JP2010153275A - Method for deciding quality of secondary battery, and method for manufacturing secondary battery - Google Patents

Method for deciding quality of secondary battery, and method for manufacturing secondary battery Download PDF

Info

Publication number
JP2010153275A
JP2010153275A JP2008331786A JP2008331786A JP2010153275A JP 2010153275 A JP2010153275 A JP 2010153275A JP 2008331786 A JP2008331786 A JP 2008331786A JP 2008331786 A JP2008331786 A JP 2008331786A JP 2010153275 A JP2010153275 A JP 2010153275A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
leaving
charging
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008331786A
Other languages
Japanese (ja)
Inventor
Takayuki Tanahashi
隆幸 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008331786A priority Critical patent/JP2010153275A/en
Publication of JP2010153275A publication Critical patent/JP2010153275A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for deciding the quality of a secondary battery for surely detecting minute short circuit portions in a flat secondary battery, and to provide a method for manufacturing the flat secondary battery. <P>SOLUTION: The quality determination method of the secondary battery includes: a charging process charging the secondary battery for deciding the quality of the secondary battery in which a plate-like electrode body is sealed in a flat case; a voltage-before standing measuring process measuring the open circuit voltage of the secondary battery after charging; a standing process standing the charged secondary battery for the prescribed period of time while pressing in the direction crossing to the electrode body from the outside of the case; a voltage-after standing measuring process measuring the open circuit voltage of the secondary battery after standing; and a determination process deciding as a defective when the voltage decreasing amount from he voltage measured in the voltage-before standing measuring process to the voltage measured in the voltage-after standing measuring process is larger than the prescribed value and deciding as a non-defective in any other cases. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,平板状の電極体を有する2次電池の良否を判定する良否判定方法およびその良否判定方法を含んだ製造方法に関する。さらに詳細には,2次電池の内部での微小短絡箇所の有無を判定するための2次電池の良否判定方法およびその製造方法に関するものである。   The present invention relates to a quality determination method for determining the quality of a secondary battery having a flat electrode body and a manufacturing method including the quality determination method. More specifically, the present invention relates to a method for determining the quality of a secondary battery for determining the presence or absence of a minute short-circuit portion inside the secondary battery and a method for manufacturing the same.

例えば,リチウムイオン2次電池には,扁平型の電池ケースに発電要素が収納されて密閉されているものがある。通常,製造した2次電池には,まず,初期充放電処理を施す。それから,短絡検査等の各種の検査を行っている。例えば,特許文献1には,2次電池を初期充放電電流より大きな電流値の充放電電流で充電して短絡検査を行う検査方法が開示されている。この方法によれば,微小な短絡箇所を強制的に短絡させることができるとされている。従って,短時間で検査を行うことができるとされている。
特開2002−352864号公報
For example, some lithium ion secondary batteries are sealed with a power generation element housed in a flat battery case. Usually, the manufactured secondary battery is first subjected to an initial charge / discharge treatment. Then, various inspections such as short circuit inspection are performed. For example, Patent Document 1 discloses an inspection method for performing a short circuit inspection by charging a secondary battery with a charge / discharge current having a current value larger than the initial charge / discharge current. According to this method, it is said that a minute short-circuit location can be forcibly short-circuited. Therefore, it is said that the inspection can be performed in a short time.
JP 2002-352864 A

しかしながら,前記した従来の検査方法では,まだ十分とは言えなかった。例えば,正負の電極板を捲回して電池ケースに収納した2次電池では,電極板同士の物理的な距離も,短絡の起きやすさと密接な関係がある。例えば,ごく小さい異物が電池内に混入している場合,そのままではたとえ特許文献1のように大きい電流を流したとしても,短絡は発生しない。しかし,扁平型の2次電池では,使用時に複数個のものを並べて拘束した電池パックとされるものがある。   However, the conventional inspection method described above has not been sufficient yet. For example, in a secondary battery in which positive and negative electrode plates are wound and housed in a battery case, the physical distance between the electrode plates is also closely related to the likelihood of a short circuit. For example, when a very small foreign matter is mixed in the battery, a short circuit does not occur even if a large current flows as in Patent Document 1 as it is. However, some flat secondary batteries are considered to be battery packs in which a plurality of secondary batteries are constrained in use.

この拘束によって,電極板同士の物理的な距離が,拘束前と変化した場合には,上記のような箇所が短絡してしまうおそれがある。そのため,市場において短絡箇所が次第に増加する懸念があった。この点は,捲回タイプのものに限らず,電極板同士を積層して収納されている積層タイプの2次電池についても同様であった。   If the physical distance between the electrode plates changes from that before the restraint due to this restraint, there is a possibility that the above-mentioned part may be short-circuited. For this reason, there was a concern that the number of short-circuit points in the market would gradually increase. This point is not limited to the wound type but is the same for the stacked type secondary battery in which the electrode plates are stacked and stored.

本発明は,前記した従来の検査方法が有する問題点を解決するためになされたものである。すなわちその課題とするところは,扁平型の2次電池において,微小な短絡箇所の有無を確実に検出するための2次電池の良否判定方法および製造方法を提供することにある。   The present invention has been made to solve the problems of the conventional inspection method described above. That is, an object of the present invention is to provide a secondary battery quality determination method and a manufacturing method for reliably detecting the presence or absence of a minute short-circuited portion in a flat secondary battery.

この課題の解決を目的としてなされた本発明の2次電池の良否判定方法は,扁平型のケースに平板状の電極体が封入された2次電池の良否を判定するための2次電池の良否判定方法であって,2次電池を充電する充電工程と,充電後の2次電池の開路電圧を測定する放置前電圧測定工程と,充電された2次電池を,ケース外部から電極体に交わる方向に加圧しつつ,予め決めた期間にわたり放置する放置工程と,放置後の2次電池の開路電圧を測定する放置後電圧測定工程と,放置前電圧測定工程で測定された電圧から放置後電圧測定工程において測定された電圧までの電圧降下量が予め決めた値より大きい場合に不良品であると判定し,それ以外である場合に良品であると判定する判定工程とを含むものである。   The secondary battery quality determination method of the present invention made for the purpose of solving this problem is a secondary battery quality test for determining the quality of a secondary battery in which a flat electrode body is enclosed in a flat case. The determination method includes a charging step for charging a secondary battery, a voltage measurement step before standing for measuring an open circuit voltage of the secondary battery after charging, and a charged secondary battery crossing the electrode body from the outside of the case. Voltage is applied in the direction of pressure, and is left for a predetermined period of time, a voltage measurement step after leaving the battery to measure the open circuit voltage of the secondary battery after being left, and a voltage after being left to stand from the voltage measured in the voltage measurement step before leaving. A determination step of determining that the product is defective when the amount of voltage drop up to the voltage measured in the measurement step is greater than a predetermined value, and determining that the product is non-defective when the voltage drop is other than that.

本発明の2次電池の良否判定方法によれば,放置工程を間にはさんで2回の電圧測定工程が含まれる。そして,放置工程では,2次電池は電極体に交わる方向に加圧される。扁平型の2次電池では,扁平箇所がさらに扁平になる向きに圧迫する。すなわち,正負の平板状の電極体の面と交わる方向に加圧されることにより,正負の電極体間の距離がより近づけられる。従って,もしも電極体間に微小な金属片などが混入していれば,加圧されることによって確実に短絡される。これにより,微小な短絡箇所の有無を確実に検出するための2次電池の良否判定方法となっている。   According to the secondary battery quality determination method of the present invention, two voltage measurement steps are included with the leaving step in between. In the leaving step, the secondary battery is pressurized in a direction crossing the electrode body. In the flat type secondary battery, the flat part is pressed in the direction of further flattening. That is, the distance between the positive and negative electrode bodies can be made closer by applying pressure in the direction intersecting the surface of the positive and negative flat electrode bodies. Therefore, if a minute metal piece or the like is mixed between the electrode bodies, it is surely short-circuited by being pressurized. This is a method for determining the quality of a secondary battery for reliably detecting the presence or absence of a minute short-circuited portion.

さらに本発明では,測定工程を,0℃以下の低温環境下において行うことが望ましい。このようにすれば,低温においては,良品と不良品との電圧の変化程度の差がより顕著に表れるため,判定はより容易になる。   Furthermore, in the present invention, it is desirable to perform the measurement process in a low temperature environment of 0 ° C. or less. In this way, at a low temperature, the difference in voltage change between the non-defective product and the defective product appears more conspicuously, and the determination becomes easier.

さらに本発明では,放置工程を,45℃以上70℃以下の高温環境下において行うことが望ましい。このようにすれば,2次電池中の微小な金属異物等の溶解や析出がより速く進行するため,より短時間での判定が可能となる。   Furthermore, in the present invention, it is desirable that the leaving step be performed in a high temperature environment of 45 ° C. or higher and 70 ° C. or lower. By doing so, since the dissolution and deposition of minute metallic foreign matters and the like in the secondary battery proceed faster, determination in a shorter time becomes possible.

また本発明は,扁平型のケースに平板状の電極体が封入された2次電池を製造するための2次電池の製造方法であって,扁平型のケースに平板状の電極体を封入する2次電池の組み立て工程と,2次電池を充電する充電工程と,充電後の2次電池の開路電圧を測定する放置前電圧測定工程と,充電された2次電池を,ケース外部から電極体に交わる方向に加圧しつつ,予め決めた期間にわたり放置する放置工程と,放置後の2次電池の開路電圧を測定する放置後電圧測定工程と,放置前電圧測定工程で測定された電圧から放置後電圧測定工程において測定された電圧までの電圧降下量が予め決めた値より大きい場合に不良品であると判定し,それ以外である場合に良品であると判定する判定工程とを含む2次電池の製造方法にも及ぶ。   The present invention also relates to a method of manufacturing a secondary battery for manufacturing a secondary battery in which a flat electrode body is sealed in a flat case, and the flat electrode body is sealed in the flat case. The assembly process of the secondary battery, the charging process for charging the secondary battery, the voltage measurement process before leaving to measure the open circuit voltage of the secondary battery after charging, and the charged secondary battery from the outside of the case The step of leaving for a predetermined period of time while applying pressure in the direction intersecting with the voltage, the step of measuring the open circuit voltage after leaving the secondary battery, and the step of measuring the voltage after leaving, and the step of measuring the voltage measured in the voltage measurement step before leaving A secondary step including a determination step of determining that the product is defective when the amount of voltage drop to the voltage measured in the post-voltage measurement step is greater than a predetermined value, and determining that the product is non-defective when it is not It extends to battery manufacturing methods.

本発明の次電池の良否判定方法および製造方法によれば,扁平型の2次電池において,微小な短絡箇所の有無を確実に検出することができる。   According to the quality determination method and the manufacturing method of the secondary battery of the present invention, it is possible to reliably detect the presence or absence of a minute short-circuit portion in the flat secondary battery.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,扁平型2次電池の良否を判定する判定方法,及び判定方法を含む製造方法に,本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a determination method for determining the quality of a flat secondary battery and a manufacturing method including the determination method.

本形態の対象としている2次電池10は,図1にその断面を示すように,正負の電極板が捲回された捲回タイプである。2次電池10は,扁平な箱形状の電池ケース11に,電極板部12と電解液13とが封入されている。電池ケース11は,金属製のケース本体11aに蓋11bが接合されているものである。また,電極板部12は,帯状の正負の電極板同士の間にセパレータをはさみ,これらがまとめて扁平形状に捲回されたものである。図1では,捲回の断面が見えている。   The secondary battery 10 which is the object of this embodiment is a wound type in which positive and negative electrode plates are wound as shown in FIG. In the secondary battery 10, an electrode plate portion 12 and an electrolytic solution 13 are enclosed in a flat box-shaped battery case 11. The battery case 11 is formed by joining a lid 11b to a metal case body 11a. The electrode plate portion 12 is formed by sandwiching a separator between strip-shaped positive and negative electrode plates and winding them together into a flat shape. In FIG. 1, the winding cross section is visible.

次に,本形態の2次電池10の組み立て工程を説明する。まず,正負の電極板をそれぞれ適切な長さに作成し,セパレータとともに捲回して電極板部12とする。また,ケース本体11aと蓋11bを用意する。また,蓋11bに設けられた電極端子を,電極板部12と接続する。さらに,電極板部12をケース本体11aに収納し,蓋11bを取り付ける。そして,蓋11bに設けられた注液口から電解液を注入する。注液口を封じ,初期充放電処理を行う。これで,2次電池10の組み立て工程が終了した。   Next, the assembly process of the secondary battery 10 of this embodiment will be described. First, positive and negative electrode plates are respectively prepared to appropriate lengths and wound together with a separator to form an electrode plate portion 12. In addition, a case body 11a and a lid 11b are prepared. Further, the electrode terminal provided on the lid 11 b is connected to the electrode plate portion 12. Further, the electrode plate portion 12 is accommodated in the case main body 11a, and the lid 11b is attached. And electrolyte solution is inject | poured from the injection hole provided in the lid | cover 11b. Seal the inlet and perform initial charge / discharge treatment. This completes the assembly process of the secondary battery 10.

次に,組み立てた2次電池10の良否を判定する,本形態の良否判定方法の流れについて説明する。上記のように組み立てられた2次電池10に対して,まず,予め決めた電圧値となるまで充電し(充電工程),開路電圧を測定する。これが1回目の電圧測定(放置前電圧測定工程)である。この測定は充電と並行して行い,充電終了時の電圧値を1回目の開路電圧の測定値としてもよい。あるいは,充電終了後に,改めて電圧測定を行ってもよい。   Next, the flow of the quality determination method of this embodiment for determining quality of the assembled secondary battery 10 will be described. First, the secondary battery 10 assembled as described above is charged until reaching a predetermined voltage value (charging process), and the open circuit voltage is measured. This is the first voltage measurement (voltage measurement step before leaving). This measurement may be performed in parallel with charging, and the voltage value at the end of charging may be used as the first open circuit voltage measurement value. Or you may measure a voltage anew after completion | finish of charge.

次に,図2に示すように,拘束器具20によって複数個の2次電池10を拘束する。さらに押圧力を加えて,各2次電池10において,その電池ケース11の内部で正負の電極板の面同士が互いに近づく方向へ押圧されている状態とする。個々の2次電池10の電極端子は,いずれもオープンのままとする。この状態で10〜20日にわたり放置する(放置工程)。   Next, as shown in FIG. 2, the plurality of secondary batteries 10 are restrained by the restraining device 20. Further, pressing force is applied to each secondary battery 10 so that the surfaces of the positive and negative electrode plates are pressed toward each other inside the battery case 11. All electrode terminals of each secondary battery 10 are left open. Leave in this state for 10 to 20 days (leaving step).

その後,個々の2次電池10に対して,2回目の開路電圧の測定を行う(放置後電圧測定工程)。1回目の電圧測定と2回目の電圧測定とはそれぞれ,拘束器具20によって拘束されたまま行ってもよいし,拘束を解いて行ってもよい。そして,放置前と放置後における2回の開路電圧の測定値の差に基づいて,その2次電池10の良否を判定する(判定工程)。   Thereafter, the second open circuit voltage is measured for each secondary battery 10 (voltage measurement step after standing). The first voltage measurement and the second voltage measurement may be performed while being restrained by the restraining device 20, or may be performed while the restraint is released. Then, the quality of the secondary battery 10 is determined based on the difference between the measured values of the open circuit voltage twice before and after being left (determination step).

ここで用いた拘束器具20は,図2に示すように,複数個の2次電池10をまとめて加圧するためのものである。これを使用することによって,複数個の2次電池10の良否判定を並行して行うことができる。このときの押圧力は,この2次電池10が複数個組み合わされて,電池パックとして使用される場合の押圧力以上のものとすることが望ましい。例えば,各2次電池10に対して700〜800kPa程度以上の圧力を加えることが望ましい。   The restraining device 20 used here is for pressurizing a plurality of secondary batteries 10 together as shown in FIG. By using this, it is possible to determine the quality of the plurality of secondary batteries 10 in parallel. It is desirable that the pressing force at this time be equal to or higher than the pressing force when a plurality of the secondary batteries 10 are combined and used as a battery pack. For example, it is desirable to apply a pressure of about 700 to 800 kPa or more to each secondary battery 10.

拘束器具20に拘束する際には,各2次電池10をその大側面15(電極板の面に対応する側面)が向き合うように並べ,その間にそれぞれ加圧板21を挟む。さらにその外側を,拘束板22によって挟む。そして,図中に矢印で示すように,両拘束板22を互いに近づける向きに加圧する。これにより,挟まれたすべての2次電池10が,同時に加圧される。   When restraining the restraint device 20, the secondary batteries 10 are arranged so that the large side surfaces 15 (side surfaces corresponding to the surfaces of the electrode plates) face each other, and the pressure plates 21 are sandwiched therebetween. Further, the outside is sandwiched between the restraining plates 22. Then, as shown by the arrows in the figure, the two constraining plates 22 are pressurized in a direction to approach each other. Thereby, all the inserted secondary batteries 10 are pressurized simultaneously.

ここで,加圧板21の側面は,2次電池10の大側面15よりやや小さく形成されている。すなわち,2次電池10の大側面15のうち縁辺を除いた部分のみを加圧する。電池ケース11の大側面15の内,底部16などとの境目や蓋11b近傍では,加圧しても内部の電極板部12にその圧力が伝わりにくいからである。これにより,電池ケース11に無理な力を加えることなく,内部の電極板部12を適度に押圧することができる。   Here, the side surface of the pressure plate 21 is formed slightly smaller than the large side surface 15 of the secondary battery 10. That is, only the portion excluding the edge of the large side surface 15 of the secondary battery 10 is pressurized. This is because, in the large side surface 15 of the battery case 11, at the boundary with the bottom portion 16 and the vicinity of the lid 11 b, the pressure is not easily transmitted to the internal electrode plate portion 12 even if pressure is applied. Thereby, the internal electrode plate part 12 can be appropriately pressed without applying an excessive force to the battery case 11.

なお本形態では,2次電池10の正負の電極板としてそれぞれ,帯状の基材に活物質が塗布されたものを用いている。この活物質は通常,基材の側端までは塗布されていない。そのため,電極板の両側端部には基材が露出している部分がある。本形態の加圧板21は,図2中の奥行き方向には,少なくともこの活物質が塗布された範囲の全体を押圧することが望ましい。   In this embodiment, the positive and negative electrode plates of the secondary battery 10 are each formed by applying an active material to a band-shaped base material. This active material is usually not applied to the side edges of the substrate. Therefore, there are portions where the base material is exposed at both end portions of the electrode plate. The pressure plate 21 of this embodiment desirably presses at least the entire area where the active material is applied in the depth direction in FIG.

このように押圧することにより,2次電池10の内部で電極板同士の距離を小さくすることができる。従って,電極板の間にごく小さい金属片等が混入していた場合には,その箇所で強制的に短絡させることができる。短絡が全くなければ,加圧状態で放置しても電圧はほとんど降下しない。すなわち,放置の前後における2回の開路電圧の測定値は,ほとんど差の無いものとなる。   By pressing in this way, the distance between the electrode plates can be reduced inside the secondary battery 10. Therefore, when a very small piece of metal is mixed between the electrode plates, it can be forcibly short-circuited at that point. If there is no short circuit, the voltage will hardly drop even if left under pressure. In other words, the measured values of the open circuit voltage twice before and after the neglect are almost the same.

しかし,たとえ微小なものであっても短絡箇所があると,内部で少しずつ放電するため,測定される電圧値が降下する。短絡がひどいものほど大きく降下する。そこで本形態では,放置前後での開路電圧の降下の幅が,予め決めた値より大きいものは,短絡箇所があると判断する。このように,拘束器具20によって加圧することにより,微小な短絡箇所でも確実に検出することができる。   However, even if it is a minute one, if there is a short-circuited part, the voltage value to be measured drops because it is gradually discharged inside. The worse the short circuit, the greater the drop. Therefore, in this embodiment, if the width of the open circuit voltage drop before and after being left is larger than a predetermined value, it is determined that there is a short-circuited portion. Thus, by applying pressure with the restraining device 20, even a small short-circuited portion can be reliably detected.

すなわち,2回の開路電圧の測定値の差に基づいて,不良箇所の有無を判定することができる。不良箇所があると判断されたものは排除され,次工程には流れない。良品であると判断されたもののみを次工程に流すことにより,良好な2次電池のみを製造する製造方法とすることができる。   That is, the presence / absence of a defective portion can be determined based on the difference between the measured values of the two open circuit voltages. Those that are judged to be defective are excluded and do not flow to the next process. By passing only those determined to be non-defective products to the next process, a manufacturing method for manufacturing only good secondary batteries can be obtained.

[実験1]
さらに,本発明者は加圧することにより,従来は検出が難しかった微小な短絡箇所を短絡させることができることを実験1により確かめた。そのために,電解液中に0.5mm程度の金属片を故意に混入させて,微小短絡状態の2次電池を組み立てた。そして,初期充放電を行った後,拘束器具20に拘束した。この実験1では,開路電圧をモニタしながら常温(20℃前後)で放置した。実施例1は,1日目から19日目まで加圧状態とした。実施例2は,1日目から9日目までは加圧せず,10日目から19日目まで加圧状態とした。比較例1は,1日目から19日目まで加圧しなかった。
[Experiment 1]
Furthermore, the present inventor has confirmed from Experiment 1 that, by applying pressure, it is possible to short-circuit a minute short-circuit portion that has been difficult to detect in the past. For this purpose, a secondary battery in a minute short-circuit state was assembled by intentionally mixing a metal piece of about 0.5 mm into the electrolyte. And after performing initial charging / discharging, it restrained to the restraint device 20. FIG. In this experiment 1, it was left at room temperature (around 20 ° C.) while monitoring the open circuit voltage. In Example 1, a pressurized state was applied from the first day to the 19th day. In Example 2, no pressure was applied from the first day to the ninth day, and the pressure state was maintained from the tenth day to the 19th day. In Comparative Example 1, no pressure was applied from the first day to the 19th day.

この実験1の結果を,図3に示す。実施例1は実線L1に示すように,1日目から開路電圧が下降した。実施例2は,破線L2に示すように,押圧を開始した10日目から大きく下降した。比較例1は,一点鎖線L3に示すように,あまり大きく下降しなかった。従って,加圧することにより電圧の降下量が大きくなり,短期間で確実に不良品を判定できることが確認できた。なお,この実験1では効果の検証のため,放置中も電圧の測定を適宜行ったが,本発明としては本来は,放置中の電圧の測定を行う必要があるわけではない。この点については,以下に述べる実験2も同様である。
[実験1終わり]
The result of Experiment 1 is shown in FIG. In Example 1, as indicated by the solid line L1, the open circuit voltage decreased from the first day. In Example 2, as indicated by a broken line L2, the pressure greatly decreased from the 10th day when the pressing was started. In Comparative Example 1, as shown by the alternate long and short dash line L3, it did not drop so much. Therefore, it was confirmed that by applying pressure, the amount of voltage drop increased, and defective products could be reliably determined in a short period of time. In this experiment 1, the voltage was appropriately measured during the standing for verification of the effect. However, according to the present invention, it is not necessarily necessary to measure the standing voltage. This is the same in Experiment 2 described below.
[End of Experiment 1]

なお本形態では,放置後の開路電圧の測定の工程を低温で行うとさらに望ましい。例えば,0℃以下で行うとよい。微小短絡品では,微弱ながら電流が流れている状態にある。すなわち,電気的に無負荷ではない。これを低温状態におくことにより,電圧ドロップがより大きくなる。一方,短絡箇所のない良品では,電流が流れていないため無負荷である。そのため,低温で測定しても状態は変わらない。すなわち,低温においては,良品と不良品との電圧の変化程度の差がより顕著に表れる。従って,低温で測定することにより,判定のためのS/N比が向上するので,判定はより容易となる。   In this embodiment, it is more preferable that the step of measuring the open circuit voltage after being left is performed at a low temperature. For example, it may be performed at 0 ° C. or lower. The micro short circuit product is in a state where current is flowing though it is weak. That is, it is not electrically unloaded. By keeping this at a low temperature, the voltage drop becomes larger. On the other hand, a good product without a short-circuit point is unloaded because no current flows. Therefore, the state does not change even when measured at low temperatures. That is, at a low temperature, the difference in voltage change between the non-defective product and the defective product becomes more prominent. Therefore, since the S / N ratio for determination is improved by measuring at a low temperature, the determination becomes easier.

[実験2]
本発明者は,この点を確認するための実験2をさらに行った。この実験2では,実験1と同様に製造した微小短絡品(実施例4)と,金属片を混入させていない良品(比較例2)とを比較した。いずれも,初期充放電を行った後,拘束器具20に拘束した。開路電圧をモニタしながら,1〜10日目までは常温(23℃)で,11日目からは低温(0℃)で放置および測定した。
[Experiment 2]
The inventor further performed Experiment 2 to confirm this point. In Experiment 2, a micro short-circuit product manufactured in the same manner as in Experiment 1 (Example 4) was compared with a good product in which no metal piece was mixed (Comparative Example 2). In either case, after the initial charge and discharge, the restraint device 20 was restrained. While monitoring the open circuit voltage, it was allowed to stand and measure at room temperature (23 ° C.) from day 1 to day 10 and at low temperature (0 ° C.) from day 11.

この実験2の結果を図4に示す。この図では,実施例4の結果を実線L4で,比較例2の結果を一点鎖線L5で示した。常温で測定している10日目までは,実施例4と比較例2との差はさほど大きくなかった。しかし,10日目から低温での測定とすることにより,明らかな差となった。従って,低温で測定することにより,より短期間で確実に不良品を判定できることが確認できた。
[実験2終わり]
The results of Experiment 2 are shown in FIG. In this figure, the result of Example 4 is indicated by a solid line L4, and the result of Comparative Example 2 is indicated by a one-dot chain line L5. The difference between Example 4 and Comparative Example 2 was not so great up to the 10th day when measured at room temperature. However, when the measurement was performed at a low temperature from the 10th day, a clear difference was obtained. Therefore, it was confirmed that defective products can be reliably judged in a shorter period of time by measuring at a low temperature.
[End of Experiment 2]

さらに,放置の工程を高温とすると,さらに短時間で不良品の判定を行うことができる。例えば,上記のように拘束した状態で,45〜70℃程度の環境中に放置する。高温状態では,2次電池中の微小な金属異物等の溶解や析出がより速く進行することが分かっている。従って,これにより放置期間をより短くできる。すなわち,放置工程は高温,測定工程は低温とすることがより望ましい。   Furthermore, if the leaving process is performed at a high temperature, it is possible to determine a defective product in a shorter time. For example, it is left in an environment of about 45 to 70 ° C. in a state of being restrained as described above. It has been found that in high temperature conditions, dissolution and precipitation of minute metallic foreign matters in the secondary battery proceed faster. Therefore, this can shorten the neglect period. In other words, it is more desirable that the standing process is at a high temperature and the measurement process is at a low temperature.

以上詳細に説明したように,本形態の良否判定方法によれば,充電した状態で放置し,その前後に開路電圧の測定を行う。ただし,充電時に適切に測定できるのであれば,放置前の測定は不要である。また,放置時には,2次電池10の中央部を加圧しているので,微小な短絡箇所をより確実に短絡させることができる。また,高温環境で放置すれば,さらに確実に微小短絡の有無を判定できる。さらに,放置後の測定を低温環境で行えば,さらに判定が容易である。これにより,扁平型の2次電池において,微小な短絡箇所の有無を確実に検出するための良否判定方法となっている。   As described in detail above, according to the pass / fail judgment method of this embodiment, the battery is left in a charged state, and the open circuit voltage is measured before and after that. However, if it can be measured properly at the time of charging, measurement before leaving is unnecessary. Moreover, since the center part of the secondary battery 10 is pressurized at the time of leaving, a minute short circuit location can be short-circuited more reliably. In addition, if left in a high temperature environment, the presence or absence of a short circuit can be determined more reliably. Furthermore, if the measurement after standing is performed in a low-temperature environment, the determination is easier. This is a quality determination method for reliably detecting the presence or absence of a minute short-circuited point in a flat secondary battery.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,本発明の対象となる電池の平板状の電極体は,捲回タイプに限らず,複数の電極板を正負交互に積層してケースに収納した積層タイプにも適用可能である。また,拘束治具として,拘束したすべての2次電池10がいずれも良品であると判断された場合には,そのまま電池パックとして使用できるものを用いてもよい。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, the flat electrode body of the battery that is the subject of the present invention is not limited to the wound type, but can be applied to a stacked type in which a plurality of electrode plates are alternately stacked positively and negatively and stored in a case. Further, as a restraining jig, when all the restrained secondary batteries 10 are determined to be non-defective products, those that can be used as they are as a battery pack may be used.

判定対象の2次電池を示す断面図である。It is sectional drawing which shows the secondary battery of determination object. 本形態の押圧装置を示す説明図である。It is explanatory drawing which shows the press apparatus of this form. 実験1の結果を示すグラフ図である。6 is a graph showing the results of Experiment 1. FIG. 実験2の結果を示すグラフ図である。6 is a graph showing the results of Experiment 2. FIG.

符号の説明Explanation of symbols

10 2次電池
11 電池ケース
12 電極板部
20 拘束治具
10 Secondary battery 11 Battery case 12 Electrode plate part 20 Restraint jig

Claims (4)

扁平型のケースに平板状の電極体が封入された2次電池の良否を判定するための2次電池の良否判定方法において,
2次電池を充電する充電工程と,
充電後の2次電池の開路電圧を測定する放置前電圧測定工程と,
充電された2次電池を,ケース外部から電極体に交わる方向に加圧しつつ,予め決めた期間にわたり放置する放置工程と,
放置後の2次電池の開路電圧を測定する放置後電圧測定工程と,
前記放置前電圧測定工程で測定された電圧から前記放置後電圧測定工程において測定された電圧までの電圧降下量が予め決めた値より大きい場合に不良品であると判定し,それ以外である場合に良品であると判定する判定工程とを含むことを特徴とする2次電池の良否判定方法。
In a secondary battery quality determination method for determining quality of a secondary battery in which a flat electrode case is enclosed in a flat case,
A charging process for charging the secondary battery;
A voltage measurement process before leaving to measure the open circuit voltage of the secondary battery after charging;
A leaving step of leaving the charged secondary battery for a predetermined period of time while applying pressure to the electrode body from the outside of the case;
A step of measuring a voltage after being left to measure an open circuit voltage of the secondary battery after being left;
When the voltage drop from the voltage measured in the voltage measurement step before leaving to the voltage measured in the voltage measurement step after leaving is larger than a predetermined value, it is determined as a defective product, and otherwise And a determination step for determining that the battery is a non-defective product.
請求項1に記載の2次電池の良否判定方法において,
前記測定工程を,0℃以下の低温環境下において行うことを特徴とする2次電池の良否判定方法。
The quality determination method for the secondary battery according to claim 1,
A method for determining a quality of a secondary battery, wherein the measuring step is performed in a low temperature environment of 0 ° C. or less.
請求項1または請求項2に記載の2次電池の良否判定方法において,
前記放置工程を,45℃以上70℃以下の高温環境下において行うことを特徴とする2次電池の良否判定方法。
In the quality determination method of the secondary battery according to claim 1 or 2,
A method for determining a quality of a secondary battery, wherein the leaving step is performed in a high temperature environment of 45 ° C. or higher and 70 ° C. or lower.
扁平型のケースに平板状の電極体が封入された2次電池を製造するための2次電池の製造方法において,
扁平型のケースに平板状の電極体を封入する2次電池の組み立て工程と,
2次電池を充電する充電工程と,
充電後の2次電池の開路電圧を測定する放置前電圧測定工程と,
充電された2次電池を,ケース外部から電極体に交わる方向に加圧しつつ,予め決めた期間にわたり放置する放置工程と,
放置後の2次電池の開路電圧を測定する放置後電圧測定工程と,
前記放置前電圧測定工程で測定された電圧から前記放置後電圧測定工程において測定された電圧までの電圧降下量が予め決めた値より大きい場合に不良品であると判定し,それ以外である場合に良品であると判定する判定工程とを含むことを特徴とする2次電池の製造方法。
In a secondary battery manufacturing method for manufacturing a secondary battery in which a flat electrode body is sealed in a flat case,
An assembly process of a secondary battery in which a flat electrode body is enclosed in a flat case;
A charging process for charging the secondary battery;
A voltage measurement process before leaving to measure the open circuit voltage of the secondary battery after charging;
A leaving step of leaving the charged secondary battery for a predetermined period of time while applying pressure to the electrode body from the outside of the case;
A step of measuring a voltage after being left to measure an open circuit voltage of the secondary battery after being left;
When the voltage drop from the voltage measured in the voltage measurement step before leaving to the voltage measured in the voltage measurement step after leaving is larger than a predetermined value, it is determined as a defective product, and otherwise And a determination step for determining that the battery is a non-defective product.
JP2008331786A 2008-12-26 2008-12-26 Method for deciding quality of secondary battery, and method for manufacturing secondary battery Pending JP2010153275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331786A JP2010153275A (en) 2008-12-26 2008-12-26 Method for deciding quality of secondary battery, and method for manufacturing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331786A JP2010153275A (en) 2008-12-26 2008-12-26 Method for deciding quality of secondary battery, and method for manufacturing secondary battery

Publications (1)

Publication Number Publication Date
JP2010153275A true JP2010153275A (en) 2010-07-08

Family

ID=42572139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331786A Pending JP2010153275A (en) 2008-12-26 2008-12-26 Method for deciding quality of secondary battery, and method for manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP2010153275A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003950A (en) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd Pressure device for laminate type battery
JP2012003952A (en) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd Pressure device for laminate type battery
WO2013035202A1 (en) * 2011-09-09 2013-03-14 トヨタ自動車株式会社 Secondary cell inspecting method
WO2013121563A1 (en) * 2012-02-16 2013-08-22 トヨタ自動車株式会社 Method for manufacturing secondary cell
JP2014093270A (en) * 2012-11-06 2014-05-19 Toyota Motor Corp Manufacturing method of battery pack
JP2014216128A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 Inspection method for battery and manufacturing method for battery
US20150091578A1 (en) * 2013-10-02 2015-04-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
JP2015095312A (en) * 2013-11-11 2015-05-18 株式会社豊田自動織機 Method for power storage device inspection
CN104662731A (en) * 2012-09-26 2015-05-27 丰田自动车株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
EP2816634A4 (en) * 2012-02-13 2015-12-30 Nissan Motor Battery cell storage apparatus and storage apparatus transport system
JP2016194998A (en) * 2015-03-31 2016-11-17 株式会社Gsユアサ Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
JPWO2015011794A1 (en) * 2013-07-24 2017-03-02 オートモーティブエナジーサプライ株式会社 Secondary battery inspection method
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
EP3428670A1 (en) 2017-07-10 2019-01-16 Toyota Jidosha Kabushiki Kaisha Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
RU2692159C1 (en) * 2017-12-25 2019-06-24 Тойота Дзидося Кабусики Кайся Verification method and method of electric storage device production
US20190198943A1 (en) * 2017-12-25 2019-06-27 Toyota Jidosha Kabushiki Kaisha Inspection method of electrical storage device and manufacturing method thereof
JP2019192553A (en) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 Li precipitation evaluation method
US10539622B2 (en) 2017-08-07 2020-01-21 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method for electric power storage device
WO2020105976A1 (en) * 2018-11-21 2020-05-28 주식회사 엘지화학 Jig pressing-type pressing short-circuiting inspection method
US10768238B2 (en) 2017-08-21 2020-09-08 Toyota Jidosha Kabushiki Kaisha Inspection method of electrical storage device and manufacturing method thereof
US10845422B2 (en) 2018-08-01 2020-11-24 Toyota Jidosha Kabushiki Kaisha Electricity storage device tester
US10884064B2 (en) 2018-02-09 2021-01-05 Toyota Jidosha Kabushikt Kaisha Inspection apparatus of electrical storage device
US10928460B2 (en) 2018-07-19 2021-02-23 Toyota Jidosha Kabushiki Kaisha Method of inspecting power storage device based on discharge current and method of producing the same
CN112649739A (en) * 2020-12-22 2021-04-13 惠州亿纬创能电池有限公司 Method and device for determining standing time after battery liquid injection
US11011785B2 (en) 2018-08-21 2021-05-18 Toyota Jidosha Kabushiki Kaisha Electricity storage device testing method and electricity storage device manufacturing method
US11221371B2 (en) 2019-07-11 2022-01-11 Toyota Jidosha Kabushiki Kaisha Power storage device inspecting method and power storage device manufacturing method
US11796595B2 (en) 2017-07-11 2023-10-24 Lg Energy Solution, Ltd. Apparatus and method for inspecting defect of secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228224A (en) * 2000-02-17 2001-08-24 Nec Mobile Energy Kk Inferiority selection method of non-aqueous electrolyte battery
JP2001236985A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of inspecting short circuit in battery and method of manufacturing battery
JP2003045500A (en) * 2001-07-26 2003-02-14 Matsushita Electric Ind Co Ltd Method and device for inspecting battery
JP2003077527A (en) * 2001-06-18 2003-03-14 Matsushita Electric Ind Co Ltd Method of manufacturing alkaline storage battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2005209528A (en) * 2004-01-23 2005-08-04 Toyota Motor Corp Secondary battery inspection method
JP2005251538A (en) * 2004-03-03 2005-09-15 Toyota Motor Corp Inspection method and device of secondary cell
JP2005327616A (en) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Battery evaluation apparatus
JP2005339925A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Inspection method of unit cell and assembly method of battery pack
JP2008192495A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Internal short circuit evaluation method and internal short circuit evaluation device for battery as well as battery, battery pack and their manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228224A (en) * 2000-02-17 2001-08-24 Nec Mobile Energy Kk Inferiority selection method of non-aqueous electrolyte battery
JP2001236985A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of inspecting short circuit in battery and method of manufacturing battery
JP2003077527A (en) * 2001-06-18 2003-03-14 Matsushita Electric Ind Co Ltd Method of manufacturing alkaline storage battery
JP2003045500A (en) * 2001-07-26 2003-02-14 Matsushita Electric Ind Co Ltd Method and device for inspecting battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2005209528A (en) * 2004-01-23 2005-08-04 Toyota Motor Corp Secondary battery inspection method
JP2005251538A (en) * 2004-03-03 2005-09-15 Toyota Motor Corp Inspection method and device of secondary cell
JP2005327616A (en) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Battery evaluation apparatus
JP2005339925A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Inspection method of unit cell and assembly method of battery pack
JP2008192495A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Internal short circuit evaluation method and internal short circuit evaluation device for battery as well as battery, battery pack and their manufacturing method

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003952A (en) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd Pressure device for laminate type battery
JP2012003950A (en) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd Pressure device for laminate type battery
WO2013035202A1 (en) * 2011-09-09 2013-03-14 トヨタ自動車株式会社 Secondary cell inspecting method
US9905820B2 (en) 2012-02-13 2018-02-27 Nissan Motor Co., Ltd. Battery cell storage apparatus and storage apparatus transport system
EP2816634A4 (en) * 2012-02-13 2015-12-30 Nissan Motor Battery cell storage apparatus and storage apparatus transport system
WO2013121563A1 (en) * 2012-02-16 2013-08-22 トヨタ自動車株式会社 Method for manufacturing secondary cell
CN104115326A (en) * 2012-02-16 2014-10-22 丰田自动车株式会社 Method for manufacturing secondary cell
JPWO2013121563A1 (en) * 2012-02-16 2015-05-11 トヨタ自動車株式会社 Manufacturing method of secondary battery
CN104662731A (en) * 2012-09-26 2015-05-27 丰田自动车株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
CN104662731B (en) * 2012-09-26 2016-04-20 丰田自动车株式会社 The manufacture method of sealing cell and testing fixture
JP2014093270A (en) * 2012-11-06 2014-05-19 Toyota Motor Corp Manufacturing method of battery pack
JP2014216128A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 Inspection method for battery and manufacturing method for battery
JPWO2015011794A1 (en) * 2013-07-24 2017-03-02 オートモーティブエナジーサプライ株式会社 Secondary battery inspection method
US20150091578A1 (en) * 2013-10-02 2015-04-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
JP2015072759A (en) * 2013-10-02 2015-04-16 トヨタ自動車株式会社 Method of manufacturing secondary battery
CN104515954A (en) * 2013-10-02 2015-04-15 丰田自动车株式会社 Method of manufacturing secondary battery
US9577294B2 (en) * 2013-10-02 2017-02-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
JP2015095312A (en) * 2013-11-11 2015-05-18 株式会社豊田自動織機 Method for power storage device inspection
JP2016194998A (en) * 2015-03-31 2016-11-17 株式会社Gsユアサ Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
EP3428670A1 (en) 2017-07-10 2019-01-16 Toyota Jidosha Kabushiki Kaisha Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP2019016558A (en) * 2017-07-10 2019-01-31 トヨタ自動車株式会社 Method for inspecting short circuit of power storage device and method for manufacturing power storage device
US10656212B2 (en) 2017-07-10 2020-05-19 Toyota Jidosha Kabushiki Kaisha Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
US11796595B2 (en) 2017-07-11 2023-10-24 Lg Energy Solution, Ltd. Apparatus and method for inspecting defect of secondary battery
US10539622B2 (en) 2017-08-07 2020-01-21 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method for electric power storage device
US10768238B2 (en) 2017-08-21 2020-09-08 Toyota Jidosha Kabushiki Kaisha Inspection method of electrical storage device and manufacturing method thereof
RU2692159C1 (en) * 2017-12-25 2019-06-24 Тойота Дзидося Кабусики Кайся Verification method and method of electric storage device production
US11193980B2 (en) 2017-12-25 2021-12-07 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
EP3517986A3 (en) * 2017-12-25 2019-08-21 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
EP3517986A2 (en) 2017-12-25 2019-07-31 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
KR102113722B1 (en) * 2017-12-25 2020-05-21 도요타지도샤가부시키가이샤 Inspection method and manufacturing method of electrical storage device
KR20190077231A (en) * 2017-12-25 2019-07-03 도요타지도샤가부시키가이샤 Inspection method and manufacturing method of electrical storage device
US10847849B2 (en) 2017-12-25 2020-11-24 Toyota Jidosha Kabushiki Kaisha Inspection method of electrical storage device and manufacturing method thereof
US20190198943A1 (en) * 2017-12-25 2019-06-27 Toyota Jidosha Kabushiki Kaisha Inspection method of electrical storage device and manufacturing method thereof
US10884064B2 (en) 2018-02-09 2021-01-05 Toyota Jidosha Kabushikt Kaisha Inspection apparatus of electrical storage device
JP2019192553A (en) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 Li precipitation evaluation method
US10928460B2 (en) 2018-07-19 2021-02-23 Toyota Jidosha Kabushiki Kaisha Method of inspecting power storage device based on discharge current and method of producing the same
US10845422B2 (en) 2018-08-01 2020-11-24 Toyota Jidosha Kabushiki Kaisha Electricity storage device tester
US11011785B2 (en) 2018-08-21 2021-05-18 Toyota Jidosha Kabushiki Kaisha Electricity storage device testing method and electricity storage device manufacturing method
WO2020105976A1 (en) * 2018-11-21 2020-05-28 주식회사 엘지화학 Jig pressing-type pressing short-circuiting inspection method
EP3783378A4 (en) * 2018-11-21 2021-07-14 Lg Chem, Ltd. Jig pressing-type pressing short-circuiting inspection method
US11372052B2 (en) 2018-11-21 2022-06-28 Lg Energy Solution, Ltd. Jig pressing-type pressing short-circuiting inspection method
US11221371B2 (en) 2019-07-11 2022-01-11 Toyota Jidosha Kabushiki Kaisha Power storage device inspecting method and power storage device manufacturing method
CN112649739B (en) * 2020-12-22 2022-10-14 惠州亿纬创能电池有限公司 Method and device for determining standing time after battery liquid injection
CN112649739A (en) * 2020-12-22 2021-04-13 惠州亿纬创能电池有限公司 Method and device for determining standing time after battery liquid injection

Similar Documents

Publication Publication Date Title
JP2010153275A (en) Method for deciding quality of secondary battery, and method for manufacturing secondary battery
JP5172579B2 (en) Cylindrical battery inspection method
US9091733B2 (en) Method of inspecting secondary battery
JP5747895B2 (en) Manufacturing method of battery pack
US20160161564A1 (en) Test method for secondary battery
JP2001236985A (en) Method of inspecting short circuit in battery and method of manufacturing battery
US9577294B2 (en) Manufacturing method for secondary battery
WO2012117448A1 (en) Secondary battery testing method
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
JP5974967B2 (en) Battery inspection method and battery manufacturing method
JP4720221B2 (en) Manufacturing method of secondary battery
KR101989490B1 (en) Apparatus for Inspection of Welding State of Clad to Battery Cell
KR101255353B1 (en) Manufacturing method for battery
JP2005251538A (en) Inspection method and device of secondary cell
KR20180001351A (en) Method of the electrical and physical defect inspection between Lead-acid battery cell
JP2018067498A (en) Method of manufacturing battery
JP4666897B2 (en) Battery manufacturing method
KR101398477B1 (en) Precise Detector of Charge Voltage for Charge-Discharge Device
KR20220138739A (en) Method for detecting abnormal battery through relative comparison
US20240060934A1 (en) Apparatus for detecting location of foreign material of low-voltage battery cell and analytical method using the same
JP2018190688A (en) Manufacturing method of battery
UA82129C2 (en) Electric method for control of technical condition of lead-acid accumulator batteries
JP2014207181A (en) Inspection method for secondary battery
CN116381546A (en) Lithium ion battery self-discharge abnormality detection method, equipment and storage medium
KR20140112466A (en) Welding Test Device of Novel Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507