JP2005209528A - Secondary battery inspection method - Google Patents

Secondary battery inspection method Download PDF

Info

Publication number
JP2005209528A
JP2005209528A JP2004016050A JP2004016050A JP2005209528A JP 2005209528 A JP2005209528 A JP 2005209528A JP 2004016050 A JP2004016050 A JP 2004016050A JP 2004016050 A JP2004016050 A JP 2004016050A JP 2005209528 A JP2005209528 A JP 2005209528A
Authority
JP
Japan
Prior art keywords
secondary battery
copper
temperature
micro short
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016050A
Other languages
Japanese (ja)
Inventor
Hitoshi Sakai
仁 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004016050A priority Critical patent/JP2005209528A/en
Publication of JP2005209528A publication Critical patent/JP2005209528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery inspection method which can detect a secondary battery that will have the risk of a micro short circuit sooner or later even if the micro short circuit does not occur at the moment of the inspection, since the inspection method can detect incorporation of a minute amount of metal impurities. <P>SOLUTION: The method can bring the state of the micro short circuit between electrodes by decreasing an initial charging temperature IT, increasing the viscosity of an electrolyte, and increasing the height H of copper deposited on a negative electrode 5, even when a minute amount of copper piece 12, such that does not make the micro short circuit occur in a conventional charging manner, is incorporated into an electrode. Therefore, the method can detect the battery having the electrode, into which a minute amount of the copper is incorporated, by detecting the micro short circuit. Preferably, the initial charging temperature IT is set in a range from -20°C to 5°C. This can detect nearly half the secondary batteries having the incorporation of copper, and can improve the reliability of the secondary batteries. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二次電池の不良品を検出するものであり、特に、電極に混入した微量な金属不純物を検出する二次電池の検査方法に関するものである。   The present invention detects defective products of a secondary battery, and particularly relates to a secondary battery inspection method for detecting a small amount of metal impurities mixed in an electrode.

金属不純物や電池製造設備の金属摩耗クズなどが二次電池の正極に混入した場合には、初回充電時に正極の電位によってそれらが電気化学的に溶解され、電解液中を拡散して負極に到達し、負極の電位で析出して、正負電極間をマイクロショートさせることがある。そしてこのようなマイクロショート発生の有無を検出することにより、金属不純物の混入を検出することができる。例として特許文献1および2を以下に示す。   When metal impurities or metal wear debris from the battery manufacturing facility are mixed in the positive electrode of the secondary battery, they are dissolved electrochemically by the potential of the positive electrode during the initial charge, and diffuse in the electrolyte and reach the negative electrode. However, it may be deposited at the potential of the negative electrode to cause a micro short between the positive and negative electrodes. Then, by detecting the presence or absence of such a micro short circuit, it is possible to detect the mixing of metal impurities. Patent Documents 1 and 2 are shown below as examples.

特許文献1に開示されている、二次電池のマイクロショート不良の判定を行う方法を図6に示す。特許文献1の不良電池の選別方法は、3段階のステップからなる。所定の製造単位の複数個の電池を選択し、各電池を充電をした後に、エージング前電圧測定ステップ101で個々の電池の端子電圧V101を測定して記録し、所定の時間、エージング工程において電池を自然放電し、エージング後電圧測定演算ステップ102でそれぞれの電池の端子電圧V102を測定するとともに、所定の製造単位の複数個の電池についてのV102平均値および標準偏差σを演算する。次いで、エージング前後電圧差算出演算ステップ103において△Vを算出して記録するとともに、所定の製造単位の複数個の電池毎のエージング前後の電圧差の△V平均値および標準偏差σを演算する。これらの測定結果から、エージング後電圧判定第1ステップ104において、エージング後電圧V102が、それぞれの電池について予め設定されたエージング後電圧下限規格値と比較し、エージング後電圧下限規格値よりも低下している場合には不良品と判定する。   FIG. 6 shows a method for determining the micro short-circuit failure of the secondary battery disclosed in Patent Document 1. The defective battery sorting method of Patent Document 1 includes three steps. After selecting a plurality of batteries of a predetermined production unit and charging each battery, the terminal voltage V101 of each battery is measured and recorded in the pre-aging voltage measurement step 101, and the battery is subjected to the battery in the aging process for a predetermined time. , The terminal voltage V102 of each battery is measured in the post-aging voltage measurement calculation step 102, and the V102 average value and standard deviation σ for a plurality of batteries in a predetermined manufacturing unit are calculated. Next, ΔV is calculated and recorded in the voltage difference calculation calculation step 103 before and after aging, and the ΔV average value and standard deviation σ of the voltage difference before and after aging for each of a plurality of batteries in a predetermined manufacturing unit are calculated. From these measurement results, in post-aging voltage determination first step 104, the post-aging voltage V102 is compared with the post-aging voltage lower limit standard value set in advance for each battery, and is lower than the post-aging voltage lower limit standard value. If it is, it is determined as a defective product.

また特許文献2に開示されている、電極間のマイクロショートの検出方法を図7に示す。電池を冷却して電解液を固体状態にさせた場合には、電解液中のイオンの移動、拡散が起こらず、正極、負極活物質と電解液との界面の電荷移動反応抵抗や電気二重層容量を無視でき、図7のように近似的に簡潔な回路として考えることができる(R121は主に正極と負極の間に介在するセパレータによる電気抵抗、C122は電池構造上のコンデンサー成分、R123は封口板、集電板、ケースおよびインピーダンスを測定する際の配線部の電気抵抗などをまとめた電気抵抗)。ここで、電気抵抗R121は微小短絡の影響を大きく受ける成分であり、C122は両電極間のコンデンサー成分により発生する静電容量であるため、両極板の対向面積や極板間距離といった電極群の構成状態による影響を大きく受ける成分である。微小短絡した電池が、充電後の長期の放置によって放電容量が低下したり、電池の電圧が下がるときには、セパレータ自体の電気抵抗よりも、正極と負極を短絡させている析出金属などの異物の抵抗が、例えば2桁以上低くなっているため、セパレータによる電気抵抗は無視でき、R121の抵抗値は概ね異物の抵抗であるといえる。そのため、電気抵抗R121の抵抗値によって短絡の有無を判定することができる。   FIG. 7 shows a method for detecting a micro short between electrodes disclosed in Patent Document 2. When the battery is cooled to bring the electrolyte into a solid state, ion migration and diffusion in the electrolyte does not occur, and the charge transfer reaction resistance and electric double layer at the interface between the positive electrode, the negative electrode active material and the electrolyte The capacity can be neglected, and can be considered as an approximately simple circuit as shown in FIG. 7 (R121 is an electric resistance by a separator mainly interposed between the positive electrode and the negative electrode, C122 is a capacitor component on the battery structure, and R123 is Sealing plate, current collector plate, case, and electrical resistance of wiring part when measuring impedance). Here, since the electric resistance R121 is a component that is greatly affected by a micro short circuit, and C122 is a capacitance generated by a capacitor component between both electrodes, the electrode group such as the opposing area of both electrodes and the distance between the electrodes is not suitable. It is a component that is greatly affected by the configuration state. When a short-circuited battery is discharged for a long time after charging, the discharge capacity decreases, or when the battery voltage drops, the resistance of foreign matter such as deposited metal that short-circuits the positive and negative electrodes rather than the electrical resistance of the separator itself However, since it is lower by two digits or more, for example, the electrical resistance due to the separator can be ignored, and the resistance value of R121 can be said to be the resistance of foreign matters. Therefore, the presence or absence of a short circuit can be determined based on the resistance value of the electric resistance R121.

またその他の二次電池の検査方法についても特許文献3乃至5などが開示されている。
特開2001−228224号公報(段落0008、図1) 特開2003−45500(段落0023−0024、図2および図3) 特開平4−65067号公報 特開2002−343446号公報 特開2000−88933号公報
Further, Patent Documents 3 to 5 and the like are also disclosed for other secondary battery inspection methods.
JP 2001-228224 A (paragraph 0008, FIG. 1) JP 2003-45500 (paragraphs 0023-0024, FIG. 2 and FIG. 3) JP-A-4-65067 JP 2002-343446 A JP 2000-88933 A

特許文献1および2の検出方法は常温で行うことが一般的であるが、このとき負極へ析出する金属不純物は負極に広く拡散して析出される。従って析出した金属不純物が正極に到達しない場合があるため、マイクロショート発生に至らない二次電池が存在する。また二次電池に混入した金属不純物が微小量の場合には、マイクロショート発生の確率がさらに低下する。しかし金属不純物が含まれる二次電池は、マイクロショートが発生していなくても、金属不純物が負極上に析出しているため、実使用時において正極と負極とが近づくような力(例えば電池のケース収納時にかけられる圧縮力)がかけられた場合には、後発的に金属不純物の析出部によってマイクロショートの発生に至り、電池性能が劣化する可能性があり問題である。よってそのような二次電池は、可能な限り出荷前の検査工程において不良品として取り除くことが必要である。しかしながら前記特許文献1および特許文献2の検出方法は、初回充電を常温環境下で行っているため、微小な金属不純物が混入した二次電池を高精度で検出することができないため問題である。   The detection methods of Patent Documents 1 and 2 are generally performed at room temperature. At this time, metal impurities deposited on the negative electrode are widely diffused and deposited on the negative electrode. Therefore, since the deposited metal impurities may not reach the positive electrode, there are secondary batteries that do not lead to the occurrence of microshorts. In addition, when the amount of metal impurities mixed in the secondary battery is very small, the probability of occurrence of a micro short circuit further decreases. However, in secondary batteries containing metal impurities, the metal impurities are deposited on the negative electrode even if no micro short-circuit has occurred. When a compressive force is applied when the case is stored, a micro short circuit is caused later due to the deposition portion of the metal impurities, which may cause a problem in that the battery performance may deteriorate. Therefore, it is necessary to remove such a secondary battery as a defective product in an inspection process before shipment as much as possible. However, the detection methods of Patent Document 1 and Patent Document 2 are problematic because the secondary battery in which minute metal impurities are mixed cannot be detected with high accuracy because the initial charging is performed in a room temperature environment.

本発明は前記従来技術の課題の少なくとも1つを解消するためになされたものであり、検出が困難であるような微小量の金属不純物の混入を検出可能であり、検査時点では不良が発生していなくても、将来的に微小混入量の金属不純物に起因する不良が発生するおそれのある二次電池を検出可能な二次電池の検査方法を提供することを目的とする。   The present invention has been made to solve at least one of the above-described problems of the prior art, and can detect the mixing of a minute amount of metal impurities that are difficult to detect. An object of the present invention is to provide a method for inspecting a secondary battery that can detect a secondary battery that may cause a defect due to a minute amount of metal impurities in the future.

前記目的を達成するために、請求項1に係る二次電池の検査方法は、二次電池の初回充電を、金属不純物を電極上に局在化させて析出させる所定温度で行う初回充電ステップと、初回充電ステップ後に正極と負極とのマイクロショートを検出するマイクロショート検出ステップとを備えることを特徴とする。   In order to achieve the above object, the secondary battery inspection method according to claim 1 includes performing an initial charge of the secondary battery at a predetermined temperature at which metal impurities are localized and deposited on the electrode; And a micro-short detection step of detecting a micro-short between the positive electrode and the negative electrode after the initial charging step.

初回充電は、二次電池の製造後に初めて充電を行う場合の充電工程である。所定温度とは、金属不純物を電極上に局在化させて析出させる温度である。マイクロショートは、二次電池の正極と負極との微小短絡のことである。発生原因としては例えば、金属イオンが負極上に析出することによって発生する場合が挙げられる。マイクロショート検出ステップでは、マイクロショートが検査される。検査方法としては例えば、エージング(自己放電)工程による電圧降下値を測定する方法が挙げられる。初回充電ステップにおいて初回充電を金属不純物を電極上に局在化させて析出させる所定温度で行うことにより、金属不純物等を負極上に鋭いピーク形状を有する山形状を有して析出させることができ、電極間にマイクロショートが発生しやすい状態とすることができる。そしてマイクロショート検出ステップにおいてマイクロショートを検出することにより、微量な金属不純物が混入した二次電池を検出することが可能である。   The first charging is a charging process when charging is performed for the first time after manufacturing the secondary battery. The predetermined temperature is a temperature at which metal impurities are localized and deposited on the electrode. The micro short is a minute short between the positive electrode and the negative electrode of the secondary battery. As a cause of generation, for example, a case where metal ions are generated by depositing on the negative electrode can be mentioned. In the micro short detection step, a micro short is inspected. Examples of the inspection method include a method of measuring a voltage drop value in an aging (self-discharge) process. In the initial charge step, the initial charge is performed at a predetermined temperature at which metal impurities are localized and deposited on the electrode, so that metal impurities and the like can be deposited on the negative electrode with a peak shape having a sharp peak shape. Thus, it is possible to make a state in which a micro short circuit is likely to occur between the electrodes. By detecting a micro short in the micro short detection step, it is possible to detect a secondary battery mixed with a trace amount of metal impurities.

これにより、従来の金属不純物の検出方法では検出できないような微小量の金属の混入を検出できるため、検査時点では不具合が発生していなくても、将来的にマイクロショートが発生して電池性能が劣化するおそれをかかえた二次電池を検査で取り除くことが可能であり、二次電池の信頼性を高めることができる。   As a result, since it is possible to detect a minute amount of metal contamination that cannot be detected by the conventional metal impurity detection method, even if there is no problem at the time of the inspection, a micro short circuit will occur in the future, and the battery performance will be improved. It is possible to remove a secondary battery having a possibility of deterioration by inspection, and the reliability of the secondary battery can be improved.

また請求項2に係る二次電池の検査方法は、請求項1に記載の二次電池の検査方法において、初回充電ステップにおける所定温度は、−20℃から15℃までの範囲内であることを特徴とする。   The secondary battery inspection method according to claim 2 is the secondary battery inspection method according to claim 1, wherein the predetermined temperature in the initial charging step is within a range from -20 ° C to 15 ° C. Features.

所定温度が−20(℃)以下の領域は、二次電池の負極上に電解質イオンである金属イオンが析出し電極間にマイクロショートが発生する場合がある。また所定温度が15(℃)以上の領域では、金属不純物は広く拡散してなだらかな山形状を有するように負極上に析出するため、電極間にマイクロショートが発生しやすい状態とはならず、金属不純物の検出精度が上がらない。すなわち所定温度が常温である場合に比して、所定温度を−20℃から15℃までの範囲内にすることにより、微小量の金属の混入を高い精度で検出できる。よってマイクロショートが発生していなくても、金属不純物が負極上に析出しているため、実使用時において正極と負極とが近づくような力がかけられた場合には、後発的に金属不純物の析出部によってマイクロショートの発生に至り電池性能が劣化する可能性がある二次電池を不良品として取り除くことが可能であり、二次電池の信頼性を高めることができる。またさらに好ましくは、所定温度は−20℃から5℃までの範囲内がよい。これにより、より確実に金属不純物が混入した二次電池を検出することができる。   In a region where the predetermined temperature is −20 (° C.) or lower, metal ions, which are electrolyte ions, may be deposited on the negative electrode of the secondary battery, and microshorts may occur between the electrodes. In addition, in a region where the predetermined temperature is 15 (° C.) or more, the metal impurities are widely diffused and deposited on the negative electrode so as to have a gentle mountain shape. The detection accuracy of metal impurities does not increase. That is, as compared with the case where the predetermined temperature is room temperature, by setting the predetermined temperature within a range from −20 ° C. to 15 ° C., it is possible to detect the mixing of a minute amount of metal with high accuracy. Therefore, even if no micro short circuit has occurred, metal impurities are deposited on the negative electrode. It is possible to remove a secondary battery that may cause a micro short-circuit due to the depositing portion and deteriorate the battery performance as a defective product, and improve the reliability of the secondary battery. More preferably, the predetermined temperature is in the range of -20 ° C to 5 ° C. Thereby, the secondary battery in which the metal impurity is mixed can be detected more reliably.

また請求項4に係る二次電池の検査方法は、請求項1に記載の二次電池の検査方法において、マイクロショート検出ステップは、充電された二次電池を放置するエージングステップと、エージングステップ終了後に二次電池の電圧値を測定する検査ステップとを備えることを特徴とする。   The secondary battery inspection method according to claim 4 is the secondary battery inspection method according to claim 1, wherein the micro-short detection step includes an aging step of leaving the charged secondary battery and an aging step end. And an inspection step of measuring a voltage value of the secondary battery later.

エージングステップでは、充電された二次電池が放置される。検査ステップでは、エージングステップ終了後に二次電池の電圧値が測定される。そして例えば、エージング前の電圧値とエージング後の電圧値との差分値が計算され、その差分値が所定の基準値よりも大きい場合にはマイクロショートの発生がありと判断され、差分値が基準値よりも小さい場合にはマイクロショートの発生がなしと判断される。   In the aging step, the charged secondary battery is left unattended. In the inspection step, the voltage value of the secondary battery is measured after the aging step. Then, for example, a difference value between the voltage value before aging and the voltage value after aging is calculated, and if the difference value is larger than a predetermined reference value, it is determined that a micro short-circuit has occurred, and the difference value is the reference value. If the value is smaller than the value, it is determined that no micro-short has occurred.

これにより、マイクロショート検出ステップにおいてマイクロショートを検出することができるため、微量な金属不純物が混入した二次電池を検出し不良品として取り除くことが可能である。   Thereby, since the micro short circuit can be detected in the micro short circuit detection step, the secondary battery mixed with a trace amount of metal impurities can be detected and removed as a defective product.

本発明によれば、微小量の金属不純物の混入を検出できるため、検査時点ではマイクロショートが発生していなくても、将来的に金属不純物に起因するマイクロショートが発生する可能性のある二次電池を不良品として取り除くことが可能であり、二次電池の信頼性を高めることができる検査方法を提供することが可能となる。   According to the present invention, since it is possible to detect the mixing of a minute amount of metal impurities, even if a micro short circuit does not occur at the time of inspection, there is a possibility that a micro short circuit due to the metal impurity may occur in the future. The battery can be removed as a defective product, and an inspection method capable of improving the reliability of the secondary battery can be provided.

以下、本発明の二次電池の検査方法および検査装置について具体化した実施形態を図1乃至図5に基づき図面を参照しつつ詳細に説明する。図1に本発明にかかる検査方法で検査される二次電池の電極11の一部拡大断面図を示す。電極11は、正極4と負極5とをセパレータ6を介して挟み込むことで構成される。正極4はニッケル酸リチウム(LiNiO2)を主成分として構成され、負極5は黒鉛を主成分として構成される。またセパレータ6は、厚さ25(μm)のポリプロピレンで構成されている。この積層構造を有する電極11を捲回し、正極4および負極5に不図示の正極集電体および負極集電体を接続し、不図示の電池ケースに収納後に電解液を注入して密閉することで二次電池が形成される。電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比で1:3に混合した溶媒に、溶質として6フッ化燐酸リチウム(LiPF6) を1.0(mol/L)の濃度に溶解したものを用いた。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a secondary battery inspection method and inspection apparatus according to the present invention will be described below in detail with reference to FIGS. FIG. 1 shows a partially enlarged sectional view of an electrode 11 of a secondary battery inspected by the inspection method according to the present invention. The electrode 11 is configured by sandwiching the positive electrode 4 and the negative electrode 5 with a separator 6 interposed therebetween. The positive electrode 4 is composed mainly of lithium nickelate (LiNiO2), and the negative electrode 5 is composed mainly of graphite. The separator 6 is made of polypropylene having a thickness of 25 (μm). The electrode 11 having this laminated structure is wound, a positive electrode current collector and a negative electrode current collector (not shown) are connected to the positive electrode 4 and the negative electrode 5, and an electrolyte is injected and sealed after being housed in a battery case (not shown). Thus, a secondary battery is formed. The electrolyte was 1.0 (mol / L) of lithium hexafluorophosphate (LiPF6) as a solute in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 3. What was melt | dissolved in the density | concentration was used.

実験条件を説明する。本発明に係る二次電池の検査装置(不図示)は恒温槽を備え、恒温槽には二次電池を所定温度に制御できる温度制御部と、二次電池を充電する充電部とが備えられている。恒温槽の温度制御部によって、二次電池の温度を所定温度にすることが可能とされる。実験サンプルは、1(μg)の銅を正極表面の1(mm2)中に混入させた混入二次電池と、銅を混入しない非混入二次電池との2種類の二次電池を用意した。実験サンプルの二次電池は未充電である。そして二次電池の初回充電時における、二次電池の温度を初回充電時温度ITと定義する。恒温槽の槽内温度を温度制御部により−30、−20,5,15、25、60(℃)に設定し、各温度において二次電池の初回充電を行った。実験サンプル数は、槽内温度が15(℃)の場合には混入二次電池と非混入二次電池とを20サンプルずつ、その他の槽内温度の場合には混入二次電池と非混入二次電池とを10サンプルずつ実験を行った。   The experimental conditions will be described. The inspection apparatus (not shown) for a secondary battery according to the present invention includes a thermostat, and the thermostat is provided with a temperature control unit that can control the secondary battery to a predetermined temperature, and a charging unit that charges the secondary battery. ing. The temperature control unit of the thermostatic bath makes it possible to set the temperature of the secondary battery to a predetermined temperature. As the experimental sample, two types of secondary batteries were prepared: a mixed secondary battery in which 1 (μg) of copper was mixed in 1 (mm 2) of the positive electrode surface, and a non-mixed secondary battery in which copper was not mixed. The secondary battery of the experimental sample is not charged. The temperature of the secondary battery when the secondary battery is initially charged is defined as the initial charge temperature IT. The temperature inside the thermostatic chamber was set to −30, −20, 5, 15, 25, 60 (° C.) by the temperature controller, and the secondary battery was charged for the first time at each temperature. The number of experimental samples is 20 samples of mixed secondary battery and non-mixed secondary battery when the temperature in the tank is 15 (° C.), and mixed secondary battery and non-mixed battery at other tank temperatures. Ten samples of the secondary battery were tested.

実験手順を図2のフローチャートに示す。実験フローは大きく分けて初期充放電工程(ステップS1乃至S3)、エージング工程(ステップS4およびS5)、検査工程(ステップS6およびS7)から構成される。ステップS1では、恒温槽内部に未充電の二次電池を5時間放置することにより、初回充電時温度ITを−30、−20,5,15、25、60(℃)のいずれかの温度に設定した後に、二次電池の初回充電が行われる。初回充電は定電流−定電圧充電(CCCV充電)により行われ、充電時の電流値は1/4(C)、電圧値は4.1(V)、充電時間は6(時間)である。   The experimental procedure is shown in the flowchart of FIG. The experimental flow is roughly divided into an initial charge / discharge process (steps S1 to S3), an aging process (steps S4 and S5), and an inspection process (steps S6 and S7). In step S1, by leaving an uncharged secondary battery in the thermostat for 5 hours, the initial charge temperature IT is set to any of −30, −20, 5, 15, 25, 60 (° C.). After the setting, the secondary battery is charged for the first time. The initial charging is performed by constant current-constant voltage charging (CCCV charging), and the current value during charging is 1/4 (C), the voltage value is 4.1 (V), and the charging time is 6 (hours).

二次電池の初回充電終了後に、二次電池を入れたまま恒温槽の槽内温度を25℃に設定し、二次電池を恒温槽内に5時間放置して二次電池の温度を略室温である25℃にする。その後、ステップ2において定電流放電が行われる。定電流放電の電流値は1(C)、電圧値は3(V)である。ステップS2の定電流放電の終了後、充放電を行わない休止時間を10分間とった後に、ステップS3において充放電繰り返し工程が行われる。充放電繰り返し工程は、定電流−定電圧充電(電流1(C)、電圧4.1(V)、時間1.5(時間)、休止時間10(分))と、定電流放電(電流1(C)、電圧3(V)、休止時間10(分))とを組み合わせた1サイクルを、2サイクル分繰り返して行われる工程である。   After the secondary battery is charged for the first time, the temperature inside the thermostatic chamber is set to 25 ° C. with the secondary battery inserted, and the secondary battery is left in the thermostatic bath for 5 hours so that the temperature of the secondary battery is approximately room temperature. To 25 ° C. Thereafter, constant current discharge is performed in step 2. The current value of constant current discharge is 1 (C), and the voltage value is 3 (V). After the constant current discharge in step S2 is completed, a charge / discharge repetition process is performed in step S3 after 10 minutes of rest time in which no charge / discharge is performed. The charging / discharging repetition process includes constant current-constant voltage charging (current 1 (C), voltage 4.1 (V), time 1.5 (hour), rest time 10 (minutes)), constant current discharging (current 1 (C) is a process in which one cycle combining voltage 3 (V) and pause time 10 (min)) is repeated for two cycles.

ステップS4において、二次電池にエージング用充電が行われる。充電は、定電流−定電圧充電(電流1(C)、電圧3.75(V)、時間1.5(時間))によって行われる。エージング用充電終了後、二次電池のエージング前電圧測定が行われ、エージング前電圧IVが得られる。そしてエージング前電圧測定が済んだ二次電池は、ステップS5において25℃の環境下で12日間放置されることでエージング(自己放電)が行われる。   In step S4, the secondary battery is charged for aging. Charging is performed by constant current-constant voltage charging (current 1 (C), voltage 3.75 (V), time 1.5 (hours)). After the aging charge is completed, the pre-aging voltage measurement of the secondary battery is performed, and the pre-aging voltage IV is obtained. The secondary battery for which the pre-aging voltage measurement has been completed is left aging (self-discharge) for 12 days in an environment of 25 ° C. in step S5.

エージング工程の終了後、ステップS6においてエージング後電圧測定が行われ、エージング後電圧AVが得られる。ステップS7において、ステップS4で得られたエージング前電圧IVとステップS6で得られたエージング後電圧AVとの差分値である電圧降下値DVが計算され、自己放電不良品であるかどうかが判断される。具体的には、電圧降下値DVが25(mV)以上である二次電池は、マイクロショートの発生ありとして自己放電不良品と判断され、電圧降下値が25(mV)以下である二次電池は、マイクロショートの発生はないとして自己放電不良品ではないと判断される。   After the aging process is completed, the post-aging voltage measurement is performed in step S6, and the post-aging voltage AV is obtained. In step S7, a voltage drop value DV, which is a difference value between the pre-aging voltage IV obtained in step S4 and the post-aging voltage AV obtained in step S6, is calculated, and it is determined whether the product is a self-discharge defective product. The Specifically, a secondary battery having a voltage drop value DV of 25 (mV) or more is determined as a self-discharge defective product due to the occurrence of a micro short, and a secondary battery having a voltage drop value of 25 (mV) or less. Is determined not to be a self-discharge defective product because there is no occurrence of a micro short circuit.

実験結果を図3(A)表、図3(B)のグラフに示す。図3(B)において横軸は初回充電時温度IT、縦軸は自己放電不良率DR(%)を表している。ここで自己放電不良率DRとは、ある初回充電時温度ITにおいて、充電実験を行ったサンプル数に対する自己放電不良品の発生割合のことである。まず、銅を混入した混入二次電池における自己放電不良率DRについて検討する。混入二次電池では、自己放電不良率DRが高くなるほど、銅の混入した電池を不良品として感度よく検知し、金属不純物混入の検査精度が高いこととなり好ましい。図3(A)(B)より、初回充電時温度ITが25℃の時の混入二次電池の自己放電不良率DRは5(%)、初回充電時温度ITが15(℃)の時は30(%)であり、初回充電時温度ITが25(℃)から15(℃)の間の温度で不連続に自己放電不良率DRが上昇する特異点が存在することが分かる。また初回充電時温度ITが15(℃)から−20(℃)の範囲では、初回充電時温度ITの低下にほぼ比例して、混入二次電池の自己放電不良率DRが増加していくため、初回充電時温度ITの低下に応じて金属不純物混入の検出の検査精度が高くなることが分かる。   The experimental results are shown in the table in FIG. 3A and the graph in FIG. In FIG. 3B, the horizontal axis represents the initial charge temperature IT, and the vertical axis represents the self-discharge failure rate DR (%). Here, the self-discharge defective rate DR is a generation rate of self-discharge defective products with respect to the number of samples subjected to the charge experiment at a certain initial charge temperature IT. First, the self-discharge failure rate DR in the mixed secondary battery mixed with copper will be examined. In the mixed secondary battery, the higher the self-discharge defective rate DR, the more sensitive the battery mixed with copper as a defective product, and the higher the inspection accuracy for mixing metal impurities, which is preferable. 3A and 3B, the self-discharge failure rate DR of the mixed secondary battery when the initial charging temperature IT is 25 ° C is 5 (%), and the initial charging temperature IT is 15 (° C). It can be seen that there is a singular point where the self-discharge defective rate DR rises discontinuously at a temperature between the initial charging temperature IT of 25 (° C.) and 15 (° C.). In addition, when the initial charging temperature IT is in the range of 15 (° C.) to −20 (° C.), the self-discharge defective rate DR of the mixed secondary battery increases in proportion to the decrease in the initial charging temperature IT. It can be seen that the inspection accuracy of the detection of the mixing of metal impurities increases as the temperature IT during the initial charge decreases.

混入二次電池において、初回充電時温度ITが低下することに応じて自己放電不良率DRが上昇するメカニズムを図4および図5を用いて説明する。図4(A)に、正極4の表面に銅片12が混入された初回充電前の電極11の状態を示す。電極11は電解液中に浸された状態である。銅片12は正極4とセパレータ6との間に存在するが、セパレータ6によって銅片12と負極5との絶縁が保たれているため、銅片12を介して正負電極間のマイクロショートは発生していない。そして図4(A)の状態の二次電池に初回充電が行われると、初回充電時に正負極の電極間の電圧バイアスによって銅片12が電気化学的に溶解され銅イオンとなり、電解液中を拡散する。銅イオンは2価の正電荷を有するため、二次電池の充電中、銅イオンには負極5方向へのベクトルを有する静電気力が働く。よって銅イオンはセパレータ6を通過して負極5方向へ移動し、負極5上に析出する。このとき負極5上に析出する銅の析出形状は、初回充電時温度ITによって大きく変化し、初回充電時温度ITの温度が高いときには図4(B)に示すようななだらかな山状の析出形状を有する析出銅12a,初回充電時温度ITの温度が低いときには図4(C)に示すような鋭い山状の析出形状を有する析出銅12bがそれぞれ析出する。   In the mixed secondary battery, the mechanism by which the self-discharge failure rate DR increases as the initial charging temperature IT decreases will be described with reference to FIGS. FIG. 4A shows a state of the electrode 11 before the first charge in which the copper piece 12 is mixed on the surface of the positive electrode 4. The electrode 11 is in a state immersed in the electrolytic solution. Although the copper piece 12 exists between the positive electrode 4 and the separator 6, since the insulation between the copper piece 12 and the negative electrode 5 is maintained by the separator 6, a micro short circuit occurs between the positive and negative electrodes through the copper piece 12. Not done. When the secondary battery in the state of FIG. 4 (A) is initially charged, the copper piece 12 is electrochemically dissolved into copper ions by the voltage bias between the positive and negative electrodes during the initial charge, Spread. Since copper ions have a bivalent positive charge, an electrostatic force having a vector in the direction of the negative electrode 5 acts on the copper ions during charging of the secondary battery. Accordingly, the copper ions pass through the separator 6 and move toward the negative electrode 5, and are deposited on the negative electrode 5. At this time, the shape of copper deposited on the negative electrode 5 varies greatly depending on the initial charge temperature IT, and when the initial charge temperature IT is high, a gentle mountain-shaped precipitate shape as shown in FIG. When the temperature of the initial charging temperature IT is low, the precipitated copper 12b having a sharp mountain-shaped precipitation shape as shown in FIG.

初回充電時温度ITと析出銅の析出形状との関係を、図5を用いて説明する。図5は電解液中の銅イオン13に働く力を示すものであり、正極4から負極5方向をZ方向、また正極4および負極5と平行な方向をX方向と定義する。また銅イオン13はセパレータ6を通過するが、便宜上図5ではセパレータ6が無いとして説明する。まず初回充電時温度ITが25℃以上と高いときの析出形状の定まり方を、図5(A)を用いて説明する。銅イオン13には、Z方向へ正の向きのベクトルを有する静電気力EF1が働き、その力の大きさは充電中は一定の値である。また銅イオン13には流体である電解液から受ける力が働くが、正極4と負極5との電極間距離DDは小さいためZ方向の力は無視できるとすると、電極と平行な向きであるX方向の力を受ける。ここで電解液から受ける力は電解液の状態により一定ではないため、受け得る力の最大値を最大流体力HF1と定義して図5(A)に示す。よって銅イオン13が受ける静電気力EF1と最大流体力HF1との合力のベクトルの方向は、図5(A)に示すように拡散角度θ1の範囲内に存在することとなる。   The relationship between the initial charging temperature IT and the precipitated copper deposition shape will be described with reference to FIG. FIG. 5 shows the force acting on the copper ions 13 in the electrolytic solution. The direction from the positive electrode 4 to the negative electrode 5 is defined as the Z direction, and the direction parallel to the positive electrode 4 and the negative electrode 5 is defined as the X direction. Moreover, although the copper ion 13 passes the separator 6, it demonstrates on the assumption that the separator 6 does not exist in FIG. First, how the precipitation shape is determined when the initial charging temperature IT is as high as 25 ° C. or higher will be described with reference to FIG. The electrostatic force EF1 having a positive vector in the Z direction acts on the copper ion 13, and the magnitude of the force is a constant value during charging. Moreover, although the force received from the electrolyte solution which is a fluid acts on the copper ion 13, if the distance DD between the positive electrode 4 and the negative electrode 5 is small, if the force in the Z direction can be ignored, X is in a direction parallel to the electrode. Receive direction force. Here, since the force received from the electrolytic solution is not constant depending on the state of the electrolytic solution, the maximum value of the force that can be received is defined as the maximum fluid force HF1 and is shown in FIG. Therefore, the direction of the resultant force vector of the electrostatic force EF1 and the maximum fluid force HF1 received by the copper ions 13 is within the range of the diffusion angle θ1 as shown in FIG.

一方、初回充電時温度ITが−20(℃)から15(℃)の範囲であり低いときの析出形状の定まり方を、図5(B)を用いて説明する。銅イオン13には、Z方向へ正の向きのベクトルを有する静電気力EF1およびX方向の向きの電解液から受ける最大流体力HF2が働く。ここで電解液は初回充電時温度ITが低くなることに応じて粘度が高くなる性質があり、粘度が高くなることに応じて電解液の流動性が落ちるため、X方向の力である最大流体力HF2は図5(A)の最大流体力HF1に比して小さくなる。しかしZ方向の力である静電気力EF1の大きさは初回充電時温度ITに関わらず充電中は一定である。よって銅イオン13が受ける合力のベクトルの方向は、図5(B)に示すように拡散角度θ2の範囲内に存在することとなる。そして初回充電時温度ITが低下するに従って電解液の粘度が上昇するため、最大流体力HF2は低下していき、拡散角度θ2も狭まっていく。   On the other hand, how the precipitation shape is determined when the initial charging temperature IT is in the range of −20 (° C.) to 15 (° C.) and is low will be described with reference to FIG. The copper ion 13 is subjected to an electrostatic force EF1 having a vector in the positive direction in the Z direction and a maximum fluid force HF2 received from the electrolyte in the X direction. Here, the electrolyte has a property that the viscosity increases as the temperature IT at the first charge decreases, and the fluidity of the electrolyte decreases as the viscosity increases, so the maximum flow that is the force in the X direction. The physical strength HF2 is smaller than the maximum fluid force HF1 in FIG. However, the magnitude of the electrostatic force EF1, which is the force in the Z direction, is constant during charging regardless of the initial charging temperature IT. Therefore, the direction of the resultant force vector received by the copper ions 13 is within the range of the diffusion angle θ2, as shown in FIG. As the initial charging temperature IT decreases, the viscosity of the electrolyte increases, so the maximum fluid force HF2 decreases and the diffusion angle θ2 also decreases.

以上より充電時温度ITの温度が高いときは、銅イオン13は広い拡散角度θ1で負極5方向へ移動するため、図4(B)に示すように、析出幅W1、析出高さH1を有するなだらかな山状に析出銅12aが析出する。一方、初回充電時温度ITの温度が低いときは、銅イオン13は狭い拡散角度θ2で拡散するため、図4(C)に示すように、析出幅W2、析出高さH2を有する鋭いピークの山状に析出銅12bが局在して析出する。そして混入される銅片12の質量が一定であるため、析出銅12bの析出幅W2が析出銅12aの析出幅W1より狭い分、析出銅12bの析出高さH2は析出高さH1よりも高くなる。   As described above, when the charging temperature IT is high, the copper ions 13 move toward the negative electrode 5 with a wide diffusion angle θ1, and therefore have a precipitation width W1 and a precipitation height H1 as shown in FIG. 4B. The precipitated copper 12a is deposited in a gentle mountain shape. On the other hand, since the copper ion 13 diffuses at a narrow diffusion angle θ2 when the temperature at the initial charging time IT is low, a sharp peak having a precipitation width W2 and a precipitation height H2, as shown in FIG. The deposited copper 12b is localized and deposited in a mountain shape. And since the mass of the mixed copper piece 12 is constant, the precipitation height H2 of the precipitation copper 12b is higher than the precipitation height H1 because the precipitation width W2 of the precipitation copper 12b is narrower than the precipitation width W1 of the precipitation copper 12a. Become.

すなわち初回充電時温度ITが低下するに従って、析出銅12bの析出幅W2は狭く、山状のピークが鋭く、析出高さH2は高くなっていく傾向を有する。析出銅12bの析出幅W2が狭くなり、析出高さH2は高くなるに従い、図4(C)に示すように析出銅12bの先端部14がセパレータ6を突き破って正極4に接触してマイクロショートが発生する確率が高くなるため、充電後の放置時に規定値以上の電圧降下が発生して自己放電不良品となる確率が高くなる。従って銅が混入された混入二次電池では、初回充電時温度ITが低下することに従って自己放電不良率DRが上昇する現象が発生する。   That is, as the initial charging temperature IT decreases, the precipitation width W2 of the precipitated copper 12b is narrow, the mountain-like peak is sharp, and the precipitation height H2 tends to increase. As the precipitation width W2 of the precipitated copper 12b becomes narrower and the precipitation height H2 becomes higher, the tip 14 of the precipitated copper 12b breaks through the separator 6 and contacts the positive electrode 4 as shown in FIG. Therefore, the probability of a self-discharge defective product increases due to a voltage drop exceeding a specified value when left after charging. Therefore, in the mixed secondary battery in which copper is mixed, a phenomenon occurs in which the self-discharge defective rate DR increases as the initial charge temperature IT decreases.

また、銅を混入しない非混入二次電池の自己放電不良率DRについて検討すると、非混入二次電池では、自己放電不良率DRが高くなるほど銅が混入されていない電池を不良品として誤検知したことになるため、好ましくない。そこで実験データを見ると図3(A)(B)より、初回充電時温度ITが60(℃)から−20(℃)の範囲では、非混入二次電池の自己放電不良率DRは0(%)であるため誤検知が発生しておらず検査精度は良好であるが、初回充電時温度ITが−30(℃)の時の自己放電不良率DRは20(%)であり、誤検知が発生することが分かる。このメカニズムを説明する。二次電池の充電時には、負極5の多数の細孔に電解液中のリチウムイオンが吸蔵される。しかし初回充電時温度ITの低下に従って電解液の粘度は上昇し、粘度上昇に応じてリチウムイオンが負極5に吸蔵されなくなるため、吸蔵されないリチウムイオンは負極5上にリチウム金属として析出する。そして図4(C)と同様にして析出したリチウム金属の先端部が正極4に接触することによりマイクロショートが発生し、自己放電不良が発生する。よって本発明の金属不純物の検出方法において、初回充電時温度ITが−30(℃)以下の領域は、誤検知が発生するため好ましくないことが分かる。   Further, when examining the self-discharge defective rate DR of the non-mixed secondary battery not containing copper, the non-mixed secondary battery erroneously detected a battery not mixed with copper as the self-discharge defective rate DR increased as a defective product. This is not preferable. Therefore, from the experimental data, it can be seen from FIGS. 3A and 3B that the self-discharge failure rate DR of the non-mixed secondary battery is 0 (when the initial charging temperature IT is in the range of 60 (° C.) to −20 (° C.). %), No false detection has occurred and the inspection accuracy is good, but the self-discharge defective rate DR when the temperature IT at the initial charge is −30 (° C.) is 20 (%), and the false detection It can be seen that occurs. This mechanism will be described. When the secondary battery is charged, lithium ions in the electrolytic solution are occluded in the numerous pores of the negative electrode 5. However, the viscosity of the electrolyte solution increases as the temperature IT during the first charge decreases, and lithium ions are not occluded in the negative electrode 5 as the viscosity increases, so that the lithium ions that are not occluded are deposited on the negative electrode 5 as lithium metal. Then, the tip of the lithium metal deposited in the same manner as in FIG. 4C comes into contact with the positive electrode 4, thereby causing a micro short and a self-discharge failure. Therefore, in the method for detecting a metal impurity of the present invention, it can be seen that the region where the initial charging temperature IT is −30 (° C.) or less is not preferable because erroneous detection occurs.

これにより本発明の二次電池の検査方法では、従来の充電方法ではマイクロショートが発生しないような微小量の銅片12が電極に混入した場合であっても、初回充電時温度ITを低下させ電解液の粘度を上昇させ、負極5に析出する析出銅の析出高さHを高くし析出形状を鋭い山形状にすることにより、電極間をマイクロショート状態とすることができ、そのマイクロショートを検出することによって微量な銅が電極に混入した電池を不良品として判定することが可能である。すなわち本発明の検出方法によれば、従来の金属不純物の検出方法では検出できないような微小量の金属の混入を検出できるため、検査時点では不具合が発生していなくても、実使用時において正極と負極とが近づくような力がかけられた場合には、後発的に金属不純物の析出部によってマイクロショートの発生に至り電池性能が劣化する可能性がある二次電池を不良品として取り除くことが可能であり、二次電池の信頼性を高めることができる。   As a result, in the secondary battery inspection method of the present invention, even when a small amount of copper piece 12 that does not cause a micro short-circuit in the conventional charging method is mixed in the electrode, the temperature IT at the first charge is lowered. By increasing the viscosity of the electrolyte, increasing the deposition height H of the deposited copper deposited on the negative electrode 5 and making the deposited shape into a sharp mountain shape, the electrodes can be brought into a micro-short state. By detecting, it is possible to determine a battery in which a trace amount of copper is mixed in the electrode as a defective product. That is, according to the detection method of the present invention, it is possible to detect a minute amount of metal contamination that cannot be detected by the conventional metal impurity detection method. When a force is applied that causes the negative electrode to come close to the negative electrode, secondary batteries that may cause the occurrence of micro-shorts due to the deposition of metal impurities and deteriorate the battery performance may be removed as defective products. This is possible, and the reliability of the secondary battery can be increased.

そして本発明の検査工程において、初回充電時温度ITの範囲を、銅が混入された混入二次電池のマイクロショートの発生の検知の感度を上昇させることができる温度15(℃)以下、銅が混入されていない非混入二次電池を不良品として誤検知することがない−20(℃)以上の値の範囲内に設定すれば、微小量の銅片12が混入された混入二次電池を高い精度で取り除くことができる。そして好ましくは、初回充電時温度ITが−20(℃)〜5(℃)の範囲であれば、混入二次電池をより高い確率で自己放電不良品として検査により取り除くことができるため、二次電池の信頼性をより向上させることができる。   In the inspection process of the present invention, the temperature range of the initial charge IT is set to a temperature of 15 (° C.) or less, which can increase the sensitivity of detecting the occurrence of micro-shorts in the mixed secondary battery mixed with copper. If a non-mixed non-mixed secondary battery is not erroneously detected as a defective product within a range of −20 (° C.) or higher, a mixed secondary battery mixed with a small amount of copper pieces 12 can be obtained. It can be removed with high accuracy. And preferably, if the temperature IT at the time of initial charge is in the range of −20 (° C.) to 5 (° C.), the mixed secondary battery can be removed by inspection as a defective self-discharge with a higher probability. The reliability of the battery can be further improved.

なお初回充電工程における定電流−定電圧充電時の電流値は、電流量が2(C)以下、好ましくは1/4(C)近傍の値がよい。これは、図4(C)に示すように析出銅12bの先端部14がセパレータ6を突き破って正極4に接触しマイクロショートが発生する際に、電流量が大きいと急激に接触部を電流が流れるため、先端部14にスパークが発生し先端部14が欠損し、非接触状態となってマイクロショートが検知されない結果、将来的に微小混入金属に起因する不良が発生するおそれをかかえた二次電池を不良品として取り除くことができないからである。しかし電流値として1/4(C)程度の値を用いればそのような問題を回避することができる。   In addition, the current value at the time of the constant current-constant voltage charge in the first charge step is 2 (C) or less, preferably a value in the vicinity of 1/4 (C). As shown in FIG. 4C, when the tip 14 of the deposited copper 12b breaks through the separator 6 and comes into contact with the positive electrode 4 to generate a micro short circuit, if the current amount is large, the current suddenly flows through the contact portion. As a result of the flow, a spark is generated at the tip portion 14, the tip portion 14 is lost, a non-contact state is detected, and a micro short circuit is not detected. This is because the battery cannot be removed as a defective product. However, such a problem can be avoided if a current value of about 1/4 (C) is used.

尚、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良、変形が可能であることは言うまでもない。本実施形態では、金属不純物として銅を用いたがこれに限られず、通常の設備などによく用いられ、混入する可能性のある鉄やその他の合金などの金属であってもよいことは言うまでもない。   The present invention is not limited to the above-described embodiment, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the present invention. In the present embodiment, copper is used as the metal impurity, but the present invention is not limited to this, and it is needless to say that it may be a metal such as iron or other alloy that is often used in ordinary equipment and may be mixed. .

また本実施形態では電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを混合した溶媒に6フッ化燐酸リチウム(LiPF6)を溶解したものを用いたが、電解液の構成はこれに限られない。例えば、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ガンマブチロラクトン(GBL)等から選ばれる1種類以上の溶媒とエチレンカーボネート(EC)との混合溶媒から構成されてもよい。   In this embodiment, the electrolytic solution is a solution in which lithium hexafluorophosphate (LiPF6) is dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). Not limited to. For example, it may be composed of a mixed solvent of ethylene carbonate (EC) and one or more solvents selected from diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC), gamma butyrolactone (GBL) and the like. .

また本実施形態の二次電源の正極4は、主成分としてニッケル酸リチウム(LiNiO2)を用いたがこれに限られない。例えば正極に含まれるリチウム含有遷移金属酸化物としては、V、Fe、Co、Mn、Ni、W及びZnからなる群から選ばれる1種以上の遷移金属とリチウムとの複合酸化物、例えばコバルト酸リチウム(LiCoO2)を用いても良い。また本実施形態では二次電池はいわゆるリチウムイオン二次電池としたがこれに限られず、例えばニッケル水素二次電池でもよい。すなわち本発明の二次電池の検査方法は二次電池の種類に依存することなく用いることが可能である。   Moreover, although the positive electrode 4 of the secondary power supply of this embodiment used lithium nickelate (LiNiO2) as a main component, it is not restricted to this. For example, the lithium-containing transition metal oxide contained in the positive electrode is a composite oxide of lithium and one or more transition metals selected from the group consisting of V, Fe, Co, Mn, Ni, W, and Zn, such as cobalt acid. Lithium (LiCoO2) may be used. In the present embodiment, the secondary battery is a so-called lithium ion secondary battery, but is not limited thereto, and may be, for example, a nickel hydride secondary battery. In other words, the secondary battery inspection method of the present invention can be used without depending on the type of secondary battery.

また本実施形態のマイクロショート検出ステップは、エージング(自己放電)工程による電圧降下値を測定する方法であるとしたがこれに限られない。例えば、セパレータ、電池構造上のコンデンサー成分、封口板、集電板、ケースおよびインピーダンスを測定する際の配線部の電気抵抗などをまとめた電気抵抗を測定することにより、マイクロショートを検出する方法であってもよいことは言うまでもない。   Moreover, although the micro short detection step of the present embodiment is a method of measuring a voltage drop value in an aging (self-discharge) process, it is not limited thereto. For example, a method of detecting a micro short by measuring the electrical resistance of the separator, the capacitor component on the battery structure, the sealing plate, the current collector plate, the case, and the electrical resistance of the wiring part when measuring the impedance. Needless to say, it may be.

二次電池の電極11の一部拡大断面図である。It is a partial expanded sectional view of the electrode 11 of a secondary battery. 本実施形態における実験手順のフローチャート図である。It is a flowchart figure of the experimental procedure in this embodiment. 本実施形態における実験結果を示す図である。It is a figure which shows the experimental result in this embodiment. 銅片12が混入された電極11の一部拡大断面図である。It is a partial expanded sectional view of the electrode 11 in which the copper piece 12 was mixed. 銅イオン13に働く力を示す図である。It is a figure which shows the force which acts on the copper ion 13. FIG. 従来技術における二次電池のマイクロショート不良の判定を行う方法のフローチャート図である。It is a flowchart figure of the method of determining the micro short defect of the secondary battery in a prior art. 従来技術における電極間のマイクロショートの検出方法を示す図である。It is a figure which shows the detection method of the micro short circuit between electrodes in a prior art.

符号の説明Explanation of symbols

4 正極
5 負極
6 セパレータ
7 電解液
12 銅片
13 銅イオン
DR 自己放電不良率
IT 初回充電時温度
EF1 静電気力
HF1、HF2 最大流体力
θ1、θ2 拡散角度
W1、W2 析出幅
H1、H2 析出高さ
12a、12b 析出銅
14 先端部
4 Positive electrode 5 Negative electrode 6 Separator 7 Electrolytic solution 12 Copper piece 13 Copper ion DR Self-discharge failure rate IT Initial charging temperature EF1 Electrostatic force HF1, HF2 Maximum fluid force θ1, θ2 Diffusion angle W1, W2 Precipitation width H1, H2 Precipitation height 12a, 12b Precipitated copper 14 Tip

Claims (4)

二次電池の初回充電を、金属不純物を電極上に局在化させて析出させる所定温度で行う初回充電ステップと、
該初回充電ステップ後に正極と負極とのマイクロショートを検出するマイクロショート検出ステップとを備えることを特徴とする二次電池の検査方法。
An initial charge step of performing an initial charge of the secondary battery at a predetermined temperature at which metal impurities are localized and deposited on the electrode;
A method for inspecting a secondary battery, comprising: a micro-short detection step of detecting a micro-short between the positive electrode and the negative electrode after the initial charging step.
前記初回充電ステップにおける前記所定温度は、−20℃から15℃までの範囲内であることを特徴とする、請求項1に記載の二次電池の検査方法。   2. The method for inspecting a secondary battery according to claim 1, wherein the predetermined temperature in the initial charging step is within a range from −20 ° C. to 15 ° C. 3. 前記初回充電ステップにおける前記所定温度は、さらに好ましくは−20℃から5℃までの範囲内であることを特徴とする、請求項2に記載の二次電池の検査方法。   3. The method for inspecting a secondary battery according to claim 2, wherein the predetermined temperature in the initial charging step is more preferably in a range from −20 ° C. to 5 ° C. 4. 前記マイクロショート検出ステップは、充電された前記二次電池を放置するエージングステップと、
該エージングステップ終了後に前記二次電池の電圧値を測定する検査ステップとを備えることを特徴とする請求項1に記載の二次電池の検査方法。
The micro short detection step includes an aging step of leaving the charged secondary battery,
2. The secondary battery inspection method according to claim 1, further comprising: an inspection step of measuring a voltage value of the secondary battery after the aging step is completed.
JP2004016050A 2004-01-23 2004-01-23 Secondary battery inspection method Pending JP2005209528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016050A JP2005209528A (en) 2004-01-23 2004-01-23 Secondary battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016050A JP2005209528A (en) 2004-01-23 2004-01-23 Secondary battery inspection method

Publications (1)

Publication Number Publication Date
JP2005209528A true JP2005209528A (en) 2005-08-04

Family

ID=34901327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016050A Pending JP2005209528A (en) 2004-01-23 2004-01-23 Secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP2005209528A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117081A (en) * 2007-11-02 2009-05-28 Asahi Kasei Chemicals Corp Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery
JP2010153275A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Method for deciding quality of secondary battery, and method for manufacturing secondary battery
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
WO2013061754A1 (en) * 2011-10-24 2013-05-02 日産自動車株式会社 Secondary battery inspection method
JP2013118048A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014017056A (en) * 2012-07-05 2014-01-30 Nissan Motor Co Ltd Inspection method of lithium ion secondary battery
JP2015530911A (en) * 2012-08-27 2015-10-29 ホン インターナショナル コーポレーション Darts game device linked with external device
JP2015530912A (en) * 2012-08-27 2015-10-29 ホン インターナショナル コーポレーション Dart game system
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
JP5930342B2 (en) * 2012-07-27 2016-06-08 トヨタ自動車株式会社 Secondary battery short circuit inspection method
US11355783B2 (en) 2015-07-01 2022-06-07 Envision Aesc Japan Ltd. Method of manufacturing a lithium-ion secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117081A (en) * 2007-11-02 2009-05-28 Asahi Kasei Chemicals Corp Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery
JP2010153275A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Method for deciding quality of secondary battery, and method for manufacturing secondary battery
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
WO2013061754A1 (en) * 2011-10-24 2013-05-02 日産自動車株式会社 Secondary battery inspection method
JP2013118048A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014017056A (en) * 2012-07-05 2014-01-30 Nissan Motor Co Ltd Inspection method of lithium ion secondary battery
JP5930342B2 (en) * 2012-07-27 2016-06-08 トヨタ自動車株式会社 Secondary battery short circuit inspection method
JP2015530911A (en) * 2012-08-27 2015-10-29 ホン インターナショナル コーポレーション Darts game device linked with external device
JP2015530912A (en) * 2012-08-27 2015-10-29 ホン インターナショナル コーポレーション Dart game system
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
US11355783B2 (en) 2015-07-01 2022-06-07 Envision Aesc Japan Ltd. Method of manufacturing a lithium-ion secondary battery
US11870038B2 (en) 2015-07-01 2024-01-09 Aesc Japan Ltd. Method of manufacturing a lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
CN110187225B (en) Method and system for detecting abnormal short-circuit voltage and current in lithium battery
Liu et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
JP5172579B2 (en) Cylindrical battery inspection method
JP5930342B2 (en) Secondary battery short circuit inspection method
KR101288647B1 (en) Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
KR20080073652A (en) Evaluation method and evaluation apparatus for evaluating battery safety, and battery whose safety indices have been determined with the same
CN111458642A (en) Nondestructive testing method for lithium separation of lithium ion storage battery
CN100370646C (en) Method for inspecting secondary battery precursor, and method for manufacturing secondary battery using the method
JP2005209528A (en) Secondary battery inspection method
JP2014002009A (en) Method of inspecting secondary battery
JP4529364B2 (en) Cylindrical battery inspection method
JP2013114986A (en) Secondary battery manufacturing method
JP4887581B2 (en) Battery inspection method and inspection apparatus
JP2010256210A (en) Method of inspection short-circuiting of control valve type lead storage battery and short-circuiting inspection apparatus of the control valve type lead storage battery
CN116224116A (en) Method for detecting lithium ion battery lithium precipitation
JP2001228224A (en) Inferiority selection method of non-aqueous electrolyte battery
CN113884886A (en) Method for screening abnormal charging and discharging core in battery test production
JP2014082121A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
CN114966443A (en) Method for testing excess ratio of battery cell
CN113376525B (en) Low-voltage selection method for lithium ion battery
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JP2017126539A (en) Method for manufacturing secondary battery
CN116338478A (en) Method for online detection of lithium precipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714