JP2014216128A - Inspection method for battery and manufacturing method for battery - Google Patents

Inspection method for battery and manufacturing method for battery Download PDF

Info

Publication number
JP2014216128A
JP2014216128A JP2013091348A JP2013091348A JP2014216128A JP 2014216128 A JP2014216128 A JP 2014216128A JP 2013091348 A JP2013091348 A JP 2013091348A JP 2013091348 A JP2013091348 A JP 2013091348A JP 2014216128 A JP2014216128 A JP 2014216128A
Authority
JP
Japan
Prior art keywords
battery
axis direction
electrode body
compression
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013091348A
Other languages
Japanese (ja)
Other versions
JP5974967B2 (en
Inventor
康資 岩瀬
Kosuke Iwase
康資 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013091348A priority Critical patent/JP5974967B2/en
Publication of JP2014216128A publication Critical patent/JP2014216128A/en
Application granted granted Critical
Publication of JP5974967B2 publication Critical patent/JP5974967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method for a battery capable of properly discriminating a battery in which foreign matters have not entered in a semi-cylindrical end of an electrode body, and to provide a manufacturing method for a battery in which foreign matters have not entered in a semi-cylindrical end.SOLUTION: An inspection method for a battery 1 which includes: a wound electrode body 10 whose cross-section PJ is an elliptical shape; and a battery case 20 housing the electrode body inside thereof is provided. The electrode body has semi-cylindrical ends 10R located on both ends of an elliptical shape in a major axis direction DM and an intermediate portion 10S located between the semi-cylindrical ends 10R. The inspection method includes: a first compression step for compressing the semi-cylindrical ends in a minor axis direction DN and compressing the electrode body in the major axis direction through the battery case from outside the battery case; a first placing step for placing the battery while the semi-cylindrical ends being compressed in a minor axis direction and the electrode body being compressed in the major axis direction; and a first voltage measuring step for measuring a voltage V between terminals of the battery after the first placing step.

Description

本発明は、横断面が長円形状をなす捲回型の電極体を備える電池の検査方法、及び、このような電池の製造方法に関する。   The present invention relates to a method for inspecting a battery including a wound electrode body having a cross section of an ellipse and a method for manufacturing such a battery.

近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能な電池が利用されている。このような電池を検査する技術として、例えば、特許文献1には、極板群(電極体)を圧縮した状態で短絡検査を行う電池の短絡検査方法が開示されている。この電池の短絡検査方法は、具体的には、電槽内に挿入前の、正極板と負極板とをセパレータを介して交互に積層した積層型の極板群について、加圧手段を用いて積層方向に加圧する。すると、もし正極板と負極板との間に導電性の異物が混入している場合には、加圧によりこの異物を通じて正極板と負極板とが短絡するので、この異物を検出することができる。   In recent years, a chargeable / dischargeable battery has been used as a driving power source for vehicles such as hybrid vehicles and electric vehicles, and portable electronic devices such as notebook computers and video camcorders. As a technique for inspecting such a battery, for example, Patent Document 1 discloses a battery short-circuit inspection method in which a short-circuit inspection is performed in a state where an electrode plate group (electrode body) is compressed. Specifically, this battery short-circuit inspection method uses a pressurizing means for a stacked electrode plate group in which positive and negative plates are alternately stacked via a separator before being inserted into a battery case. Pressurize in the stacking direction. Then, if conductive foreign matter is mixed between the positive electrode plate and the negative electrode plate, the positive electrode plate and the negative electrode plate are short-circuited through the foreign matter by pressurization, so that the foreign matter can be detected. .

特開2001−236985号公報JP 2001-236985 A

しかしながら、特許文献1の電池の短絡検査方法を、横断面が長円形状の扁平捲回型の電極体を電池ケース内に収容した電池に適用することは困難である。扁平捲回型の電極体は、長円形状の横断面の長径方向の両端にそれぞれ位置し、正極板、セパレータ及び負極板が半円筒形状に曲げられた2つの半円筒状端部と、これら半円筒状端部の間に位置し、正極板、セパレータ及び負極板が長円形状の短径方向に積層された中間部とを有する。   However, it is difficult to apply the battery short-circuit inspection method of Patent Document 1 to a battery in which a flat wound electrode body having an oval cross section is accommodated in a battery case. The flat wound electrode body is positioned at both ends in the major axis direction of the elliptical cross section, and the two semi-cylindrical end portions in which the positive electrode plate, the separator and the negative electrode plate are bent into a semi-cylindrical shape, and these The positive electrode plate, the separator, and the negative electrode plate are positioned between the semi-cylindrical ends, and have an intermediate portion in which the ellipse is stacked in the minor axis direction.

特許文献1の記載と同様に、電池ケースを介して、扁平捲回型の電極体を短径方向に加圧した場合、中間部と共に、半円筒状端部のうち中間部に隣接する部位も短径方向に加圧されるが、この部位よりも長径方向外側の部位には、加圧手段による加圧力がかからない。つまり、半円筒状端部のうち中間部に隣接する部位のみ圧縮される。しかも、半円筒状端部は加圧に伴い、長径方向外側に突出する変形が生じて、この半円筒状端部にかかる短径方向の加圧力が減少するため、半円筒状端部は短径方向に十分に圧縮されない。
一方、扁平捲回型の電極体を電池ケースを介して長径方向に加圧した場合には、半円筒状端部を長径方向の一方向からしか圧縮できないため、この半円筒状端部を十分に圧縮することができない。しかも、長径方向と中間部の積層方向とは直交するため、中間部もまた十分に圧縮することができない。
結局、扁平捲回型の電極体を短径方向あるいは長径方向のうち一方向に加圧した場合には、電極体のうち、少なくとも半円筒状端部について十分に圧縮することができないため、この半円筒状端部に導電性の異物が混入していたとしても、検査時に導電性異物による正負極間の短絡が生じさせ難い。従って、半円筒状端部に混入した導電性異物を適切に検出できない場合がある。
Similarly to the description in Patent Document 1, when a flat wound electrode body is pressed through the battery case in the minor axis direction, the portion adjacent to the intermediate portion of the semi-cylindrical end portion is also present together with the intermediate portion. Although the pressure is applied in the minor axis direction, no pressure applied by the pressurizing means is applied to the part outside the major axis direction from this part. That is, only the part adjacent to the intermediate part in the semi-cylindrical end part is compressed. Moreover, the semi-cylindrical end portion is deformed to protrude outward in the major axis direction due to the pressurization, and the pressing force in the minor axis direction applied to the semi-cylindrical end portion is reduced. Not fully compressed in the radial direction.
On the other hand, when a flat wound electrode body is pressed in the major axis direction through the battery case, the semi-cylindrical end part can be compressed only from one direction in the major axis direction. Can not be compressed. In addition, since the major axis direction and the stacking direction of the intermediate portion are orthogonal to each other, the intermediate portion cannot also be sufficiently compressed.
After all, when a flat wound electrode body is pressed in one direction of the minor axis direction or the major axis direction, at least the semi-cylindrical end portion of the electrode body cannot be sufficiently compressed. Even if conductive foreign matter is mixed in the semi-cylindrical end portion, it is difficult to cause a short circuit between the positive and negative electrodes due to the conductive foreign matter at the time of inspection. Therefore, the conductive foreign matter mixed in the semicylindrical end portion may not be detected properly.

本発明は、かかる問題点に鑑みてなされたものであって、電極体の半円筒状端部に異物の混入がない電池を適切に判別できる電池の検査方法を提供する。また、半円筒状端部への異物の混入がない電池を製造する電池の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and provides a battery inspection method capable of appropriately discriminating a battery in which a foreign object is not mixed in a semi-cylindrical end portion of an electrode body. Moreover, it aims at providing the manufacturing method of the battery which manufactures the battery in which the foreign material does not mix in a semicylindrical edge part.

本発明の一態様は、いずれも帯状の正極板、負極板及びセパレータを捲回軸の周りに捲回してなり、横断面が長円形状をなす捲回型の電極体と、上記電極体を内部に収容した電池ケースと、を備える電池の検査方法であって、上記電極体は、上記長円形状の長径方向の両端にそれぞれ位置し、上記正極板、上記セパレータ及び上記負極板がそれぞれ半円筒形状に曲げられてなる半円筒状端部と、上記半円筒状端部同士の間に位置し、上記正極板、上記セパレータ及び上記負極板が上記長円形状の短径方向に積層されてなる中間部と、を有し、上記電池ケースの外部から上記電池ケースを介して、上記電極体の上記半円筒状端部をそれぞれ上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮する第1圧縮工程と、上記半円筒状端部を上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮した状態で、上記電池を静置する第1静置工程と、上記第1静置工程の後、上記電池の端子間電圧を測定する第1電圧測定工程と、を備える電池の検査方法である。   One embodiment of the present invention is a wound electrode body in which a strip-like positive electrode plate, a negative electrode plate, and a separator are wound around a winding axis, and the cross section has an oval shape, and the above electrode body. A battery case housed therein, wherein the electrode bodies are located at both ends of the oblong shape in the major axis direction, and the positive electrode plate, the separator, and the negative electrode plate are half of each other. Located between the semi-cylindrical ends bent into a cylindrical shape and the semi-cylindrical ends, the positive electrode plate, the separator and the negative electrode plate are laminated in the minor axis direction of the oval shape. The semi-cylindrical end of the electrode body from the outside of the battery case through the battery case, respectively, in the minor axis direction, and the electrode body in the major axis direction. A first compression step to compress and the semi-cylindrical end In the state where the electrode body is compressed in the major axis direction while being compressed in the minor axis direction, and after the first stationary step, the inter-terminal voltage of the battery is A first voltage measuring step for measuring a battery.

上述の電池の検査方法は、上述した第1圧縮工程と第1静置工程と第1電圧測定工程とを備える。このうち、第1圧縮工程及び第1静置工程では、電極体の半円筒状端部を短径方向に圧縮すると共に、電極体を長径方向に圧縮するため、半円筒状端部を2方向(長径方向及び短径方向)から圧縮することができる。しかも、電池ケースを介して電極体を長径方向にも圧縮しているので、短径方向の加圧によって、半円筒状端部が長径方向外側に突出する変形も抑え、半円筒状端部を短径方向及び長径方向に十分に圧縮することができる。このため、半円筒状端部に導電性の異物が混入している場合に、第1圧縮工程及び第1静置工程において、半円筒状端部で異物による正負極間の短絡を生じさせることができる。一方、半円筒状端部に導電性異物が混入していない場合には、この半円筒状端部において正負極間の短絡が生じないので、電極体の半円筒状端部に導電性異物の混入がない電池を適切に判別することができる。   The above-described battery inspection method includes the above-described first compression step, first stationary step, and first voltage measurement step. Among these, in the first compression step and the first stationary step, the semi-cylindrical end portion of the electrode body is compressed in the short diameter direction and the electrode body is compressed in the long diameter direction. It can compress from (major axis direction and minor axis direction). In addition, since the electrode body is also compressed in the major axis direction via the battery case, the deformation in which the semi-cylindrical end portion protrudes outward in the major axis direction is suppressed by pressing in the minor axis direction, and the semi-cylindrical end portion is It is possible to sufficiently compress in the minor axis direction and the major axis direction. For this reason, when conductive foreign matter is mixed in the semi-cylindrical end portion, a short circuit between the positive and negative electrodes due to the foreign matter is caused in the semi-cylindrical end portion in the first compression step and the first stationary step. Can do. On the other hand, when no conductive foreign matter is mixed in the semi-cylindrical end portion, no short circuit occurs between the positive and negative electrodes at the semi-cylindrical end portion. It is possible to appropriately determine a battery that is not mixed.

なお、第1静置工程としては、半円筒状端部を短径方向に圧縮すると共に電極体を長径方向に圧縮した状態で、かつ、所定の充電状態(例えば、SOC98%)の電池を、所定の温度(例えば、25℃)下で、所定期間(例えば、3日間(=72時間))にわたり開放状態に静置する工程が挙げられる。   In the first standing step, a battery in a predetermined charged state (for example, SOC 98%) in a state where the semicylindrical end portion is compressed in the short diameter direction and the electrode body is compressed in the long diameter direction, The process of leaving still in an open state over a predetermined period (for example, 3 days (= 72 hours)) at a predetermined temperature (for example, 25 ° C.) may be mentioned.

さらに、上述の電池の検査方法であって、前記第1圧縮工程の前、又は、第1電圧測定工程の後に、前記電池ケースの外部から上記電池ケースを通じて、前記電極体のうち前記中間部を前記短径方向に圧縮する第2圧縮工程、上記中間部を上記短径方向に圧縮した状態で、前記電池を静置する第2静置工程、及び、上記第2静置工程の後、上記電池の端子間電圧を測定する第2電圧測定工程、を備える電池の検査方法とすると良い。   Further, in the above-described battery inspection method, the intermediate portion of the electrode body is inserted through the battery case from the outside of the battery case before the first compression step or after the first voltage measurement step. After the second compression step of compressing in the minor axis direction, the second stationary step of standing the battery in a state where the intermediate portion is compressed in the minor axis direction, and the second stationary step, It is good to set it as the inspection method of a battery provided with the 2nd voltage measurement process which measures the voltage between terminals of a battery.

上述の電池の検査方法は、前述の第1圧縮工程の前、又は、第1電圧測定工程の後に、上述した第2圧縮工程、第2静置工程及び第2電圧測定工程を備える。このため、第1圧縮工程及び第1静置工程における半円筒状端部に加え、第2圧縮工程及び第2静置工程において、中間部に混入した導電性の異物により中間部で正負極間の短絡を生じさせることができる。一方、中間部に導電性異物が混入していない場合には、この中間部において短絡が生じないので、電極体(半円筒状端部及び中間部)に異物の混入がない電池を適切に判別することができる。   The battery inspection method includes the above-described second compression step, second stationary step, and second voltage measurement step before the first compression step or after the first voltage measurement step. For this reason, in addition to the semi-cylindrical end portions in the first compression step and the first stationary step, in the second compression step and the second stationary step, the conductive foreign matter mixed in the intermediate portion causes a gap between the positive and negative electrodes in the intermediate portion. Can cause a short circuit. On the other hand, when no conductive foreign matter is mixed in the intermediate portion, no short circuit occurs in the intermediate portion, so a battery with no foreign matter mixed in the electrode body (semi-cylindrical end portion and intermediate portion) is properly identified. can do.

なお、第2静置工程としては、中間部を短径方向に圧縮した状態の電池を、前述の第1静置工程と同様、所定の充電状態かつ所定の温度下で、所定期間にわたり開放状態に静置する工程が挙げられる。   As the second stationary step, the battery in which the intermediate portion is compressed in the minor axis direction is opened for a predetermined period under a predetermined charging state and at a predetermined temperature as in the first stationary step. A step of standing still.

さらに、上述の電池の検査方法であって、前記第2圧縮工程、前記第2静置工程及び前記第2電圧測定工程を、前記第1圧縮工程の前に行う電池の検査方法とすると良い。   Further, in the above-described battery inspection method, the second compression step, the second stationary step, and the second voltage measurement step may be a battery inspection method that is performed before the first compression step.

ところで、第2圧縮工程(及び第2静置工程)の際、中間部が外部から加圧されると、中間部に混入していた導電性の異物が、この中間部から半円筒状端部に移動する場合があることが判ってきた。
これに対し、上述の電池の検査方法では、第2圧縮工程、第2静置工程及び第2電圧測定工程を第1圧縮工程の前に行うため、第2圧縮工程及び第2静置工程において、中間部から半円筒状端部に導電性の異物が移動した場合でも、その後の第1圧縮工程においてその異物による短絡を確実に生じさせてこれを検出することができる。
By the way, when the intermediate portion is pressurized from the outside during the second compression step (and the second stationary step), the conductive foreign matter mixed in the intermediate portion is transferred from the intermediate portion to the semicylindrical end portion. It has become clear that there is a case to move to.
On the other hand, in the above-described battery inspection method, the second compression step, the second stationary step, and the second voltage measurement step are performed before the first compression step, and therefore, in the second compression step and the second stationary step. Even when the conductive foreign matter moves from the intermediate portion to the semi-cylindrical end portion, it is possible to reliably detect a short circuit caused by the foreign matter in the subsequent first compression step.

または、本発明の他の一態様は、いずれも帯状の正極板、負極板及びセパレータを捲回軸の周りに捲回してなり、横断面が長円形状をなす捲回型の電極体と、上記電極体を内部に収容した電池ケースと、を備える電池の製造方法であって、上記電極体は、上記長円形状の長径方向の両端にそれぞれ位置し、上記正極板、上記セパレータ及び上記負極板がそれぞれ半円筒形状に曲げられてなる半円筒状端部と、上記半円筒状端部同士の間に位置し、上記正極板、上記セパレータ及び上記負極板が上記長円形状の短径方向に積層されてなる中間部と、を有し、上記電池ケースの外部から上記電池ケースを介して、上記電極体の上記半円筒状端部をそれぞれ上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮する第1圧縮工程と、上記半円筒状端部を上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮した状態で、上記電池を静置する第1静置工程と、上記第1静置工程の後、上記電池の端子間電圧を測定する第1電圧測定工程と、を備える電池の製造方法である。   Alternatively, according to another aspect of the present invention, a wound electrode body in which a belt-like positive electrode plate, a negative electrode plate, and a separator are wound around a winding axis, and the cross section has an elliptical shape, A battery case containing the electrode body therein, wherein the electrode bodies are respectively located at both ends of the elliptical major axis direction, the positive plate, the separator, and the negative electrode A semi-cylindrical end portion formed by bending each plate into a semi-cylindrical shape and the semi-cylindrical end portions are positioned between the positive electrode plate, the separator, and the negative electrode plate in the minor axis direction of the elliptical shape. And compressing the semi-cylindrical end of the electrode body in the minor axis direction from the outside of the battery case via the battery case, and the electrode body A first compression step of compressing in the major axis direction; A first stationary step of standing the battery in a state where the cylindrical end portion is compressed in the minor axis direction and the electrode body is compressed in the major axis direction, and the battery after the first stationary step. A first voltage measuring step for measuring a voltage between terminals of the battery.

上述の電池の製造方法は、上述した第1圧縮工程と第1静置工程と第1電圧測定工程とを備える。このうち、第1圧縮工程及び第1静置工程では、電極体の半円筒状端部を短径方向に圧縮すると共に、電極体を長径方向に圧縮するため、半円筒状端部を2方向(長径方向及び短径方向)から圧縮することができる。しかも、電池ケースを介して電極体を長径方向にも圧縮しているので、短径方向の加圧によって、半円筒状端部が長径方向外側に突出する変形も抑え、半円筒状端部を短径方向及び長径方向に十分に圧縮することができる。このため、半円筒状端部に導電性の異物が混入している場合に、第1圧縮工程及び第1静置工程において、半円筒状端部で異物による正負極間の短絡を生じさせることができる。従って、半円筒状端部への導電性異物の混入がない電池を製造することができる。   The above-described battery manufacturing method includes the first compression step, the first stationary step, and the first voltage measurement step described above. Among these, in the first compression step and the first stationary step, the semi-cylindrical end portion of the electrode body is compressed in the short diameter direction and the electrode body is compressed in the long diameter direction. It can compress from (major axis direction and minor axis direction). In addition, since the electrode body is also compressed in the major axis direction via the battery case, the deformation in which the semi-cylindrical end portion protrudes outward in the major axis direction is suppressed by pressing in the minor axis direction, and the semi-cylindrical end portion is It is possible to sufficiently compress in the minor axis direction and the major axis direction. For this reason, when conductive foreign matter is mixed in the semi-cylindrical end portion, a short circuit between the positive and negative electrodes due to the foreign matter is caused in the semi-cylindrical end portion in the first compression step and the first stationary step. Can do. Therefore, a battery in which no conductive foreign matter is mixed into the semicylindrical end can be manufactured.

さらに、上述の電池の製造方法であって、前記第1圧縮工程の前、又は、第1電圧測定工程の後に、前記電池ケースの外部から上記電池ケースを通じて、前記電極体のうち前記中間部を前記短径方向に圧縮する第2圧縮工程、上記中間部を上記短径方向に圧縮した状態で、前記電池を静置する第2静置工程、及び、上記第2静置工程の後、上記電池の端子間電圧を測定する第2電圧測定工程、を備える電池の製造方法とすると良い。   Further, in the battery manufacturing method described above, the intermediate portion of the electrode body is inserted from the outside of the battery case through the battery case before the first compression step or after the first voltage measurement step. After the second compression step of compressing in the minor axis direction, the second stationary step of standing the battery in a state where the intermediate portion is compressed in the minor axis direction, and the second stationary step, It is good to set it as the manufacturing method of a battery provided with the 2nd voltage measurement process which measures the voltage between terminals of a battery.

上述の電池の製造方法は、前述の第1圧縮工程の前、又は、第1電圧測定工程の後に、上述した第2圧縮工程、第2静置工程及び第2電圧測定工程を備える。このため、第1圧縮工程及び第1静置工程における半円筒状端部に加え、第2圧縮工程及び第2静置工程において、中間部に混入する導電性の異物による正負極間の短絡を中間部で生じさせることができる。従って、電極体(半円筒状端部及び中間部)への導電性異物の混入がない電池を製造することができる。   The battery manufacturing method includes the above-described second compression step, second stationary step, and second voltage measurement step before the first compression step or after the first voltage measurement step. For this reason, in addition to the semi-cylindrical ends in the first compression step and the first stationary step, in the second compression step and the second stationary step, a short circuit between the positive and negative electrodes due to conductive foreign matter mixed in the intermediate portion is performed. It can be generated in the middle part. Accordingly, it is possible to manufacture a battery in which no conductive foreign matter is mixed into the electrode body (semi-cylindrical end portion and intermediate portion).

さらに、上述の電池の製造方法であって、前記第2圧縮工程、前記第2静置工程及び前記第2電圧測定工程を、前記第1圧縮工程の前に行う電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the second compression step, the second stationary step, and the second voltage measurement step may be a battery manufacturing method that is performed before the first compression step.

上述の電池の製造方法では、第2圧縮工程、第2静置工程及び第2電圧測定工程を第1圧縮工程の前に行うため、第2圧縮工程及び第2静置工程において、中間部から半円筒状端部に導電性の異物が移動した場合でも、その後の第1圧縮工程においてその異物による短絡を確実に生じさせることができる。従って、電極体への導電性異物の混入がない電池を確実に製造することができる。   In the battery manufacturing method described above, since the second compression step, the second static step, and the second voltage measurement step are performed before the first compression step, in the second compression step and the second static step, from the intermediate portion Even when the conductive foreign matter moves to the semi-cylindrical end portion, it is possible to reliably cause a short circuit due to the foreign matter in the subsequent first compression step. Therefore, it is possible to reliably manufacture a battery in which no conductive foreign matter is mixed into the electrode body.

実施形態の電池の部分切欠斜視図である。It is a partial notch perspective view of the battery of embodiment. 実施形態の電池の断面図(図1のA−A断面)である。It is sectional drawing (AA cross section of FIG. 1) of the battery of embodiment. 実施形態の電池の断面図(図2のB−B断面)である。It is sectional drawing (BB cross section of FIG. 2) of the battery of embodiment. 実施形態にかかる電池の製造方法及び電池の検査方法のフローチャートである。It is a flowchart of the manufacturing method of the battery concerning an embodiment, and the inspection method of a battery. 実施形態にかかる電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the battery concerning embodiment. 実施形態にかかる電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the battery concerning embodiment. 実施形態にかかる電池の製造方法及び電池の検査方法のうち、中間部圧縮工程についての説明図である。It is explanatory drawing about the intermediate | middle part compression process among the manufacturing methods of the battery concerning embodiment, and the inspection method of a battery. 実施形態にかかる電池の製造方法及び電池の検査方法のうち、端部圧縮工程についての説明図である。It is explanatory drawing about an edge part compression process among the manufacturing method of the battery concerning embodiment, and the inspection method of a battery.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。まず、本実施形態にかかる電池1について説明する。この電池1は、横断面PJが長円形状の扁平捲回型の電極体10と、この電極体10を収容する電池ケース20とを備えるリチウムイオン二次電池である(図1参照)。また、この電池1は、これらの他に、電池ケース20内で電極体10の正極板11(後述)に接続しつつ、一部が電池ケース20外に配置された正極端子構造体40と、電極体10の負極板12(後述)に接続しつつ、一部が電池ケース20外に配置された負極端子構造体50とを有する。また、電池ケース20内で正極端子構造体40(後述の正極延出部材41)あるいは負極端子構造体50(後述の負極延出部材51)と電池ケース20との間に介在する第1絶縁部材70と、電池ケース20上に配置された第2絶縁部材80とを備える。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings. First, the battery 1 according to the present embodiment will be described. The battery 1 is a lithium ion secondary battery including a flat wound electrode body 10 having an elliptical cross section PJ and a battery case 20 that houses the electrode body 10 (see FIG. 1). In addition to these, the battery 1 is connected to a positive electrode plate 11 (described later) of the electrode body 10 in the battery case 20, and a positive electrode terminal structure 40 partially disposed outside the battery case 20; It has a negative electrode terminal structure 50 that is connected to a negative electrode plate 12 (described later) of the electrode body 10 and a part of which is disposed outside the battery case 20. The first insulating member interposed between the battery case 20 and the positive electrode terminal structure 40 (a positive electrode extending member 41 described later) or the negative electrode terminal structure 50 (a negative electrode extending member 51 described later) in the battery case 20. 70 and a second insulating member 80 disposed on the battery case 20.

このうち、絶縁樹脂からなる第1絶縁部材70は、正極延出部材41と電池ケース20の封口蓋26、あるいは、負極延出部材51と封口蓋26とを電気的に絶縁する。また、第1絶縁部材70と同様の絶縁樹脂からなる第2絶縁部材80は、正極端子構造体40のうち、次述の正極外部端子47及び正極ボルト49、あるいは、負極端子構造体50のうち、後述の負極外部端子57及び負極ボルト59と封口蓋26とを電気的に絶縁する。   Among these, the first insulating member 70 made of an insulating resin electrically insulates the positive electrode extending member 41 and the sealing lid 26 of the battery case 20, or the negative electrode extending member 51 and the sealing lid 26. In addition, the second insulating member 80 made of the same insulating resin as the first insulating member 70 is the positive electrode terminal structure 40, the positive electrode external terminal 47 and the positive electrode bolt 49 described below, or the negative electrode terminal structure 50. A negative electrode external terminal 57 and a negative electrode bolt 59 described later are electrically insulated from the sealing lid 26.

また、正極端子構造体40は、電池ケース20内で電極体10の正極板11に接続し、電池ケース20を貫通して外部に延出する正極延出部材41と、電池ケース20外に配置された正極外部端子47と、電池ケース20の外部に位置し、正極外部端子47に電気的に接続されている正極ボルト49とを有する(図2参照)。
このうち、正極外部端子47は、アルミニウム製の板材をクランク状に成形したものである。また、正極ボルト49は、図2に示すように、軸部49Cが正極外部端子47の貫通孔47SHを挿通した形態である。さらに、正極延出部材41は、台座部45と軸部42と正極接続部44と正極加締め部43とを有している(図2参照)。このうち、正極加締め部43は、軸部42の上端に連なり、加締められて(拡径するように変形されて)円盤状をなし、正極外部端子47に電気的かつ機械的に接続している。一方、正極接続部44は、台座部45から電池ケース20のケース底面22側に延びて、電極体10の正極板11(正極箔11F)に溶接されている。
The positive electrode terminal structure 40 is connected to the positive electrode plate 11 of the electrode body 10 in the battery case 20, and is disposed outside the battery case 20 and a positive electrode extending member 41 that extends through the battery case 20 to the outside. And the positive electrode bolt 49 which is located outside the battery case 20 and is electrically connected to the positive electrode external terminal 47 (see FIG. 2).
Among these, the positive electrode external terminal 47 is formed by forming an aluminum plate material into a crank shape. Further, as shown in FIG. 2, the positive bolt 49 has a configuration in which the shaft portion 49 </ b> C is inserted through the through hole 47 </ b> SH of the positive external terminal 47. Furthermore, the positive electrode extending member 41 includes a pedestal portion 45, a shaft portion 42, a positive electrode connecting portion 44, and a positive electrode caulking portion 43 (see FIG. 2). Among these, the positive electrode crimping portion 43 is connected to the upper end of the shaft portion 42 and is crimped (deformed so as to expand in diameter) to form a disk shape, and is electrically and mechanically connected to the positive electrode external terminal 47. ing. On the other hand, the positive electrode connecting portion 44 extends from the pedestal portion 45 to the case bottom surface 22 side of the battery case 20 and is welded to the positive electrode plate 11 (positive electrode foil 11F) of the electrode body 10.

また、負極端子構造体50は、電池ケース20内で負極板12に接続し、前述した正極端子構造体40と同じように、負極延出部材51と負極外部端子57と、この負極外部端子57に電気的に接続されている負極ボルト59とを有する(図2参照)。負極ボルト59は、図2に示すように、軸部59Cが銅製の板材をクランク状に成形した負極外部端子57の貫通孔57SHを挿通した形態である。また、負極延出部材51は、正極側と同様の、台座部55と軸部52と負極接続部54と負極加締め部53とを有している(図2参照)。このうち、負極加締め部53は、負極外部端子57に電気的かつ機械的に接続している。また、負極接続部54は、電極体10の負極板12(負極箔12F)に溶接されている。   Further, the negative electrode terminal structure 50 is connected to the negative electrode plate 12 in the battery case 20, and similarly to the positive electrode terminal structure 40 described above, the negative electrode extending member 51, the negative electrode external terminal 57, and the negative electrode external terminal 57. And a negative electrode bolt 59 electrically connected to (see FIG. 2). As shown in FIG. 2, the negative electrode bolt 59 has a shape in which a shaft portion 59 </ b> C is inserted through a through hole 57 </ b> SH of a negative electrode external terminal 57 formed of a copper plate material in a crank shape. Further, the negative electrode extending member 51 has a pedestal portion 55, a shaft portion 52, a negative electrode connecting portion 54, and a negative electrode caulking portion 53 similar to those on the positive electrode side (see FIG. 2). Among these, the negative electrode crimping portion 53 is electrically and mechanically connected to the negative electrode external terminal 57. Further, the negative electrode connecting portion 54 is welded to the negative electrode plate 12 (negative electrode foil 12F) of the electrode body 10.

一方、電池ケース20は、共に金属からなる、矩形有底箱形の電池ケース本体21と、矩形平板状の封口蓋26とを有している。このうち封口蓋26は、電池ケース本体21の開口を閉塞して、この電池ケース本体21に溶接されている。この封口蓋26は、その長手方向(図2中、左右方向)の両端部には、この封口蓋26を貫通する円形状の貫通孔26H,26Hが形成されている。   On the other hand, the battery case 20 includes a rectangular bottomed box-shaped battery case body 21 and a rectangular flat plate-shaped sealing lid 26, both of which are made of metal. Among these, the sealing lid 26 closes the opening of the battery case body 21 and is welded to the battery case body 21. The sealing lid 26 has circular through holes 26H and 26H penetrating the sealing lid 26 at both ends in the longitudinal direction (left and right direction in FIG. 2).

また、矩形有底箱形の電池ケース本体21は、自身の底面をなす長方形状のケース底面22を有する。また、このケース底面22の長辺端縁22Lから、このケース底面22に対して垂直に立ち上がる2つの第1ケース壁面23,23、及び、ケース底面22の短辺端縁22Sから、ケース底面22に対して垂直に立ち上がる2つの第2ケース壁面24,24を有している。   Moreover, the rectangular bottomed box-shaped battery case body 21 has a rectangular case bottom surface 22 that forms the bottom surface of the battery case main body 21 itself. Further, from the long side edge 22 </ b> L of the case bottom surface 22, the two first case wall surfaces 23, 23 rising perpendicularly to the case bottom surface 22, and from the short side edge 22 </ b> S of the case bottom surface 22, the case bottom surface 22. There are two second case wall surfaces 24, 24 that rise vertically.

また、電極体10は、いずれも帯状の正極板11及び負極板12が、多孔質状の樹脂からなる帯状のセパレータ13を介して、捲回軸AXの周りに扁平形状に捲回してなり、断面PJが長円形状の扁平捲回型の電極体である(図1参照)。この電極体10には、リチウムイオンを含む有機電解液(図示しない)が含浸されている。
電極体10をなす帯状の正極板11は、アルミニウムからなる正極箔11Fと、正極活物質粒子を含む正極活物質層(図示しない)とを有している。また、帯状の負極板12は、銅からなる負極箔12Fと、負極活物質粒子を含む負極活物質層(図示しない)とを有している。
The electrode body 10 is formed by winding a belt-like positive electrode plate 11 and a negative electrode plate 12 in a flat shape around a winding axis AX via a belt-like separator 13 made of a porous resin, The cross-section PJ is an oblong flat wound electrode body (see FIG. 1). The electrode body 10 is impregnated with an organic electrolytic solution (not shown) containing lithium ions.
The strip-shaped positive electrode plate 11 constituting the electrode body 10 includes a positive electrode foil 11F made of aluminum and a positive electrode active material layer (not shown) including positive electrode active material particles. The strip-shaped negative electrode plate 12 has a negative electrode foil 12F made of copper and a negative electrode active material layer (not shown) containing negative electrode active material particles.

この電極体10は、長円形状の横断面PJの長径方向DMの両端にそれぞれ位置し、正極板11、セパレータ13及び負極板12が、それぞれ半円筒形状に曲げられて配置された2つの半円筒状端部10R,10Rと、これら2つの半円筒状端部10R,10Rの間に位置し、正極板11、セパレータ13及び負極板12が横断面PJの短径方向DNに積層されている中間部10Sとを有する(図2,3参照)。この中間部10Sでは、図3に示すように、平板状の正極板11、セパレータ13及び負極板12が多数積層されている。   The electrode body 10 is located at both ends of the ellipse-shaped cross section PJ in the major axis direction DM, and the positive electrode plate 11, the separator 13, and the negative electrode plate 12 are arranged in two semi-cylindrical shapes, respectively. Positioned between the cylindrical end portions 10R and 10R and the two semi-cylindrical end portions 10R and 10R, the positive electrode plate 11, the separator 13 and the negative electrode plate 12 are laminated in the minor axis direction DN of the cross section PJ. And an intermediate portion 10S (see FIGS. 2 and 3). In the intermediate portion 10S, as shown in FIG. 3, a large number of flat plate-like positive electrode plates 11, separators 13 and negative electrode plates 12 are laminated.

次いで、本実施形態にかかる電池1の製造方法について、図面を参照しつつ説明する。図4は、本実施形態の電池1の製造方法の流れを示すフローチャートである。
まず、ステップS1の電極体作製工程では、それぞれ公知の手法で作製した帯状の正極板11と負極板12との間に、帯状のセパレータ13を介在させ、これらを捲回軸AXの周りに捲回する。捲回後、圧縮して扁平形状に変形して扁平捲回型の電極体10とした。
次いで、電池作製工程(ステップS2)では、まず、上述の電極体10に、予め封口蓋26に固定配置した正極端子構造体40及び負極端子構造体50を接続する。具体的には、電極体10のうち正極板11の正極箔11Fに、正極端子構造体40の正極延出部材41(正極接続部44)を、また、負極板12の負極箔12Fに負極端子構造体50の負極延出部材51(負極接続部54)を、それぞれ接合した(図5参照)。
封口蓋26に固定した電極体10を電池ケース本体21に挿入した後、電池ケース本体21の開口を覆うように配置した封口蓋26と電池ケース本体21とをレーザ溶接で接合した。そして、図示しない注液孔から電池ケース20内に電解液を注液した後、注液孔を封止して、電池1を作製した。
Next, a method for manufacturing the battery 1 according to the present embodiment will be described with reference to the drawings. FIG. 4 is a flowchart showing the flow of the manufacturing method of the battery 1 of the present embodiment.
First, in the electrode body manufacturing process of step S1, a strip-shaped separator 13 is interposed between the strip-shaped positive electrode plate 11 and the negative electrode plate 12 which are each manufactured by a known method, and these are wound around the winding axis AX. Turn. After winding, it was compressed and deformed into a flat shape to obtain a flat wound electrode body 10.
Next, in the battery manufacturing step (step S <b> 2), first, the positive electrode terminal structure 40 and the negative electrode terminal structure 50 that are fixedly arranged in advance on the sealing lid 26 are connected to the electrode body 10 described above. Specifically, in the electrode body 10, the positive electrode extending member 41 (positive electrode connecting portion 44) of the positive electrode terminal structure 40 is connected to the positive electrode foil 11 F of the positive electrode plate 11, and the negative electrode terminal is connected to the negative electrode foil 12 F of the negative electrode plate 12. The negative electrode extension member 51 (negative electrode connection part 54) of the structure 50 was joined respectively (refer FIG. 5).
After the electrode body 10 fixed to the sealing lid 26 was inserted into the battery case body 21, the sealing lid 26 and the battery case body 21 arranged so as to cover the opening of the battery case body 21 were joined by laser welding. And after injecting electrolyte solution into the battery case 20 from the injection hole which is not illustrated, the injection hole was sealed and the battery 1 was produced.

次いで、本実施形態にかかる電池1の製造方法のうち、中間部圧縮工程(ステップS3)について説明する。
この中間部圧縮工程は、上述の電池作製工程で作製した電池1について、この電池1の電池ケース20の外部からこの電池ケース20を通じて、電極体10のうち中間部10Sを短径方向DN(図7中、左右方向)に圧縮する。
この中間部圧縮工程では、電池ケース20(電池ケース本体21)の第1ケース壁面23を通じて、電極体10のうち中間部10Sを短径方向DNに圧縮できる中間部圧縮装置PSを用いる(図7参照)。この中間部圧縮装置PSは、中間部10Sについて、電池ケース20と共に短径方向DNに挟んで圧縮できる一対の圧縮部PT,PTを有している(図7参照)。
Next, the intermediate part compression step (step S3) in the method for manufacturing the battery 1 according to the present embodiment will be described.
In the intermediate portion compression step, with respect to the battery 1 produced in the above-described battery production step, the intermediate portion 10S of the electrode body 10 is passed through the battery case 20 from the outside of the battery case 20 of the battery 1 in the minor axis direction DN (FIG. 7 in the horizontal direction).
In the intermediate portion compression step, an intermediate portion compression device PS that can compress the intermediate portion 10S of the electrode body 10 in the short diameter direction DN through the first case wall surface 23 of the battery case 20 (battery case main body 21) is used (FIG. 7). reference). This intermediate part compression device PS has a pair of compression parts PT, PT that can be compressed with the battery case 20 sandwiched in the short diameter direction DN with respect to the intermediate part 10S (see FIG. 7).

中間部圧縮工程は、上述の中間部圧縮装置PSの一対の圧縮部PT,PTを用いて、電池ケース20の外部から、電池ケース20の第1ケース壁面23を通じて、中間部10Sを短径方向DNに挟む。このとき、圧縮部PTが電池ケース20の第1ケース壁面23に加える面圧を1.5MPaとする。これにより、電極体10の中間部10Sは、短径方向DNに圧縮される。
この中間部10Sでは、正極板11、セパレータ13及び負極板12が短径方向DNに積層されているため、中間部圧縮装置PSによって圧縮された中間部10Sでは、セパレータ13を介して正極板11及び負極板12が互いに近づけられる。従って、中間部10Sにおいて、正極板11と負極板12との間に、例えば溶接時に生じた導電性の異物が混入している場合には、この導電性異物を通じて正極板11と負極板12とが接触し短絡することになる。一方、この中間部10Sに導電性異物が混入していない場合には、この中間部10Sにおいて短絡が生じない。
In the intermediate portion compression step, the intermediate portion 10S is moved from the outside of the battery case 20 through the first case wall surface 23 of the battery case 20 to the minor axis direction using the pair of compression portions PT and PT of the intermediate portion compression device PS described above. Put in DN. At this time, the surface pressure applied to the first case wall surface 23 of the battery case 20 by the compression unit PT is set to 1.5 MPa. Thereby, the intermediate part 10S of the electrode body 10 is compressed in the minor axis direction DN.
In the intermediate portion 10S, the positive electrode plate 11, the separator 13, and the negative electrode plate 12 are stacked in the minor axis direction DN. Therefore, in the intermediate portion 10S compressed by the intermediate portion compression device PS, the positive electrode plate 11 is interposed via the separator 13. And the negative electrode plate 12 are brought close to each other. Accordingly, in the intermediate portion 10S, when a conductive foreign material generated during welding, for example, is mixed between the positive electrode plate 11 and the negative electrode plate 12, the positive electrode plate 11 and the negative electrode plate 12 are connected through the conductive foreign material. Will contact and short circuit. On the other hand, when no conductive foreign matter is mixed in the intermediate portion 10S, no short circuit occurs in the intermediate portion 10S.

次に、本実施形態にかかる電池1の製造方法のうち、中間部圧縮静置工程(ステップS4)について説明する。
この中間部圧縮静置工程は、中間部10Sを短径方向DNに圧縮した状態のまま、電池1を所定の条件下で静置する。中間部10Sにおいて導電性異物による短絡が生じている電池は、この静置の間に、短絡が生じていない電池に比して自己放電が早く進み、電池の端子間電圧Vが大きく(例えば100mV以上)低下してしまう。
この中間部圧縮静置工程では、具体的には、まず、前述の中間部圧縮装置PSで中間部10Sを短径方向DNに圧縮した状態の電池1について、端子間電圧Vが第1電圧V1(本実施形態では4.1V)になるまで1Cで定電流充電を行い、その後、定電圧充電を行って充電状態(SOC)を98%に調整する。なお、定電流充電を開始しても端子間電圧が上昇しない場合には、異物による正負極間での短絡が既に生じていると考えられるため、短絡と判断して充電を中止する。
SOCを調整した後、電池1を25℃の温度下で、3日間(72時間)静置した。
Next, in the method for manufacturing the battery 1 according to the present embodiment, the intermediate portion compression stationary step (Step S4) will be described.
In this intermediate portion compression stationary step, the battery 1 is allowed to stand under a predetermined condition while the intermediate portion 10S is compressed in the minor diameter direction DN. A battery in which a short circuit due to a conductive foreign substance has occurred in the intermediate portion 10S is faster in self-discharge than the battery in which the short circuit has not occurred during this standing, and the terminal voltage V of the battery is large (for example, 100 mV). Above)
Specifically, in the intermediate compression stationary step, first, the inter-terminal voltage V is set to the first voltage V1 in the battery 1 in a state where the intermediate portion 10S is compressed in the minor diameter direction DN by the above-described intermediate compression device PS. (In this embodiment, constant current charging is performed at 1 C until it reaches 4.1 V, and then constant voltage charging is performed to adjust the state of charge (SOC) to 98%. If the voltage between the terminals does not increase even after starting constant current charging, it is considered that a short circuit between the positive and negative electrodes due to a foreign substance has already occurred, and thus charging is determined to be a short circuit.
After adjusting the SOC, the battery 1 was allowed to stand at 25 ° C. for 3 days (72 hours).

続いて、本実施形態にかかる電池1の製造方法のうち、中間部10Sを圧縮して静置した後の電圧測定工程(ステップS5)について説明する。この電圧測定工程では、既知の電圧計を用いて、上述した中間部圧縮静置工程の後、電池1の端子間電圧Vの値(第2電圧V2)を測定する。そして、測定した第2電圧V2の値が、前述した第1電圧V1の値よりも100mV以上低下していた場合には、中間部10Sにおいて異物による短絡が生じていると判断する。
上述したステップS5の電圧測定工程の後、電池1から中間部圧縮装置PSを外す。
Then, the voltage measurement process (step S5) after compressing and fixing the intermediate part 10S among the manufacturing methods of the battery 1 concerning this embodiment is demonstrated. In this voltage measurement step, the value of the voltage V between the terminals of the battery 1 (second voltage V2) is measured using a known voltmeter after the intermediate compression step described above. And when the value of the measured 2nd voltage V2 has fallen 100 mV or more from the value of the 1st voltage V1 mentioned above, it is judged that the short circuit by the foreign material has arisen in the intermediate part 10S.
After the voltage measurement step in step S5 described above, the intermediate compression device PS is removed from the battery 1.

次いで、本実施形態にかかる電池1の製造方法のうち、端部圧縮工程(ステップS6)について説明する。この端部圧縮工程は、電池ケース20の外部からこの電池ケース20を通じて、電極体10のうち半円筒状端部10Rを短径方向DNに圧縮すると共に、電極体10を長径方向DMにも圧縮する。
この端部圧縮工程では、電池ケース20を通じて、2つの半円筒状端部10R、10Rを短径方向DNに圧縮すると共に、電池ケース20を長径方向DMに押圧して、この電池ケース20を通じて電極体10を長径方向DMに圧縮できる端部圧縮装置PUを用いる(図8参照)。この端部圧縮装置PUは、半円筒状端部10Rを、電池ケース20(第1ケース壁面23)と共に短径方向DNに挟んで圧縮できる2組の第1圧縮部PV1,PV1と、電池ケース20(封口蓋26及びケース底面22)と共に電極体10を長径方向DMに挟んで圧縮できる一対の第2圧縮部PV2,PV2とを有している(図8参照)。
Next, in the method for manufacturing the battery 1 according to this embodiment, the end compression step (step S6) will be described. This end compression process compresses the semicylindrical end 10R of the electrode body 10 from the outside of the battery case 20 into the minor axis direction DN through the battery case 20, and also compresses the electrode body 10 in the major axis direction DM. To do.
In this end compression step, the two semi-cylindrical ends 10R, 10R are compressed in the short diameter direction DN through the battery case 20, and the battery case 20 is pressed in the long diameter direction DM, and the electrodes are passed through the battery case 20. An end compression device PU capable of compressing the body 10 in the major axis direction DM is used (see FIG. 8). The end compression device PU includes two sets of first compression portions PV1 and PV1 that can compress the semicylindrical end portion 10R with the battery case 20 (first case wall surface 23) in the short diameter direction DN, and the battery case. 20 (sealing lid 26 and case bottom 22) and a pair of second compression portions PV2 and PV2 that can be compressed by sandwiching the electrode body 10 in the major axis direction DM (see FIG. 8).

端部圧縮工程は、上述の端部圧縮装置PUの一対の第1圧縮部PV1,PV1を用いて、電池ケース20の外部から、電池ケース20の第1ケース壁面23を通じて、2つの半円筒状端部10Rを短径方向DNにそれぞれ挟む。このとき、第1圧縮部PV1が電池ケース20の第1ケース壁面23に加える面圧を1.5MPaとする。これにより、電極体10の2つの半円筒状端部10Rは、このうち中間部10Sに隣接する部位のみ短径方向DNにそれぞれ圧縮される。
一方、一対の第2圧縮部PV2,PV2を用いて、外部から電池ケース20を長径方向DMに挟む。このとき、第1圧縮部PV1が電池ケース20の第1ケース壁面23に加える面圧を0.4MPaとする。これにより、電池ケース20が長径方向DM内側に押圧され、電池ケース20の封口蓋26とケース底面22とが近づいて、封口蓋26及びケース底面22が電極体10の長径方向DM両端に位置する半円筒状端部10Rにそれぞれ当接する。
このように、一対の第2圧縮部PV2,PV2によって、電池ケース20の封口蓋26及びケース底面22を通じて、電極体10が長径方向DMに挟まれるので、電極体10が長径方向DMに圧縮されて、電極体10の2つの半円筒状端部10Rもまた、長径方向DMにそれぞれ圧縮される(図8参照)。
なお、長径方向DMの圧縮により、電池ケース20の第1ケース壁面23のうち長径方向DM中央の部位が、短径方向DN外側に膨出する(図8参照)。
In the end compression step, two semi-cylindrical shapes are formed from the outside of the battery case 20 through the first case wall surface 23 of the battery case 20 using the pair of first compression portions PV1 and PV1 of the end compression device PU described above. The end portions 10R are respectively sandwiched in the minor axis direction DN. At this time, the surface pressure applied to the first case wall surface 23 of the battery case 20 by the first compression unit PV1 is 1.5 MPa. As a result, the two semi-cylindrical end portions 10R of the electrode body 10 are each compressed in the minor axis direction DN only at a portion adjacent to the intermediate portion 10S.
On the other hand, the battery case 20 is sandwiched from the outside in the major axis direction DM using the pair of second compression portions PV2 and PV2. At this time, the surface pressure which the 1st compression part PV1 applies to the 1st case wall surface 23 of the battery case 20 shall be 0.4 MPa. As a result, the battery case 20 is pressed inward in the long-diameter direction DM, the sealing lid 26 of the battery case 20 and the case bottom surface 22 approach each other, and the sealing lid 26 and the case bottom surface 22 are positioned at both ends of the long-diameter direction DM of the electrode body 10. The semi-cylindrical end portions 10R abut each other.
Thus, the electrode body 10 is sandwiched in the major axis direction DM by the pair of second compression portions PV2 and PV2 through the sealing lid 26 and the case bottom surface 22 of the battery case 20, so that the electrode body 10 is compressed in the major axis direction DM. Thus, the two semi-cylindrical ends 10R of the electrode body 10 are also compressed in the major axis direction DM, respectively (see FIG. 8).
Note that, due to the compression in the long diameter direction DM, the central portion of the first case wall surface 23 of the battery case 20 bulges outside the short diameter direction DN (see FIG. 8).

以上により、この端部圧縮工程では、2つの半円筒状端部10R,10Rを長径方向DM及び短径方向DNから圧縮することができる。従って、半円筒状端部10Rにおいて、正極板11と負極板12との間に導電性異物が混入している場合には、この導電性異物を通じて正極板11と負極板12とが接触し短絡することになる。一方、この半円筒状端部10Rに導電性異物が混入していない場合には、この半円筒状端部10Rにおいて短絡が生じない。   As described above, in this end compression step, the two semi-cylindrical ends 10R and 10R can be compressed from the major axis direction DM and the minor axis direction DN. Therefore, in the semi-cylindrical end portion 10R, when a conductive foreign matter is mixed between the positive electrode plate 11 and the negative electrode plate 12, the positive electrode plate 11 and the negative electrode plate 12 come into contact with each other through the conductive foreign matter and short circuit occurs. Will do. On the other hand, when no conductive foreign matter is mixed in the semicylindrical end portion 10R, no short circuit occurs in the semicylindrical end portion 10R.

次に、本実施形態にかかる電池1の製造方法のうち、ステップS7の端部圧縮静置工程について説明する。この端部圧縮静置工程では、2つの半円筒状端部10R,10Rを短径方向DNに圧縮した状態の電池1を所定の条件下で静置する。具体的には、まず、前述の端部圧縮装置PUで半円筒状端部10Rを二方向(短径方向DN及び長径方向DM)に圧縮した状態の電池1について、前述した中間部圧縮静置工程と同様、定電流充電及び定電圧充電を行い端子間電圧Vを第1電圧V1(SOC98%に相当)にした。その後、中間部圧縮静置工程と同様、電池1を25℃の温度下で、3日間(72時間)静置した。   Next, in the method for manufacturing the battery 1 according to the present embodiment, the end compression stationary step of Step S7 will be described. In the end compression stationary step, the battery 1 in a state where the two semi-cylindrical end portions 10R, 10R are compressed in the minor axis direction DN is left under a predetermined condition. Specifically, first, regarding the battery 1 in a state in which the semicylindrical end portion 10R is compressed in two directions (the short diameter direction DN and the long diameter direction DM) by the above-described end portion compression device PU, the above-described intermediate portion compression stationary. As in the process, constant current charging and constant voltage charging were performed to set the terminal voltage V to the first voltage V1 (corresponding to SOC 98%). Then, the battery 1 was left still for 3 days (72 hours) at the temperature of 25 degreeC similarly to the intermediate part compression stationary process.

続いて、本実施形態にかかる電池1の製造方法のうち、半円筒状端部10Rを圧縮して静置した後の電圧測定工程(ステップS8)について説明する。この電圧測定工程では、前述したステップS5の電圧測定工程と同様、既知の電圧計を用いて、端部圧縮静置工程後の電池1における端子間電圧Vの値(第3電圧V3)を測定する。そして、測定した第3電圧V3の値が、前述した第1電圧V1の値よりも100mV以上低下していた場合には、半円筒状端部10Rにおいて異物による短絡が生じていると判断する。
上述したステップS8の電圧測定工程の後、電池1から端部圧縮装置PUを外す。
Then, the voltage measurement process (step S8) after compressing the semicylindrical edge part 10R and leaving still among the manufacturing methods of the battery 1 concerning this embodiment is demonstrated. In this voltage measurement process, the value of the inter-terminal voltage V (third voltage V3) in the battery 1 after the end compression resting process is measured using a known voltmeter in the same manner as the voltage measurement process in step S5 described above. To do. And when the value of the measured 3rd voltage V3 has fallen 100 mV or more from the value of the 1st voltage V1 mentioned above, it is judged that the short circuit by the foreign material has arisen in the semi-cylindrical edge part 10R.
After the voltage measurement process in step S8 described above, the end compression device PU is removed from the battery 1.

このようにして、本実施形態では、図4に示すフローチャートのステップS3〜S8を順次行って、前述の電極体10を備える電池1を検査した。即ち、前述したステップS3の中間部圧縮工程で、電極体10のうち中間部10Sを短径方向DNに圧縮し、ステップS4の中間部圧縮静置工程で、中間部10Sを短径方向DNに圧縮した状態で電池1を静置した。その後、ステップS5の電圧測定工程で、電池1の端子間電圧Vを測定し、前述の第2電圧V2が第1電圧V1よりも100mV以上低下していた場合には、中間部10Sにおいて短絡が生じていると判断した。
さらに、ステップS6の端部圧縮工程で、半円筒状端部10Rを短径方向DNに圧縮すると共に電極体10を長径方向DMに圧縮し、ステップS7の端部圧縮静置工程で、半円筒状端部10Rを短径方向DNに圧縮すると共に電極体10を長径方向DMに圧縮した状態で電池1を静置した。その後、ステップS8の電圧測定工程で、電池1の端子間電圧Vを測定し、前述の第3電圧V3が第1電圧V1よりも100mV以上低下していた場合には、半円筒状端部10Rにおいて短絡が生じていると判断した。
Thus, in this embodiment, steps S3 to S8 of the flowchart shown in FIG. 4 were sequentially performed to inspect the battery 1 including the electrode body 10 described above. That is, the intermediate portion 10S of the electrode body 10 is compressed in the minor diameter direction DN in the intermediate portion compression step of Step S3 described above, and the intermediate portion 10S is compressed in the minor diameter direction DN in the intermediate portion compression stationary step of Step S4. The battery 1 was left still in the compressed state. Thereafter, in the voltage measurement step of step S5, the voltage V between the terminals of the battery 1 is measured, and when the second voltage V2 is lower than the first voltage V1 by 100 mV or more, a short circuit is caused in the intermediate portion 10S. Judged that it occurred.
Further, in the end compression step of step S6, the semicylindrical end portion 10R is compressed in the short diameter direction DN and the electrode body 10 is compressed in the long diameter direction DM, and in the end compression stationary step of step S7, the semicylindrical portion is compressed. The battery 1 was allowed to stand in a state where the end portion 10R was compressed in the minor axis direction DN and the electrode body 10 was compressed in the major axis direction DM. Thereafter, in the voltage measurement step of step S8, the voltage V between the terminals of the battery 1 is measured, and when the third voltage V3 is lower than the first voltage V1 by 100 mV or more, the semicylindrical end portion 10R. It was determined that a short circuit occurred in

なお、本実施形態では、中間部圧縮工程(ステップS3)が第2圧縮工程に、端部圧縮工程(ステップS6)が第1圧縮工程に、中間部圧縮静置工程(ステップS4)が第2静置工程に、端部圧縮静置工程(ステップS7)が第1静置工程に、ステップS5の電圧測定工程が第2電圧測定工程に、ステップS8の電圧測定工程が第1電圧測定工程にそれぞれ対応する。   In this embodiment, the intermediate compression process (step S3) is the second compression process, the end compression process (step S6) is the first compression process, and the intermediate compression stationary process (step S4) is the second. In the stationary process, the end compression stationary process (step S7) is the first stationary process, the voltage measuring process in step S5 is the second voltage measuring process, and the voltage measuring process in step S8 is the first voltage measuring process. Each corresponds.

本実施形態に係る電池1の検査方法は、前述した端部圧縮工程S6と端部圧縮静置工程S7と電圧測定工程S8とを備える。このうち、端部圧縮工程S6及び端部圧縮静置工程S7では、電極体10の半円筒状端部10Rを短径方向DNに圧縮すると共に、電極体10を長径方向DMに圧縮するため、半円筒状端部10Rを2方向(長径方向DM及び短径方向DN)から圧縮することができる。しかも、電池ケース20を介して電極体10を長径方向DMにも圧縮しているので、短径方向DNの加圧によって、半円筒状端部10Rが長径方向DM外側に突出する変形も抑え、半円筒状端部10Rを短径方向DN及び長径方向DMに十分に圧縮することができる。このため、半円筒状端部10Rに導電性異物が混入している場合に、端部圧縮工程S6及び端部圧縮静置工程S7において、半円筒状端部10Rで異物による正負極間の短絡を生じさせることができる。一方、半円筒状端部10Rに導電性異物が混入していない場合には、この半円筒状端部10Rにおいて正負極間の短絡が生じないので、電極体10の半円筒状端部10Rに導電性異物の混入がない電池1を適切に判別することができる。
また、本実施形態に係る電池1の製造方法により、上述の端部圧縮工程S6と端部圧縮静置工程S7と電圧測定工程S8とを備えるため、半円筒状端部10Rへの導電性異物の混入がない電池1を製造することができる
The inspection method for the battery 1 according to the present embodiment includes the end compression step S6, the end compression stationary step S7, and the voltage measurement step S8 described above. Among these, in the end compression step S6 and the end compression stationary step S7, the semicylindrical end portion 10R of the electrode body 10 is compressed in the short diameter direction DN and the electrode body 10 is compressed in the long diameter direction DM. The semi-cylindrical end portion 10R can be compressed from two directions (major axis direction DM and minor axis direction DN). Moreover, since the electrode body 10 is also compressed in the major axis direction DM through the battery case 20, the pressurization in the minor axis direction DN also suppresses deformation of the semicylindrical end portion 10R protruding outside the major axis direction DM, The semi-cylindrical end portion 10R can be sufficiently compressed in the minor axis direction DN and the major axis direction DM. For this reason, when conductive foreign matter is mixed in the semicylindrical end portion 10R, a short circuit between the positive and negative electrodes due to foreign matters in the semicylindrical end portion 10R in the end compression step S6 and the end compression stationary step S7. Can be generated. On the other hand, when no conductive foreign matter is mixed in the semicylindrical end portion 10R, a short circuit between the positive and negative electrodes does not occur in the semicylindrical end portion 10R. The battery 1 in which no conductive foreign matter is mixed can be appropriately determined.
Moreover, since the manufacturing method of the battery 1 according to this embodiment includes the end compression step S6, the end compression stationary step S7, and the voltage measurement step S8, the conductive foreign matter to the semicylindrical end portion 10R. Can produce a battery 1 free from contamination

また、本実施形態に係る電池1の検査方法は、前述の端部圧縮工程S6の前に、前述した中間部圧縮工程S3、中間部圧縮静置工程S4及び電圧測定工程S5を備える。このため、端部圧縮工程S6及び端部圧縮静置工程S7における半円筒状端部10Rに加え、中間部圧縮工程S3及び中間部圧縮静置工程S4において、中間部10Sに混入した導電性異物により中間部10Sで正負極間の短絡を生じさせることができる。一方、中間部10Sに導電性異物が混入していない場合には、この中間部10Sにおいて短絡が生じないので、電極体10(半円筒状端部10R及び中間部10S)に導電性異物の混入がない電池1を適切に判別することができる。
また、本実施形態に係る電池1の製造方法により、端部圧縮工程S6の前に、上述の中間部圧縮工程S3、中間部圧縮静置工程S4及び電圧測定工程S5を備えるため、電極体10(半円筒状端部10R及び中間部10S)への導電性異物の混入がない電池1を製造することができる。
Moreover, the inspection method of the battery 1 according to the present embodiment includes the above-described intermediate compression step S3, intermediate compression compression step S4, and voltage measurement step S5 before the above-described end compression step S6. For this reason, in addition to the semi-cylindrical end 10R in the end compression step S6 and the end compression stationary step S7, the conductive foreign matter mixed in the intermediate portion 10S in the intermediate compression step S3 and the intermediate compression stationary step S4. Thus, a short circuit between the positive and negative electrodes can be caused in the intermediate portion 10S. On the other hand, when no conductive foreign matter is mixed in the intermediate portion 10S, no short circuit occurs in the intermediate portion 10S. Therefore, the conductive foreign matter is mixed in the electrode body 10 (semi-cylindrical end portion 10R and intermediate portion 10S). It is possible to appropriately determine the battery 1 that does not have the battery.
Moreover, since the manufacturing method of the battery 1 according to this embodiment includes the above-described intermediate compression step S3, intermediate compression stationary step S4, and voltage measurement step S5 before the end compression step S6, the electrode body 10 The battery 1 can be manufactured in which no conductive foreign matter is mixed into the semicylindrical end portion 10R and the intermediate portion 10S.

ところで、中間部圧縮工程S3(及び中間部圧縮静置工程S4)の際、中間部圧縮装置PSにより中間部10Sが外部から加圧されると、中間部10Sに混入していた導電性異物が、この中間部10Sから半円筒状端部10Rに移動する場合がある。
これに対し、本実施形態に係る電池1の検査方法では、中間部圧縮工程S3、中間部圧縮静置工程S4及び電圧測定工程S5を端部圧縮工程S6の前に行うため、中間部圧縮工程S3及び中間部圧縮静置工程S4において、中間部10Sから半円筒状端部10Rに導電性異物が移動した場合でも、その後の端部圧縮工程S6においてその異物による短絡を確実に生じさせてこれを検出することができる。
また、本実施形態に係る電池1の製造方法では、上述の中間部圧縮工程S3、中間部圧縮静置工程S4及び電圧測定工程S5を端部圧縮工程S6の前に行うため、電極体10への導電性異物の混入がない電池1を確実に製造することができる。
By the way, when the intermediate part 10S is pressurized from the outside by the intermediate part compression device PS during the intermediate part compression step S3 (and the intermediate part compression stationary step S4), the conductive foreign matter mixed in the intermediate part 10S is removed. In some cases, the intermediate portion 10S moves to the semicylindrical end portion 10R.
On the other hand, in the inspection method of the battery 1 according to the present embodiment, the intermediate part compression step S3, the intermediate part compression stationary step S4, and the voltage measurement step S5 are performed before the end part compression step S6. Even if the conductive foreign matter moves from the intermediate portion 10S to the semi-cylindrical end portion 10R in S3 and the intermediate compression step S4, a short circuit due to the foreign matter is surely caused in the subsequent end compression step S6. Can be detected.
Moreover, in the manufacturing method of the battery 1 according to the present embodiment, the intermediate part compression step S3, the intermediate part compression stationary step S4, and the voltage measurement step S5 are performed before the end part compression step S6. Thus, it is possible to reliably manufacture the battery 1 in which no conductive foreign matter is mixed.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、前述の実施形態には、端部圧縮工程S6(「第1圧縮工程」に相当)の前に、中間部圧縮工程S3(「第2圧縮工程」に相当)、中間部圧縮静置工程S4(「第2静置工程」に相当)及び電圧測定工程S5(「第2電圧測定工程」に相当)を備える電池1の検査方法及び製造方法を例示した。しかしながら、ステップS8の電圧測定工程(「第1電圧測定工程」に相当)の後に、第2圧縮工程、第2静置工程及び第2電圧測定工程を備える電池の検査方法または製造方法としても良い。
この場合でも、前述の実施形態と同様、電極体(半円筒状端部及び中間部)に異物の混入がない電池を適切に判別でき、電極体(半円筒状端部及び中間部)への導電性異物の混入がない電池を製造できる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the above-described embodiment, before the end portion compression step S6 (corresponding to the “first compression step”), the intermediate portion compression step S3 (corresponding to the “second compression step”), the intermediate portion compression standing step An example of the inspection method and the manufacturing method of the battery 1 including S4 (corresponding to “second standing step”) and voltage measuring step S5 (corresponding to “second voltage measuring step”) is illustrated. However, after the voltage measurement step (corresponding to the “first voltage measurement step”) in step S8, a battery inspection method or manufacturing method including the second compression step, the second stationary step, and the second voltage measurement step may be used. .
Even in this case, as in the above-described embodiment, it is possible to appropriately determine a battery in which no foreign matter is mixed in the electrode body (semi-cylindrical end portion and intermediate portion), and to the electrode body (half-cylindrical end portion and intermediate portion) A battery free from conductive foreign matter can be manufactured.

1 電池
10 電極体
10R 半円筒状端部
10S 中間部
11 正極板
12 負極板
13 セパレータ
20 電池ケース
AX 捲回軸
DM 長径方向
DN 短径方向
PJ 横断面
V 端子間電圧
DESCRIPTION OF SYMBOLS 1 Battery 10 Electrode body 10R Semi-cylindrical edge part 10S Middle part 11 Positive electrode plate 12 Negative electrode plate 13 Separator 20 Battery case AX Winding axis DM Long diameter direction DN Short diameter direction PJ Cross section V Terminal voltage

Claims (6)

いずれも帯状の正極板、負極板及びセパレータを捲回軸の周りに捲回してなり、横断面が長円形状をなす捲回型の電極体と、
上記電極体を内部に収容した電池ケースと、を備える
電池の検査方法であって、
上記電極体は、
上記長円形状の長径方向の両端にそれぞれ位置し、上記正極板、上記セパレータ及び上記負極板がそれぞれ半円筒形状に曲げられてなる半円筒状端部と、
上記半円筒状端部同士の間に位置し、上記正極板、上記セパレータ及び上記負極板が上記長円形状の短径方向に積層されてなる中間部と、を有し、
上記電池ケースの外部から上記電池ケースを介して、上記電極体の上記半円筒状端部をそれぞれ上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮する第1圧縮工程と、
上記半円筒状端部を上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮した状態で、上記電池を静置する第1静置工程と、
上記第1静置工程の後、上記電池の端子間電圧を測定する第1電圧測定工程と、を備える
電池の検査方法。
Each is a wound electrode body in which a belt-like positive electrode plate, a negative electrode plate, and a separator are wound around a winding axis, and the cross section is an oval shape;
A battery case containing the electrode body therein, and a battery inspection method comprising:
The electrode body is
A semi-cylindrical end portion that is located at both ends of the major axis direction of the oval shape, and the positive electrode plate, the separator, and the negative electrode plate are each bent into a semi-cylindrical shape;
An intermediate portion located between the semicylindrical ends, wherein the positive electrode plate, the separator and the negative electrode plate are laminated in the minor axis direction of the ellipse,
A first compression step of compressing the semicylindrical end of the electrode body in the minor axis direction and compressing the electrode body in the major axis direction from the outside of the battery case via the battery case;
A first stationary step of resting the battery in a state where the semicylindrical end portion is compressed in the minor axis direction and the electrode body is compressed in the major axis direction;
A battery inspection method comprising: a first voltage measurement step of measuring a voltage between terminals of the battery after the first stationary step.
請求項1に記載の電池の検査方法であって、
前記第1圧縮工程の前、又は、第1電圧測定工程の後に、前記電池ケースの外部から上記電池ケースを通じて、前記電極体のうち前記中間部を前記短径方向に圧縮する第2圧縮工程、
上記中間部を上記短径方向に圧縮した状態で、前記電池を静置する第2静置工程、及び、
上記第2静置工程の後、上記電池の端子間電圧を測定する第2電圧測定工程、を備える
電池の検査方法。
The battery inspection method according to claim 1,
A second compression step of compressing the intermediate portion of the electrode body in the minor axis direction from the outside of the battery case through the battery case before the first compression step or after the first voltage measurement step;
A second stationary step of stationary the battery in a state where the intermediate portion is compressed in the minor axis direction; and
A battery inspection method comprising: a second voltage measurement step of measuring a voltage between terminals of the battery after the second stationary step.
請求項2に記載の電池の検査方法であって、
前記第2圧縮工程、前記第2静置工程及び前記第2電圧測定工程を、前記第1圧縮工程の前に行う
電池の検査方法。
The battery inspection method according to claim 2,
A battery inspection method in which the second compression step, the second stationary step, and the second voltage measurement step are performed before the first compression step.
いずれも帯状の正極板、負極板及びセパレータを捲回軸の周りに捲回してなり、横断面が長円形状をなす捲回型の電極体と、
上記電極体を内部に収容した電池ケースと、を備える
電池の製造方法であって、
上記電極体は、
上記長円形状の長径方向の両端にそれぞれ位置し、上記正極板、上記セパレータ及び上記負極板がそれぞれ半円筒形状に曲げられてなる半円筒状端部と、
上記半円筒状端部同士の間に位置し、上記正極板、上記セパレータ及び上記負極板が上記長円形状の短径方向に積層されてなる中間部と、を有し、
上記電池ケースの外部から上記電池ケースを介して、上記電極体の上記半円筒状端部をそれぞれ上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮する第1圧縮工程と、
上記半円筒状端部を上記短径方向に圧縮すると共に上記電極体を上記長径方向に圧縮した状態で、上記電池を静置する第1静置工程と、
上記第1静置工程の後、上記電池の端子間電圧を測定する第1電圧測定工程と、を備える
電池の製造方法。
Each is a wound electrode body in which a belt-like positive electrode plate, a negative electrode plate, and a separator are wound around a winding axis, and the cross section is an oval shape;
A battery case containing the electrode body therein, and a battery manufacturing method comprising:
The electrode body is
A semi-cylindrical end portion that is located at both ends of the major axis direction of the oval shape, and the positive electrode plate, the separator, and the negative electrode plate are each bent into a semi-cylindrical shape;
An intermediate portion located between the semicylindrical ends, wherein the positive electrode plate, the separator and the negative electrode plate are laminated in the minor axis direction of the ellipse,
A first compression step of compressing the semicylindrical end of the electrode body in the minor axis direction and compressing the electrode body in the major axis direction from the outside of the battery case via the battery case;
A first stationary step of resting the battery in a state where the semicylindrical end portion is compressed in the minor axis direction and the electrode body is compressed in the major axis direction;
A battery manufacturing method comprising: a first voltage measuring step for measuring a voltage between terminals of the battery after the first standing step.
請求項4に記載の電池の製造方法であって、
前記第1圧縮工程の前、又は、第1電圧測定工程の後に、前記電池ケースの外部から上記電池ケースを通じて、前記電極体のうち前記中間部を前記短径方向に圧縮する第2圧縮工程、
上記中間部を上記短径方向に圧縮した状態で、前記電池を静置する第2静置工程、及び、
上記第2静置工程の後、上記電池の端子間電圧を測定する第2電圧測定工程、を備える
電池の製造方法。
A method of manufacturing a battery according to claim 4,
A second compression step of compressing the intermediate portion of the electrode body in the minor axis direction from the outside of the battery case through the battery case before the first compression step or after the first voltage measurement step;
A second stationary step of stationary the battery in a state where the intermediate portion is compressed in the minor axis direction; and
A battery manufacturing method comprising: a second voltage measuring step of measuring a voltage between terminals of the battery after the second stationary step.
請求項5に記載の電池の製造方法であって、
前記第2圧縮工程、前記第2静置工程及び前記第2電圧測定工程を、前記第1圧縮工程の前に行う
電池の製造方法。
A battery manufacturing method according to claim 5,
A method for manufacturing a battery, wherein the second compression step, the second stationary step, and the second voltage measurement step are performed before the first compression step.
JP2013091348A 2013-04-24 2013-04-24 Battery inspection method and battery manufacturing method Active JP5974967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091348A JP5974967B2 (en) 2013-04-24 2013-04-24 Battery inspection method and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091348A JP5974967B2 (en) 2013-04-24 2013-04-24 Battery inspection method and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2014216128A true JP2014216128A (en) 2014-11-17
JP5974967B2 JP5974967B2 (en) 2016-08-23

Family

ID=51941734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091348A Active JP5974967B2 (en) 2013-04-24 2013-04-24 Battery inspection method and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5974967B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106233A (en) * 2017-12-08 2019-06-27 日産自動車株式会社 Manufacturing method for battery and conductivity inspection device for battery
JP2020072059A (en) * 2018-11-02 2020-05-07 トヨタ自動車株式会社 Inspection method of secondary cell
CN113311346A (en) * 2021-05-19 2021-08-27 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
JP2021157962A (en) * 2020-03-27 2021-10-07 プライムアースEvエナジー株式会社 Secondary battery inspection method and secondary battery inspection device
EP4047704A1 (en) * 2021-02-19 2022-08-24 Prime Planet Energy & Solutions, Inc. Secondary battery and method for manufacturing secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043418A (en) * 2007-08-06 2009-02-26 Toyota Motor Corp Inspection method and inspection device of foreign matter mixing in cylindrical electrode material
JP2010032346A (en) * 2008-07-29 2010-02-12 Panasonic Corp Method of inspecting electrode group for secondary battery
JP2010153275A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Method for deciding quality of secondary battery, and method for manufacturing secondary battery
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2012104276A (en) * 2010-11-08 2012-05-31 Toyota Motor Corp Method for inspecting secondary battery
US20130011708A1 (en) * 2010-03-26 2013-01-10 Tomoyoshi Ueki Lithium ion secondary battery, vehicle, and battery mounting device
JP2013161555A (en) * 2012-02-02 2013-08-19 Hitachi Vehicle Energy Ltd Flat wound secondary battery and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043418A (en) * 2007-08-06 2009-02-26 Toyota Motor Corp Inspection method and inspection device of foreign matter mixing in cylindrical electrode material
JP2010032346A (en) * 2008-07-29 2010-02-12 Panasonic Corp Method of inspecting electrode group for secondary battery
JP2010153275A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Method for deciding quality of secondary battery, and method for manufacturing secondary battery
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
US20130011708A1 (en) * 2010-03-26 2013-01-10 Tomoyoshi Ueki Lithium ion secondary battery, vehicle, and battery mounting device
JP2012104276A (en) * 2010-11-08 2012-05-31 Toyota Motor Corp Method for inspecting secondary battery
JP2013161555A (en) * 2012-02-02 2013-08-19 Hitachi Vehicle Energy Ltd Flat wound secondary battery and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106233A (en) * 2017-12-08 2019-06-27 日産自動車株式会社 Manufacturing method for battery and conductivity inspection device for battery
JP2020072059A (en) * 2018-11-02 2020-05-07 トヨタ自動車株式会社 Inspection method of secondary cell
JP7011782B2 (en) 2018-11-02 2022-01-27 トヨタ自動車株式会社 Secondary battery inspection method
JP2021157962A (en) * 2020-03-27 2021-10-07 プライムアースEvエナジー株式会社 Secondary battery inspection method and secondary battery inspection device
JP7210500B2 (en) 2020-03-27 2023-01-23 プライムアースEvエナジー株式会社 SECONDARY BATTERY INSPECTION METHOD AND SECONDARY BATTERY INSPECTION DEVICE
EP4047704A1 (en) * 2021-02-19 2022-08-24 Prime Planet Energy & Solutions, Inc. Secondary battery and method for manufacturing secondary battery
CN113311346A (en) * 2021-05-19 2021-08-27 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
CN113311346B (en) * 2021-05-19 2024-02-06 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium

Also Published As

Publication number Publication date
JP5974967B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
KR102106949B1 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP5974967B2 (en) Battery inspection method and battery manufacturing method
JP5747895B2 (en) Manufacturing method of battery pack
JP5772769B2 (en) Manufacturing method of sealed battery
JP2010199069A (en) Cylindrical secondary battery
US20160161564A1 (en) Test method for secondary battery
KR20120088120A (en) Jig for Charging and Discharging of Battery Cell
CN104515954B (en) The manufacture method of secondary cell
JP2010231963A (en) Connector for measuring power storage battery, power storage battery for measurement using the same, and method for measuring the power storage battery
JP2017106867A (en) Manufacturing method for secondary batteries
CN110391446A (en) Method and battery unit of the manufacture for the electrode assembly of battery unit
KR20170110331A (en) Method of Inspecting Welding State Using Pressure Gauge
US9812690B2 (en) Sealed battery
US20150162645A1 (en) Method of manufacturing flat-type non-aqueous secondary battery
JP4720221B2 (en) Manufacturing method of secondary battery
JP2013118152A (en) Method of manufacturing battery
JP7151123B2 (en) Electric storage element inspection method and electric storage element
JP5958756B2 (en) Leakage inspection method for current cutoff valve
US20150140382A1 (en) Electric storage device and electric storage device module
JP5765062B2 (en) Battery, power supply device, battery driving system, and method for detecting expansion of battery
JP7011782B2 (en) Secondary battery inspection method
JP2018067498A (en) Method of manufacturing battery
JP5549512B2 (en) Battery manufacturing method
JP6693393B2 (en) Battery manufacturing method
JP2004006420A (en) Manufacturing method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5974967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151