JP2002298926A - Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same - Google Patents

Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same

Info

Publication number
JP2002298926A
JP2002298926A JP2001099931A JP2001099931A JP2002298926A JP 2002298926 A JP2002298926 A JP 2002298926A JP 2001099931 A JP2001099931 A JP 2001099931A JP 2001099931 A JP2001099931 A JP 2001099931A JP 2002298926 A JP2002298926 A JP 2002298926A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
electrode
aging
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001099931A
Other languages
Japanese (ja)
Inventor
Shinobu Okayama
忍 岡山
Fusayoshi Miura
房美 三浦
Toru Saeki
徹 佐伯
Akio Ito
明生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001099931A priority Critical patent/JP2002298926A/en
Publication of JP2002298926A publication Critical patent/JP2002298926A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aging method for manufacturing a lithium secondary battery having a small quantity of self-discharging and restrained from the increase of internal resistance, and to provide a manufacturing method for such a lithium secondary battery. SOLUTION: Aging performed to make a nonaqueous electrolyte permeate an electrode body until the time immediately before conditioning for preparing the battery into an actually usable state by charging and discharging after forming the battery is performed while performing cathodic polarization by short-circuiting a negative electrode and a third pole. The manufacturing method for the lithium secondary battery comprises a batter forming process; an aging process for aging the battery after formed while performing cathodic polarization by short-circuiting the negative electrode and the third pole; and a conditioning process for preparing the battery into the actually usable state by charging and discharging the battery immediately after aging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池に対し、電池形成
後に電極体に非水電解液を浸潤させるために行うエージ
ング処理方法に関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to an aging treatment method for performing infiltration of a non-aqueous electrolyte into an electrode body of a lithium secondary battery utilizing a desorption phenomenon after the formation of the battery.

【0002】[0002]

【従来の技術】携帯電話、パソコン等の小型化に伴い、
通信機器、情報関連機器の分野では、これらの機器に用
いる電源として、高エネルギー密度であるという理由か
ら、リチウム二次電池が実用化され広く普及するに至っ
ている。また、自動車の分野においても、資源問題、環
境問題から電気自動車の開発が急がれており、この電気
自動車用の電源としても、リチウム二次電池が検討され
ている。
2. Description of the Related Art As mobile phones and personal computers become smaller,
In the field of communication devices and information-related devices, lithium secondary batteries have been commercialized and widely used because of their high energy densities as power sources for these devices. Also, in the field of automobiles, the development of electric vehicles is urgent due to resource and environmental issues, and lithium secondary batteries are being studied as power sources for electric vehicles.

【0003】一般に、リチウム二次電池は、正極および
負極を備えてなる電極体を電池ケースに挿設し、非水電
解液を注入した後電池ケースを密閉して形成される。そ
して、電池形成後、そのまま所定の温度下で保存するい
わゆるエージング処理を行い、その後、充放電を行うこ
とにより電池を実使用可能な状態に調整するコンディシ
ョニング処理を行って製造される。
Generally, a lithium secondary battery is formed by inserting an electrode body having a positive electrode and a negative electrode into a battery case, injecting a non-aqueous electrolyte, and sealing the battery case. Then, after the battery is formed, a so-called aging process for preserving the battery at a predetermined temperature is performed, and then a conditioning process for adjusting the battery to a practically usable state by performing charging and discharging is performed.

【0004】ここで、エージング処理は、非水電解液を
充分に電極体に浸潤させるために行う処理であり、電池
形成直後に開始し、次のコンディショニング処理を開始
する時、具体的には、初回の充電を開始する時に終了す
る。このエージング処理に必要な時間は、個々の電池の
形状、電極の大きさ、電極間の圧迫状態、セパレータへ
の電解液の浸透性、および電解液の注入時の温度、圧力
等によって種々異なるものである。そして、エージング
処理を行う時間は、製造した電池の自己放電のし易さ、
内部抵抗の大きさ等の電池特性に大きく影響することが
知られている。
Here, the aging treatment is a treatment performed to sufficiently infiltrate the non-aqueous electrolyte into the electrode body. The aging treatment is started immediately after the battery is formed, and when the next conditioning treatment is started, specifically, It ends when the first charge is started. The time required for the aging process varies depending on the shape of each battery, the size of the electrodes, the pressure between the electrodes, the permeability of the electrolyte to the separator, and the temperature and pressure at the time of injection of the electrolyte. It is. And the time for performing the aging process is easy for the manufactured battery to self-discharge,
It is known that it greatly affects battery characteristics such as the magnitude of internal resistance.

【0005】例えば、エージング処理を行う時間が短す
ぎる場合には、電極体に非水電解液が充分浸潤しないた
め、電解液の不足によって活物質がダメージを受け、電
池の内部抵抗の増加を招く。また、局部的に充放電が不
足するために、電池の自己放電量が大きくなる原因とも
なる。すなわち、電極体に非水電解液を浸潤させるため
には、エージング処理の時間を充分に確保することが必
要となるが、エージング処理の時間を長くしすぎると、
製造した電池の自己放電量は大きくなってしまう。
[0005] For example, if the aging treatment time is too short, the non-aqueous electrolyte does not sufficiently infiltrate the electrode body, so that the active material is damaged due to the lack of the electrolyte and the internal resistance of the battery is increased. . In addition, since the charge / discharge is locally insufficient, the self-discharge amount of the battery may be increased. That is, in order to infiltrate the non-aqueous electrolyte into the electrode body, it is necessary to ensure sufficient time for the aging treatment, but if the time for the aging treatment is too long,
The self-discharge amount of the manufactured battery becomes large.

【0006】一方、実際に電池を製造する際には、製造
する電池と同様の電池を予備的に作製し、その予備的に
作製した電池の特性を解析した結果をもとに、製造する
電池のエージング処理時間を一律に決定しているのが現
状である。しかしながら、この予備検討では充分ではな
い場合、あるいは、電池を保存する恒温槽の内部に温度
分布が存在する等の保存条件のばらつきが生じる場合が
ある。そのため、上記予備検討に基づいてエージング処
理を行った場合であっても、電池によって非水電解液の
浸潤状態が異なり、結果的に、製造された電池の自己放
電のし易さや内部抵抗の大きさ等の電池特性に大きなば
らつきが生じるという問題があった。
On the other hand, when actually manufacturing a battery, a battery similar to the battery to be manufactured is preliminarily manufactured, and the battery to be manufactured is analyzed based on the result of analyzing the characteristics of the preliminarily manufactured battery. At present, the aging processing time is determined uniformly. However, this preliminary study may not be sufficient, or there may be variations in storage conditions, such as the presence of a temperature distribution inside a thermostat for storing batteries. Therefore, even when the aging treatment is performed based on the above preliminary study, the infiltration state of the non-aqueous electrolyte differs depending on the battery, and as a result, the self-discharge of the manufactured battery and the magnitude of the internal resistance are large. However, there has been a problem that a large variation occurs in the battery characteristics such as the battery characteristics.

【0007】過剰なエージングを防止するため、電池の
エージング処理時間を一律に短くする試みとして、特開
平6−290811号公報には、電池形成直後にコンデ
ィショニング処理である充放電を開始する方法が示され
ている。しかし、この方法は、電池を形成するドライル
ーム内で、非水電解液を電池に注液する装置と充放電を
行う装置とを一体化する必要があるため、高価な自動化
ラインとなり現実的ではない。また、エージング処理時
間が短すぎるため、上述した電池の内部抵抗の増加等を
招くという問題もある。
As an attempt to uniformly shorten the aging treatment time of a battery in order to prevent excessive aging, Japanese Patent Application Laid-Open No. Hei 6-290811 discloses a method of starting charge / discharge as a conditioning treatment immediately after battery formation. Have been. However, this method needs to integrate a device for injecting a non-aqueous electrolyte into the battery and a device for charging and discharging in a dry room for forming the battery. Absent. Further, since the aging treatment time is too short, there is a problem that the internal resistance of the battery is increased as described above.

【0008】[0008]

【発明が解決しようとする課題】本発明者は、エージン
グ処理に関して幾多の実験を行い、エージング処理時間
と電池特性との関係を調査した。その結果、エージング
処理時間が長すぎると、負極の銅製集電体や銅製の負極
端子等からCuイオンが溶出し、溶出したCuイオン
が、次のコンディショニング処理である充放電の際に析
出して、電池の微少短絡(マイクロショート)を起こし
たり、また、酸化還元反応のシャトル物質となることに
よって、電池の自己放電量を大きくすることがわかっ
た。そして、そのCuイオンの溶出反応は、負極電位に
関係しているという知見を得た。
The present inventor has conducted a number of experiments on the aging treatment and investigated the relationship between the aging treatment time and the battery characteristics. As a result, if the aging time is too long, Cu ions elute from the copper current collector or the copper negative electrode terminal of the negative electrode, and the eluted Cu ions precipitate during charge / discharge as the next conditioning process. It has been found that the self-discharge amount of the battery is increased by causing a micro short circuit (micro short-circuit) of the battery or by becoming a shuttle substance for an oxidation-reduction reaction. And, it was found that the Cu ion elution reaction was related to the negative electrode potential.

【0009】本発明は、上記知見に基づいてなされたも
のであり、充分なエージング処理時間を確保しつつ、電
池特性に影響を与える負極からのCuイオンの溶出を抑
制することで、自己放電量の小さい、かつ内部抵抗の増
加が抑制されたリチウム二次電池を製造することのでき
るエージング処理方法を提供することを課題とする。
The present invention has been made on the basis of the above-mentioned findings, and has a sufficient self-discharge amount by suppressing the elution of Cu ions from the negative electrode which affects battery characteristics while securing a sufficient aging treatment time. It is an object of the present invention to provide an aging treatment method capable of manufacturing a lithium secondary battery having a small internal resistance and suppressing an increase in internal resistance.

【0010】また、そのエージング処理方法を含んで構
成することにより、自己放電量の小さい、かつ内部抵抗
の増加が抑制されたリチウム二次電池を製造する方法を
提供することを課題とする。
It is another object of the present invention to provide a method of manufacturing a lithium secondary battery having a small self-discharge amount and a suppressed increase in internal resistance by including the aging treatment method.

【0011】[0011]

【課題を解決するための手段】(1)本発明のリチウム
二次電池のエージング処理方法は、リチウムを吸蔵・脱
離可能な物質を正極活物質とする正極および負極活物質
を含む負極合材が銅製集電体の表面に層状に形成されて
なる負極を備えてなる電極体と、リチウム塩を有機溶媒
に溶解した非水電解液とを電池ケースに収納して形成さ
れるリチウム二次電池に対し、電池形成後、充放電を行
うことにより電池を実使用可能な状態に調整するコンデ
ィショニング処理の直前までの間、前記電極体に前記非
水電解液を浸潤させるために行うエージング処理方法で
あって、前記負極と第3極とを短絡させることによる陰
分極操作を施しながらエージングを行うことを特徴とす
る。
(1) An aging treatment method for a lithium secondary battery according to the present invention is directed to a negative electrode mixture containing a positive electrode and a negative electrode active material using a material capable of occluding and releasing lithium as a positive electrode active material. Secondary battery formed by housing a battery case with an electrode body having a negative electrode formed in a layer shape on the surface of a copper current collector, and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent On the other hand, after forming the battery, the aging treatment method performed to infiltrate the non-aqueous electrolyte into the electrode body until immediately before the conditioning process of adjusting the battery to a practically usable state by performing charging and discharging. Aging is performed while performing a negative polarization operation by short-circuiting the negative electrode and the third electrode.

【0012】つまり、本発明のリチウム二次電池のエー
ジング処理方法は、エージング中に負極を構成する銅製
集電体からCuイオンが溶出する時の負極電位に着目
し、負極をその電位よりも卑な電位に陰分極させつつエ
ージングを行うものである。以下に、エージング処理に
おける電池内の反応と負極電位との関係を説明し、陰分
極の意義について述べる。
That is, the aging treatment method for a lithium secondary battery of the present invention focuses on the negative electrode potential when Cu ions are eluted from the copper current collector constituting the negative electrode during aging, and makes the negative electrode more negative than the potential. Aging is performed while negatively polarizing to an appropriate potential. Hereinafter, the relationship between the reaction in the battery and the negative electrode potential in the aging treatment will be described, and the significance of negative polarization will be described.

【0013】一般に、電極には不可避的な水分が吸着し
ており、この水分が非水電解液中の電解質と反応して、
HFやH3PO4等の酸成分を生成する。例えば、電解質
にLiPF6を用いた場合の反応式を(式1)、(式
2)に示す。
In general, unavoidable moisture is adsorbed on the electrode, and this moisture reacts with the electrolyte in the non-aqueous electrolyte,
Generates acid components such as HF and H 3 PO 4 . For example, the reaction formulas when LiPF 6 is used as the electrolyte are shown in (Formula 1) and (Formula 2).

【0014】 LiPF6+H2O→LiF+2HF+POF3 ・・・(式1) POF3+3H2O→H3PO4+3HF ・・・(式2) 一方、負極を構成する銅製集電体の表面は、大気中で生
成したCu2Oで覆われている。したがって、負極と電
解液との界面では、上記酸成分のH+イオン濃度に対応
した金属/酸化物の平衡電位となる。Cu/Cu2Oの
平衡反応の反応式を(式3)に示す。また、その時の電
位E0も併せて示す。
LiPF 6 + H 2 O → LiF + 2HF + POF 3 (formula 1) POF 3 + 3H 2 O → H 3 PO 4 + 3HF (formula 2) On the other hand, the surface of the copper current collector constituting the negative electrode is: It is covered with Cu 2 O generated in the atmosphere. Therefore, at the interface between the negative electrode and the electrolytic solution, the metal / oxide equilibrium potential corresponding to the H + ion concentration of the acid component is obtained. The reaction equation of the equilibrium reaction of Cu / Cu 2 O is shown in (Equation 3). The potential E 0 at that time is also shown.

【0015】 2Cu+H2O→Cu2O+2H++2e ・・・(式3) E0=0.471−0.059pH (H/H+基準) また、pHが大きく低下すると、銅製集電体のCuがC
2+イオンとなって溶出し(アノード反応)、H+イオ
ン濃度に関係なくCu/Cu2+の平衡電位となる。この
反応式を(式4)に示す。また、その時の電位E0も併
せて示す。
2Cu + H 2 O → Cu 2 O + 2H + + 2e (Equation 3) E 0 = 0.471−0.059pH (H / H + standard) Also, when the pH is greatly reduced, Cu of the copper current collector is reduced. Is C
It elutes as u 2+ ions (anode reaction) and reaches the equilibrium potential of Cu / Cu 2+ regardless of the H + ion concentration. This reaction formula is shown in (Formula 4). The potential E 0 at that time is also shown.

【0016】Cu→Cu2++2e ・・・(式4) E0=0.337−0.0295Log[Cu2+
(H/H+基準) 他方、カソード反応としては、上記酸成分のH+からの
2発生反応、および非水電解液中の溶存酸素と電極に
付着した水分との反応が考えられる。各反応式を(式
5)、(式6)に示す。また、その時の電位E0も併せ
て示す。
Cu → Cu 2+ + 2e (Equation 4) E 0 = 0.337-0.0295 Log [Cu 2+ ]
(H / H + standard) On the other hand, as the cathode reaction, a reaction of generating H 2 from H + of the acid component and a reaction between dissolved oxygen in the non-aqueous electrolyte and water attached to the electrode are considered. Each reaction formula is shown in (Formula 5) and (Formula 6). The potential E 0 at that time is also shown.

【0017】2H++2e→H2 ・・・(式5) E0=0.059Log[H+]−0.0296p
[H2] (H/H+基準、p[H2]は水素分圧) O2+2H2O+4e→4OH- ・・・(式6) E0=0.401−0.0147Log[OH-]+0.
0591p[O2] (H/H+基準、p[O2]は酸素分圧) 負極の電解液浸潤状態での電極反応は、上述の種々の反
応がアノード反応とカソード反応の総和として釣り合っ
たものであり、負極電位は、いわゆるアノード/カソー
ド混成電位としての自然浸漬電位となっている。
2H + + 2e → H 2 (Equation 5) E 0 = 0.059 Log [H + ] −0.0296p
[H 2] (H / H + reference, p [H 2] is the hydrogen partial pressure) O 2 + 2H 2 O + 4e → 4OH - ··· ( Equation 6) E 0 = 0.401-0.0147Log [OH -] +0.
0591 p [O 2 ] (H / H + standard, p [O 2 ] is oxygen partial pressure) In the electrode reaction in the electrolyte infiltration state of the negative electrode, the various reactions described above were balanced as the sum of the anodic reaction and the cathodic reaction. The negative electrode potential is a natural immersion potential as a so-called hybrid anode / cathode potential.

【0018】エージング処理を開始すると、例えば、
(式1)、(式2)に示した反応により酸成分(HF、
3PO4等)が生成し、そのH+イオンの作用により
(式3)に示す平衡反応は左方向に進行し、Cu2Oは
還元除去される。さらにエージングを続けると、負極の
集電体表面におけるCu2Oが無くなり、上記Cu2Oの
還元反応は終了する。一方、酸成分の存在により負極近
傍のpHは低下するため、(式4)に示す反応が進行
し、銅製集電体からCuイオンが溶出する。
When the aging process is started, for example,
By the reaction shown in (Equation 1) and (Equation 2), the acid component (HF,
H 3 PO 4 ) is generated, and the equilibrium reaction shown in (Equation 3) proceeds to the left by the action of the H + ion, and Cu 2 O is reduced and removed. When aging is further continued, Cu 2 O on the current collector surface of the negative electrode disappears, and the above-described reduction reaction of Cu 2 O ends. On the other hand, since the pH near the negative electrode decreases due to the presence of the acid component, the reaction shown in (Equation 4) proceeds, and Cu ions are eluted from the copper current collector.

【0019】ここで、第3極としてAlを用い、負極を
この第3極と短絡させつつエージングを行う場合につい
て説明する。なお、第3極とは、正極および負極以外に
電池内に存在する電極を意味する。図1に、上述のアノ
ードおよびカソード反応の平衡電位と種々の金属におけ
るアノード反応の平衡電位との関係を示す。図1より、
Alは銅より卑な金属であるため、負極をAlと導通さ
せると、負極電位は自然浸漬電位よりも卑な電位に低下
し、いわゆる陰分極される。その結果、負極電位は、
(式4)に示すCuイオンの溶出反応が進行する電位よ
りも卑な電位となるため、Cuイオンの溶出は抑制され
る。つまり、陰分極操作とは、負極電位をCuイオンの
溶出が生じないような卑な電位まで下げる操作を意味す
る。
Here, the case where aging is performed while using Al as the third pole and short-circuiting the negative electrode with the third pole will be described. In addition, the third electrode means an electrode present in the battery other than the positive electrode and the negative electrode. FIG. 1 shows the relationship between the above-described equilibrium potentials of the anodic and cathodic reactions and the anodic reactions of various metals. From FIG.
Since Al is a metal that is lower than copper, when the negative electrode is made conductive with Al, the negative electrode potential drops to a potential lower than the spontaneous immersion potential, and is so-called negatively polarized. As a result, the negative electrode potential becomes
Since the potential is lower than the potential at which the Cu ion elution reaction shown in (Equation 4) proceeds, the elution of Cu ions is suppressed. That is, the negative polarization operation means an operation of lowering the negative electrode potential to a lower potential that does not cause elution of Cu ions.

【0020】このように、本発明のエージング処理方法
によれば、負極と第3極とを短絡させることによる陰分
極操作を施しながらエージングを行うことで、エージン
グ時間を長くしても、負極からのCuイオンの溶出は抑
制される。つまり、個々の電池についてエージング処理
時間を厳密に決定することなく、各電池について充分な
エージング時間を確保することができる。また、本発明
のエージング処理方法によれば、電池形成の際に電池内
に浸入した水分が電解液中の電解質と反応して酸が発生
したとしても、酸による負極の腐食反応を抑制すること
ができるため、電池形成工程における許容水分濃度を大
きくすることができる。
As described above, according to the aging treatment method of the present invention, the aging is performed while performing the negative polarization operation by short-circuiting the negative electrode and the third electrode. Elution of Cu ions is suppressed. That is, a sufficient aging time can be secured for each battery without strictly determining the aging processing time for each battery. Further, according to the aging treatment method of the present invention, even when moisture that has entered the battery during the formation of the battery reacts with the electrolyte in the electrolytic solution to generate an acid, the corrosion reaction of the negative electrode due to the acid is suppressed. Therefore, the allowable moisture concentration in the battery forming step can be increased.

【0021】(2)上記エージング処理方法を含む本発
明のリチウム二次電池の製造方法は、リチウムを吸蔵・
脱離可能な物質を正極活物質とする正極および負極活物
質を含む負極合材が銅製集電体の表面に層状に形成され
てなる負極を備えてなる電極体と、リチウム塩を有機溶
媒に溶解した非水電解液とを電池ケースに収納して形成
されるリチウム二次電池の製造方法であって、前記電極
体を前記非水電解液とともに前記電池ケースに収納して
電池を形成する電池形成工程と、前記負極と第3極とを
短絡することによる陰分極操作を施しながら、前記電極
体に前記非水電解液を浸潤させて形成した前記電池のエ
ージングを行うエージング処理工程と、エージング処理
直後の前記電池に対し充放電を行うことにより電池を実
使用可能な状態に調整するコンディショニング処理工程
とを含んで構成される。
(2) The method for producing a lithium secondary battery of the present invention including the above-mentioned aging treatment method comprises the steps of:
An electrode body including a negative electrode in which a negative electrode mixture containing a positive electrode and a negative electrode active material, which have a removable substance as a positive electrode active material, is formed in a layer on the surface of a copper current collector, and a lithium salt in an organic solvent. A method for manufacturing a lithium secondary battery formed by housing a dissolved nonaqueous electrolyte in a battery case, wherein the battery is formed by housing the electrode body in the battery case together with the nonaqueous electrolyte. An aging treatment step of aging the battery formed by infiltrating the non-aqueous electrolyte into the electrode body while performing a negative polarization operation by short-circuiting the negative electrode and the third electrode; And a conditioning process for adjusting the battery to a practically usable state by charging and discharging the battery immediately after the process.

【0022】つまり、本発明のリチウム二次電池の製造
方法は、電池形成工程とコンディショニング処理工程と
の間に上記エージング処理方法を含んで構成される。本
発明のリチウム二次電池の製造方法は、電池のマイクロ
ショートの原因や、酸化還元反応のシャトル物質となる
Cuイオンの溶出が、エージング処理において抑制され
るため、自己放電量の小さい、かつ内部抵抗の増加が抑
制されたリチウム二次電池を簡単に製造する方法とな
る。
That is, the method for manufacturing a lithium secondary battery of the present invention includes the above-mentioned aging method between the battery forming step and the conditioning step. In the method for manufacturing a lithium secondary battery of the present invention, the cause of micro short-circuit of the battery and the elution of Cu ions serving as a shuttle substance of the oxidation-reduction reaction are suppressed in the aging treatment. This is a method for easily manufacturing a lithium secondary battery in which an increase in resistance is suppressed.

【0023】[0023]

【発明の実施の形態】以下に、本発明のリチウム二次電
池のエージング処理方法の実施形態について詳しく説明
する。まず、本発明のエージング処理方法が適用される
リチウム二次電池の構成および構造を説明し、次いで、
本発明のエージング処理方法を含んで構成されるリチウ
ム二次電池の製造方法の実施形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the aging treatment method for a lithium secondary battery according to the present invention will be described in detail. First, the configuration and structure of a lithium secondary battery to which the aging method of the present invention is applied will be described.
An embodiment of a method for manufacturing a lithium secondary battery including the aging treatment method of the present invention will be described.

【0024】〈リチウム二次電池の構成〉一般にリチウ
ム二次電池は、リチウムを吸蔵・脱離する正極および負
極と、この正極と負極との間に挟装されるセパレータ
と、正極と負極との間をリチウムを移動させる非水電解
液とから構成され、本発明のエージング処理方法が適用
できるリチウム二次電池もこの構成に従うものである。
以下、各構成要素について説明する。
<Structure of Lithium Secondary Battery> In general, a lithium secondary battery includes a positive electrode and a negative electrode that occlude and release lithium, a separator sandwiched between the positive electrode and the negative electrode, and a positive electrode and a negative electrode. A non-aqueous electrolyte for transferring lithium between the lithium secondary batteries, to which the aging treatment method of the present invention can be applied, also complies with this configuration.
Hereinafter, each component will be described.

【0025】正極は、正極活物質に導電材および結着剤
を混合し、必要に応じ適当な溶剤を加えて、ペースト状
の正極合材としたものを、アルミニウム等の金属箔製の
集電体表面に塗布、乾燥し、その後プレスによって活物
質密度を高めることによって形成することができる。
The positive electrode is prepared by mixing a conductive material and a binder with the positive electrode active material, adding an appropriate solvent as needed, and forming a paste-like positive electrode mixture into a current collector made of a metal foil such as aluminum. It can be formed by applying to the body surface, drying, and then increasing the active material density by pressing.

【0026】正極活物質には、リチウムを吸蔵・脱離可
能な物質を採用する。例えば、4V級の二次電池を構成
できるという観点から、基本組成をLiCoO2、Li
NiO2、LiMnO2等とする層状岩塩構造のリチウム
遷移金属複合酸化物、基本組成をLiMn24等とする
スピネル構造のリチウム遷移金属複合酸化物を用いるこ
とができる。なかでも、基本組成をLiNiO2とする
層状岩塩構造のリチウム遷移金属複合酸化物は、Coを
中心金属としたリチウム遷移金属複合酸化物より低価格
であり、単位重量あたりの放電容量が大きい二次電池を
構成できることから好適である。
As the positive electrode active material, a material capable of inserting and extracting lithium is used. For example, from the viewpoint that a 4V class secondary battery can be formed, the basic composition is LiCoO 2 , Li
A lithium transition metal composite oxide having a layered rock salt structure such as NiO 2 and LiMnO 2 and a lithium transition metal composite oxide having a spinel structure having a basic composition such as LiMn 2 O 4 can be used. Above all, a lithium transition metal composite oxide having a layered rock salt structure having a basic composition of LiNiO 2 is lower in price than a lithium transition metal composite oxide having Co as a central metal, and has a higher secondary discharge capacity per unit weight. This is preferable because a battery can be configured.

【0027】なお、基本組成とは、上記各複合酸化物の
代表的な組成という意味であり、上記組成式で表される
ものの他、例えば、リチウムサイトや遷移金属サイトを
他の1種または2種以上の元素で一部置換したもの等の
組成をも含む。また、必ずしも化学量論組成のものに限
定されるわけではなく、例えば、製造上不可避的に生じ
るLi、Ni等の陽イオン元素が欠損した、あるいは酸
素原素が欠損した非化学量論組成のもの等をも含む。さ
らに、リチウム遷移金属複合酸化物のうち1種類のもの
を用いることも、また、2種類以上のものを混合して用
いることもできる。
The term “basic composition” means a typical composition of each of the above-mentioned complex oxides. In addition to those represented by the above-mentioned composition formulas, for example, a lithium site or a transition metal site may be replaced by one or more other compounds. It also includes compositions such as those partially substituted with more than one kind of element. Further, the stoichiometric composition is not necessarily limited to the stoichiometric composition. For example, a non-stoichiometric composition in which a cation element such as Li or Ni which is inevitably produced in the manufacturing process is deficient, or an oxygen element is deficient Including things. Further, one of the lithium transition metal composite oxides may be used, or two or more of them may be used in combination.

【0028】正極に用いる導電材は、正極活物質層の電
子伝導性を確保するためのものであり、カーボンブラッ
ク、アセチレンブラック、黒鉛等の炭素物質紛状体の1
種または2種以上を混合したものを用いることができ
る。結着剤は、活物質粒子を繋ぎ止める役割を果たすも
ので、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、
ポリエチレン等の熱可塑性樹脂を用いることができる。
これら活物質、導電材、結着剤を分散させる溶剤として
は、N−メチル−2−ピロリドン等の有機溶剤を用いる
ことができる。
The conductive material used for the positive electrode is for ensuring the electron conductivity of the positive electrode active material layer, and is made of carbon material powder such as carbon black, acetylene black and graphite.
A species or a mixture of two or more species can be used. The binder plays a role of binding the active material particles, and is made of polytetrafluoroethylene, polyvinylidene fluoride, a fluorine-containing resin such as fluororubber, polypropylene,
A thermoplastic resin such as polyethylene can be used.
An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent in which the active material, the conductive material, and the binder are dispersed.

【0029】負極は、リチウムを吸蔵・脱離できる負極
活物質に結着剤を混合し、適当な溶剤を加えてペースト
状にした負極合材を集電体の表面に層状に積層して形成
することができる。ここで、集電体には比較的貴な金属
である銅を用いることとし、例えば、銅箔製の集電体の
表面に負極合材を塗布、乾燥、プレスして負極を形成す
ればよい。なお、「銅製」とは、純銅の他、他の元素が
若干添加されているような銅合金等をも含む概念であ
り、銅を主構成元素として含んでいればよい。負極活物
質として、例えば、天然黒鉛、球状あるいは繊維状の人
造黒鉛、コークス等の易黒鉛化性炭素、フェノール樹脂
焼成体等の難黒鉛化性炭素等を用いることができる。な
お、正極同様、負極結着剤としてはポリフッ化ビニリデ
ン等の含フッ素樹脂等を、溶剤としてはN−メチル−2
−ピロリドン等の有機溶剤を用いることができる。
The negative electrode is formed by mixing a binder with a negative electrode active material capable of absorbing and desorbing lithium, adding an appropriate solvent and forming a paste-like negative electrode mixture on the surface of the current collector in a layered manner. can do. Here, the current collector is made of copper, which is a relatively noble metal.For example, a negative electrode mixture may be applied to the surface of a copper foil current collector, dried, and pressed to form a negative electrode. . The term “made of copper” is a concept including a copper alloy to which other elements are slightly added in addition to pure copper, and it is sufficient that copper is included as a main constituent element. As the negative electrode active material, for example, natural graphite, spherical or fibrous artificial graphite, easily graphitizable carbon such as coke, hardly graphitizable carbon such as a phenol resin fired body, or the like can be used. As in the case of the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride or the like is used as the negative electrode binder, and N-methyl-2 is used as the solvent.
-Organic solvents such as pyrrolidone can be used.

【0030】正極と負極の間に挟装されるセパレータ
は、正極と負極とを隔離しつつ電解液を保持してイオン
を通過させるものであり、ポリエチレン、ポリプロピレ
ン等の薄い微多孔膜を用いることができる。
The separator sandwiched between the positive electrode and the negative electrode separates the positive electrode from the negative electrode, holds the electrolytic solution and allows ions to pass through, and uses a thin microporous film such as polyethylene or polypropylene. Can be.

【0031】非水電解液は、有機溶媒に電解質を溶解さ
せたもので、有機溶媒としては、非プロトン性有機溶
媒、例えばエチレンカーボネート、プロピレンカーボネ
ート、ジメチルカーボネート、ジエチルカーボネート、
γブチロラクトン、アセトニトリル、ジメトキシエタ
ン、テトラヒドロフラン、ジオキソラン、塩化メチレン
等の1種またはこれらの2種以上の混合液を用いること
ができる。また、溶解させる電解質としては、溶解させ
ることによりリチウムイオンを生じるLiI、LiCl
4、LiAsF6、LiBF4、LiPF6等を用いるこ
とができる。
The non-aqueous electrolyte is a solution in which an electrolyte is dissolved in an organic solvent. Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and the like.
One kind of γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride and the like, or a mixture of two or more kinds thereof can be used. As the electrolyte to be dissolved, LiI, LiCl which generates lithium ions when dissolved are used.
O 4 , LiAsF 6 , LiBF 4 , LiPF 6 and the like can be used.

【0032】〈リチウム二次電池の構造〉上記構成要素
を有する本発明のエージング処理方法が適用できるリチ
ウム二次電池の一例として、図2に円筒型のリチウム二
次電池の断面を示す。本リチウム二次電池1は、電極体
10と、電極体10を非水電解液とともに密封する電池
ケース20と、電池ケース20に付設され電極体10に
導通する正極端子30および負極端子40とから構成さ
れている。
<Structure of Lithium Secondary Battery> FIG. 2 shows a cross section of a cylindrical lithium secondary battery as an example of a lithium secondary battery having the above-mentioned components and to which the aging treatment method of the present invention can be applied. The present lithium secondary battery 1 includes an electrode body 10, a battery case 20 for sealing the electrode body 10 together with a non-aqueous electrolyte, and a positive electrode terminal 30 and a negative electrode terminal 40 attached to the battery case 20 and electrically connected to the electrode body 10. It is configured.

【0033】電極体10は、シート状の正極11とシー
ト状の負極12とをセパレータ13を挟装し捲回芯14
を中心に捲回したロール状のものとなっている。ちなみ
に、正極11は、アルミニウム箔集電体の両面に活物質
としてリチウム遷移金属複合酸化物を含む正極合材層を
形成してなり、負極12は、銅箔集電体の両面に活物質
として炭素物質を含む負極合材層を形成してなり、そし
て、セパレータ13は、多孔質ポリエチレン製シートか
らなる。捲回芯14は、正極端子側に位置するアルミニ
ウム合金製のアルミ捲回芯部14aと、アルミ捲回芯部
14aに同軸的に螺合連結され負極端子側に位置する樹
脂製の樹脂捲回芯部14bとからなる。電池ケース20
は、アルミニウム製の円筒状の外装缶21と、外装缶2
1の両開口端にそれぞれ接合されるアルミニウム製の円
盤状の正極側蓋板22および負極側蓋板23とからな
る。正極側蓋板22および負極側蓋板23にはそれぞれ
電池ケース20の内部圧力が所定圧を超える場合に開弁
する安全弁24が付設されており(正極側は図示してい
ない)、また、負極側蓋板23には、さらに電解液注入
口25が設けられ、電解液注入口25を封口する注入孔
栓26が螺合して取付けられている。
The electrode body 10 includes a sheet-shaped positive electrode 11 and a sheet-shaped negative electrode 12 with a separator 13 interposed therebetween, and a wound core 14.
In the form of a roll wound around. Incidentally, the positive electrode 11 is formed by forming a positive electrode mixture layer containing a lithium transition metal composite oxide as an active material on both surfaces of an aluminum foil current collector, and the negative electrode 12 is formed on both surfaces of a copper foil current collector as an active material. A negative electrode mixture layer containing a carbon material is formed, and the separator 13 is made of a porous polyethylene sheet. The winding core 14 is formed of an aluminum alloy winding core 14a located on the positive electrode terminal side, and a resin winding wound coaxially and screwed to the aluminum winding core 14a and located on the negative electrode terminal side. And a core 14b. Battery case 20
Is a cylindrical outer can 21 made of aluminum and an outer can 2
1 is formed of a disc-shaped positive electrode side cover plate 22 and a negative electrode side cover plate 23 made of aluminum, which are respectively joined to both open ends. Each of the positive-side cover plate 22 and the negative-side cover plate 23 is provided with a safety valve 24 that opens when the internal pressure of the battery case 20 exceeds a predetermined pressure (the positive electrode side is not shown). The side cover plate 23 is further provided with an electrolyte injection port 25, and an injection hole plug 26 for sealing the electrolyte injection port 25 is screwed and attached thereto.

【0034】正極端子30は、アルミニウム製で、集電
部30aと、ボルト状の外部端子部30bとからなり、
集電部30aは、捲回芯14のアルミ捲回芯部14aに
螺合連結され、また、外部端子部30bは、先端を電池
外部に突出する状態で電池ケース20の正極側蓋板22
に設けられた正極端子取付穴22aに、ガスケット31
を介し、ワッシャ32、ナット33によって付設されて
おり、電池ケース20とは絶縁されている。集電部30
aには正極11より延出する帯状のアルミニウム製正極
リード11aがその周囲に接合され、正極端子30と電
極体10の正極11との電気的導通が確保されている。
The positive electrode terminal 30 is made of aluminum and includes a current collector 30a and a bolt-shaped external terminal 30b.
The current collecting portion 30a is screwed and connected to the aluminum winding core portion 14a of the winding core 14, and the external terminal portion 30b is connected to the positive electrode side cover plate 22 of the battery case 20 with its tip protruding outside the battery.
Gasket 31 into positive electrode terminal mounting hole 22a provided in
, And is attached by a washer 32 and a nut 33, and is insulated from the battery case 20. Current collector 30
A band-shaped positive electrode lead 11 a made of aluminum extending from the positive electrode 11 is joined to the periphery of the terminal a, and electrical conduction between the positive electrode terminal 30 and the positive electrode 11 of the electrode body 10 is secured.

【0035】負極端子40は、銅製で、集電部40a
と、ボルト状の外部端子部40bとからなり、集電部4
0aは、捲回芯14の樹脂捲回芯部14bに螺合連結さ
れ、また、外部端子部40bは、先端を電池外部に突出
する状態で電池ケース20の負極側蓋板23に設けられ
た負極端子取付穴23aに、ガスケット41を介し、ワ
ッシャ42、ナット43によって付設されており、電池
ケース20とは絶縁されている。集電部40aには負極
12より延出する帯状の銅製負極リード12aがその周
囲に接合され、負極端子40と電極体10の負極12と
の電気的導通が確保されている。
The negative electrode terminal 40 is made of copper and has a current collector 40a.
And a bolt-shaped external terminal portion 40b.
Numeral 0a is screwed and connected to the resin winding core portion 14b of the winding core 14, and the external terminal portion 40b is provided on the negative electrode side cover plate 23 of the battery case 20 with its tip protruding outside the battery. It is attached to the negative electrode terminal mounting hole 23 a via a gasket 41 by a washer 42 and a nut 43, and is insulated from the battery case 20. A strip-shaped copper negative electrode lead 12a extending from the negative electrode 12 is joined to the periphery of the current collecting portion 40a, and electrical conduction between the negative electrode terminal 40 and the negative electrode 12 of the electrode body 10 is ensured.

【0036】〈リチウム二次電池の製造方法〉本発明の
エージング処理方法が適用できるリチウム二次電池の一
例として、上記構造を有するリチウム二次電池の製造方
法を、電池形成工程、エージング処理工程、コンディシ
ョニング処理工程の順に説明する。
<Method of Manufacturing Lithium Secondary Battery> As an example of a lithium secondary battery to which the aging treatment method of the present invention can be applied, a method of manufacturing a lithium secondary battery having the above structure includes a battery forming step, an aging treatment step, The description will be made in the order of the conditioning processing steps.

【0037】(1)電池形成工程 本工程は、電極体を非水電解液とともに電池ケースに収
納し、上記図2に示したように電池を形成する工程であ
る。まず、上述のように形成した正極および負極をセパ
レータを介して積層させて電極体とし、正極集電体およ
び負極集電体から外部に通ずる正極端子および負極端子
までの間を集電用リード等を用いて接続し、電池ケース
に挿設する。なお、正極端子および負極端子は、電池ケ
ースと絶縁されている。そして、非水電解液を電解液注
入口から注入し、電池ケースを密閉して電池を形成す
る。
(1) Battery Forming Step This step is a step of forming a battery as shown in FIG. 2 above by housing the electrode body together with the non-aqueous electrolyte in a battery case. First, the positive electrode and the negative electrode formed as described above are laminated via a separator to form an electrode body, and a current collecting lead or the like is provided between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside. And connect it to the battery case. The positive terminal and the negative terminal are insulated from the battery case. Then, a non-aqueous electrolyte is injected from the electrolyte injection port, and the battery case is sealed to form a battery.

【0038】(2)エージング処理工程 本工程は、負極と第3極とを短絡することによる陰分極
操作を施しながら、電極体に非水電解液を浸潤させて電
池のエージングを行う工程である。エージング処理は、
上記電池形成工程において非水電解液を電池ケースに注
入した直後に開始し、本工程の後に行われるコンディシ
ョニング処理工程において初回の充電を開始する時に終
了する。
(2) Aging Treatment Step This step is a step of aging the battery by infiltrating the electrode body with a non-aqueous electrolyte while performing a negative polarization operation by short-circuiting the negative electrode and the third electrode. . The aging process is
The process starts immediately after the non-aqueous electrolyte is injected into the battery case in the battery forming process, and ends when the first charging is started in the conditioning process performed after this process.

【0039】エージングは、電池形成後の電池を、負極
と第3極とを短絡することによる陰分極操作を施しなが
ら所定の温度下で保存することにより行う。陰分極操作
は、上述したように、負極電位をCuイオンの溶出が生
じないような卑な電位まで下げる操作であり、電池形成
直後に充電を開始したのと同様の作用を奏する。陰分極
操作は、例えば、第3極を電池ケースに挿入することの
できるような構造の電池を形成して、その第3極と負極
とを導通させて行えばよい。ここで、第3極は、負極を
構成する銅より卑な金属を含むことが望ましく、銅より
卑な金属としては、例えば、Li、Al、Mg、Zn、
Fe、Ni等が挙げられる。特に、負極をより卑な電位
まで陰分極できることから、Li、Alを用いることが
望ましい。
Aging is performed by storing the battery after forming the battery at a predetermined temperature while performing a negative polarization operation by short-circuiting the negative electrode and the third electrode. As described above, the negative polarization operation is an operation for lowering the negative electrode potential to a base potential that does not cause elution of Cu ions, and has the same effect as starting charging immediately after forming the battery. The negative polarization operation may be performed, for example, by forming a battery having a structure in which the third electrode can be inserted into the battery case, and conducting the third electrode and the negative electrode. Here, the third electrode desirably contains a metal lower than copper constituting the negative electrode. Examples of the metal lower than copper include Li, Al, Mg, Zn, and the like.
Fe, Ni and the like can be mentioned. In particular, it is preferable to use Li or Al since the negative electrode can be negatively polarized to a lower potential.

【0040】また、電池ケースが上記銅より卑な金属を
含む場合には、電池ケースを第3極とする態様で陰分極
操作を行うことができる。この場合には、負極を電池ケ
ースと導通させればよい。なお、正負極端子は電池ケー
スと絶縁されていることが必要である。したがって、電
池ケースを第3極とする態様であれば、電池をより小型
化することができ、かつ、陰分極操作のための特別な部
品等は不要となり、エージング処理とその後のコンディ
ショニング処理とを接続端子の切り替えのみで簡単に行
うことができる。特に、Alは軽量かつ安価で、成形性
に優れることから電池ケースの材料として実用的であ
る。したがって、Al製の電池ケースを第3極として陰
分極操作を行う場合には、効果的な陰分極を、より低コ
ストで簡単に行うことができる。
When the battery case contains a metal that is more noble than copper, the negative polarization operation can be performed with the battery case serving as the third pole. In this case, the negative electrode may be electrically connected to the battery case. The positive and negative terminals need to be insulated from the battery case. Therefore, if the battery case is configured as the third pole, the battery can be further reduced in size, and no special parts or the like for negative polarization operation are required, and the aging process and the subsequent conditioning process can be performed. It can be done simply by switching connection terminals. In particular, Al is lightweight, inexpensive, and excellent in moldability, so that it is practical as a material for a battery case. Therefore, when the negative polarization operation is performed using the battery case made of Al as the third pole, effective negative polarization can be easily performed at lower cost.

【0041】なお、エージングを終了する際には、陰分
極操作、すなわち、負極と第3極との短絡を解除するこ
とが望ましい。負極と第3極とを短絡させた状態のまま
エージングを終了し、次のコンディショニング処理工程
における充電を開始すると、例えば、Al製の電池ケー
スと負極とを短絡させた場合には、充放電により可動す
るLiイオンがAlと合金化反応を起こし、電池ケース
にダメージを与える恐れがあるからである。
When terminating aging, it is desirable to perform a negative polarization operation, that is, to cancel a short circuit between the negative electrode and the third electrode. Aging is terminated while the negative electrode and the third electrode are short-circuited, and charging in the next conditioning process is started. For example, when the battery case made of Al and the negative electrode are short-circuited, This is because movable Li ions may cause an alloying reaction with Al and damage the battery case.

【0042】また、電池を保存する温度を特に制限する
ものではなく、例えば、室温程度等、適宜保存温度を決
定すればよい。なお、保存方法も、特に制限するもので
はなく、例えば、電池を恒温槽に入れて保存することが
できる。
The temperature at which the battery is stored is not particularly limited, and the storage temperature may be appropriately determined, for example, about room temperature. The storage method is not particularly limited. For example, the battery can be stored in a thermostat.

【0043】(3)コンディショニング処理工程 本工程は、前のエージング処理直後の電池に対し、充放
電を行うことにより電池を実使用可能な状態に調整する
工程である。充放電は通常コンディショニング処理とし
て行われている方法で行えばよく、所定の温度下で、で
きるだけ小さな電流密度で所定の電圧まで充電し、同様
に、できるだけ小さな電流密度で所定の電圧まで放電を
行えばよい。例えば、4V級の電池であれば、電流密度
0.2〜2mA/cm2の定電流で、電池電圧約4Vま
で充電を行い、次いで、電流密度1〜2mA/cm2
定電流で電池電圧約3Vまで放電を行えばよい。充放電
の回数は、特に制限するものではなく、1回のみならず
複数回行うものであってもよい。
(3) Conditioning Treatment Step This step is a step of charging and discharging the battery immediately after the previous aging treatment to adjust the battery to a practically usable state. Charging and discharging may be performed by a method usually performed as conditioning processing.At a predetermined temperature, charging is performed at a current density as small as possible to a predetermined voltage, and similarly, discharging is performed at a current density as small as possible to a predetermined voltage. Just do it. For example, in the case of a 4V-class battery, the battery is charged at a constant current of 0.2 to 2 mA / cm 2 to a battery voltage of about 4 V, and then charged at a constant current of 1 to 2 mA / cm 2. The discharge may be performed up to about 3V. The number of times of charging / discharging is not particularly limited, and may be one or more times.

【0044】〈他の実施形態の許容〉以上、本発明のリ
チウム二次電池のエージング処理方法およびそれを含む
リチウム二次電池の製造方法の実施形態について説明し
たが、上述した実施形態は一実施形態にすぎず、本発明
のリチウム二次電池のエージング処理方法およびそれを
含むリチウム二次電池の製造方法は、上記実施形態を始
めとして、当業者の知識に基づいて種々の変更、改良を
施した種々の形態で実施することができる。
<Allowance of Other Embodiments> The embodiments of the aging treatment method for the lithium secondary battery and the method for manufacturing the lithium secondary battery including the same according to the present invention have been described above. The aging treatment method for a lithium secondary battery and the method for manufacturing a lithium secondary battery including the same according to the present invention include various modifications and improvements based on the knowledge of those skilled in the art, including the above embodiment. It can be implemented in various forms described above.

【0045】[0045]

【実施例】上記実施形態に基づいて、実際にリチウム二
次電池を形成後、エージング処理、コンディショニング
処理を行って、種々の電池を作製した。そして、それら
の電池の放電容量および内部抵抗を測定し、電池特性を
評価した。以下、これらの内容について説明する。
EXAMPLES Based on the above embodiment, after actually forming a lithium secondary battery, an aging treatment and a conditioning treatment were performed to produce various batteries. Then, the discharge capacity and the internal resistance of those batteries were measured, and the battery characteristics were evaluated. Hereinafter, these contents will be described.

【0046】〈実験1〉 (1)リチウム二次電池の作製 (a)電池の形成 本実験1では、上述した図2に示す構造のリチウム二次
電池を複数個作製した。正極11は、正極活物質として
LiNiO2を用いて形成した。まず、活物質であるL
iNiO285重量部に、導電材としてカーボンブラッ
クを10重量部、および結着剤としてポリフッ化ビニリ
デンを5重量部混合し、溶剤としてN−メチル−2−ピ
ロリドンを添加して、混練してペースト状の正極合材を
調整した。次に、この正極合材を厚さ15μmのアルミ
ニウム箔集電体の両面に塗布し、乾燥し、ロールプレス
を施してシート状の正極11とした。正極11の大きさ
は124mm×3050mmで、正極合材の乾燥プレス
後の塗膜厚は片側当たり70μmとした。
<Experiment 1> (1) Production of Lithium Secondary Battery (a) Formation of Battery In Experiment 1, a plurality of lithium secondary batteries having the above-described structure shown in FIG. 2 were produced. The positive electrode 11 was formed using LiNiO 2 as a positive electrode active material. First, the active material L
85 parts by weight of iNiO 2 , 10 parts by weight of carbon black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent was added, and the mixture was kneaded to obtain a paste. A positive electrode mixture was prepared. Next, this positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 15 μm, dried, and roll-pressed to obtain a sheet-shaped positive electrode 11. The size of the positive electrode 11 was 124 mm × 3050 mm, and the coating thickness of the positive electrode mixture after dry pressing was 70 μm per side.

【0047】負極12は、負極活物質として黒鉛化メソ
カーボンマイクロビーズ(MCMB)を用いて形成し
た。まず、活物質であるMCMB90重量部に、結着剤
としてポリフッ化ビニリデンを10重量部混合し、溶剤
としてN−メチル−2−ピロリドンを添加して、混練し
てペースト状の負極合材を調整した。次に、この負極合
材を厚さ10μmの銅箔集電体の両面に塗布し、乾燥
し、ロールプレスを施してシート状の負極12とした。
負極12の大きさは128mm×3200mmで、負極
合材の乾燥プレス後の塗膜厚は片側当たり75μmとし
た。
The negative electrode 12 was formed using graphitized mesocarbon microbeads (MCMB) as the negative electrode active material. First, 90 parts by weight of MCMB as an active material, 10 parts by weight of polyvinylidene fluoride as a binder are mixed, N-methyl-2-pyrrolidone is added as a solvent, and the mixture is kneaded to prepare a paste-like negative electrode mixture. did. Next, this negative electrode mixture was applied to both sides of a copper foil current collector having a thickness of 10 μm, dried, and roll-pressed to obtain a sheet-shaped negative electrode 12.
The size of the negative electrode 12 was 128 mm × 3200 mm, and the coating thickness of the negative electrode mixture after dry pressing was 75 μm per side.

【0048】上記正極11および負極12を、その間に
厚さ25μm、幅132mmのポリエチレン製のセパレ
ータ13を挟装して倦回し、ロール状の電極体10とし
た。電極体10をアルミニウム製の円筒状の電池ケース
20に挿設し、非水電解液を電解液注入口25より50
cc注入し、電池ケース20を密閉して電池を形成し
た。非水電解液は、エチレンカーボネートとジエチルカ
ーボネートとを体積比3:7に混合した混合溶媒にLi
PF6を1Mの濃度で溶解したものを用いた。なお、電
池ケース20の外装缶21は、板厚0.3mm、外径3
3mm、長さ150mmとし、正極側蓋板22、負極側
蓋板23は、板厚が0.3mmであり、外装缶21の内
径に略等しい外径の円盤形状を成している。
The positive electrode 11 and the negative electrode 12 were sandwiched between them and a polyethylene separator 13 having a thickness of 25 μm and a width of 132 mm was sandwiched therebetween to form a roll-shaped electrode body 10. The electrode body 10 is inserted into the cylindrical battery case 20 made of aluminum, and the non-aqueous electrolyte is supplied through the electrolyte injection port 25 by 50.
Then, the battery case 20 was sealed to form a battery. The non-aqueous electrolyte is prepared by mixing Li in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7.
The PF 6 was used at a concentration of 1M. The outer case 21 of the battery case 20 has a thickness of 0.3 mm and an outer diameter of 3 mm.
The positive-side cover plate 22 and the negative-side cover plate 23 have a thickness of 0.3 mm and an outer diameter substantially equal to the inner diameter of the outer can 21.

【0049】(b)エージング処理 形成した二次電池を、各々10個ずつ、3つのグループ
(#1〜#3)に分けてエージングを行った。エージン
グは、各グループの電池を20℃の恒温槽に入れ、10
時間保存することにより行った。なお、#1グループの
電池は、負極端子40と電池ケース20とをクリップで
短絡させて、また、#2グループの電池は、負極端子4
0を第3極である金属リチウムと短絡させて、それぞれ
陰分極操作を施しながらエージングを行った。一方、#
3グループの電池は陰分極操作を施さずにエージングを
行った。
(B) Aging treatment The formed secondary batteries were aged in 10 groups each, divided into three groups (# 1 to # 3). For aging, put the batteries of each group in a 20 ° C
Performed by storing for hours. In the battery of the # 1 group, the negative electrode terminal 40 and the battery case 20 are short-circuited with a clip.
0 was short-circuited with metallic lithium as the third pole, and aging was performed while performing a negative polarization operation. on the other hand,#
The batteries of the three groups were aged without performing the negative polarization operation.

【0050】(c)コンディショニング処理 上記所定のエージング時間経過後、#1〜#3の各グル
ープの電池についてコンディショニング処理を行った。
なお、#1および#2グループの電池は、それぞれ負極
端子と電池ケースまたは金属リチウムとの短絡を解除し
てコンディショニング処理を行った。
(C) Conditioning Processing After the above-mentioned predetermined aging time, conditioning processing was performed on the batteries of each group of # 1 to # 3.
The batteries of the # 1 and # 2 groups were subjected to conditioning processing by releasing the short circuit between the negative electrode terminal and the battery case or metallic lithium, respectively.

【0051】充放電は25℃の温度下で行い、まず、電
流密度0.25mA/cm2の定電流で電池電圧4.2
Vまで充電を行い、さらにその電池電圧で定電圧充電を
行い(充電合計時間6時間)、次いで、電流密度1mA
/cm2の定電流で電池電圧3.0Vまで放電を行うも
のを1サイクルとして、合計4サイクル行った。そして
4回目のサイクルの放電容量をもって、この容量をそれ
ぞれのリチウム二次電池の初期放電容量とした。
The charging and discharging were performed at a temperature of 25 ° C. First, the battery voltage was 4.2 at a constant current of 0.25 mA / cm 2.
V and a constant voltage charge at the battery voltage (total charge time 6 hours), and then a current density of 1 mA
A cycle of discharging at a constant current of / cm 2 to a battery voltage of 3.0 V was defined as one cycle, and a total of four cycles were performed. The discharge capacity of the fourth cycle was used as the initial discharge capacity of each lithium secondary battery.

【0052】(2)電池特性の評価 作製した上記#1〜#3グループの各電池を、保存温度
25℃の恒温槽に1ヶ月間保存し、保存後の放電容量を
測定した。そして、式[(1−放電容量/初期放電容
量)×100](%)を用いて、自己放電率を計算し
た。各グループの自己放電率を表1に示す。
(2) Evaluation of Battery Characteristics Each of the batteries of the above-mentioned # 1 to # 3 groups was stored in a thermostat at a storage temperature of 25 ° C. for one month, and the discharge capacity after storage was measured. Then, the self-discharge rate was calculated using the formula [(1−discharge capacity / initial discharge capacity) × 100] (%). Table 1 shows the self-discharge rate of each group.

【0053】[0053]

【表1】 [Table 1]

【0054】表1から明らかなように、#1および#2
グループの電池は自己放電率が小さく、自己放電率が5
0%以上である不良電池の発生は認められなかった。一
方、#3グループの電池は、自己放電率が大きく、自己
放電率が50%以上である不良電池は10個中2個認め
られた。したがって、陰分極操作を施しながらエージン
グを行うエージング処理工程を含む本発明のリチウム二
次電池の製造方法によれば、自己放電量の小さい二次電
池を製造することができることが確認できた。
As is clear from Table 1, # 1 and # 2
The batteries in the group have a low self-discharge rate and a self-discharge rate of 5
The occurrence of defective batteries of 0% or more was not observed. On the other hand, the batteries of the # 3 group had a large self-discharge rate, and two out of ten defective batteries having a self-discharge rate of 50% or more were recognized. Therefore, it was confirmed that according to the method of manufacturing a lithium secondary battery of the present invention including the aging treatment step of performing aging while performing negative polarization operation, a secondary battery having a small amount of self-discharge can be manufactured.

【0055】〈実験2〉 (1)リチウム二次電池の作製 (a)電池の形成 本実験2では、第3極を挿入できる構造の二次電池を複
数個作製した。正極は、正極活物質としてLiNi0.8
Co0.15Al0.052を用いて形成した。まず、活物質
であるLiNi0.8Co0.15Al0.05285重量部に、
導電材としてカーボンブラックを10重量部、および結
着剤としてポリフッ化ビニリデンを5重量部混合し、溶
剤としてN−メチル−2−ピロリドンを添加して、混練
してペースト状の正極合材を調整した。次に、この正極
合材を厚さ15μmのアルミニウム箔集電体の両面に塗
布し、乾燥し、ロールプレスを施してシート状の正極と
した。正極の大きさは77mm×3750mmで、正極
合材の乾燥プレス後の塗膜厚は片側当たり52μmとし
た。
<Experiment 2> (1) Production of Lithium Secondary Battery (a) Formation of Battery In Experiment 2, a plurality of secondary batteries having a structure capable of inserting the third electrode were produced. The positive electrode is LiNi 0.8 as a positive electrode active material.
It was formed using Co 0.15 Al 0.05 O 2 . First, to 85 parts by weight of LiNi 0.8 Co 0.15 Al 0.05 O 2 as an active material,
10 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone is added as a solvent and kneaded to prepare a paste-like positive electrode mixture. did. Next, this positive electrode mixture was applied to both surfaces of a 15 μm-thick aluminum foil current collector, dried, and roll-pressed to obtain a sheet-shaped positive electrode. The size of the positive electrode was 77 mm × 3750 mm, and the coating thickness of the positive electrode mixture after dry pressing was 52 μm per side.

【0056】負極は、負極活物質として天然黒鉛を用い
て形成した。まず、活物質である天然黒鉛92.5重量
部に、結着剤としてポリフッ化ビニリデンを7.5重量
部混合し、溶剤としてN−メチル−2−ピロリドンを添
加して、混練してペースト状の負極合材を調整した。次
に、この負極合材を厚さ10μmの銅箔集電体の両面に
塗布し、乾燥し、ロールプレスを施してシート状の負極
とした。負極の大きさは81mm×4650mmで、負
極合材の乾燥プレス後の塗膜厚は片側当たり58μmと
した。
The negative electrode was formed using natural graphite as a negative electrode active material. First, 7.5 parts by weight of polyvinylidene fluoride as a binder is mixed with 92.5 parts by weight of natural graphite as an active material, N-methyl-2-pyrrolidone is added as a solvent, and the mixture is kneaded to form a paste. Was prepared. Next, this negative electrode mixture was applied to both sides of a copper foil current collector having a thickness of 10 μm, dried, and roll-pressed to obtain a sheet-shaped negative electrode. The size of the negative electrode was 81 mm × 4650 mm, and the coating thickness of the negative electrode mixture after dry pressing was 58 μm per side.

【0057】上記正極および負極を、その間に厚さ25
μm、幅85mmのポリエチレン製のセパレータを挟装
して倦回し、ロール状の電極体とした。なお、第3極に
はAl、Mg、Znの各金属を適宜選択した。電極体お
よび第3極を、外径35mm、長さ120mmのガラス
セルに挿設し、非水電解液を40cc注入し、密閉して
電池を形成した。非水電解液は、エチレンカーボネート
とジエチルカーボネートとを体積比3:7に混合した混
合溶媒にLiPF6を1Mの濃度で溶解したものを用い
た。
The above positive electrode and negative electrode were placed between them with a thickness of 25 mm.
A separator made of polyethylene having a width of 85 mm and a width of 85 mm was sandwiched between the separators to form a roll-shaped electrode body. In addition, each metal of Al, Mg, and Zn was appropriately selected for the third pole. The electrode body and the third pole were inserted into a glass cell having an outer diameter of 35 mm and a length of 120 mm, a non-aqueous electrolyte solution of 40 cc was injected, and the battery was sealed to form a battery. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 3: 7 was used.

【0058】(b)エージング処理 形成した二次電池を、各々10個ずつ、4つのグループ
(#4〜#7)に分けてエージングを行った。エージン
グは、各グループの電池を室温で3日間保存することに
より行った。ここで、#4〜#6グループの電池は、負
極端子40と第3極とを短絡させることによる陰分極操
作を施しながらエージングを行った。第3極として、#
4グループの電池は金属Alを、#5グループの電池は
金属Mgを、#6グループの電池は金属Znをそれぞれ
用いた。一方、#7グループの電池は陰分極操作を施さ
ずにエージングを行った。
(B) Aging treatment The formed secondary batteries were aged in 10 groups each, divided into four groups (# 4 to # 7). Aging was performed by storing the batteries of each group at room temperature for 3 days. Here, the batteries of the # 4 to # 6 groups were aged while performing the negative polarization operation by short-circuiting the negative electrode terminal 40 and the third electrode. As the third pole, #
The batteries of group 4 use metal Al, the batteries of group # 5 use metal Mg, and the batteries of group # 6 use metal Zn. On the other hand, the batteries of the # 7 group were aged without performing the negative polarization operation.

【0059】(c)コンディショニング処理 上記所定のエージング処理が終了した後、#4〜#7の
各グループの電池についてコンディショニング処理を行
った。充放電は25℃の温度下で行い、まず、電流密度
0.25mA/cm2の定電流で電池電圧4.2Vまで
充電を行い、さらにその電池電圧で定電圧充電を行い
(充電合計時間6時間)、次いで、電流密度1mA/c
2の定電流で電池電圧3.0Vまで放電を行うものを
1サイクルとして、合計4サイクル行った。そして4回
目のサイクルの放電容量をもって、この容量をそれぞれ
のリチウム二次電池の初期放電容量とした。
(C) Conditioning Processing After the above-mentioned predetermined aging processing was completed, conditioning processing was performed on the batteries of each group of # 4 to # 7. Charging and discharging are performed at a temperature of 25 ° C. First, charging is performed to a battery voltage of 4.2 V with a constant current of a current density of 0.25 mA / cm 2 , and then constant voltage charging is performed at the battery voltage (total charging time of 6 hours). Time), then the current density is 1 mA / c
A cycle of discharging at a constant current of m 2 to a battery voltage of 3.0 V was defined as one cycle, and a total of four cycles were performed. The discharge capacity of the fourth cycle was used as the initial discharge capacity of each lithium secondary battery.

【0060】(2)電池特性の評価 作製した上記#4〜#7グループの各電池を、実験1と
同様に、保存温度25℃の恒温槽に1ヶ月間保存して、
保存後の放電容量を測定し、その保存後の放電容量と初
期放電容量の値から自己放電率を計算した。そして、自
己放電率が50%以上である電池を不良電池としてその
発生割合を調査した。
(2) Evaluation of Battery Characteristics Each of the batteries of the above-mentioned # 4 to # 7 groups was stored in a thermostat at a storage temperature of 25 ° C. for one month as in Experiment 1.
The discharge capacity after storage was measured, and the self-discharge rate was calculated from the values of the discharge capacity after storage and the initial discharge capacity. Then, a battery having a self-discharge rate of 50% or more was determined as a defective battery, and its occurrence ratio was examined.

【0061】また、保存後の内部抵抗を測定した。以下
に内部抵抗の測定方法を説明する。各グループの電池
を、その容量の50%まで充電した状態(SOC50
%)で、0.1Cで10秒間放電させ、10秒目の電圧
を測定した。次いで0.3Cで10秒間、1Cで10秒
間、3Cで10秒間、10Cで10秒間放電させ、各1
0秒目の電圧を測定した。同様の手順で充電も行い、各
10秒目の電圧を測定した。そして、電圧の電流依存性
を求め、電流−電圧直線の勾配を内部抵抗とした。な
お、1Cは、電池を1時間で放電するために必要な電流
である。各グループの不良電池の発生割合および内部抵
抗の平均値を表2に示す。
Further, the internal resistance after storage was measured. Hereinafter, a method of measuring the internal resistance will be described. The battery of each group is charged to 50% of its capacity (SOC 50
%), The battery was discharged at 0.1 C for 10 seconds, and the voltage at the 10th second was measured. Next, discharge at 0.3C for 10 seconds, 1C for 10 seconds, 3C for 10 seconds, and 10C for 10 seconds.
The voltage at 0 seconds was measured. Charging was performed in the same manner, and the voltage at the 10th second was measured. Then, the current dependence of the voltage was determined, and the gradient of the current-voltage straight line was defined as the internal resistance. 1C is a current required to discharge the battery in one hour. Table 2 shows the percentage of defective batteries generated in each group and the average value of the internal resistance.

【0062】[0062]

【表2】 [Table 2]

【0063】表2から明らかなように、陰分極操作を施
しながらエージングを行った#4〜#6グループの電池
では、自己放電率が50%以上である不良電池の発生は
認められなかった。一方、陰分極操作を施さずにエージ
ングを行った#7グループの電池では、不良電池がそれ
ぞれ10個中5個認められた。また、内部抵抗の値のば
らつきも、#4〜#6グループの電池は、#7グループ
の電池と比較して小さくなっている。
As is apparent from Table 2, in the batteries of the # 4 to # 6 groups that were aged while performing the negative polarization operation, no defective batteries with a self-discharge rate of 50% or more were observed. On the other hand, in the batteries of the # 7 group which was aged without performing the negative polarization operation, five out of ten defective batteries were observed. Also, the variation in the internal resistance value of the batteries of the # 4 to # 6 groups is smaller than that of the batteries of the # 7 group.

【0064】したがって、負極と第3極とを短絡させる
ことによる陰分極操作を施しながらエージングを行った
電池は、自己放電量が小さく、かつ内部抵抗も小さい電
池であることが確認できた。
Therefore, it was confirmed that the battery which was subjected to aging while performing the negative polarization operation by short-circuiting the negative electrode and the third electrode was a battery having a small amount of self-discharge and a small internal resistance.

【0065】[0065]

【発明の効果】本発明のエージング処理方法によれば、
エージング時間を長くしても、負極からのCuイオンの
溶出は抑制される。つまり、個々の電池についてエージ
ング処理時間を厳密に決定することなく、各電池につい
て充分なエージング時間を確保することができる。ま
た、そのエージング処理方法を含んで構成される本発明
のリチウム二次電池の製造方法によれば、自己放電量の
小さい、かつ内部抵抗の増加が抑制されたリチウム二次
電池を製造することができる。
According to the aging method of the present invention,
Even if the aging time is lengthened, elution of Cu ions from the negative electrode is suppressed. That is, a sufficient aging time can be secured for each battery without strictly determining the aging processing time for each battery. Further, according to the method for producing a lithium secondary battery of the present invention including the aging treatment method, it is possible to produce a lithium secondary battery having a small amount of self-discharge and a suppressed increase in internal resistance. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電池内におけるアノードおよびカソード反応
の平衡電位と種々の金属におけるアノード反応の平衡電
位との関係を示す。
FIG. 1 shows the relationship between the equilibrium potentials of the anodic and cathodic reactions in a battery and the anodic reactions of various metals.

【図2】 本発明のエージング処理方法が適用できる電
池の一例である円筒型のリチウム二次電池の断面を示
す。
FIG. 2 shows a cross section of a cylindrical lithium secondary battery which is an example of a battery to which the aging treatment method of the present invention can be applied.

【符号の説明】 1:円筒型リチウム二次電池(密閉型電池) 10:電極体 11:正極 12:負極 13:セパレータ 20:電池ケース 21:外装缶 22:正極側蓋板 23:負極側蓋板 30:正極端子 40:負極端子[Description of Signs] 1: Cylindrical lithium secondary battery (sealed battery) 10: Electrode body 11: Positive electrode 12: Negative electrode 13: Separator 20: Battery case 21: Outer can 22: Positive side cover plate 23: Negative side cover Plate 30: Positive terminal 40: Negative terminal

フロントページの続き (72)発明者 佐伯 徹 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 伊藤 明生 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5H017 AA03 AS02 AS10 CC01 EE01 5H029 AJ04 AJ06 AK03 AK18 AL06 AL07 AM02 AM03 AM04 AM05 AM07 BJ14 CJ11 CJ16 CJ23 CJ28 DJ01 DJ07 EJ01 Continuing from the front page (72) Inventor Tohru Saeki 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Institute, Inc. Address 1 Toyota Central Research Laboratory Co., Ltd. F-term (reference) 5H017 AA03 AS02 AS10 CC01 EE01 5H029 AJ04 AJ06 AK03 AK18 AL06 AL07 AM02 AM03 AM04 AM05 AM07 BJ14 CJ11 CJ16 CJ23 CJ28 DJ01 DJ07 EJ01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・脱離可能な物質を正極
活物質とする正極および負極活物質を含む負極合材が銅
製集電体の表面に層状に形成されてなる負極を備えてな
る電極体と、リチウム塩を有機溶媒に溶解した非水電解
液とを電池ケースに収納して形成されるリチウム二次電
池に対し、 電池形成後、充放電を行うことにより電池を実使用可能
な状態に調整するコンディショニング処理の直前までの
間、前記電極体に前記非水電解液を浸潤させるために行
うエージング処理方法であって、 前記負極と第3極とを短絡させることによる陰分極操作
を施しながらエージングを行うリチウム二次電池のエー
ジング処理方法。
1. An electrode comprising a negative electrode in which a positive electrode using a material capable of occluding and releasing lithium as a positive electrode active material and a negative electrode mixture containing a negative electrode active material are formed in a layer on the surface of a copper current collector. A battery and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent are stored in a battery case. An aging treatment method performed to infiltrate the non-aqueous electrolyte into the electrode body until immediately before the conditioning treatment to adjust the negative polarity operation by short-circuiting the negative electrode and the third electrode. Aging treatment method for a lithium secondary battery in which aging is performed.
【請求項2】 前記第3極は銅より卑な金属を含む請求
項1に記載のリチウム二次電池のエージング処理方法。
2. The aging treatment method for a lithium secondary battery according to claim 1, wherein the third electrode contains a metal lower than copper.
【請求項3】 前記電池ケースが前記第3極となる請求
項2に記載のリチウム二次電池のエージング処理方法。
3. The aging treatment method for a lithium secondary battery according to claim 2, wherein the battery case serves as the third electrode.
【請求項4】 リチウムを吸蔵・脱離可能な物質を正極
活物質とする正極および負極活物質を含む負極合材が銅
製集電体の表面に層状に形成されてなる負極を備えてな
る電極体と、リチウム塩を有機溶媒に溶解した非水電解
液とを電池ケースに収納して形成されるリチウム二次電
池の製造方法であって、 前記電極体を前記非水電解液とともに前記電池ケースに
収納して電池を形成する電池形成工程と、 前記負極と第3極とを短絡させることによる陰分極操作
を施しながら前記電極体に前記非水電解液を浸潤させて
形成した前記電池のエージングを行うエージング処理工
程と、 エージング処理直後の前記電池に対し充放電を行うこと
により電池を実使用可能な状態に調整するコンディショ
ニング処理工程と、 を含んで構成されるリチウム二次電池の製造方法。
4. An electrode comprising a negative electrode in which a positive electrode using a material capable of occluding and releasing lithium as a positive electrode active material and a negative electrode mixture containing a negative electrode active material are formed in a layer on the surface of a copper current collector. Body and a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent in a battery case. A method for manufacturing a lithium secondary battery, comprising: forming the electrode body together with the non-aqueous electrolyte in the battery case. A battery forming step of forming a battery by storing the battery in a battery and aging the battery formed by infiltrating the non-aqueous electrolyte into the electrode body while performing a negative polarization operation by short-circuiting the negative electrode and the third electrode. An aging treatment step of performing charging and discharging of the battery immediately after the aging treatment, and a conditioning treatment step of adjusting the battery to a practically usable state. Method of manufacturing a pond.
JP2001099931A 2001-03-30 2001-03-30 Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same Abandoned JP2002298926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001099931A JP2002298926A (en) 2001-03-30 2001-03-30 Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099931A JP2002298926A (en) 2001-03-30 2001-03-30 Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
JP2002298926A true JP2002298926A (en) 2002-10-11

Family

ID=18953421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099931A Abandoned JP2002298926A (en) 2001-03-30 2001-03-30 Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same

Country Status (1)

Country Link
JP (1) JP2002298926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108464A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Secondary battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108464A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4826199B2 (en) Water-based lithium secondary battery
US11011321B2 (en) Electrochemical energy storage device
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP2008147015A (en) Electrode for battery, nonaqueous solution based battery, and manufacturing method of nonaqueous solution based battery
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP4600136B2 (en) Aqueous electrolyte lithium secondary battery
JP2003208924A (en) Lithium secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
CN109037789B (en) Lithium-aluminum double-ion rechargeable battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP3870707B2 (en) Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same
JP4492039B2 (en) Water-based lithium secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JPWO2015141120A1 (en) Lithium primary battery
JP5050346B2 (en) Water-based lithium secondary battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP4595352B2 (en) Aqueous electrolyte lithium secondary battery
JP2002298926A (en) Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same
JP2007115507A (en) Anode activator and aqueous lithium secondary cell
JP2003007339A (en) Battery and manufacturing method of battery
EP4078711B1 (en) Electrolyte for li secondary batteries
JP5119594B2 (en) Non-aqueous electrolyte secondary battery
TW200830606A (en) Electrolyte for lithium ion batteries
JP2000058065A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061122

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061228

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080116