JP3870707B2 - Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same - Google Patents

Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same Download PDF

Info

Publication number
JP3870707B2
JP3870707B2 JP2001099153A JP2001099153A JP3870707B2 JP 3870707 B2 JP3870707 B2 JP 3870707B2 JP 2001099153 A JP2001099153 A JP 2001099153A JP 2001099153 A JP2001099153 A JP 2001099153A JP 3870707 B2 JP3870707 B2 JP 3870707B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
aging
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001099153A
Other languages
Japanese (ja)
Other versions
JP2002298925A (en
Inventor
忍 岡山
房美 三浦
徹 佐伯
明生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001099153A priority Critical patent/JP3870707B2/en
Publication of JP2002298925A publication Critical patent/JP2002298925A/en
Application granted granted Critical
Publication of JP3870707B2 publication Critical patent/JP3870707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムの吸蔵・脱離現象を利用したリチウム二次電池に対し、電池形成後に電極体に非水電解液を浸潤させるために行うエージング処理方法に関する。
【0002】
【従来の技術】
携帯電話、パソコン等の小型化に伴い、通信機器、情報関連機器の分野では、これらの機器に用いる電源として、高エネルギー密度であるという理由から、リチウム二次電池が実用化され広く普及するに至っている。また、自動車の分野においても、資源問題、環境問題から電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウム二次電池が検討されている。
【0003】
一般に、リチウム二次電池は、正極および負極を備えてなる電極体を電池ケースに挿設し、非水電解液を注入した後電池ケースを密閉して形成される。そして、電池形成後、そのまま所定の温度下で保存するいわゆるエージング処理を行い、その後、充放電を行うことにより電池を実使用可能な状態に調整するコンディショニング処理を行って製造される。
【0004】
ここで、エージング処理は、電極体に非水電解液を充分に浸潤させるために行う処理であり、電池形成直後に開始し、次のコンディショニング処理を開始する時、具体的には、初回の充電を開始する時に終了する。このエージング処理に必要な時間は、個々の電池の形状、電極の大きさ、電極間の圧迫状態、セパレータへの電解液の浸透性、および電解液の注入時の温度、圧力等によって種々異なるものである。そして、エージング処理を行う時間は、製造した電池の自己放電のし易さ、内部抵抗の大きさ等の電池特性に大きく影響することが知られている。
【0005】
例えば、エージング処理を行う時間が短すぎる場合には、電極体に非水電解液が充分浸潤しないため、電解液の不足によって活物質がダメージを受け、電池の内部抵抗の増加を招く。また、局部的に充放電が不足するために、電池の自己放電量が大きくなる原因ともなる。すなわち、電極体に非水電解液を浸潤させるためには、エージング処理の時間を充分に確保することが必要となるが、エージング処理の時間を長くしすぎると、製造した電池の自己放電量は大きくなってしまう。
【0006】
一方、実際に電池を製造する際には、製造する電池と同様の電池を予備的に作製し、その予備的に作製した電池の特性を解析した結果をもとに、製造する電池のエージング処理時間を一律に決定しているのが現状である。しかしながら、この予備検討では充分ではない場合、あるいは、電池を保存する恒温槽の内部に温度分布が存在する等の保存条件のばらつきが生じる場合がある。そのため、上記予備検討に基づいてエージング処理を行った場合であっても、電池によって非水電解液の浸潤状態が異なり、結果的に、製造された電池の自己放電のし易さや内部抵抗の大きさ等の電池特性に大きなばらつきが生じるという問題があった。
【0007】
【発明が解決しようとする課題】
上記問題に鑑み、個々の電池について最適なエージング処理時間を見出すための試みとして、エージング中に正負極間のAC抵抗値を測定し、その値から電解液の浸潤状態を判断して、個々の電池のエージング終了時を決めるという方法を検討した。しかし、この方法は複雑な装置を必要とし、また、全電池に交流電流を電極にダメージを与えない電圧振幅範囲で長時間、あるいは適時流すことは困難であるため実用的ではない。
【0008】
本発明者は、エージング処理に関して幾多の実験を行い、エージング処理時間と電池特性との関係を調査した。その結果、エージング処理時間が長すぎると、負極の銅製集電体や銅製の負極端子等からCuイオンが溶出し、溶出したCuイオンが、次のコンディショニング処理である充放電の際に析出して、電池の微少短絡(マイクロショート)を起こしたり、また、酸化還元反応のシャトル物質となることによって、電池の自己放電量を大きくすることがわかった。そして、エージング中に負極電位は変化し、その負極電位の変化にCuイオンの溶出反応が関係しているという知見を得た。
【0009】
本発明は、上記知見に基づいてなされたものであり、負極電位の経時変化に着目することで、電極にダメージを与えることなく、個々の電池の最適なエージング処理時間を簡単に決定できるエージング処理方法を提供することを課題とする。
【0010】
また、そのエージング処理方法を含んで構成することにより、自己放電量の小さい、かつ内部抵抗の増加が抑制されたリチウム二次電池を製造する方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
(1)本発明のリチウム二次電池のエージング処理方法は、リチウムを吸蔵・脱離可能な物質を正極活物質とする正極および負極活物質を含む負極合材が銅製集電体の表面に層状に形成されてなる負極を備えてなる電極体と、リチウム塩を有機溶媒に溶解した非水電解液とを電池ケースに収納して形成されるリチウム二次電池に対し、電池形成後、充放電を行うことにより電池を実使用可能な状態に調整するコンディショニング処理の直前までの間、前記電極体に前記非水電解液を浸潤させるために行うエージング処理方法であって、負極電位Vの経時変化をモニターしながらエージングを行うことを特徴とする。
【0012】
つまり、本発明のリチウム二次電池のエージング処理方法は、エージング中の負極電位の経時変化に着目し、負極電位の経時変化をモニターしながらエージングを行うものである。ここで、エージングは前記負極電位Vの経時変化が|dV/dt|≦10(mV/hr)となった時に終了する。
【0013】
上述したように、負極電位はエージング中に変化する。後に詳しく説明するが、エージング開始後、負極電位は上昇を続け、ある時点で最大となった後やや下降して、その後は略一定の値に安定する。つまり、負極電位の経時変化は、上昇領域と安定領域との大きく2つに分けることができる。負極等からのCuイオンの溶出は、負極電位の上昇が終わった後、すなわち負極電位が下降に転じ、その後安定する領域において生じると考えられる。なお、予備的検討において、負極電位が安定領域に至った電池を解体して、電解液の電極体への浸潤状態を調べたところ、電極全体が電解液に濡れていた。すなわち、電極が電解液と良く馴染み、安定な電位を示したと考えられる。よって、負極電位が最大となった時点では、すでに電解液は電極体に充分浸潤していると考えられる。したがって、Cuイオンの溶出を抑制し、かつ電解液を電極体に充分浸潤させるためには、上昇した負極電位が低下する直前にエージングを終了させればよいことになる。
【0014】
このように、負極電位の経時変化をモニターしながらエージングを行うことで、本発明のエージング処理方法は、個々の電池のエージング終了のタイミングが簡単にわかり、各電池の最適なエージング処理時間を確保できる方法となる。
【0015】
また、負極電位の経時変化は、エージングを行う温度によって挙動が異なる。例えば、高温下でエージングを行うと、負極電位の上昇は早くなり、反対に、室温程度の温度下では、負極電位の上昇はゆっくりしたものとなる。したがって、例えばエージングを早く終わらせたい場合には、高温下でエージングを行う等、本発明のエージング処理方法は、エージング処理時間のコントロールを自在に行うことができる方法となる。
【0016】
(2)上記エージング処理方法を含む本発明のリチウム二次電池の製造方法は、リチウムを吸蔵・脱離可能な物質を正極活物質とする正極および負極活物質を含む負極合材が銅製集電体の表面に層状に形成されてなる負極を備えてなる電極体と、リチウム塩を有機溶媒に溶解した非水電解液とを電池ケースに収納して形成されるリチウム二次電池の製造方法であって、前記電極体を前記非水電解液とともに前記電池ケースに収納して電池を形成する電池形成工程と、負極電位Vの経時変化をモニターしながら前記電極体に前記非水電解液を浸潤させて形成した前記電池のエージングを行うエージング処理工程と、エージング処理直後の前記電池に対し充放電を行うことにより電池を実使用可能な状態に調整するコンディショニング処理工程とを含んで構成される。
【0017】
つまり、本発明のリチウム二次電池の製造方法は、電池形成工程とコンディショニング処理工程との間に上記エージング処理方法を含んで構成される。ここで、エージング工程では前記負極電位Vの経時変化が|dV/dt|≦10(mV/hr)となった時にエージングを終了する。本発明のリチウム二次電池の製造方法は、個々の電池についてのエージング処理時間を最適なものとすることができるため、自己放電量の小さい、かつ内部抵抗の増加が抑制されたリチウム二次電池を簡単に製造する方法となる。
【0018】
(3)以下に、エージング処理における電池内の反応と負極電位との関係を説明する。
【0019】
一般に、電極には不可避的な水分が吸着しており、この水分が非水電解液中の電解質と反応して、HFやH3PO4等の酸成分を生成する。例えば、電解質にLiPF6を用いた場合の反応式を(式1)、(式2)に示す。
【0020】
LiPF6+H2O→LiF+2HF+POF3 ・・・(式1)
POF3+3H2O→H3PO4+3HF ・・・(式2)
一方、負極を構成する銅製集電体の表面は、大気中で生成したCu2Oで覆われている。したがって、負極と電解液との界面では、上記酸成分のH+イオン濃度に対応した金属/酸化物の平衡電位となる。Cu/Cu2Oの平衡反応の反応式を(式3)に示す。また、その時の電位E0も併せて示す。
【0021】
2Cu+H2O→Cu2O+2H++2e ・・・(式3)
0=0.471−0.059pH (H/H+基準)
また、pHが大きく低下すると、銅製集電体のCuがCu2+イオンとなって溶出し(アノード反応)、H+イオン濃度に関係なくCu/Cu2+の平衡電位となる。この反応式を(式4)に示す。また、その時の電位E0も併せて示す。
【0022】
Cu→Cu2++2e ・・・(式4)
0=0.337−0.0295Log[Cu2+] (H/H+基準)
他方、カソード反応としては、上記酸成分のH+からのH2発生反応、および非水電解液中の溶存酸素と電極に付着した水分との反応が考えられる。各反応式を(式5)、(式6)に示す。また、その時の電位E0も併せて示す。
【0023】
2H++2e→H2 ・・・(式5)
0=0.059Log[H+]−0.0296p[H2] (H/H+基準、p[H2]は水素分圧)
2+2H2O+4e→4OH- ・・・(式6)
0=0.401−0.0147Log[OH-]+0.0591p[O2
(H/H+基準、p[O2]は酸素分圧)
負極の電解液浸潤状態での電極反応は、上述の種々の反応がアノード反応とカソード反応の総和として釣り合ったものであり、負極電位は、いわゆるアノード/カソード混成電位としての自然浸漬電位となっている。
【0024】
エージング処理を開始すると、例えば、(式1)、(式2)に示した反応により酸成分(HF、H3PO4等)が生成し、そのH+イオンの作用により(式3)に示す平衡反応は左方向に進行し、Cu2Oは還元除去される。このCu2Oの還元反応は、負極の電位変化として現れ、反応の進行とともに、負極電位は上昇する。 図1に、エージング処理における負極電位の経時変化を示す。図1中、実線は温度25℃下でエージングを行った結果を、また、破線は温度60℃下でエージングを行った結果を示す。Cu2Oの還元反応は、図1に示す負極電位の経時変化において、電位の上昇領域(a)として現れる。なお、この反応は、高温下では比較的短時間で終了するため、高温下でエージングを行うと、破線で示すように、負極の電位は急激に上昇する。反対に、室温程度の温度では、電極内部に吸着した水分が除々に反応するため、実線で示すように、負極の電位上昇は緩慢なものとなる。そして、Cu2Oの還元反応は、電極の大きさ、電極間の圧迫状態、セパレータへの電解液の浸透性、電極からの気泡の脱離し易さ等のいわゆる電解液の電極体への浸潤し易さと関係するため、負極の電位変化は、電解液の浸潤の程度を判断する有効なパラメータとなる。
【0025】
負極の集電体表面におけるCu2Oが無くなると、上記Cu2Oの還元反応は終了する。一方、酸成分の存在により負極近傍のpHは低下するため、(式4)に示す反応が進行し、銅製集電体からCuイオンが溶出する。そして、Cuイオンの溶出反応の進行により、アノード反応の分極抵抗が小さくなり、負極電位は低下する。つまり、上記図1に示す負極電位の経時変化では、Cuイオンの溶出反応は、電位の下降を含む安定領域(b)として現れる。したがって、負極電位が低下する直前にエージングを終了すれば、Cuイオンの溶出を抑制することができる。
【0026】
以上説明したように、負極電位をモニターすることで、過剰なエージングを抑制することができ、Cuイオンの溶出を抑制しつつ、電解液を電極体に充分浸潤させるエージング処理が可能となる。
【0027】
【発明の実施の形態】
以下に、本発明のリチウム二次電池のエージング処理方法の実施形態について詳しく説明する。まず、本発明のエージング処理方法が適用されるリチウム二次電池の構成および構造を説明し、次いで、本発明のエージング処理方法を含んで構成されるリチウム二次電池の製造方法の実施形態について説明する。
【0028】
〈リチウム二次電池の構成〉
一般にリチウム二次電池は、リチウムを吸蔵・脱離する正極および負極と、この正極と負極との間に挟装されるセパレータと、正極と負極との間にリチウムを移動させる非水電解液とから構成され、本発明のエージング処理方法が適用できるリチウム二次電池もこの構成に従うものである。以下、各構成要素について説明する。
【0029】
正極は、正極活物質に導電材および結着剤を混合し、必要に応じ適当な溶剤を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成することができる。
【0030】
正極活物質には、リチウムを吸蔵・脱離可能な物質を採用する。例えば、4V級の二次電池を構成できるという観点から、基本組成をLiCoO2、LiNiO2、LiMnO2等とする層状岩塩構造のリチウム遷移金属複合酸化物、基本組成をLiMn24等とするスピネル構造のリチウム遷移金属複合酸化物を用いることができる。なかでも、基本組成をLiNiO2とする層状岩塩構造のリチウム遷移金属複合酸化物は、Coを中心金属としたリチウム遷移金属複合酸化物より低価格であり、単位重量あたりの放電容量が大きい二次電池を構成できることから好適である。
【0031】
なお、基本組成とは、上記各複合酸化物の代表的な組成という意味であり、上記組成式で表されるものの他、例えば、リチウムサイトや遷移金属サイトを他の1種または2種以上の元素で一部置換したもの等の組成をも含む。また、必ずしも化学量論組成のものに限定されるわけではなく、例えば、製造上不可避的に生じるLi、Ni等の陽イオン元素が欠損した、あるいは酸素原素が欠損した非化学量論組成のもの等をも含む。さらに、リチウム遷移金属複合酸化物のうち1種類のものを用いることも、また、2種類以上のものを混合して用いることもできる。
【0032】
正極に用いる導電材は、正極活物質層の電子伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質紛状体の1種または2種以上を混合したものを用いることができる。結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電材、結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0033】
負極は、リチウムを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を集電体の表面に層状に積層して形成することができる。ここで、集電体には比較的貴な金属である銅を用いることとし、「銅製」とは、純銅の他、他の元素が若干添加されているような銅合金等をも含む概念である。例えば、銅箔製の集電体の表面に負極合材を塗布、乾燥、プレスして負極を形成すればよい。負極活物質として、例えば、天然黒鉛、球状あるいは繊維状の人造黒鉛、コークス等の易黒鉛化性炭素、フェノール樹脂焼成体等の難黒鉛化性炭素等を用いることができる。なお、正極同様、負極結着剤としてはポリフッ化ビニリデン等の含フッ素樹脂等を、溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0034】
正極と負極の間に挟装されるセパレータは、正極と負極とを隔離しつつ電解液を保持してイオンを通過させるものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
【0035】
非水電解液は、有機溶媒に電解質を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン等の1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、溶解させることによりリチウムイオンを生じるLiI、LiClO4、LiAsF6、LiBF4、LiPF6等を用いることができる。
【0036】
〈リチウム二次電池の構造〉
上記構成要素を有する本発明のエージング処理方法が適用できるリチウム二次電池の一例として、図2に円筒型のリチウム二次電池の断面を示す。本リチウム二次電池1は、電極体10と、電極体10を非水電解液とともに密封する電池ケース20と、電池容器20に付設され電極体10に導通する正極端子30および負極端子40とから構成されている。
【0037】
電極体10は、シート状の正極11とシート状の負極12とをセパレータ13を挟装し捲回芯14を中心に捲回したロール状のものとなっている。ちなみに、正極11は、アルミニウム箔集電体の両面に活物質としてリチウム遷移金属複合酸化物を含む正極合材層を形成してなり、負極12は、銅箔集電体の両面に活物質として炭素物質を含む負極合材層を形成してなり、そして、セパレータ13は、多孔質ポリエチレン製シートからなる。捲回芯14は、正極端子側に位置するアルミニウム合金製のアルミ捲回芯部14aと、アルミ捲回芯部14aに同軸的に螺合連結され負極端子側に位置する樹脂製の樹脂捲回芯部14bとからなる。電池容器20は、ステンレス製の円筒状の外装缶21と、外装缶21の両開口端にそれぞれ接合されるステンレス製の円盤状の正極側蓋板22および負極側蓋板23とからなる。正極側蓋板22および負極側蓋板23にはそれぞれ電池ケース20の内部圧力が所定圧を超える場合に開弁する安全弁24が付設されており(正極側は図示していない)、また、負極側蓋板23には、さらに電解液注入口25が設けられ、電解液注入口25を封口する注入孔栓26が螺合して取付けられている。
【0038】
正極端子30は、アルミニウム製で、集電部30aと、ボルト状の外部端子部30bとからなり、集電部30aは、捲回芯14のアルミ捲回芯部14aに螺合連結され、また、外部端子部30bは、先端を電池外部に突出する状態で電池ケース20の正極側蓋板22に設けられた正極端子取付穴22aに、ガスケット31を介し、ワッシャ32、ナット33によって付設されており、電池容器20とは絶縁されている。集電部30aには正極11より延出する帯状のアルミニウム製正極リード11aがその周囲に接合され、正極端子30と電極体10の正極11との電気的導通が確保されている。
【0039】
負極端子40は、銅製で、集電部40aと、ボルト状の外部端子部40bとからなり、集電部40aは、捲回芯14の樹脂捲回芯部14bに螺合連結され、また、外部端子部40bは、先端を電池外部に突出する状態で電池ケース20の負極側蓋板23に設けられた負極端子取付穴23aに、ガスケット41を介し、ワッシャ42、ナット43によって付設されており、電池容器20とは絶縁されている。集電部40aには負極12より延出する帯状の銅製負極リード12aがその周囲に接合され、負極端子40と電極体10の負極12との電気的導通が確保されている。
【0040】
〈リチウム二次電池の製造方法〉
本発明のエージング処理方法が適用できるリチウム二次電池の一例として、上記構造を有するリチウム二次電池の製造方法を、電池形成工程、エージング処理工程、コンディショニング処理工程の順に説明する。
【0041】
(1)電池形成工程
本工程は、電極体を非水電解液とともに電池ケースに収納して、上記図2に示したように電池を形成する工程である。まず、上述のように形成した正極および負極をセパレータを介して積層させて電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リード等を用いて接続し、電池ケースに挿設する。そして、非水電解液を電解液注入口から注入し、電池ケースを密閉して電池を形成する。
【0042】
(2)エージング処理工程
本工程は、負極電位Vの経時変化をモニターしながら電極体に非水電解液を浸潤させて電池のエージングを行う工程である。エージング処理は、上記電池形成工程において非水電解液を電池ケースに注入した直後に開始し、本工程の後に行われるコンディショニング処理工程において初回の充電を開始する時に終了する。
【0043】
エージングは、電池形成後の電池を負極電位Vの経時変化をモニターしながら所定の温度下で保存することにより行う。負極電位のモニター方法は、特に制限するものではない。例えば、正負極以外の第3極(参照極)を電池ケースに挿入することのできるような構造の電池を形成して、その参照極を基準とした負極電位を測定すればよい。負極電位は、例えば、入力抵抗の大きい(≧1010Ω電圧計であるエレクトロメータ等を用いて測定すればよい。
【0044】
なお、端子間電圧(正負極間電圧)は、(式7)に示すように、正極電位と負極電位との差で表される。端子間電圧=正極電位−負極電位 ・・・(式7)ここで、正極電位はエージング中略一定であるとみなすことができるため、負極の電位変化はそのまま端子間電圧の変化に反映される。したがって、より実用的な方法として、エージング中の負極電位を測定する代わりに、端子間電圧を電圧計等で測定して、端子間電圧の経時変化をモニターしながらエージングを行う態様を採用することができる。
【0045】
また、電池を保存する温度を特に制限するものではなく、例えば、室温程度等、適宜保存温度を決定すればよい。特に、エージングを早く終わらせたい場合には、上述したように、例えば60℃程度の高温下で保存することが望ましい。なお、保存方法も、特に制限するものではなく、例えば、電池を恒温槽に入れて保存することができる。
【0046】
上述の通り、負極電位は、エージング開始後上昇を続け、ある時点で最大となった後やや下降して、その後は略一定の値となる。したがって、負極からのCuイオンの溶出を抑制しつつ、電解液を電極体に充分浸潤させるためには、エージングを負極電位の変曲点近傍で終了させればよい。より具体的には、負極電位Vの時間変化率が|dV/dt|≦10(mV/hr)となった時点で終了させる。なお、エージングを続けると、最終的に負極電位は略一定値をとり安定するため、その安定領域においても|dV/dt|≦10(mV/hr)を満たす場合が生じるが、エージングの終了時はその時を意図するものではない。エージングの望ましい終了時は、あくまでも負極電位の変曲点近傍である。エージングを終了するためには、次のコンディショニング処理工程における充電を開始すればよい。
【0047】
(3)コンディショニング処理工程
本工程は、前のエージング処理直後の電池に対し、充放電を行うことにより電池を実使用可能な状態に調整する工程である。充放電は、通常、コンディショニング処理として行われている方法で行えばよく、所定の温度下で、できるだけ小さな電流密度で所定の電圧まで充電し、同様に、できるだけ小さな電流密度で所定の電圧まで放電を行えばよい。例えば、4V級の電池であれば、電流密度0.2〜2mA/cm2の定電流で、電池電圧約4Vまで充電を行い、次いで、電流密度1〜2mA/cm2の定電流で電池電圧約3Vまで放電を行えばよい。充放電の回数は、特に制限するものではなく、1回のみならず複数回行うものであってもよい。
【0048】
〈他の実施形態の許容〉
以上、本発明のリチウム二次電池のエージング処理方法およびそれを含むリチウム二次電池の製造方法の実施形態について説明したが、上述した実施形態は一実施形態にすぎず、本発明のリチウム二次電池のエージング処理方法およびそれを含むリチウム二次電池の製造方法は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。
【0049】
【実施例】
上記実施形態に基づいて、実際にリチウム二次電池を形成後、エージング処理、コンディショニング処理を行って、種々の電池を作製した。そして、それらの電池の放電容量および内部抵抗を測定し、電池特性を評価した。以下、これらの内容について説明する。
【0050】
〈実験1〉
(1)リチウム二次電池の作製
(a)電池の形成
本実験1では、上述した図2に示す構造のリチウム二次電池を複数個作製した。正極11は、正極活物質としてLiNiO2を用いて形成した。まず、活物質であるLiNiO285重量部に、導電材としてカーボンブラックを10重量部、および結着剤としてポリフッ化ビニリデンを5重量部混合し、溶剤としてN−メチル−2−ピロリドンを添加して、混練してペースト状の正極合材を調整した。次に、この正極合材を厚さ15μmのアルミニウム箔集電体の両面に塗布し、乾燥し、ロールプレスを施してシート状の正極11とした。正極11の大きさは124mm×3050mmで、正極合材の乾燥プレス後の塗膜厚は片側当たり70μmとした。
【0051】
負極12は、負極活物質として黒鉛化メソカーボンマイクロビーズ(MCMB)を用いて形成した。まず、活物質であるMCMB90重量部に、結着剤としてポリフッ化ビニリデンを10重量部混合し、溶剤としてN−メチル−2−ピロリドンを添加して、混練してペースト状の負極合材を調整した。次に、この負極合材を厚さ10μmの銅箔集電体の両面に塗布し、乾燥し、ロールプレスを施してシート状の負極12とした。負極12の大きさは128mm×3200mmで、負極合材の乾燥プレス後の塗膜厚は片側当たり75μmとした。
【0052】
上記正極11および負極12を、その間に厚さ25μm、幅132mmのポリエチレン製のセパレータ13を挟装して倦回し、ロール状の電極体10とした。電極体10をSUS304製の円筒状の電池ケース20に挿設し、非水電解液を電解液注入口25より50cc注入し、電池ケース20を密閉して電池を形成した。非水電解液は、エチレンカーボネートとジエチルカーボネートとを体積比3:7に混合した混合溶媒にLiPF6を1Mの濃度で溶解したものを用いた。なお、電池ケース20の外装缶21は、板厚0.3mm、外径33mm、長さ150mmとし、正極側蓋板22、負極側蓋板23は、板厚が0.5mmであり、外装缶21の内径に略等しい外径の円盤形状を成している。
【0053】
(b)エージング処理
形成した二次電池を、各々10個ずつ、3つのグループ(#1〜#3)に分けてエージングを行った。エージングは、各グループの電池を20℃の恒温槽に入れ、所定の時間保存することにより行った。
【0054】
#1グループの電池は、エージング時間をすべて10時間とした。これは、予備的に、形成した電池を用いて端子間電圧の経時変化をモニターしながらエージングを行った結果、端子間電圧が安定するまでの時間が10時間であったため、その時間をエージング時間として一律に採用したものである。#2グループの電池は、個々の電池について端子間電圧を電圧計でモニターしながらエージングを行い、|dV/dt|≦5(mV/hr)となった時点でそれぞれエージングを終了した。#3グループの電池はエージング時間を一律に72時間とした。
【0055】
(c)コンディショニング処理
上記所定のエージング時間経過後、#1〜#3の各グループの電池についてコンディショニング処理を行った。充放電は25℃の温度下で行い、まず、電流密度0.25mA/cm2の定電流で電池電圧4.2Vまで充電を行い、さらにその電池電圧で定電圧充電を行い(充電合計時間6時間)、次いで、電流密度1mA/cm2の定電流で電池電圧3.0Vまで放電を行うものを1サイクルとして、合計4サイクル行った。そして4回目のサイクルの放電容量をもって、この容量をそれぞれのリチウム二次電池の初期放電容量とした。
【0056】
(2)電池特性の評価
作製した上記#1〜#3グループの各電池を、保存温度25℃の恒温槽に1ヶ月間保存し、保存後の放電容量を測定した。そして、式[(1−放電容量/初期放電容量)×100](%)を用いて、自己放電率を計算した。各グループの自己放電率を表1に示す。
【0057】
【表1】

Figure 0003870707
【0058】
表1から明らかなように、#1および#2グループの電池は自己放電率が小さく、自己放電率が50%以上である不良電池の発生は認められなかった。一方、#3グループの電池は、自己放電率が大きく、自己放電率が50%以上である不良電池は10個中2個認められた。したがって、端子間電圧、すなわち負極電位をモニターしながらエージングを行うエージング処理工程を含む本発明のリチウム二次電池の製造方法によれば、自己放電量の小さい二次電池を製造することができることが確認できた。
【0059】
〈実験2〉
(1)リチウム二次電池の作製
(a)電池の形成
本実験2では、参照極を挿入できる構造の二次電池を複数個作製した。正極は、正極活物質としてLiNi0.8Co0.15Al0.052を用いて形成した。まず、活物質であるLiNi0.8Co0.15Al0.05285重量部に、導電材としてカーボンブラックを10重量部、および結着剤としてポリフッ化ビニリデンを5重量部混合し、溶剤としてN−メチル−2−ピロリドンを添加して、混練してペースト状の正極合材を調整した。次に、この正極合材を厚さ15μmのアルミニウム箔集電体の両面に塗布し、乾燥し、ロールプレスを施してシート状の正極とした。正極の大きさは77mm×3750mmで、正極合材の乾燥プレス後の塗膜厚は片側当たり52μmとした。
【0060】
負極は、負極活物質として天然黒鉛を用いて形成した。まず、活物質である天然黒鉛92.5重量部に、結着剤としてポリフッ化ビニリデンを7.5重量部混合し、溶剤としてN−メチル−2−ピロリドンを添加して、混練してペースト状の負極合材を調整した。次に、この負極合材を厚さ10μmの銅箔集電体の両面に塗布し、乾燥し、ロールプレスを施してシート状の負極とした。負極の大きさは81mm×4650mmで、負極合材の乾燥プレス後の塗膜厚は片側当たり58μmとした。
【0061】
上記正極および負極を、その間に厚さ25μm、幅85mmのポリエチレン製のセパレータを挟装して倦回し、ロール状の電極体とした。なお、参照極には金属Li片を用いた。電極体および参照極を、外径35mm、長さ12mmのガラスセルに挿設し、非水電解液を40cc注入し、密閉して電池を形成した。非水電解液は、エチレンカーボネートとジエチルカーボネートとを体積比3:7に混合した混合溶媒にLiPF6を1Mの濃度で溶解したものを用いた。
【0062】
(b)エージング処理
形成した二次電池を2つのグループに分けて、一方を25℃の恒温槽に入れ、他方を60℃の恒温槽に入れて、負極電位の経時変化をそれぞれモニターしながらエージングを開始した。
【0063】
図3に、25℃の恒温槽に入れてエージングを行った電池の負極電位および端子間電圧の経時変化の一例を示す。また、図4に、60℃の恒温槽に入れてエージングを行った電池の負極電位および端子間電圧の経時変化の一例を示す。図3および図4から、負極電位の経時変化と端子間電圧の経時変化とは略対称的な挙動を示すことがわかり、負極電位の経時変化は端子間電圧の経時変化に反映されることが確認できる。また、高温下でエージングを行うほど、負極電位の上昇、は速いことも確認できる。
【0064】
上記各恒温槽における電池を、さらに2つのグループに分け、それぞれエージング時間を変えてエージングを行った。すなわち、図3において、負極電位に着目した場合、負極電位の変曲点近傍(図中A)でエージングを終了させた電池を#4グループの電池とし、また、負極電位の安定領域(図中B)でエージングを終了させた電池を#5グループの電池とした。同様に、図4において、負極電位の変曲点近傍(図中C)でエージングを終了させた電池を#6グループの電池とし、また、負極電位の安定領域(図中D)でエージングを終了させた電池を#7グループの電池とした。
【0065】
(c)コンディショニング処理
上記所定のエージング時間経過後、#4〜#7の各グループの電池についてコンディショニング処理を行った。充放電は25℃の温度下で行い、まず、電流密度0.25mA/cm2の定電流で電池電圧4.2Vまで充電を行い、さらにその電池電圧で定電圧充電を行い(充電合計時間6時間)、次いで、電流密度1mA/cm2の定電流で電池電圧3.0Vまで放電を行うものを1サイクルとして、合計4サイクル行った。そして4回目のサイクルの放電容量をもって、この容量をそれぞれのリチウム二次電池の初期放電容量とした。
【0066】
(2)電池特性の評価
作製した上記#4〜#7グループの各電池を、実験1と同様に、保存温度25℃の恒温槽に1ヶ月間保存して、保存後の放電容量を測定し、その保存後の放電容量と初期放電容量の値から自己放電率を計算した。そして、自己放電率が50%以上である電池を不良電池としてその発生割合を調査した。
【0067】
また、保存後の内部抵抗を測定した。以下に内部抵抗の測定方法を説明する。各グループの電池を、その容量の50%まで充電した状態(SOC50%)で、0.1Cで10秒間放電させ、10秒目の電圧を測定した。次いで0.3Cで10秒間、1Cで10秒間、3Cで10秒間、10Cで10秒間放電させ、各10秒目の電圧を測定した。同様の手順で充電も行い、各10秒目の電圧を測定した。そして、電圧の電流依存性を求め、電流−電圧直線の勾配を内部抵抗とした。なお、1Cは、電池を1時間で放電するために必要な電流である。各グループの不良電池の発生割合および内部抵抗の平均値を表2に示す。
【0068】
【表2】
Figure 0003870707
【0069】
表2から明らかなように、負極電位の変曲点近傍でエージングを終了した#4および#6グループの電池では、自己放電率が50%以上である不良電池の発生は認められなかった。一方、負極電位の安定領域でエージングを終了した#5および#7グループの電池では、不良電池がそれぞれ10個中4個認められた。また、内部抵抗の値も、#4および#6グループの電池は、#5および#7グループの電池と比較して小さい値となっており、そのばらつきも小さい。
【0070】
したがって、負極電位の経時変化をモニターしながらエージングを行い、負極電位の変曲点近傍でエージングを終了した電池は、自己放電量が小さく、かつ内部抵抗も小さい電池であることが確認できた。
【0071】
【発明の効果】
本発明のエージング処理方法によれば、電極にダメージを与えることなく、個々の電池の最適なエージング処理時間を簡単に決定することができる。また、そのエージング処理方法を含んで構成される本発明のリチウム二次電池の製造方法によれば、自己放電量の小さい、かつ内部抵抗の増加が抑制されたリチウム二次電池を製造することができる。
【図面の簡単な説明】
【図1】 エージング処理における負極電位の経時変化を示す。
【図2】 本発明のエージング処理方法が適用できる電池の一例である円筒型のリチウム二次電池の断面を示す。
【図3】 25℃下でエージングを行った電池の負極電位および端子間電圧の経時変化を示す。
【図4】 60℃下でエージングを行った電池の負極電位および端子間電圧の経時変化を示す。
【符号の説明】
1:円筒型リチウム二次電池(密閉型電池)
10:電極体
11:正極 12:負極 13:セパレータ
20:電池ケース
21:外装缶 22:正極側蓋板 23:負極側蓋板
30:正極端子
40:負極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aging treatment method performed for infiltrating a non-aqueous electrolyte into an electrode body after forming a battery, with respect to a lithium secondary battery using a lithium occlusion / desorption phenomenon.
[0002]
[Prior art]
With the downsizing of mobile phones, personal computers, etc., in the field of communication equipment and information-related equipment, lithium secondary batteries will be put into practical use and become widespread because of their high energy density as the power source used for these equipment. Has reached. In the field of automobiles, the development of electric vehicles has been urgently promoted due to resource issues and environmental issues, and lithium secondary batteries have been studied as power sources for the electric vehicles.
[0003]
Generally, a lithium secondary battery is formed by inserting an electrode body including a positive electrode and a negative electrode into a battery case, injecting a non-aqueous electrolyte, and then sealing the battery case. And after battery formation, what is called an aging process preserve | saved as it is at predetermined temperature is performed, and the conditioning process which adjusts a battery to the state which can be actually used by performing charging / discharging after that is performed.
[0004]
Here, the aging process is a process performed in order to sufficiently infiltrate the non-aqueous electrolyte into the electrode body. The aging process starts immediately after the battery is formed, and when the next conditioning process is started, specifically, the first charge is performed. Exit when starting. The time required for this aging treatment varies depending on the shape of each battery, the size of the electrodes, the pressure between the electrodes, the permeability of the electrolyte into the separator, and the temperature and pressure during the injection of the electrolyte. It is. It is known that the time for performing the aging treatment greatly affects the battery characteristics such as the ease of self-discharge of the manufactured battery and the magnitude of the internal resistance.
[0005]
For example, when the time for performing the aging treatment is too short, the non-aqueous electrolyte does not sufficiently infiltrate into the electrode body, so that the active material is damaged due to the lack of the electrolyte, and the internal resistance of the battery is increased. In addition, since charge / discharge is locally insufficient, the amount of self-discharge of the battery increases. That is, in order to infiltrate the non-aqueous electrolyte into the electrode body, it is necessary to ensure a sufficient time for the aging treatment, but if the time for the aging treatment is too long, the self-discharge amount of the manufactured battery is It gets bigger.
[0006]
On the other hand, when actually manufacturing a battery, a battery similar to the battery to be manufactured is preliminarily manufactured, and the aging process of the battery to be manufactured is based on the result of analyzing the characteristics of the preliminarily manufactured battery. The current situation is to determine the time uniformly. However, this preliminary study may not be sufficient, or there may be variations in storage conditions such as the presence of a temperature distribution inside the thermostatic chamber in which the battery is stored. Therefore, even when the aging treatment is performed based on the preliminary examination, the infiltration state of the non-aqueous electrolyte varies depending on the battery, and as a result, the manufactured battery is easily self-discharged and the internal resistance is large. There has been a problem that large variations in battery characteristics occur.
[0007]
[Problems to be solved by the invention]
In view of the above problems, as an attempt to find the optimum aging processing time for each battery, the AC resistance value between the positive and negative electrodes is measured during aging, and the infiltration state of the electrolytic solution is judged from the measured value. A method of determining the end of battery aging was studied. However, this method is not practical because it requires a complicated device, and it is difficult to apply an alternating current to all the batteries for a long time or in a time range that does not damage the electrodes.
[0008]
The inventor conducted a number of experiments regarding the aging treatment and investigated the relationship between the aging treatment time and the battery characteristics. As a result, if the aging treatment time is too long, Cu ions are eluted from the copper current collector of the negative electrode, the copper negative electrode terminal, etc., and the eluted Cu ions are precipitated at the time of charge / discharge which is the next conditioning treatment. It has been found that the self-discharge amount of the battery is increased by causing a micro short circuit of the battery or by becoming a shuttle material for the oxidation-reduction reaction. And the negative electrode potential changed during aging, and the knowledge that the elution reaction of Cu ion was related to the change of the negative electrode potential was obtained.
[0009]
The present invention has been made on the basis of the above knowledge, and by paying attention to the change in the negative electrode potential with time, an aging process that can easily determine the optimum aging time of each battery without damaging the electrodes. It is an object to provide a method.
[0010]
Another object of the present invention is to provide a method of manufacturing a lithium secondary battery that includes the aging treatment method and that has a small self-discharge amount and that suppresses an increase in internal resistance.
[0011]
[Means for Solving the Problems]
(1) The method for aging treatment of a lithium secondary battery according to the present invention is such that a negative electrode mixture containing a positive electrode and a negative electrode active material using a substance capable of inserting and extracting lithium as a positive electrode active material is layered on the surface of a copper current collector For a lithium secondary battery formed by storing a negative electrode formed in a battery case and a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent in a battery case, charge and discharge after battery formation The aging treatment method is performed for infiltrating the non-aqueous electrolyte into the electrode body until immediately before the conditioning treatment for adjusting the battery to a state where it can be actually used. Aging is performed while monitoring.
[0012]
  That is, the aging treatment method for a lithium secondary battery of the present invention focuses on the change with time of the negative electrode potential during aging and performs aging while monitoring the change with time of the negative electrode potential.Here, aging ends when the change in the negative electrode potential V with time becomes | dV / dt | ≦ 10 (mV / hr).
[0013]
As described above, the negative electrode potential changes during aging. As will be described in detail later, after the start of aging, the negative electrode potential continues to rise, reaches a maximum at a certain point, drops slightly, and thereafter stabilizes at a substantially constant value. That is, the change in the negative electrode potential with time can be roughly divided into two areas, a rising region and a stable region. The elution of Cu ions from the negative electrode or the like is considered to occur in a region where the negative electrode potential has finished increasing, that is, the negative electrode potential has started to decrease, and then stabilized. In a preliminary study, when the battery in which the negative electrode potential reached the stable region was disassembled and the infiltration state of the electrolytic solution into the electrode body was examined, the entire electrode was wet with the electrolytic solution. That is, it is considered that the electrode was well adapted to the electrolyte and showed a stable potential. Therefore, it is considered that the electrolyte solution has already sufficiently infiltrated into the electrode body when the negative electrode potential becomes maximum. Therefore, in order to suppress elution of Cu ions and sufficiently infiltrate the electrolyte into the electrode body, aging should be terminated immediately before the increased negative electrode potential decreases.
[0014]
In this way, by performing aging while monitoring the change in the negative electrode potential over time, the aging treatment method of the present invention can easily identify the timing of aging completion of each battery, and ensure the optimal aging treatment time for each battery. It will be possible.
[0015]
Further, the change in the negative electrode potential with time varies depending on the aging temperature. For example, when aging is performed at a high temperature, the negative electrode potential increases rapidly, and conversely, at a temperature of about room temperature, the negative electrode potential increases slowly. Therefore, for example, when it is desired to finish aging early, the aging processing method of the present invention is a method capable of freely controlling the aging processing time, such as aging at a high temperature.
[0016]
(2) The method for producing a lithium secondary battery of the present invention including the above aging treatment method is such that a negative electrode mixture containing a positive electrode and a negative electrode active material having a positive electrode active material as a material capable of inserting and extracting lithium is a copper current collector. A method for manufacturing a lithium secondary battery formed by housing an electrode body including a negative electrode formed in a layered manner on the surface of a body and a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent in a battery case A battery forming step of forming the battery by housing the electrode body together with the non-aqueous electrolyte in the battery case, and infiltrating the non-aqueous electrolyte into the electrode body while monitoring a change with time of the negative electrode potential V An aging treatment step for aging the formed battery, and a conditioning treatment step for adjusting the battery to an actually usable state by charging and discharging the battery immediately after the aging treatment, They comprise constructed.
[0017]
  That is, the method for producing a lithium secondary battery of the present invention includes the aging treatment method between the battery formation step and the conditioning treatment step.Here, in the aging process, the aging is terminated when the change with time of the negative electrode potential V becomes | dV / dt | ≦ 10 (mV / hr).The method for producing a lithium secondary battery of the present invention can optimize the aging treatment time for each battery, so that the lithium secondary battery has a small self-discharge amount and an increase in internal resistance is suppressed. Is a simple method for manufacturing.
[0018]
(3) The relationship between the reaction in the battery and the negative electrode potential in the aging process will be described below.
[0019]
In general, inevitable moisture is adsorbed on the electrode, and this moisture reacts with the electrolyte in the non-aqueous electrolyte solution to generate HF and HThreePOFourTo produce acid components. For example, LiPF as the electrolyte6The reaction formula when using is shown in (Formula 1) and (Formula 2).
[0020]
LiPF6+ H2O → LiF + 2HF + POFThree  ... (Formula 1)
POFThree+ 3H2O → HThreePOFour+ 3HF (Formula 2)
On the other hand, the surface of the copper current collector that constitutes the negative electrode is Cu formed in the atmosphere.2Covered with O. Therefore, at the interface between the negative electrode and the electrolytic solution, the acid component H+The metal / oxide equilibrium potential corresponds to the ion concentration. Cu / Cu2The reaction formula of the equilibrium reaction of O is shown in (Formula 3). Further, the potential E at that time0Also shown.
[0021]
2Cu + H2O → Cu2O + 2H++ 2e (Formula 3)
E0= 0.471-0.059 pH (H / H+Criteria)
In addition, when the pH is greatly lowered, Cu of the copper current collector becomes Cu2+Elution as ions (anodic reaction), H+Cu / Cu regardless of ion concentration2+The equilibrium potential is This reaction formula is shown in (Formula 4). Further, the potential E at that time0Also shown.
[0022]
Cu → Cu2++ 2e (Formula 4)
E0= 0.337-0.0295 Log [Cu2+] (H / H+Criteria)
On the other hand, as the cathode reaction, the acid component H+H from2The generation reaction and the reaction between dissolved oxygen in the non-aqueous electrolyte and water adhering to the electrode can be considered. Each reaction formula is shown in (Formula 5) and (Formula 6). Further, the potential E at that time0Also shown.
[0023]
2H++ 2e → H2  ... (Formula 5)
E0= 0.059 Log [H+] -0.0296p [H2] (H / H+Standard, p [H2] Is hydrogen partial pressure)
O2+ 2H2O + 4e → 4OH-  ... (Formula 6)
E0= 0.401-0.0147 Log [OH-] + 0.0591p [O2]
(H / H+Standard, p [O2] Is oxygen partial pressure)
The electrode reaction in the state where the negative electrode is infiltrated with the electrolyte is a balance of the above-mentioned various reactions as the sum of the anode reaction and the cathode reaction. Yes.
[0024]
When the aging treatment is started, for example, the acid components (HF, HThreePOFourEtc.) and its H+The equilibrium reaction shown in (Equation 3) proceeds to the left by the action of ions, and Cu2O is reduced and removed. This Cu2The reduction reaction of O appears as a change in the potential of the negative electrode, and the negative electrode potential increases as the reaction proceeds. FIG. 1 shows the change with time of the negative electrode potential in the aging treatment. In FIG. 1, the solid line shows the result of aging at a temperature of 25 ° C., and the broken line shows the result of aging at a temperature of 60 ° C. Cu2The reduction reaction of O appears as a potential increase region (a) in the change with time of the negative electrode potential shown in FIG. Since this reaction is completed in a relatively short time at a high temperature, when aging is performed at a high temperature, the potential of the negative electrode rapidly increases as indicated by a broken line. On the other hand, since the moisture adsorbed inside the electrode gradually reacts at a temperature of about room temperature, the potential rise of the negative electrode is slow as shown by the solid line. And Cu2The reduction reaction of O is related to the ease of infiltration of the electrolyte into the electrode body, such as the size of the electrodes, the compression state between the electrodes, the permeability of the electrolyte into the separator, and the ease of detachment of bubbles from the electrodes. Therefore, the potential change of the negative electrode is an effective parameter for judging the degree of electrolyte infiltration.
[0025]
Cu on current collector surface of negative electrode2When O disappears, the Cu2The reduction reaction of O is completed. On the other hand, since the pH in the vicinity of the negative electrode is lowered due to the presence of the acid component, the reaction shown in (Formula 4) proceeds, and Cu ions are eluted from the copper current collector. As the elution reaction of Cu ions progresses, the polarization resistance of the anode reaction decreases, and the negative electrode potential decreases. That is, in the time course of the negative electrode potential shown in FIG. 1, the elution reaction of Cu ions appears as a stable region (b) including a decrease in potential. Therefore, elution of Cu ions can be suppressed if aging is terminated immediately before the negative electrode potential decreases.
[0026]
As described above, by monitoring the negative electrode potential, excessive aging can be suppressed, and aging treatment that sufficiently infiltrates the electrode body into the electrode body can be performed while suppressing elution of Cu ions.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the method for aging treatment of a lithium secondary battery of the present invention will be described in detail. First, the configuration and structure of a lithium secondary battery to which the aging treatment method of the present invention is applied will be described, and then an embodiment of a method for manufacturing a lithium secondary battery including the aging treatment method of the present invention will be described. To do.
[0028]
<Configuration of lithium secondary battery>
In general, a lithium secondary battery includes a positive electrode and a negative electrode that occlude and desorb lithium, a separator sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte that moves lithium between the positive electrode and the negative electrode, The lithium secondary battery that is configured from the above and to which the aging treatment method of the present invention can be applied also follows this configuration. Hereinafter, each component will be described.
[0029]
The positive electrode is prepared by mixing a positive electrode active material with a conductive material and a binder and adding a suitable solvent as necessary to form a paste-like positive electrode mixture on the surface of a current collector made of metal foil such as aluminum. It can be formed by coating, drying, and then increasing the active material density by pressing.
[0030]
A material capable of inserting and extracting lithium is employed as the positive electrode active material. For example, from the viewpoint that a 4V class secondary battery can be configured, the basic composition is LiCoO.2, LiNiO2LiMnO2Lithium transition metal composite oxide with layered rock salt structure and the basic composition of LiMn2OFourFor example, a lithium transition metal composite oxide having a spinel structure can be used. Among them, the basic composition is LiNiO.2The lithium transition metal composite oxide having a layered rock salt structure is preferable because it is lower in price than the lithium transition metal composite oxide having Co as a central metal and can form a secondary battery having a large discharge capacity per unit weight. .
[0031]
The basic composition means a representative composition of each of the above complex oxides. In addition to those represented by the above composition formula, for example, lithium sites and transition metal sites may be included in one or more other types. Also includes compositions such as those partially substituted with elements. In addition, it is not necessarily limited to a stoichiometric composition, for example, a non-stoichiometric composition in which a cation element such as Li or Ni that is inevitably produced in production is deficient or oxygen element is deficient. Including things. Furthermore, one type of lithium transition metal composite oxide can be used, or two or more types can be mixed and used.
[0032]
The conductive material used for the positive electrode is for ensuring the electron conductivity of the positive electrode active material layer, and is a mixture of one or more carbon material powders such as carbon black, acetylene black, and graphite. Can be used. The binder plays a role of anchoring the active material particles, and a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene can be used. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active material, conductive material, and binder.
[0033]
The negative electrode may be formed by mixing a binder with a negative electrode active material capable of inserting and extracting lithium, and laminating a paste of a negative electrode mixture in a layer on the surface of the current collector by adding an appropriate solvent. it can. Here, copper, which is a relatively noble metal, is used for the current collector, and “made of copper” is a concept that includes pure copper and a copper alloy to which other elements are slightly added. is there. For example, the negative electrode may be formed by applying, drying, and pressing a negative electrode mixture on the surface of a copper foil current collector. Examples of the negative electrode active material that can be used include natural graphite, spherical or fibrous artificial graphite, graphitizable carbon such as coke, and non-graphitizable carbon such as a phenol resin fired body. As with the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride can be used as the negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
[0034]
The separator sandwiched between the positive electrode and the negative electrode retains the electrolytic solution while isolating the positive electrode and the negative electrode and allows ions to pass through. A thin microporous film such as polyethylene or polypropylene can be used.
[0035]
The non-aqueous electrolyte is obtained by dissolving an electrolyte in an organic solvent. Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran. , Dioxolane, methylene chloride or the like, or a mixture of two or more thereof can be used. Further, as the electrolyte to be dissolved, LiI and LiClO that generate lithium ions when dissolved are used.Four, LiAsF6, LiBFFour, LiPF6Etc. can be used.
[0036]
<Structure of lithium secondary battery>
FIG. 2 shows a cross section of a cylindrical lithium secondary battery as an example of a lithium secondary battery to which the aging treatment method of the present invention having the above components can be applied. The lithium secondary battery 1 includes an electrode body 10, a battery case 20 that seals the electrode body 10 together with a non-aqueous electrolyte, and a positive electrode terminal 30 and a negative electrode terminal 40 that are attached to the battery container 20 and are electrically connected to the electrode body 10. It is configured.
[0037]
The electrode body 10 has a roll shape in which a sheet-like positive electrode 11 and a sheet-like negative electrode 12 are sandwiched between separators 13 and wound around a winding core 14. Incidentally, the positive electrode 11 is formed by forming a positive electrode mixture layer containing a lithium transition metal composite oxide as an active material on both surfaces of an aluminum foil current collector, and the negative electrode 12 is formed as an active material on both surfaces of a copper foil current collector. A negative electrode mixture layer containing a carbon material is formed, and the separator 13 is made of a porous polyethylene sheet. The winding core 14 includes an aluminum winding core portion 14a made of an aluminum alloy located on the positive electrode terminal side, and a resin resin winding located on the negative electrode terminal side that is coaxially screwed to the aluminum winding core portion 14a. It consists of a core part 14b. The battery container 20 includes a stainless steel cylindrical outer can 21, and a stainless steel disk-shaped positive electrode side cover plate 22 and a negative electrode side cover plate 23 that are respectively joined to both opening ends of the outer can 21. The positive side cover plate 22 and the negative side cover plate 23 are each provided with a safety valve 24 that opens when the internal pressure of the battery case 20 exceeds a predetermined pressure (the positive side is not shown). The side lid plate 23 is further provided with an electrolyte injection port 25, and an injection hole plug 26 that seals the electrolyte injection port 25 is screwed onto the side lid plate 23.
[0038]
The positive electrode terminal 30 is made of aluminum and includes a current collecting portion 30a and a bolt-shaped external terminal portion 30b. The current collecting portion 30a is screwed and connected to the aluminum wound core portion 14a of the wound core 14. The external terminal portion 30b is attached to a positive electrode terminal mounting hole 22a provided in the positive electrode side cover plate 22 of the battery case 20 with a washer 32 and a nut 33 via a gasket 31 in a state in which the tip protrudes to the outside of the battery. It is insulated from the battery container 20. A strip-shaped aluminum positive electrode lead 11 a extending from the positive electrode 11 is joined to the current collector 30 a around the positive electrode 11, and electrical connection between the positive electrode terminal 30 and the positive electrode 11 of the electrode body 10 is ensured.
[0039]
The negative electrode terminal 40 is made of copper and includes a current collecting portion 40a and a bolt-shaped external terminal portion 40b. The current collecting portion 40a is screwed and connected to the resin wound core portion 14b of the wound core 14, and The external terminal portion 40b is attached to a negative electrode terminal mounting hole 23a provided in the negative electrode side cover plate 23 of the battery case 20 with a washer 42 and a nut 43 with a gasket 41 in a state where the tip protrudes outside the battery. The battery container 20 is insulated. A strip-shaped copper negative electrode lead 12 a extending from the negative electrode 12 is joined to the current collector 40 a around the negative electrode 12, and electrical conduction between the negative electrode terminal 40 and the negative electrode 12 of the electrode body 10 is ensured.
[0040]
<Manufacturing method of lithium secondary battery>
As an example of a lithium secondary battery to which the aging treatment method of the present invention can be applied, a method for producing a lithium secondary battery having the above structure will be described in the order of a battery formation step, an aging treatment step, and a conditioning treatment step.
[0041]
(1) Battery formation process
This step is a step of forming the battery as shown in FIG. 2 by housing the electrode body together with the non-aqueous electrolyte in the battery case. First, the positive electrode and the negative electrode formed as described above are laminated via a separator to form an electrode body, and a current collecting lead or the like between the positive electrode current collector and the negative electrode current collector and the positive electrode terminal and the negative electrode terminal connected to the outside And connect to the battery case. Then, a non-aqueous electrolyte is injected from the electrolyte inlet, and the battery case is sealed to form a battery.
[0042]
(2) Aging process
This step is a step of aging the battery by infiltrating the non-aqueous electrolyte into the electrode body while monitoring the temporal change of the negative electrode potential V. The aging process starts immediately after injecting the non-aqueous electrolyte into the battery case in the battery forming process, and ends when the first charge is started in the conditioning process performed after this process.
[0043]
Aging is performed by storing the battery after battery formation at a predetermined temperature while monitoring the change with time of the negative electrode potential V. The method for monitoring the negative electrode potential is not particularly limited. For example, a battery having a structure in which a third electrode (reference electrode) other than the positive and negative electrodes can be inserted into the battery case, and the negative electrode potential with respect to the reference electrode may be measured. The negative electrode potential is, for example, a large input resistance (≧ 10TenWhat is necessary is just to measure using the electrometer etc. which are ohm voltmeters.
[0044]
In addition, as shown in (Formula 7), the voltage between terminals (voltage between positive and negative electrodes) is represented by the difference between the positive electrode potential and the negative electrode potential. Terminal voltage = positive electrode potential−negative electrode potential (Equation 7) Here, since the positive electrode potential can be considered to be substantially constant during aging, the potential change of the negative electrode is directly reflected in the change of the terminal voltage. Therefore, as a more practical method, instead of measuring the negative electrode potential during aging, measure the inter-terminal voltage with a voltmeter, etc., and adopt an aspect in which aging is performed while monitoring the temporal change of the inter-terminal voltage. Can do.
[0045]
Further, the temperature at which the battery is stored is not particularly limited. For example, the storage temperature may be appropriately determined such as about room temperature. In particular, when it is desired to finish aging early, it is desirable to store at a high temperature of, for example, about 60 ° C. as described above. The storage method is not particularly limited, and for example, the battery can be stored in a thermostat.
[0046]
  As described above, the negative electrode potential continues to increase after the start of aging, decreases slightly after reaching a maximum at a certain point, and thereafter becomes a substantially constant value. Therefore, in order to sufficiently infiltrate the electrolyte into the electrode body while suppressing elution of Cu ions from the negative electrode, aging may be terminated in the vicinity of the inflection point of the negative electrode potential. More specifically, it is terminated when the rate of change of the negative electrode potential V with time becomes | dV / dt | ≦ 10 (mV / hr).TheIf the aging is continued, the negative electrode potential eventually stabilizes at a substantially constant value, so that | dV / dt | ≦ 10 (mV / hr) may be satisfied even in the stable region. Is not intended for that time. The desirable end of aging is only near the inflection point of the negative electrode potential. In order to end the aging, charging in the next conditioning process may be started.
[0047]
(3) Conditioning process
This step is a step of adjusting the battery to a state where it can be actually used by charging and discharging the battery immediately after the previous aging treatment. Charging / discharging may be performed by a method that is usually performed as a conditioning process. At a predetermined temperature, the battery is charged to a predetermined voltage at a current density as low as possible, and similarly, discharged to a predetermined voltage at a current density as low as possible. Can be done. For example, in the case of a 4V class battery, the current density is 0.2 to 2 mA / cm.2The battery is charged to a battery voltage of about 4 V at a constant current of 1 mA and then has a current density of 1 to 2 mA / cm.2The battery may be discharged to a battery voltage of about 3V with a constant current of. The number of times of charging / discharging is not particularly limited, and may be performed not only once but also a plurality of times.
[0048]
<Acceptance of other embodiments>
As mentioned above, although the embodiment of the aging treatment method of the lithium secondary battery of the present invention and the method of manufacturing the lithium secondary battery including the same has been described, the above-described embodiment is merely one embodiment, and the lithium secondary battery of the present invention is described above. The battery aging treatment method and the lithium secondary battery manufacturing method including the battery aging treatment method can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiment.
[0049]
【Example】
Based on the above embodiment, after actually forming a lithium secondary battery, an aging process and a conditioning process were performed to prepare various batteries. And the discharge capacity and internal resistance of those batteries were measured, and the battery characteristics were evaluated. Hereinafter, these contents will be described.
[0050]
<Experiment 1>
(1) Preparation of lithium secondary battery
(A) Battery formation
In Experiment 1, a plurality of lithium secondary batteries having the structure shown in FIG. The positive electrode 11 is LiNiO as a positive electrode active material.2Formed using. First, LiNiO, which is an active material2To 85 parts by weight, 10 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, N-methyl-2-pyrrolidone is added as a solvent, and kneaded to form a paste A positive electrode mixture was prepared. Next, this positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 15 μm, dried, and roll-pressed to obtain a sheet-like positive electrode 11. The size of the positive electrode 11 was 124 mm × 3050 mm, and the coating thickness after the dry pressing of the positive electrode mixture was 70 μm per side.
[0051]
The negative electrode 12 was formed using graphitized mesocarbon microbeads (MCMB) as a negative electrode active material. First, 90 parts by weight of MCMB as an active material is mixed with 10 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone is added as a solvent, and kneaded to prepare a paste-like negative electrode mixture. did. Next, this negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil current collector, dried, and roll-pressed to obtain a sheet-like negative electrode 12. The size of the negative electrode 12 was 128 mm × 3200 mm, and the coating thickness of the negative electrode mixture after dry pressing was 75 μm per side.
[0052]
The positive electrode 11 and the negative electrode 12 were wound by sandwiching a polyethylene separator 13 having a thickness of 25 μm and a width of 132 mm therebetween to obtain a roll-shaped electrode body 10. The electrode body 10 was inserted into a cylindrical battery case 20 made of SUS304, 50 cc of a nonaqueous electrolyte was injected from the electrolyte inlet 25, and the battery case 20 was sealed to form a battery. The non-aqueous electrolyte is LiPF in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7.6Was dissolved at a concentration of 1M. The outer can 21 of the battery case 20 has a plate thickness of 0.3 mm, an outer diameter of 33 mm, and a length of 150 mm. The positive electrode side cover plate 22 and the negative electrode side cover plate 23 have a plate thickness of 0.5 mm. A disk shape having an outer diameter substantially equal to the inner diameter of 21 is formed.
[0053]
(B) Aging process
Each of the formed secondary batteries was divided into three groups (# 1 to # 3) for aging. Aging was performed by putting the batteries of each group in a constant temperature bath at 20 ° C. and storing them for a predetermined time.
[0054]
The batteries of # 1 group all had an aging time of 10 hours. This is because, as a result of performing aging preliminarily while monitoring the change with time of the voltage between the terminals using the formed battery, the time until the voltage between the terminals became stable was 10 hours. As a uniform adoption. The batteries of # 2 group were aged while monitoring the voltage between terminals of each battery with a voltmeter, and the aging was finished when | dV / dt | ≦ 5 (mV / hr). The batteries of # 3 group had a uniform aging time of 72 hours.
[0055]
(C) Conditioning process
After the predetermined aging time had elapsed, conditioning processing was performed on the batteries of each group of # 1 to # 3. Charging / discharging is performed at a temperature of 25 ° C. First, a current density of 0.25 mA / cm.2The battery is charged to a battery voltage of 4.2 V at a constant current, and further charged at a constant voltage at the battery voltage (total charge time 6 hours), and then a current density of 1 mA / cm.2One cycle was discharged at a constant current of up to a battery voltage of 3.0 V for a total of 4 cycles. And the capacity | capacitance was made into the initial stage discharge capacity of each lithium secondary battery with the discharge capacity of the 4th cycle.
[0056]
(2) Evaluation of battery characteristics
The produced batteries of the above-mentioned # 1 to # 3 groups were stored in a constant temperature bath at a storage temperature of 25 ° C. for 1 month, and the discharge capacity after storage was measured. Then, the self-discharge rate was calculated using the formula [(1-discharge capacity / initial discharge capacity) × 100] (%). Table 1 shows the self-discharge rate of each group.
[0057]
[Table 1]
Figure 0003870707
[0058]
As is clear from Table 1, the batteries in groups # 1 and # 2 had a low self-discharge rate, and no defective battery having a self-discharge rate of 50% or more was observed. On the other hand, the batteries of # 3 group had a large self-discharge rate, and 2 out of 10 defective cells with a self-discharge rate of 50% or more were recognized. Therefore, according to the method for manufacturing a lithium secondary battery of the present invention including the aging process step of performing aging while monitoring the voltage between terminals, that is, the negative electrode potential, a secondary battery with a small self-discharge amount can be manufactured. It could be confirmed.
[0059]
<Experiment 2>
(1) Preparation of lithium secondary battery
(A) Battery formation
In Experiment 2, a plurality of secondary batteries having a structure in which a reference electrode can be inserted were produced. The positive electrode is LiNi as a positive electrode active material.0.8Co0.15Al0.05O2Formed using. First, the active material LiNi0.8Co0.15Al0.05O2To 85 parts by weight, 10 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, N-methyl-2-pyrrolidone is added as a solvent, and kneaded to form a paste A positive electrode mixture was prepared. Next, this positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 15 μm, dried, and roll-pressed to obtain a sheet-like positive electrode. The size of the positive electrode was 77 mm × 3750 mm, and the coating thickness after the dry pressing of the positive electrode mixture was 52 μm per side.
[0060]
The negative electrode was formed using natural graphite as the negative electrode active material. First, 92.5 parts by weight of natural graphite as an active material is mixed with 7.5 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone is added as a solvent, and the mixture is kneaded and pasted. The negative electrode composite was adjusted. Next, this negative electrode mixture was applied to both sides of a 10 μm thick copper foil current collector, dried, and roll-pressed to obtain a sheet-like negative electrode. The size of the negative electrode was 81 mm × 4650 mm, and the coating thickness of the negative electrode mixture after dry pressing was 58 μm per side.
[0061]
The positive electrode and the negative electrode were wound by sandwiching a polyethylene separator having a thickness of 25 μm and a width of 85 mm therebetween to obtain a roll-shaped electrode body. A metal Li piece was used for the reference electrode. The electrode body and the reference electrode were inserted into a glass cell having an outer diameter of 35 mm and a length of 12 mm, and 40 cc of nonaqueous electrolyte was injected and sealed to form a battery. The non-aqueous electrolyte is LiPF in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7.6Was dissolved at a concentration of 1M.
[0062]
(B) Aging process
The formed secondary batteries were divided into two groups, one was placed in a constant temperature bath at 25 ° C., and the other was placed in a constant temperature bath at 60 ° C., and aging was started while monitoring the time course of the negative electrode potential.
[0063]
FIG. 3 shows an example of changes over time in the negative electrode potential and the inter-terminal voltage of a battery that has been aged in a thermostatic bath at 25 ° C. FIG. 4 shows an example of changes over time in the negative electrode potential and the inter-terminal voltage of a battery that has been aged in a thermostat at 60 ° C. 3 and 4, it can be seen that the time-dependent change in the negative electrode potential and the time-dependent change in the voltage between the terminals show substantially symmetrical behavior, and that the time-dependent change in the negative electrode potential is reflected in the time-dependent change in the voltage between the terminals. I can confirm. It can also be confirmed that the higher the aging at a higher temperature, the faster the negative electrode potential increases.
[0064]
The batteries in each thermostat were further divided into two groups, and aging was performed by changing the aging time. That is, in FIG. 3, when attention is paid to the negative electrode potential, the batteries that have finished aging in the vicinity of the inflection point of the negative electrode potential (A in the figure) are the # 4 group batteries, and the stable region of the negative electrode potential (in the figure) Batteries for which aging was completed in B) were designated as # 5 group batteries. Similarly, in FIG. 4, the batteries that have finished aging near the inflection point of the negative electrode potential (C in the figure) are the # 6 group batteries, and the aging is finished in the stable region of the negative electrode potential (D in the figure). These batteries were used as # 7 group batteries.
[0065]
(C) Conditioning process
After the predetermined aging time had elapsed, conditioning processing was performed on the batteries of each group of # 4 to # 7. Charging / discharging is performed at a temperature of 25 ° C. First, a current density of 0.25 mA / cm.2The battery is charged to a battery voltage of 4.2 V at a constant current, and further charged at a constant voltage at the battery voltage (total charge time 6 hours), and then a current density of 1 mA / cm.2One cycle was discharged at a constant current of up to a battery voltage of 3.0 V for a total of 4 cycles. And the capacity | capacitance was made into the initial stage discharge capacity of each lithium secondary battery with the discharge capacity of the 4th cycle.
[0066]
(2) Evaluation of battery characteristics
As in Experiment 1, the batteries of the above-mentioned # 4 to # 7 groups were stored in a constant temperature bath at a storage temperature of 25 ° C. for one month, the discharge capacity after storage was measured, and the discharge capacity after storage And the self-discharge rate was calculated from the value of the initial discharge capacity. And the generation | occurrence | production ratio was investigated by making into a defective battery the battery whose self-discharge rate is 50% or more.
[0067]
Moreover, the internal resistance after storage was measured. A method for measuring the internal resistance will be described below. The batteries of each group were discharged at 0.1 C for 10 seconds while charged to 50% of their capacity (SOC 50%), and the voltage at 10 seconds was measured. Next, the battery was discharged at 0.3 C for 10 seconds, 1 C for 10 seconds, 3 C for 10 seconds, and 10 C for 10 seconds, and the voltage at each 10 second was measured. Charging was performed in the same procedure, and the voltage at the 10th second was measured. Then, the current dependency of the voltage was obtained, and the slope of the current-voltage straight line was defined as the internal resistance. Note that 1C is a current necessary for discharging the battery in one hour. Table 2 shows the generation ratio of defective batteries in each group and the average value of internal resistance.
[0068]
[Table 2]
Figure 0003870707
[0069]
As is apparent from Table 2, in the batteries of groups # 4 and # 6 that have finished aging near the inflection point of the negative electrode potential, the occurrence of defective batteries having a self-discharge rate of 50% or more was not observed. On the other hand, in the batteries of # 5 and # 7 groups that finished aging in the stable region of the negative electrode potential, 4 out of 10 defective batteries were recognized. Also, the values of the internal resistances of the batteries in the # 4 and # 6 groups are smaller than those of the # 5 and # 7 groups, and their variation is small.
[0070]
Therefore, it was confirmed that the battery that was aged while monitoring the change with time of the negative electrode potential and finished aging near the inflection point of the negative electrode potential was a battery having a small self-discharge amount and a small internal resistance.
[0071]
【The invention's effect】
According to the aging treatment method of the present invention, it is possible to easily determine the optimum aging treatment time for each battery without damaging the electrodes. In addition, according to the method for manufacturing a lithium secondary battery of the present invention including the aging treatment method, it is possible to manufacture a lithium secondary battery with a small self-discharge amount and an increase in internal resistance is suppressed. it can.
[Brief description of the drawings]
FIG. 1 shows a change in negative electrode potential over time in an aging treatment.
FIG. 2 shows a cross section of a cylindrical lithium secondary battery as an example of a battery to which the aging treatment method of the present invention can be applied.
FIG. 3 shows changes over time in the negative electrode potential and the inter-terminal voltage of a battery that was aged at 25 ° C.
FIG. 4 shows changes over time in the negative electrode potential and the inter-terminal voltage of a battery that was aged at 60 ° C.
[Explanation of symbols]
1: Cylindrical lithium secondary battery (sealed battery)
10: Electrode body
11: Positive electrode 12: Negative electrode 13: Separator
20: Battery case
21: Exterior can 22: Positive side cover plate 23: Negative side cover plate
30: Positive terminal
40: Negative terminal

Claims (2)

リチウムを吸蔵・脱離可能な物質を正極活物質とする正極および負極活物質を含む負極合材が銅製集電体の表面に層状に形成されてなる負極を備えてなる電極体と、リチウム塩を有機溶媒に溶解した非水電解液とを電池ケースに収納して形成されるリチウム二次電池に対し、
電池形成後、充放電を行うことにより電池を実使用可能な状態に調整するコンディショニング処理の直前までの間、前記電極体に前記非水電解液を浸潤させるために行うエージング処理方法であって、
負極電位Vの経時変化をモニターしながらエージングを行い、該負極電位Vの経時変化が|dV/dt|≦10(mV/hr)となった時に該エージングを終了するリチウム二次電池のエージング処理方法。
An electrode body comprising a negative electrode in which a negative electrode mixture containing a positive electrode and a negative electrode active material, each having a lithium occluding / desorbing material as a positive electrode active material, is formed on the surface of a copper current collector, and a lithium salt For a lithium secondary battery formed by storing a non-aqueous electrolyte dissolved in an organic solvent in a battery case,
An aging treatment method performed for infiltrating the non-aqueous electrolyte into the electrode body until immediately before conditioning treatment for adjusting the battery to a state where it can be actually used by charging and discharging after battery formation,
Monitoring the temporal change in the anode potential V have rows aging while, aging of the negative electrode potential V is | dV / dt | ≦ 10 aging of the lithium secondary battery to end the aging when a (mV / hr) Processing method.
リチウムを吸蔵・脱離可能な物質を正極活物質とする正極および負極活物質を含む負極合材が銅製集電体の表面に層状に形成されてなる負極を備えてなる電極体と、リチウム塩を有機溶媒に溶解した非水電解液とを電池ケースに収納して形成されるリチウム二次電池の製造方法であって、
前記電極体を前記非水電解液とともに前記電池ケースに収納して電池を形成する電池形成工程と、
負極電位Vの経時変化をモニターしながら前記電極体に前記非水電解液を浸潤させて形成した前記電池のエージングを行い、該負極電位Vの経時変化が|dV/dt|≦10(mV/hr)となった時に該エージングを終了するエージング処理工程と、
エージング処理直後の前記電池に対し充放電を行うことにより電池を実使用可能な状態に調整するコンディショニング処理工程と、
を含んで構成されるリチウム二次電池の製造方法。
An electrode body comprising a negative electrode in which a negative electrode mixture containing a positive electrode and a negative electrode active material, each having a lithium occluding / desorbing material as a positive electrode active material, is formed on the surface of a copper current collector, and a lithium salt A method for producing a lithium secondary battery formed by housing a non-aqueous electrolyte dissolved in an organic solvent in a battery case,
A battery forming step of forming the battery by storing the electrode body together with the non-aqueous electrolyte in the battery case;
While monitoring the temporal change of the negative electrode potential V infiltrated with the nonaqueous electrolyte solution in the electrode body have rows aging of the cell formed by, aging of negative electrode potential V is | dV / dt | ≦ 10 ( mV / Hr), an aging process step for ending the aging when
A conditioning process for adjusting the battery to a state where it can be used by charging and discharging the battery immediately after the aging process;
A method for manufacturing a lithium secondary battery comprising:
JP2001099153A 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same Expired - Fee Related JP3870707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001099153A JP3870707B2 (en) 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099153A JP3870707B2 (en) 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
JP2002298925A JP2002298925A (en) 2002-10-11
JP3870707B2 true JP3870707B2 (en) 2007-01-24

Family

ID=18952731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099153A Expired - Fee Related JP3870707B2 (en) 2001-03-30 2001-03-30 Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same

Country Status (1)

Country Link
JP (1) JP3870707B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720221B2 (en) * 2005-03-11 2011-07-13 トヨタ自動車株式会社 Manufacturing method of secondary battery
JP5765061B2 (en) * 2011-06-03 2015-08-19 株式会社Ihi Combined battery cell combination system
EP2957921B1 (en) * 2013-07-04 2018-04-04 LG Chem, Ltd. Method and system for estimating soc of battery
JP5708761B2 (en) * 2013-11-08 2015-04-30 三菱自動車工業株式会社 Method for removing moisture from lithium ion secondary battery
CN107369862A (en) * 2017-08-04 2017-11-21 东莞市振华新能源科技有限公司 A kind of method of testing of lithium ion battery digestion time
JP6975388B2 (en) * 2018-04-23 2021-12-01 トヨタ自動車株式会社 Reusable non-aqueous electrolyte secondary battery sorting method
CN112433162B (en) * 2020-10-26 2023-09-01 惠州市豪鹏科技有限公司 Aging method of lithium ion battery
CN114156544A (en) * 2021-12-02 2022-03-08 天津市捷威动力工业有限公司 Method for rapidly determining battery core infiltration time

Also Published As

Publication number Publication date
JP2002298925A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
US11824172B2 (en) Method and system for producing nonaqueous electrolyte secondary battery
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
US11011321B2 (en) Electrochemical energy storage device
JP4826199B2 (en) Water-based lithium secondary battery
US20080311475A1 (en) Charging a lithium ion battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JPH11204148A (en) Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP3870707B2 (en) Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2004006234A (en) High energy density rechargeable battery for medical device application
JP2003168427A (en) Nonaqueous electrolyte battery
JP2003100351A (en) Method of measuring self-discharge amount of lithium ion secondary cell and method of manufacturing lithium ion secondary cell
JP4661145B2 (en) Manufacturing method of lithium ion secondary battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP2008300178A (en) Nonaqueous secondary battery
JP2003007339A (en) Battery and manufacturing method of battery
JP2003173769A (en) Nonaqueous electrolyte secondary battery
JP7213208B2 (en) Non-aqueous electrolyte secondary battery
EP4078711B1 (en) Electrolyte for li secondary batteries
JP2002298926A (en) Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees