽に入れて
エージングを行った電池の負極電位および端子間電圧の
経時変化の一例を示す。図3および図4から、負極電位
の経時変化と端子間電圧の経時変化とは略対称的な挙動
を示すことがわかり、負極電位の経時変化は端子間電圧
の経時変化に反映されることが確認できる。また、高温
下でエージングを行うほど、負極電位の上昇、は速いこ
とも確認できる。
FIG. 3 shows an example of the change over time in the negative electrode potential and the inter-terminal voltage of a battery aged in a constant temperature bath at 25 ° C. FIG. 4 shows an example of the change over time in the negative electrode potential and the inter-terminal voltage of a battery aged in a thermostat at 60 ° C. From FIGS. 3 and 4, it can be seen that the temporal change of the negative electrode potential and the temporal change of the inter-terminal voltage show a substantially symmetric behavior, and that the temporal change of the negative electrode potential is reflected in the temporal change of the inter-terminal voltage. You can check. Also, it can be confirmed that as the aging is performed at a higher temperature, the negative electrode potential rises faster.

【0064】上記各恒温槽における電池を、さらに2つ
のグループに分け、それぞれエージング時間を変えてエ
ージングを行った。すなわち、図3において、負極電位
に着目した場合、負極電位の変曲点近傍(図中A)でエ
ージングを終了させた電池を#4グループの電池とし、
また、負極電位の安定領域(図中B)でエージングを終
了させた電池を#5グループの電池とした。同様に、図
4において、負極電位の変曲点近傍(図中C)でエージ
ングを終了させた電池を#6グループの電池とし、ま
た、負極電位の安定領域(図中D)でエージングを終了
させた電池を#7グループの電池とした。
The batteries in each of the constant temperature baths were further divided into two groups, and aging was performed while changing the aging time for each group. That is, in FIG. 3, when attention is paid to the negative electrode potential, a battery that has been aged near the inflection point of the negative electrode potential (A in the figure) is defined as a battery of the # 4 group,
The batteries which had been aged in the negative electrode potential stable region (B in the figure) were designated as # 5 group batteries. Similarly, in FIG. 4, the battery whose aging has been terminated near the inflection point of the negative electrode potential (C in the figure) is a battery of the # 6 group, and the aging has been terminated in the stable region of the negative electrode potential (D in the figure). The batteries thus obtained were taken as # 7 group batteries.

【0065】(c)コンディショニング処理 上記所定のエージング時間経過後、#4〜#7の各グル
ープの電池についてコンディショニング処理を行った。
充放電は25℃の温度下で行い、まず、電流密度0.2
5mA/cm2の定電流で電池電圧4.2Vまで充電を
行い、さらにその電池電圧で定電圧充電を行い(充電合
計時間6時間)、次いで、電流密度1mA/cm2の定
電流で電池電圧3.0Vまで放電を行うものを1サイク
ルとして、合計4サイクル行った。そして4回目のサイ
クルの放電容量をもって、この容量をそれぞれのリチウ
ム二次電池の初期放電容量とした。
(C) Conditioning Process After the above-mentioned predetermined aging time, the conditioning process was performed on the batteries of each group of # 4 to # 7.
Charging and discharging were performed at a temperature of 25 ° C.
The battery was charged at a constant current of 5 mA / cm 2 up to a battery voltage of 4.2 V, and the battery voltage was charged at a constant voltage (total charging time: 6 hours). Then, the battery voltage was charged at a constant current of a current density of 1 mA / cm 2. One cycle of discharging to 3.0 V was performed for a total of 4 cycles. The discharge capacity of the fourth cycle was used as the initial discharge capacity of each lithium secondary battery.

【0066】(2)電池特性の評価 作製した上記#4〜#7グループの各電池を、実験1と
同様に、保存温度25℃の恒温槽に1ヶ月間保存して、
保存後の放電容量を測定し、その保存後の放電容量と初
期放電容量の値から自己放電率を計算した。そして、自
己放電率が50%以上である電池を不良電池としてその
発生割合を調査した。
(2) Evaluation of Battery Characteristics Each of the batteries of the above-described # 4 to # 7 groups was stored in a thermostat at a storage temperature of 25 ° C. for one month as in Experiment 1.
The discharge capacity after storage was measured, and the self-discharge rate was calculated from the values of the discharge capacity after storage and the initial discharge capacity. Then, a battery having a self-discharge rate of 50% or more was determined as a defective battery, and its occurrence ratio was examined.

【0067】また、保存後の内部抵抗を測定した。以下
に内部抵抗の測定方法を説明する。各グループの電池
を、その容量の50%まで充電した状態(SOC50
%)で、0.1Cで10秒間放電させ、10秒目の電圧
を測定した。次いで0.3Cで10秒間、1Cで10秒
間、3Cで10秒間、10Cで10秒間放電させ、各1
0秒目の電圧を測定した。同様の手順で充電も行い、各
10秒目の電圧を測定した。そして、電圧の電流依存性
を求め、電流−電圧直線の勾配を内部抵抗とした。な
お、1Cは、電池を1時間で放電するために必要な電流
である。各グループの不良電池の発生割合および内部抵
抗の平均値を表2に示す。
Further, the internal resistance after storage was measured. Hereinafter, a method of measuring the internal resistance will be described. The battery of each group is charged to 50% of its capacity (SOC 50
%), The battery was discharged at 0.1 C for 10 seconds, and the voltage at the 10th second was measured. Next, discharge at 0.3C for 10 seconds, 1C for 10 seconds, 3C for 10 seconds, and 10C for 10 seconds.
The voltage at 0 seconds was measured. Charging was performed in the same manner, and the voltage at the 10th second was measured. Then, the current dependence of the voltage was determined, and the gradient of the current-voltage straight line was defined as the internal resistance. 1C is a current required to discharge the battery in one hour. Table 2 shows the percentage of defective batteries generated in each group and the average value of the internal resistance.

【0068】[0068]

【表2】 [Table 2]

【0069】表2から明らかなように、負極電位の変曲
点近傍でエージングを終了した#4および#6グループ
の電池では、自己放電率が50%以上である不良電池の
発生は認められなかった。一方、負極電位の安定領域で
エージングを終了した#5および#7グループの電池で
は、不良電池がそれぞれ10個中4個認められた。ま
た、内部抵抗の値も、#4および#6グループの電池
は、#5および#7グループの電池と比較して小さい値
となっており、そのばらつきも小さい。
As is clear from Table 2, in the batteries of the # 4 and # 6 groups whose aging was terminated near the inflection point of the negative electrode potential, the occurrence of defective batteries having a self-discharge rate of 50% or more was not observed. Was. On the other hand, in the batteries of the # 5 and # 7 groups whose aging was completed in the stable region of the negative electrode potential, four out of ten defective batteries were observed. Also, the values of the internal resistance of the batteries of the # 4 and # 6 groups are smaller than those of the batteries of the # 5 and # 7 groups, and the variation is small.

【0070】したがって、負極電位の経時変化をモニタ
ーしながらエージングを行い、負極電位の変曲点近傍で
エージングを終了した電池は、自己放電量が小さく、か
つ内部抵抗も小さい電池であることが確認できた。
Therefore, aging was performed while monitoring the time-dependent change in the negative electrode potential, and it was confirmed that the battery that had undergone aging near the inflection point of the negative electrode potential had a small amount of self-discharge and a small internal resistance. did it.

【0071】[0071]

【発明の効果】本発明のエージング処理方法によれば、
電極にダメージを与えることなく、個々の電池の最適な
エージング処理時間を簡単に決定することができる。ま
た、そのエージング処理方法を含んで構成される本発明
のリチウム二次電池の製造方法によれば、自己放電量の
小さい、かつ内部抵抗の増加が抑制されたリチウム二次
電池を製造することができる。
According to the aging method of the present invention,
The optimum aging time for each battery can be easily determined without damaging the electrodes. Further, according to the method for producing a lithium secondary battery of the present invention including the aging treatment method, it is possible to produce a lithium secondary battery having a small amount of self-discharge and a suppressed increase in internal resistance. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エージング処理における負極電位の経時変化
を示す。
FIG. 1 shows a change with time of a negative electrode potential in an aging treatment.

【図2】 本発明のエージング処理方法が適用できる電
池の一例である円筒型のリチウム二次電池の断面を示
す。
FIG. 2 shows a cross section of a cylindrical lithium secondary battery which is an example of a battery to which the aging treatment method of the present invention can be applied.

【図3】 25℃下でエージングを行った電池の負極電
位および端子間電圧の経時変化を示す。
FIG. 3 shows changes over time in the negative electrode potential and the inter-terminal voltage of a battery aged at 25 ° C.

【図4】 60℃下でエージングを行った電池の負極電
位および端子間電圧の経時変化を示す。
FIG. 4 shows a change over time in a negative electrode potential and a voltage between terminals of a battery aged at 60 ° C.

【符号の説明】[Explanation of symbols]

1:円筒型リチウム二次電池(密閉型電池) 10:電極体 11:正極 12:負極 13:セパレータ 20:電池ケース 21:外装缶 22:正極側蓋板 23:負極側蓋板 30:正極端子 40:負極端子 1: Cylindrical lithium secondary battery (sealed battery) 10: Electrode body 11: Positive electrode 12: Negative electrode 13: Separator 20: Battery case 21: Outer can 22: Positive side cover plate 23: Negative side cover plate 30: Positive terminal 40: negative electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐伯 徹 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 伊藤 明生 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5H029 AJ04 AJ06 AJ14 AK03 AK18 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ14 BJ27 CJ16 CJ28 HJ18 5H030 AA01 AA09 AS08 AS11 BB01 FF41  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tohru Saeki 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. No. 41, Yokomichi, F-term in Toyota Central R & D Laboratories Co., Ltd. F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・脱離可能な物質を正極
活物質とする正極および負極活物質を含む負極合材が銅
製集電体の表面に層状に形成されてなる負極を備えてな
る電極体と、リチウム塩を有機溶媒に溶解した非水電解
液とを電池ケースに収納して形成されるリチウム二次電
池に対し、 電池形成後、充放電を行うことにより電池を実使用可能
な状態に調整するコンディショニング処理の直前までの
間、前記電極体に前記非水電解液を浸潤させるために行
うエージング処理方法であって、 負極電位Vの経時変化をモニターしながらエージングを
行うリチウム二次電池のエージング処理方法。
1. An electrode comprising a negative electrode in which a positive electrode using a material capable of occluding and releasing lithium as a positive electrode active material and a negative electrode mixture containing a negative electrode active material are formed in a layer on the surface of a copper current collector. A battery and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent are stored in a battery case. An aging treatment method for infiltrating the non-aqueous electrolyte into the electrode body until immediately before the conditioning treatment for adjusting the negative electrode potential, wherein the lithium secondary battery performs aging while monitoring a change with time of the negative electrode potential V Aging treatment method.
【請求項2】 前記負極電位Vの経時変化が|dV/d
t|≦10(mV/hr)となった時に前記エージング
を終了する請求項1に記載のリチウム二次電池のエージ
ング処理方法。
2. The temporal change of the negative electrode potential V is | dV / d.
The aging treatment method for a lithium secondary battery according to claim 1, wherein the aging is terminated when t | ≦ 10 (mV / hr).
【請求項3】 リチウムを吸蔵・脱離可能な物質を正極
活物質とする正極および負極活物質を含む負極合材が銅
製集電体の表面に層状に形成されてなる負極を備えてな
る電極体と、リチウム塩を有機溶媒に溶解した非水電解
液とを電池ケースに収納して形成されるリチウム二次電
池の製造方法であって、 前記電極体を前記非水電解液とともに前記電池ケースに
収納して電池を形成する電池形成工程と、 負極電位Vの経時変化をモニターしながら前記電極体に
前記非水電解液を浸潤させて形成した前記電池のエージ
ングを行うエージング処理工程と、 エージング処理直後の前記電池に対し充放電を行うこと
により電池を実使用可能な状態に調整するコンディショ
ニング処理工程と、 を含んで構成されるリチウム二次電池の製造方法。
3. An electrode comprising a positive electrode using a material capable of inserting and extracting lithium as a positive electrode active material and a negative electrode comprising a negative electrode mixture containing a negative electrode active material formed in a layer on the surface of a copper current collector. Body and a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent in a battery case. A method for manufacturing a lithium secondary battery, comprising: forming the electrode body together with the non-aqueous electrolyte in the battery case. A battery forming step of forming a battery by storing the battery in a non-aqueous electrolytic solution while aging the battery body while monitoring a change over time of the negative electrode potential V; and aging. A conditioning process for charging and discharging the battery immediately after the process to adjust the battery to a practically usable state, and a method for manufacturing a lithium secondary battery comprising:
JP2001099153A 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same Expired - Fee Related JP3870707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001099153A JP3870707B2 (en) 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099153A JP3870707B2 (en) 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
JP2002298925A true JP2002298925A (en) 2002-10-11
JP3870707B2 JP3870707B2 (en) 2007-01-24

Family

ID=18952731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099153A Expired - Fee Related JP3870707B2 (en) 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same

Country Status (1)

Country Link
JP (1) JP3870707B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253027A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Method for manufacturing secondary battery
JP2012252926A (en) * 2011-06-03 2012-12-20 Ihi Corp Cell combined system of battery pack
JP2014056835A (en) * 2013-11-08 2014-03-27 Mitsubishi Motors Corp Moisture removal method of lithium ion secondary battery
JP2016513249A (en) * 2013-07-04 2016-05-12 エルジー・ケム・リミテッド Battery SOC estimation method and system
CN107369862A (en) * 2017-08-04 2017-11-21 东莞市振华新能源科技有限公司 A kind of method of testing of lithium ion battery digestion time
JP2019192426A (en) * 2018-04-23 2019-10-31 トヨタ自動車株式会社 Screening method of reusable nonaqueous electrolyte secondary battery
CN112433162A (en) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 Lithium ion battery aging method
CN114156544A (en) * 2021-12-02 2022-03-08 天津市捷威动力工业有限公司 Method for rapidly determining battery core infiltration time

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253027A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Method for manufacturing secondary battery
JP4720221B2 (en) * 2005-03-11 2011-07-13 トヨタ自動車株式会社 Manufacturing method of secondary battery
JP2012252926A (en) * 2011-06-03 2012-12-20 Ihi Corp Cell combined system of battery pack
JP2016513249A (en) * 2013-07-04 2016-05-12 エルジー・ケム・リミテッド Battery SOC estimation method and system
US10073145B2 (en) 2013-07-04 2018-09-11 Lg Chem, Ltd. Method and system for estimating state of charge of battery
JP2014056835A (en) * 2013-11-08 2014-03-27 Mitsubishi Motors Corp Moisture removal method of lithium ion secondary battery
CN107369862A (en) * 2017-08-04 2017-11-21 东莞市振华新能源科技有限公司 A kind of method of testing of lithium ion battery digestion time
JP2019192426A (en) * 2018-04-23 2019-10-31 トヨタ自動車株式会社 Screening method of reusable nonaqueous electrolyte secondary battery
CN112433162A (en) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 Lithium ion battery aging method
CN112433162B (en) * 2020-10-26 2023-09-01 惠州市豪鹏科技有限公司 Aging method of lithium ion battery
CN114156544A (en) * 2021-12-02 2022-03-08 天津市捷威动力工业有限公司 Method for rapidly determining battery core infiltration time

Also Published As

Publication number Publication date
JP3870707B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US10615452B2 (en) High voltage rechargeable magnesium cell
US11011321B2 (en) Electrochemical energy storage device
US11824172B2 (en) Method and system for producing nonaqueous electrolyte secondary battery
JP4826199B2 (en) Water-based lithium secondary battery
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
CN108963193B (en) Artificial SEI transplantation
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
KR102165762B1 (en) Method for producing sulfide solid-state battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN109037789B (en) Lithium-aluminum double-ion rechargeable battery
JP3870707B2 (en) Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same
TWI530009B (en) Lithium ionic energy storage element and method for making the same
JP2000090974A (en) Lithium ion secondary battery and manufacture thereof
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2003100351A (en) Method of measuring self-discharge amount of lithium ion secondary cell and method of manufacturing lithium ion secondary cell
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
EP4078711B1 (en) Electrolyte for li secondary batteries
JP3937256B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2015032572A (en) Method for analyzing deterioration in battery
JP2003173769A (en) Nonaqueous electrolyte secondary battery
JP2002298926A (en) Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same
JPH06333553A (en) Nonaqueous secondary battery
JP2023510119A (en) Solid electrolyte interphase interface in LI secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees