JP2020072059A - Inspection method of secondary cell - Google Patents

Inspection method of secondary cell Download PDF

Info

Publication number
JP2020072059A
JP2020072059A JP2018207471A JP2018207471A JP2020072059A JP 2020072059 A JP2020072059 A JP 2020072059A JP 2018207471 A JP2018207471 A JP 2018207471A JP 2018207471 A JP2018207471 A JP 2018207471A JP 2020072059 A JP2020072059 A JP 2020072059A
Authority
JP
Japan
Prior art keywords
battery
voltage
secondary battery
negative electrode
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018207471A
Other languages
Japanese (ja)
Other versions
JP7011782B2 (en
Inventor
博昭 池田
Hiroaki Ikeda
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018207471A priority Critical patent/JP7011782B2/en
Publication of JP2020072059A publication Critical patent/JP2020072059A/en
Application granted granted Critical
Publication of JP7011782B2 publication Critical patent/JP7011782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide an inspection method of a secondary cell capable of detecting presence of micro short circuit of the secondary cell accurately.SOLUTION: An inspection method of a secondary cell includes a step of preparing a secondary cell in which a space between an electricity generation element including a positive electrode and a negative electrode and a battery case is insulated by an insulation film, a step of charging the secondary cell, a step of measuring a first voltage, i.e., the potential difference between the negative electrode and the battery case, while compressing for the secondary cell from the outside of the battery case, a step of maintaining the compressed state continuously, compression for the secondary cell is maintained for a predetermined time, a step of measuring a second voltage, i.e., the potential difference between the negative electrode and the battery case, for the secondary cell in which the compression time exceeded the maintenance time, and a step of determining that the secondary battery is a defective unit, when at least one of the first and second voltages is smaller than a predetermined threshold voltage.SELECTED DRAWING: Figure 5

Description

本発明は、二次電池の検査方法に関する。   The present invention relates to a method for inspecting a secondary battery.

近年、リチウムイオン電池等の電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源等に好適に用いられている。   In recent years, batteries such as lithium-ion batteries have been suitably used as portable power sources for personal computers, mobile terminals, etc., and vehicle driving power sources for electric vehicles (EV), hybrid vehicles (HV), plug-in hybrid vehicles (PHV), etc. Has been.

このような電池は、一般的には、正極と負極とがセパレータを介して積層された電極体と、非水電解質とが電池ケースに収容され、気密に封止された構成を有している。電池ケースが金属製の場合、電極体は絶縁性フィルムで覆われた状態で電池ケースに収容され、電極体と電池ケースとの絶縁が確保されている。この種の電池については、製造時の電極体と電池ケースとの接触により電池ケースの内面に電荷担体が析出したり、封口時や溶接時に金属異物が電池ケース内に侵入したりして、微小短絡の原因となり得ることが知られている。微小短絡が生じた電池は、製造直後には問題は現れ難いが、長期の使用に伴う容量低下が顕著となったりし、品質低下の原因となり得る。そのため、電池の出荷前検査では、短絡試験を行って微小短絡が生じている電池を不良品として検出し、出荷しないようにしている。   Such a battery generally has a structure in which an electrode body in which a positive electrode and a negative electrode are laminated via a separator and a non-aqueous electrolyte are housed in a battery case and hermetically sealed. .. When the battery case is made of metal, the electrode body is housed in the battery case while being covered with an insulating film, and insulation between the electrode body and the battery case is ensured. For this type of battery, charge carriers may deposit on the inner surface of the battery case due to the contact between the electrode body and the battery case during manufacturing, or metal foreign matter may enter the battery case during sealing or welding, and It is known that it can cause a short circuit. A battery in which a micro short-circuit has occurred is unlikely to have a problem immediately after production, but may have a significant capacity decrease due to long-term use, which may cause quality deterioration. Therefore, in the pre-shipment inspection of the battery, a short circuit test is performed to detect a battery in which a minute short circuit has occurred, as a defective product, and the product is not shipped.

特許第5583480号公報Japanese Patent No. 5583480

例えば、特許文献1には、組立て後のリチウムイオン二次電池について、充電工程を経た後、外装缶または封口板と負極外部端子との間の電位差Δを測定し、この電位差Δが予め定めた所定値以上であるものを良品と判定する微小短絡の検査方法について開示している。しかしながら、この検査方法では、良品と判定された電池であっても微小短絡が発生している場合が存在し、検出精度の改善が求められている。   For example, in Patent Document 1, for a lithium ion secondary battery after assembly, a potential difference Δ between an outer can or a sealing plate and a negative electrode external terminal is measured after a charging process, and the potential difference Δ is predetermined. Disclosed is a method for inspecting a micro short circuit in which a product having a predetermined value or more is determined as a non-defective product. However, in this inspection method, there is a case where a minute short circuit occurs even in a battery determined to be a non-defective product, and improvement in detection accuracy is required.

本発明はかかる点に鑑みてなされたものであり、その目的は、二次電池の微小短絡の有無を精度よく検出することができる二次電池の検査方法を提供することにある。   The present invention has been made in view of the above points, and an object thereof is to provide a method for inspecting a secondary battery that can accurately detect the presence or absence of a micro short circuit in the secondary battery.

本発明者の鋭意検討によると、従来の短絡試験によって良品と判定される電池であっても、例えば高出力を得る等の目的で一つまたは二つ以上の電池が拘束圧を印加されると、後発的に微小短絡が発生してしまう場合があった。このような拘束により誘起される後発的な微小短絡は、電池に拘束圧を印加した状態で短絡試験を行うことで検出できると考えられる。しかしながら、拘束圧を印加した状態で短絡試験を行っても、同一の電池に対して試験のタイミングが異なることで、良品と判断されたり、不良品と判断されたりすることがあることを知見した。これは、電池や異物の形態によって、拘束後すぐに微小短絡するものや、拘束後しばらくして微小短絡に至るもの、いったん微小短絡に至っても暫くして微小短絡が解消されるもの、と様々な短絡形態が存在し得るためであると考えられる。なお、微小短絡が解消された電池については、絶縁フィルムが破損しており、その後の電池使用時の短絡が予想されることから、不良品として検出するべき対象である。   According to the inventor's earnest study, even if a battery is determined to be non-defective by a conventional short circuit test, if one or more batteries are applied with a binding pressure for the purpose of obtaining high output, for example. In some cases, a micro short circuit may occur later. It is considered that the subsequent minute short circuit induced by such restraint can be detected by performing a short circuit test with the restraint pressure applied to the battery. However, it was found that even if a short circuit test is performed with a constraint pressure applied, it may be judged as a good product or a defective product due to different test timings for the same battery. .. Depending on the form of the battery or foreign matter, there are various things such as a micro short circuit immediately after restraint, a micro short circuit after restraint, or a micro short circuit that is resolved after a short circuit. It is thought that this is because there can be various short circuit forms. It should be noted that the battery in which the micro short circuit has been eliminated is an object to be detected as a defective product because the insulating film is damaged and a short circuit during the subsequent use of the battery is expected.

そこで、ここに開示される二次電池の検査方法は、正極および負極を含む発電要素と電池ケースとの間が絶縁性フィルムで絶縁されている二次電池を用意する工程、二次電池に対して充電する工程、二次電池に対して、電池ケースの外側から圧縮した状態で、負極と電池ケースとの間の電位差である第1電圧を測定する工程、二次電池に対する圧縮が、予め定められた維持時間となるように、引き続き圧縮状態を維持する工程、圧縮時間が上記維持時間以上となった二次電池について、負極と電池ケースとの間の電位差である第2電圧を測定する工程、および、第1電圧と第2電圧との少なくとも一方が、予め定められた閾電圧よりも小さいときに、当該二次電池が不良品であると判定する工程、を含む。   Therefore, the method for inspecting a secondary battery disclosed here is a step of preparing a secondary battery in which a power generating element including a positive electrode and a negative electrode and a battery case are insulated by an insulating film, Charging the secondary battery, measuring the first voltage, which is the potential difference between the negative electrode and the battery case in a state where the secondary battery is compressed from the outside of the battery case, and compressing the secondary battery is predetermined. To maintain the compressed state so that the maintained time is maintained, and to measure the second voltage, which is the potential difference between the negative electrode and the battery case, of the secondary battery whose compressed time is equal to or longer than the maintained time. And a step of determining that the secondary battery is defective when at least one of the first voltage and the second voltage is smaller than a predetermined threshold voltage.

この二次電池の検査方法では、圧縮した二次電池に対して、二度のタイミングで負極−電池ケース間電圧を測定し、短絡の有無を確認するようにしている。一度目は、拘束によってすぐに微小短絡した二次電池を検出する。二度目は、継続して短絡している二次電池の他に、拘束後すぐには短絡せずに暫くして短絡した二次電池を検出する。二度目の検出は、拘束を開始してから所定の時間(例えば、48時間)を経過したタイミングで実施する。これにより、拘束に起因して後発的に生じた微小短絡を、精度良く検出することができる。例えば、いずれか一方の短絡の有無の確認だけでは検出されない、短絡履歴のある電池を精度良く検出することができる。   In this secondary battery inspection method, the voltage between the negative electrode and the battery case of the compressed secondary battery is measured at two timings to check the presence or absence of a short circuit. The first time, it detects the secondary battery that is short-circuited immediately due to restraint. The second time, in addition to the secondary battery that is continuously short-circuited, it detects a secondary battery that is not short-circuited immediately after restraint but short-circuited for a while. The second detection is performed at a timing when a predetermined time (for example, 48 hours) has elapsed since the constraint was started. As a result, it is possible to accurately detect a minute short circuit that occurs subsequently due to the constraint. For example, it is possible to accurately detect a battery having a short circuit history, which is not detected only by checking whether or not one of the short circuits is present.

一実施形態に係る検査方法で検査の対象とする二次電池の構成を例示した、部分切り欠き斜視図である。FIG. 4 is a partially cutaway perspective view illustrating the configuration of a secondary battery to be inspected by the inspection method according to the embodiment. (A)拘束前、(B)拘束直後、(C)拘束から24時間経過後の負極−電池ケース間電圧の測定例を示すグラフである。It is a graph which shows the measurement example of the negative electrode-battery case voltage before (A) restraint, (B) restraint immediately after, and (C) restraint 24 hours after. (A)〜(E)は、拘束による二次電池と異物との様子を説明する断面模式図である。(A)-(E) is a cross-sectional schematic diagram explaining the state of the secondary battery and a foreign material by restraint. 拘束による二次電池の負極−電池ケース間電圧の経時変化の態様を示すグラフである。It is a graph which shows the aspect of the time-dependent change of the voltage between the negative electrode of a secondary battery and a battery case by restraint. 一実施形態に係る二次電池の検査方法のフロー図である。It is a flowchart of the inspection method of the secondary battery which concerns on one Embodiment.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって、本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の構成および製造プロセス等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は、実際の寸法関係を忠実に反映するものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. It should be noted that matters other than the matters particularly referred to in the present specification, which are necessary for carrying out the present invention (for example, the configuration and manufacturing process of a battery that does not characterize the present invention) are the same as those in the related art. It can be understood as a design matter of a person skilled in the art based on the technology. The present invention can be carried out based on the contents disclosed in this specification and the common general technical knowledge in the field. Further, in the following drawings, the same reference numerals are given to the members / sites that have the same effect. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not faithfully reflect the actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、いわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、本明細書において「リチウムイオン電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンの移動に伴い充放電が実現される二次電池をいう。   In the present specification, the term “secondary battery” generally refers to a power storage device that can be repeatedly charged and discharged, and is a term that includes so-called storage batteries and power storage elements such as electric double layer capacitors. Further, in the present specification, the “lithium ion battery” refers to a secondary battery that utilizes lithium ions as charge carriers and realizes charging / discharging as lithium ions move between the positive and negative electrodes.

本実施形態に係る電池の検査方法は、図5に示す工程S1〜S6をこの順に含む。工程S3〜S6が、いわゆる短絡試験に相当する。
図1は、二次電池の一例としてのリチウムイオン電池1である。図中の符号Wは、リチウムイオン電池1の幅方向を示し、符号Tはリチウムイオン電池1の厚み方向を示している。図3は、拘束状態と電池1内の様子とを示す厚み方向の断面模式図である。以下、リチウムイオン電池1の検査方法の各工程について、電池の構成要素と併せて説明する。
The battery inspection method according to the present embodiment includes steps S1 to S6 shown in FIG. 5 in this order. Steps S3 to S6 correspond to a so-called short circuit test.
FIG. 1 shows a lithium ion battery 1 as an example of a secondary battery. Reference sign W in the drawing indicates the width direction of the lithium ion battery 1, and reference sign T indicates the thickness direction of the lithium ion battery 1. FIG. 3 is a schematic cross-sectional view in the thickness direction showing the restrained state and the state inside the battery 1. Hereinafter, each step of the inspection method of the lithium ion battery 1 will be described together with the constituent elements of the battery.

1.二次電池の用意工程
工程S1では、正極および負極を含む発電要素と電池ケース10との間が絶縁性フィルム25で絶縁されている二次電池1を用意する。
電池ケース10は、一の面に開口11aを有するケース本体11と、このケース本体11の開口11aを封口する蓋部材12と、を備える。電池ケース10は、樹脂材料などと比較して、薄くても高い強度を備える金属製である。電池ケース10を構成する金属とは、鉄、銅、アルミニウム、チタニウムおよびこれらを含む合金(例えば、鋼)等が好適例として挙げられる。例えば、軽量で加工が容易なアルミニウムまたはアルミニウム合金であることが好ましい。本例のケース本体11は、扁平な有底角筒形状である。蓋部材12は、注液栓16で封止された注液孔15と、安全弁18と、正極外部端子30および負極外部端子40とを備えている。正極外部端子30および負極外部端子40は、電池ケース10の幅方向Wの端部において、ケース外側に突出するように一つずつ備えられている。正極外部端子30および負極外部端子40は、電池1に電荷を充電したり取り出したり、例えば負極と電池ケース10との間の電位差を測定するために用いられる。
1. Step of Preparing Secondary Battery In step S1, the secondary battery 1 in which the power generation element including the positive electrode and the negative electrode and the battery case 10 are insulated by the insulating film 25 is prepared.
The battery case 10 includes a case body 11 having an opening 11a on one surface, and a lid member 12 that seals the opening 11a of the case body 11. The battery case 10 is made of metal, which is thin but has high strength as compared with a resin material or the like. Examples of the metal forming the battery case 10 include iron, copper, aluminum, titanium, and alloys containing these (for example, steel) and the like. For example, aluminum or aluminum alloy, which is lightweight and easy to process, is preferable. The case body 11 of this example has a flat bottomed rectangular tube shape. The lid member 12 includes a liquid injection hole 15 sealed with a liquid injection plug 16, a safety valve 18, a positive electrode external terminal 30, and a negative electrode external terminal 40. The positive electrode external terminal 30 and the negative electrode external terminal 40 are provided one by one at the end portion of the battery case 10 in the width direction W so as to project to the outside of the case. The positive electrode external terminal 30 and the negative electrode external terminal 40 are used to charge and extract electric charge in the battery 1, for example, to measure a potential difference between the negative electrode and the battery case 10.

本例の電極体20は、本発明における発電要素の一例である。電極体20は、本正極と負極とセパレータとを備えている。正極と負極とは、セパレータによって互いに絶縁された状態で積層され、捲回されることで、電極体20を構成している。
正極は、正極集電体と、その表面に形成された多孔質の正極活物質層とを備えている。正極集電体には、例えば、アルミニウム箔等の金属箔が好適に使用される。本例では、正極集電体の両面に正極活物質層が設けられている。また、幅方向Wにおいて、正極活物質層は正極外部端子30の側の正極集電体が露出するように幅狭に形成されている。正極活物質層は、粒状の正極活物質を含有している。正極活物質には、従来からリチウムイオン電池に正極活物質として用いられる物質の一種または二種以上を特に限定なく使用することができる。その例としては、リチウムニッケルコバルトマンガン複合酸化物(例、LiNi1/3Co1/3Mn1/3等)、リチウムニッケル複合酸化物(例、LiNiO等)、リチウムコバルト複合酸化物(例、LiCoO等)、リチウムニッケルマンガン複合酸化物(例、LiNi0.5Mn1.5等)などのリチウム遷移金属複合酸化物が挙げられる。正極活物質層は、上述した正極活物質の他に、アセチレンブラック(AB)等の導電材や、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)等のバインダを含有し得る。
The electrode body 20 of this example is an example of the power generation element in the present invention. The electrode body 20 includes the positive electrode, the negative electrode, and the separator. The positive electrode and the negative electrode are laminated in a state of being insulated from each other by a separator and wound to form the electrode body 20.
The positive electrode includes a positive electrode current collector and a porous positive electrode active material layer formed on the surface thereof. A metal foil such as an aluminum foil is preferably used for the positive electrode current collector. In this example, the positive electrode active material layers are provided on both surfaces of the positive electrode current collector. Further, in the width direction W, the positive electrode active material layer is formed so as to have a narrow width so that the positive electrode current collector on the positive electrode external terminal 30 side is exposed. The positive electrode active material layer contains a granular positive electrode active material. As the positive electrode active material, one kind or two or more kinds of materials conventionally used as a positive electrode active material in a lithium ion battery can be used without particular limitation. Examples thereof include lithium nickel cobalt manganese composite oxide (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc.), lithium nickel composite oxide (eg, LiNiO 2 etc.), lithium cobalt composite oxide. (Eg, LiCoO 2 etc.), lithium nickel manganese complex oxide (eg, LiNi 0.5 Mn 1.5 O 4 etc.), and other lithium transition metal complex oxides. The positive electrode active material layer may contain a conductive material such as acetylene black (AB) or a binder such as polyvinylidene fluoride (PVDF) or styrene butadiene rubber (SBR) in addition to the above-described positive electrode active material.

負極は、負極集電体と、その表面に形成された多孔質の負極活物質層とを備えている。負極集電体には、例えば、銅箔等の金属箔が好適に使用される。本例では、負極活物質層は、負極集電体の両面に設けられている。また、幅方向Wにおいて、負極活物質層は負極外部端子40の側の負極集電体が露出するように幅狭に形成されている。負極活物質層は、負極活物質を含有する。負極活物質としては、従来からリチウムイオン電池に負極活物質として用いられる物質の一種または二種以上を特に限定なく使用することができる。その例としては、グラファイトカーボン、アモルファスカーボンなどの炭素系材料、シリコン、リチウム遷移金属酸化物、リチウム遷移金属窒化物などが挙げられる。負極活物質層は、上述した負極活物質の他に、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)等のバインダや、カルボキシメチルセルロース(CMC)等の増粘剤を含有し得る。   The negative electrode includes a negative electrode current collector and a porous negative electrode active material layer formed on the surface thereof. A metal foil such as a copper foil is preferably used for the negative electrode current collector. In this example, the negative electrode active material layer is provided on both surfaces of the negative electrode current collector. Further, in the width direction W, the negative electrode active material layer is formed narrow so that the negative electrode current collector on the negative electrode external terminal 40 side is exposed. The negative electrode active material layer contains a negative electrode active material. As the negative electrode active material, one kind or two or more kinds of materials conventionally used as a negative electrode active material in lithium ion batteries can be used without particular limitation. Examples thereof include carbon-based materials such as graphite carbon and amorphous carbon, silicon, lithium transition metal oxide, and lithium transition metal nitride. The negative electrode active material layer may contain a binder such as polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR), and a thickener such as carboxymethyl cellulose (CMC), in addition to the above-described negative electrode active material.

セパレータは、正極と負極とを電気的に絶縁する多孔性の部材である。本例では、セパレータは、微小な孔を複数有する微多孔性シートで構成されている。セパレータは、例えば、多孔質ポリオレフィン樹脂で構成された単層構造のセパレータや、多層構造のセパレータを用いることができる。セパレータは、耐熱層(HRL)を備えていてもよい。   The separator is a porous member that electrically insulates the positive electrode and the negative electrode. In this example, the separator is composed of a microporous sheet having a plurality of minute holes. As the separator, for example, a single-layer structure separator made of a porous polyolefin resin or a multi-layer structure separator can be used. The separator may include a heat resistant layer (HRL).

これらの正極および負極は、公知方法により従い作製することができる。例えば、各活物質層の構成成分を含有するペーストを調製し、帯状の集電体上に塗布する。このとき、正極および負極の集電体の幅方向の端部にはペーストを塗布せず、集電体の露出部を設ける。このようにして作製した正極と負極とを、2枚の帯状のセパレータを一枚ずつ介して積層する。このとき、正極集電体の露出部と負極集電体の露出部とが、幅方向の異なる方向で突出するように、正極、負極およびセパレータの重ね合わせ位置を調整する。このように積層された正極、負極およびセパレータを、幅方向を捲回軸とし、断面が長円形となるように捲回することで、捲回型電極体20を得ることができる。このような電極体20について、電極の積層方向とは、捲回型電極体20の断面の長円形の短軸方向にとることができる。   These positive electrode and negative electrode can be manufactured according to known methods. For example, a paste containing the constituent components of each active material layer is prepared and applied on a strip-shaped current collector. At this time, the paste is not applied to the ends of the positive electrode and the negative electrode in the width direction of the current collector, and the exposed portion of the current collector is provided. The positive electrode and the negative electrode thus manufactured are laminated with two strip-shaped separators interposed one by one. At this time, the stacking position of the positive electrode, the negative electrode, and the separator is adjusted so that the exposed portion of the positive electrode current collector and the exposed portion of the negative electrode current collector protrude in different width directions. The wound electrode body 20 can be obtained by winding the positive electrode, the negative electrode, and the separator, which are laminated in this way, so that the width direction is a winding axis and the cross section has an oval shape. With respect to such an electrode body 20, the electrode stacking direction can be taken as the elliptical minor axis direction of the cross section of the wound electrode body 20.

絶縁フィルム25は、発電要素たる電極体20と電池ケース10との間に配置され、電極体20と電池ケース10との間を電気的に絶縁する。絶縁フィルム25が存在することによって、製造途中および製造後に、電極体20と電池ケース10とが接触して短絡するのを抑制することができる。絶縁フィルム25を構成する材料は特に制限されず、電気的絶縁性を有する各種の材料で構成される。コスト、柔軟性、加工性などの観点から、典型的には、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン樹脂や、ポリフェニレンサルファイド、ポリエーテル・エーテル・ケトン、ナイロン等からなる柔軟なシート状樹脂を好ましく用いることができる。絶縁フィルム25の厚みは、電池体格等によって異なり得る。絶縁フィルム25の厚みは、例えば約40μm以上であってよく、典型的には50μm以上であり得る。さらに、絶縁フィルム25の厚みは、100μm以上であってよく、120μm以上であってよく、140μm以上であってよい。しかしながら、絶縁フィルムが厚すぎると、電池の充放電に伴う自己発熱の放熱が阻害され得るために好ましくない。したがって、絶縁フィルム25の厚みは、約250μm以下が適切であり、例えば約200μm以下が好ましく、約180μm以下であってよい。   The insulating film 25 is arranged between the electrode body 20 which is a power generation element and the battery case 10, and electrically insulates the electrode body 20 and the battery case 10. Due to the presence of the insulating film 25, it is possible to prevent the electrode body 20 and the battery case 10 from coming into contact with each other and short-circuiting during and after manufacturing. The material forming the insulating film 25 is not particularly limited, and is made of various materials having electrical insulation. From the viewpoint of cost, flexibility, processability, etc., typically, for example, a polyolefin resin such as polypropylene (PP) or polyethylene (PE), or a flexible resin such as polyphenylene sulfide, polyether ether ketone, nylon, etc. A sheet-shaped resin can be preferably used. The thickness of the insulating film 25 may differ depending on the battery size and the like. The thickness of the insulating film 25 may be, for example, about 40 μm or more, typically 50 μm or more. Furthermore, the thickness of the insulating film 25 may be 100 μm or more, 120 μm or more, and 140 μm or more. However, if the insulating film is too thick, the heat dissipation of self-heating associated with charging and discharging of the battery may be hindered, which is not preferable. Therefore, the thickness of the insulating film 25 is appropriately about 250 μm or less, for example, preferably about 200 μm or less, and may be about 180 μm or less.

電極体20のケース本体11への収容に際しては、電極体20を予め蓋部材12に固定し、絶縁フィルム25で電極体20を覆った後、ケース本体11に収容する。例えば、蓋部材12に正負の外部端子30,40とそれぞれ電気的に接続する正負の接続端子32、42を配設し、この正負の接続端子32、42に電極体20の正負の集電体を固定(溶接)する。このようにして蓋部材12に支持された電極体20を、蓋部材12が下方に位置するように配置し、蓋部材12の側を除く、残りの五つの方向を絶縁フィルム25で覆うとよい。絶縁フィルム25は、例えば、電極体20の外形に対応した袋形状に加工されていてもよいし、一枚のフィルムを折畳み加工することで電極体20を覆うように構成されていてもよい。そして、蓋部材12に支持された電極体20の上方から、ケース本体11を開口11aを下方にして被せる。ケース本体11と蓋部材12とは、例えばレーザ溶接により気密に封止することができる。これにより、絶縁フィルム25で絶縁しながら、電極体20をケース本体11に収容することができる。また、電極体20における電極の積層方向は、電池ケース10の厚み方向Tに一致する。   When housing the electrode body 20 in the case body 11, the electrode body 20 is fixed to the lid member 12 in advance, the electrode body 20 is covered with the insulating film 25, and then housed in the case body 11. For example, the lid member 12 is provided with positive and negative connection terminals 32 and 42 that are electrically connected to the positive and negative external terminals 30 and 40, respectively, and the positive and negative current collectors of the electrode body 20 are connected to the positive and negative connection terminals 32 and 42. Is fixed (welded). The electrode body 20 supported by the lid member 12 in this manner is arranged so that the lid member 12 is located below, and the remaining five directions except the lid member 12 side may be covered with the insulating film 25. .. The insulating film 25 may be processed into, for example, a bag shape corresponding to the outer shape of the electrode body 20, or may be configured to cover the electrode body 20 by folding a single film. Then, the case body 11 is covered from above the electrode body 20 supported by the lid member 12 with the opening 11a facing downward. The case body 11 and the lid member 12 can be hermetically sealed by, for example, laser welding. Thereby, the electrode body 20 can be housed in the case body 11 while being insulated by the insulating film 25. Further, the stacking direction of the electrodes in the electrode body 20 coincides with the thickness direction T of the battery case 10.

なお、非水電解質として非水電解液を備えるリチウムイオン電池1では、蓋部材12に設けられた注液孔15から、電池ケース10の内部に電解液を注液する。非水電解液は、非水溶媒と、電解質支持塩と、を含む。電解液は、典型的には常温(典型的には0〜25℃)で液体状態を示す。電解質支持塩は、例えばリチウム塩である。非水溶媒およびリチウム塩については特に限定されず、従来の二次電池の電解液に使用されているものと同様であってよい。非水溶媒の好適例としては、例えば、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒が挙げられる。なかでも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート、および、これらのカーボネートがフッ素化されたフッ素化鎖状または環状カーボネートを、1種または2種以上含むことが好ましい。リチウム塩の好適例としては、例えば、LiPF、LiBF等が挙げられる。電解液中のリチウム塩の濃度は、例えば0.8〜1.3mol/Lとすることができる。注液後の注液孔15は、例えば、注液孔15を気密に塞ぐ注液栓16によって封止する。蓋部材12と注液栓16とは、例えば、溶接によって堅固に固定されてもよい。これにより、リチウムイオン電池1を構築することができる。 In the lithium ion battery 1 including the non-aqueous electrolyte solution as the non-aqueous electrolyte, the electrolyte solution is injected into the battery case 10 through the injection hole 15 provided in the lid member 12. The non-aqueous electrolytic solution contains a non-aqueous solvent and an electrolyte supporting salt. The electrolytic solution typically exhibits a liquid state at room temperature (typically 0 to 25 ° C.). The electrolyte supporting salt is, for example, a lithium salt. The non-aqueous solvent and the lithium salt are not particularly limited and may be the same as those used in the electrolytic solution of the conventional secondary battery. Preferable examples of the non-aqueous solvent include aprotic solvents such as carbonates, esters and ethers. Among them, cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC), and these carbonates are fluorine. It is preferable that one or more kinds of the fluorinated chain-like or cyclic carbonates are included. Preferable examples of the lithium salt include LiPF 6 and LiBF 4 . The concentration of the lithium salt in the electrolytic solution can be 0.8 to 1.3 mol / L, for example. The injection hole 15 after the injection is sealed by, for example, an injection plug 16 that hermetically closes the injection hole 15. The lid member 12 and the liquid injection plug 16 may be firmly fixed by welding, for example. Thereby, the lithium ion battery 1 can be constructed.

2.充電工程
工程S2では、二次電池1に対して充電する。組立て後のリチウムイオン電池1は、適宜、所定の初期充放電処理を施すことにより、電池としての機能を備え得る。初期充電条件は、例えば、0.1Aで3.8Vまで定電流(CC)充電することが例示される。また、必須ではないが、リチウムイオン電池1の高い品質を確保するために、典型的には、初期充放電処理の後に、エージング処理が施され得る。エージング処理としては、例えば、電池を充電状態(State of Charge:SOC)50%になるまで充電し、65℃の環境下で一日放置することが例示される。そして、二次電池1は、次工程からの短絡試験を行うために、SOCが10%〜100%となるように充電状態を整えておくとよい。リチウムイオン二次電池においては、SOCが変化するとそれにつれて電池電圧も変化する。SOCが10%〜100%の範囲内であれば、電池電圧の変化の程度がSOCが10%未満の場合よりも小さく、しかも、負極の電位はほとんど変化しない。そのため、負極外部端子40と電池ケース10とが短絡した電池を検出することができるようになる。なお、充電工程では、SOCの調整のときに、充電後の(換言すると、短絡試験前の)二次電池1の電圧(初期電圧V0)を把握することができる。
2. Charging Step In step S2, the secondary battery 1 is charged. The assembled lithium-ion battery 1 can have a function as a battery by appropriately performing a predetermined initial charge / discharge process. The initial charging condition is, for example, constant current (CC) charging up to 3.8 V at 0.1 A. Although not essential, in order to ensure high quality of the lithium ion battery 1, typically, an aging treatment may be performed after the initial charge / discharge treatment. Examples of the aging treatment include charging the battery to a state of charge (SOC) of 50% and leaving it to stand for one day in an environment of 65 ° C. Then, in order to perform the short circuit test from the next step, it is preferable that the secondary battery 1 be prepared in a charged state so that the SOC becomes 10% to 100%. In the lithium-ion secondary battery, the battery voltage changes as the SOC changes. When the SOC is in the range of 10% to 100%, the degree of change in the battery voltage is smaller than that when the SOC is less than 10%, and the potential of the negative electrode hardly changes. Therefore, a battery in which the negative electrode external terminal 40 and the battery case 10 are short-circuited can be detected. In the charging step, the voltage (initial voltage V0) of the secondary battery 1 after charging (in other words, before the short circuit test) can be grasped at the time of adjusting SOC.

3.第1電圧測定工程
工程S3では、二次電池1に対して、電池ケース10の外側から圧縮した状態で、負極と電池ケース10との間の電位差である第1電圧V1を測定する。ハイレート出力特性等が要求される用途の二次電池1は、電極体20の積層方向に圧縮応力を印加して使用する場合がある。典型的には、複数の二次電池1を組電池にして出力や容量を拡大するときに、複数の二次電池1を電極の積層方向、つまり電池ケース10の厚み方向Tに圧縮応力を印加しながら拘束する。このような二次電池1では、この拘束時の圧縮応力に応じて、電池ケース10が厚み方向で潰れる方向に変形する。
3. First Voltage Measuring Step In step S3, the secondary battery 1 is compressed from the outside of the battery case 10, and the first voltage V1 which is the potential difference between the negative electrode and the battery case 10 is measured. The secondary battery 1 for applications requiring high-rate output characteristics may be used by applying compressive stress in the stacking direction of the electrode bodies 20. Typically, when a plurality of secondary batteries 1 are assembled into a battery pack to expand the output and capacity, a compressive stress is applied to the plurality of secondary batteries 1 in the electrode stacking direction, that is, in the thickness direction T of the battery case 10. While restraining. In such a secondary battery 1, the battery case 10 is deformed in the thickness direction in a crushing direction according to the compressive stress at the time of the restraint.

このとき、図3(a)に示すように、絶縁フィルム20と電池ケース10との間に導電性異物Mが存在している場合は、電池ケース10の変形によって、図3(b)に示すように、導電性異物Mが絶縁フィルム20に押しつけられ、絶縁フィルム20が破れて電池ケース10と電極体20とが短絡する場合がある。例えば、電極体20の最外周の負極とケース本体11とが短絡しやすい。このとき、負極から非水電解質中に溶け出したリチウムイオンがケース本体11に移動し、ケースの電位が低下する。なお、例えば電池ケース10がアルミニウムまたはアルミニウム合金製である場合、リチウムはアルミニウム成分と容易に合金化し、電池ケース10を腐食してしまう虞がある。したがって、一度でも短絡した電池ケース10を備える二次電池1は、液漏れ等の安全性に問題が生じ得るために不良品として検出すべきである。   At this time, as shown in FIG. 3A, when the conductive foreign matter M exists between the insulating film 20 and the battery case 10, as shown in FIG. As described above, the conductive foreign matter M may be pressed against the insulating film 20, the insulating film 20 may be broken, and the battery case 10 and the electrode body 20 may be short-circuited. For example, the outermost negative electrode of the electrode body 20 and the case body 11 are likely to be short-circuited. At this time, the lithium ions dissolved in the non-aqueous electrolyte from the negative electrode move to the case body 11, and the potential of the case decreases. If the battery case 10 is made of aluminum or an aluminum alloy, for example, lithium may easily alloy with the aluminum component and corrode the battery case 10. Therefore, the secondary battery 1 including the battery case 10 that has been short-circuited even once should cause a safety problem such as liquid leakage and should be detected as a defective product.

このときの負極(負極外部端子40)と電池ケース10との間の電位差は、図2に示すように、例えば、圧縮前(A)にはV0=約2.8Vであったものが、例えば圧縮直後(B)にはV1=約1.4Vにまで低下する。このように、例えば短絡の有無を判定するための閾電圧VSを2.0V等として設定しておくと、圧縮直後(B)の第1電圧V1が閾電圧VSよりも低い場合に、当該電池が短絡していることを検知することができる。一方で、図3(d)に示すように、圧縮によって導電性異物Mが絶縁フィルム20に押しつけられたときでも、絶縁フィルム20が破れずに、電池ケース10と電極体20とは短絡に至らない場合がある。このときの負極(負極外部端子40)と電池ケース10との間の電位差は、図2(A)に示すように、例えば、圧縮前と圧縮直後とで、V0=V1=約2.8Vであり得る。このとき、第1電圧V1は閾電圧VSよりも高いため、当該電池が短絡していないことを検知することができる。工程S3では、このように、圧縮応力を印加した直後の第1電圧V1を測定する。第1電圧V1の測定のタイミングは、圧縮直後であってもよいし、例えば圧縮から12時間程度が経過するまでの時間であってもよい。第1電圧V1は、例えば、圧縮応力を印加してから、0〜12時間の間で測定するとよい。   The potential difference between the negative electrode (negative electrode external terminal 40) and the battery case 10 at this time is, for example, V0 = about 2.8 V before compression (A) as shown in FIG. Immediately after compression (B), V1 drops to about 1.4V. In this way, for example, when the threshold voltage VS for determining the presence or absence of a short circuit is set to 2.0 V or the like, if the first voltage V1 immediately after compression (B) is lower than the threshold voltage VS, the battery concerned. It is possible to detect that there is a short circuit. On the other hand, as shown in FIG. 3D, even when the conductive foreign matter M is pressed against the insulating film 20 by compression, the insulating film 20 is not broken and the battery case 10 and the electrode body 20 are short-circuited. May not be. The potential difference between the negative electrode (negative electrode external terminal 40) and the battery case 10 at this time is, for example, V0 = V1 = about 2.8 V before and after compression, as shown in FIG. possible. At this time, since the first voltage V1 is higher than the threshold voltage VS, it is possible to detect that the battery is not short-circuited. In step S3, the first voltage V1 immediately after applying the compressive stress is measured in this way. The measurement timing of the first voltage V1 may be immediately after compression, or may be, for example, the time from the compression until about 12 hours have elapsed. The first voltage V1 may be measured, for example, for 0 to 12 hours after applying the compressive stress.

二次電池1に印加する圧縮応力の大きさは、当該電池の用途、例えば複数の電池の拘束条件等に応じて適宜設定することができる。例えば、圧縮応力の大きさは、組電池等を構築するために拘束するときの圧縮応力とほぼ同じ(例えば、85%〜110%)にしてもよいし、短絡に至る二次電池1をより早いタイミングで検出するために、拘束時の圧縮応力よりも高く(例えば、110%〜200%程度)設定してもよい。二次電池1に対する圧縮応力の印加には、例えば、一対の拘束板と、これらの拘束板を所定の間隔で固定する拘束部材と、を備える拘束治具を好ましく用いることができる。例えば、2枚の拘束板によって二次電池1を厚み方向Tで挟み、拘束板の外側から所定の圧縮応力を印加する。そしてこのような圧縮状態で、2枚の拘束板の間を拘束部材で固定する。このことにより、二次電池1に対し、所定の圧縮状態を簡便かつ安定して負荷することができる。二次電池1は、複数の電池を一組の拘束治具によって拘束してもよい。   The magnitude of the compressive stress applied to the secondary battery 1 can be appropriately set according to the application of the battery, for example, the constraint condition of the plurality of batteries. For example, the magnitude of the compressive stress may be substantially the same as the compressive stress when constraining to construct the assembled battery or the like (for example, 85% to 110%), or the secondary battery 1 that leads to a short circuit may be more effective. In order to detect at an early timing, it may be set higher (for example, about 110% to 200%) than the compressive stress at the time of restraint. For applying the compressive stress to the secondary battery 1, for example, a restraint jig including a pair of restraint plates and a restraint member that fixes these restraint plates at predetermined intervals can be preferably used. For example, the secondary battery 1 is sandwiched between the two constraining plates in the thickness direction T, and a predetermined compressive stress is applied from the outside of the constraining plates. Then, in such a compressed state, the two constraining plates are fixed by a constraining member. This makes it possible to load the secondary battery 1 in a predetermined compressed state simply and stably. The secondary battery 1 may restrain a plurality of batteries with a set of restraining jigs.

4.圧縮状態の維持工程
工程S4では、二次電池1に対する圧縮が、予め定められた維持時間となるように、引き続き圧縮状態を維持する。ここでは、例えば、上記拘束治具によって圧縮状態にある二次電池1をそのまま静置しておけばよい。このとき、図3(b)に示すように、第1電圧測定時に短絡状態にあった二次電池1は、そのまま短絡状態状態を維持する場合があるし、例えば、図3(c)に示すように、導電性異物Mが長時間押し当てられることにより電極体20が変形し、導電性異物Mは電極体20に貫入して、電極体20と電池ケース10との間の短絡が解消される場合がある。また、図3(d)に示すように、第1電圧測定時に短絡に至らなかった二次電池1であっても、その後に圧縮により絶縁フィルム20が押しつぶされる等して、図3(e)に示すように、短絡に至る場合もある。維持時間は、拘束直後には短絡に至らなかったが、その後の電池使用時に短絡を誘起し得る導電性異物Mが短絡を起こす程度の時間とすることができる。この維持時間は、例えば、検査対象とする二次電池ごとに、予め混入が予想される大きさの導電性異物Mを混入させた状態で、上記の圧縮状態を維持し、検出すべき大きさの導電性異物Mを混入した二次電池について短絡状態を検出する、後述する第2電圧の低下を確認するに十分な時間として設定することができる。維持時間は、電池の構成(例えばセパレータの素材や厚み等)によるため一概には言えないが、例えば36時間以上、好ましくは48時間以上に設定するとよい。
4. Maintaining Compressed State In step S4, the compressed state is continuously maintained so that the compression of the secondary battery 1 takes a predetermined maintenance time. Here, for example, the secondary battery 1 in a compressed state by the restraint jig may be left as it is. At this time, as shown in FIG. 3B, the secondary battery 1 that has been in the short-circuited state at the time of measuring the first voltage may sometimes maintain the short-circuited state as it is. For example, as shown in FIG. As described above, when the conductive foreign matter M is pressed for a long time, the electrode body 20 is deformed, the conductive foreign matter M penetrates into the electrode body 20, and the short circuit between the electrode body 20 and the battery case 10 is eliminated. There are cases where Further, as shown in FIG. 3D, even in the secondary battery 1 that did not result in a short circuit at the time of measuring the first voltage, the insulating film 20 is crushed by compression after that, and the secondary battery 1 may be compressed as shown in FIG. As shown in, there may be a short circuit. Although the maintenance time did not result in a short circuit immediately after the restraint, it can be set to such a time that the conductive foreign matter M that can induce a short circuit during the subsequent use of the battery causes a short circuit. This maintaining time is, for example, a size to be detected while maintaining the above-mentioned compressed state in a state where the conductive foreign matter M having a size expected to be mixed is mixed in advance for each secondary battery to be inspected. It is possible to set a sufficient time for detecting a short-circuit state in the secondary battery in which the conductive foreign matter M is mixed, and for confirming a decrease in the second voltage described later. The maintenance time cannot be generally stated because it depends on the configuration of the battery (for example, the material and thickness of the separator), but it may be set to, for example, 36 hours or longer, preferably 48 hours or longer.

5.第2電圧測定工程
工程S5では、圧縮が上記の維持時間以上となった二次電池1について、負極と電池ケース10との間の電位差である第2電圧V2を測定する。第2電圧V2の測定は、第1電圧V1の測定と同様に、外部端子40と電池ケース10との間の電位差を測ればよい。第2電圧V2の測定時に短絡状態にある二次電池は、例えば、図2(B)に示すように、圧縮前(A)にはV0=約2.8Vであった端子間電圧が、例えば(B)V2=約1.4Vにまで低下している。このとき、第2電圧V2が閾電圧VSよりも低くなることで、当該電池が短絡していることを検知することができる。一方で、図3(c)に示すように、第1電圧測定時には短絡状態にあったが、第2電圧測定時に短絡が解消された二次電池1は、例えば(B)第1電圧V1=約1.4Vにまで低下していたものが、図2(C)に示すように、V2=約2.8Vにまで回復し得る。このとき、第2電圧V2は閾電圧VSよりも高いため、当該電池は短絡していないことが検知され、当該第2電圧だけでは過去に短絡していたかどうかは判断し得ない。工程S5では、このように、圧縮状態を維持した後の第2電圧V2を測定する。
5. Second voltage measurement step In step S5, the second voltage V2, which is the potential difference between the negative electrode and the battery case 10, is measured for the secondary battery 1 that has been compressed for at least the above maintenance time. The second voltage V2 may be measured by measuring the potential difference between the external terminal 40 and the battery case 10, similarly to the measurement of the first voltage V1. For example, as shown in FIG. 2 (B), the secondary battery that is in the short-circuited state when the second voltage V2 is measured has an inter-terminal voltage that is V0 = about 2.8 V before compression (A), for example. (B) V2 is reduced to about 1.4V. At this time, since the second voltage V2 becomes lower than the threshold voltage VS, it is possible to detect that the battery is short-circuited. On the other hand, as shown in FIG. 3C, the secondary battery 1 that has been in a short-circuit state at the time of measuring the first voltage but has eliminated the short-circuit at the time of measuring the second voltage has, for example, (B) first voltage V1 = What has been lowered to about 1.4V can be restored to V2 = about 2.8V as shown in FIG. 2 (C). At this time, since the second voltage V2 is higher than the threshold voltage VS, it is detected that the battery is not short-circuited, and it is impossible to determine whether or not the battery was short-circuited in the past with only the second voltage. In step S5, the second voltage V2 after maintaining the compressed state is thus measured.

6.判定
工程S6では、第1電圧V1と第2電圧V2との少なくとも一方が、予め定められた閾電圧VSよりも小さいときに、当該二次電池1が不良品であると判定する。換言すると、第1電圧V1と第2電圧V2の両方が、閾電圧VS以上である場合に、当該二次電池1が良品であると判定する。その判定の様子を、下記の表1に示した。
6. Determination In step S6, when at least one of the first voltage V1 and the second voltage V2 is lower than a predetermined threshold voltage VS, it is determined that the secondary battery 1 is defective. In other words, when both the first voltage V1 and the second voltage V2 are equal to or higher than the threshold voltage VS, it is determined that the secondary battery 1 is a good product. The state of the determination is shown in Table 1 below.

表1に示すように、この評価方法では、第1電圧V1および第2電圧V2の閾電圧との関係は、例1〜4の4とおりに区分される。そして、例えば、例1にカテゴライズされる二次電池1は、第1電圧測定時も第2電圧測定時も短絡していたため、不良品と判定されるべきである。例2にカテゴライズされる二次電池1は、第1電圧測定時には短絡していたが、その後の第2電圧測定時には短絡が解消されている。このような二次電池1は、第2電圧の測定のみでは良品と判定され得るが、一度でも短絡した二次電池1は、絶縁フィルム20が破損していたり、電池ケース10に電荷担体が析出している恐れがあるため、不良品と判定されるべきである。例えば、ピンホール程度の穴が開いている絶縁フィルム20は、このピンホールを起点として破損が広がりやすく、例えば高温時に絶縁フィルム20が熱収縮したときにピンホールを起点として破断し得る。ここに開示される検査方法によると、このような見かけ上短絡していない電池についても、その履歴を考慮して、不良品として判別することができるために好ましい。   As shown in Table 1, in this evaluation method, the relationship between the first voltage V1 and the second voltage V2 and the threshold voltage is classified into four types of Examples 1 to 4. Then, for example, the secondary battery 1 categorized in Example 1 is short-circuited during both the first voltage measurement and the second voltage measurement, and thus should be determined as a defective product. The secondary battery 1 categorized in Example 2 was short-circuited at the time of measuring the first voltage, but was eliminated at the subsequent measurement of the second voltage. Such a secondary battery 1 can be determined as a non-defective product only by measuring the second voltage. However, even if the secondary battery 1 is short-circuited even once, the insulating film 20 is damaged or charge carriers are deposited on the battery case 10. Therefore, it should be judged as a defective product. For example, the insulating film 20 having a hole as large as a pinhole is likely to be damaged from this pinhole as a starting point, and may be broken from the pinhole as a starting point when the insulating film 20 is thermally contracted at a high temperature. According to the inspection method disclosed herein, even such a battery that is not apparently short-circuited can be determined as a defective product in consideration of its history.

なお、図4は、拘束による二次電池の負極−電池ケース間電圧の経時変化の態様を示すグラフである。拘束による圧縮応力の印加の直後に短絡した例2の電池は、圧縮から3時間後、12時間後と時間が経過するにつれて、負極−電池ケース間電圧が小さくなり、おおよそ15時間後には短絡が解消されたことが確認できている。本発明者の検討によると、このように、いったん短絡した電池であっても、導電性異物Mの周辺の電極体20の硬度等によっては、時間の経過によって短絡が解消されるケースが多い。   Note that FIG. 4 is a graph showing the manner in which the voltage between the negative electrode of the secondary battery and the battery case changes with time due to restraint. In the battery of Example 2 which was short-circuited immediately after the application of the compressive stress due to the restraint, the voltage between the negative electrode and the battery case became smaller as time passed from 3 hours to 12 hours after compression, and the short circuit occurred after about 15 hours. It has been confirmed that it has been resolved. According to the study by the present inventors, even in the case of a battery that has once been short-circuited as described above, the short-circuiting is often solved over time depending on the hardness of the electrode body 20 around the conductive foreign matter M and the like.

また、例3にカテゴライズされる二次電池1は、第1電圧V1の測定時には短絡していなかったが、その後の第2電圧V2の測定時には短絡していた電池である。図4に示す例3の電池は、圧縮から45時間後には短絡していなかったものの、48時間後には短絡していることが確認できる。このような短絡のタイミングは、電池条件、圧縮条件等にもよるものの、おおよそ48時間までに生じる傾向にある。したがって、第2電圧V2の測定は、48時間以降であると好ましい。例えば、48時間から72時間の間であるとよい。なお、例3のような二次電池1は、第1電圧V1の測定のみでは良品と判定されるが、その後に圧縮状態が続くと短絡が生じ得るため、不良品と判定されるべきである。ここに開示される検査方法によると、このように遅れて短絡する電池も、不良品として判別することができるために好ましい。   The secondary battery 1 categorized in Example 3 is a battery that was not short-circuited when measuring the first voltage V1, but was short-circuited when measuring the second voltage V2 thereafter. It can be confirmed that the battery of Example 3 shown in FIG. 4 was not short-circuited after 45 hours from compression, but was short-circuited after 48 hours. The timing of such a short circuit tends to occur within about 48 hours, although it depends on the battery condition, the compression condition, and the like. Therefore, the measurement of the second voltage V2 is preferably after 48 hours. For example, it may be between 48 hours and 72 hours. The secondary battery 1 as in Example 3 is determined to be a non-defective product only by measuring the first voltage V1, but a short circuit may occur if the compressed state continues thereafter, and thus should be determined to be a defective product. .. According to the inspection method disclosed herein, even a battery that is short-circuited with such a delay can be determined as a defective product, which is preferable.

例4にカテゴライズされる二次電池1は、第1電圧測定時も第2電圧測定時も短絡しておらず、良品であるといえる。ここに開示される検査方法によると、このように一度も短絡の履歴のない二次電池1を良品として判別することができるために好ましい。なお、本発明者の検討によると、拘束による圧縮応力に起因して短絡した電池のうち、拘束直後に短絡した電池であって、十分な時間の経過後も短絡状態を維持する例1の電池の割合は極めて少ないという特徴がみられた。例えば、図4に示す短絡試験では、例1にカテゴライズされる電池は見られなかった。この点において、ここに開示される検査方法は、従来の短絡検査方法では得ることのできない特別な意義を有する。   It can be said that the secondary battery 1 categorized in Example 4 is a non-defective product because it is not short-circuited during the first voltage measurement and the second voltage measurement. According to the inspection method disclosed herein, the secondary battery 1 having no history of short circuit as described above can be discriminated as a good product, which is preferable. According to a study by the present inventor, among the batteries short-circuited due to the compressive stress due to the restraint, the battery short-circuited immediately after restraint, which is the battery of Example 1 which maintains the short-circuit state even after a sufficient time has elapsed. The characteristic was that the ratio of was extremely small. For example, in the short circuit test shown in FIG. 4, no battery categorized in Example 1 was found. In this respect, the inspection method disclosed herein has a special meaning that cannot be obtained by the conventional short circuit inspection method.

Figure 2020072059
Figure 2020072059

このように、ここに開示される技術によると、拘束して使用される用途の二次電池について、拘束により後発的に起こりうる微小短絡を高精度で検出することができる。例えば、負極−電池ケース間電圧を、圧縮直後から12時間が経過するまでのタイミングで第1電圧V1として測定し、圧縮直後から48時間以上が経過するタイミングで第2電圧V2として測定し、これら第1電圧V1および第2電圧V2のうちのいずれか一方が閾電圧VSよりも低い場合に、当該電池を高い精度で不良品と判定することができる。閾電圧VSは、電池の構成(正負の活物質の組合せ)や短絡の規模等によって異なり得るために一概には言えないが、例えば、0.2V〜2.5V上、例えばおおよそ2V程度とすることが好ましい。   As described above, according to the technology disclosed herein, it is possible to highly accurately detect a minute short circuit that may be generated later due to the restraint of the secondary battery used for restraining use. For example, the voltage between the negative electrode and the battery case is measured as the first voltage V1 at the timing immediately after compression until 12 hours have passed, and is measured as the second voltage V2 at the timing at which 48 hours or more have passed immediately after compression. When either one of the first voltage V1 and the second voltage V2 is lower than the threshold voltage VS, the battery can be determined with high accuracy as a defective product. The threshold voltage VS cannot be generally stated because it may vary depending on the configuration of the battery (combination of positive and negative active materials) and the scale of the short circuit, but is 0.2 V to 2.5 V, for example, about 2 V. Preferably.

これにより、拘束による短絡の履歴のない二次電池を選別して出荷することができる。ここで、良品として判別されたリチウムイオン電池1は、従来の検査方法で良品と判断された電池よりも、拘束されたときにも微小短絡の発生が抑制されている。そのため、例えば、拘束して使用される用途の電池として使用した場合に、短絡が生じる可能性が大幅に低減され、信頼性の高い電池として提供することができる。   As a result, it is possible to select and ship the secondary battery having no history of short circuit due to restraint. Here, the lithium-ion battery 1 determined as a non-defective product has a smaller occurrence of a micro short circuit when restrained than a battery determined as a non-defective product by a conventional inspection method. Therefore, for example, when used as a battery for a restricted use, the possibility of a short circuit is significantly reduced, and the battery can be provided as a highly reliable battery.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、電極体は、捲回型に限定されず、複数の板状の正極と負極とがセパレータを介して積層された、いわゆる積層型の電極体であってもよい。また、ここに開示される技術は、電解質として非水電解液を用いる電池の場合に特に好適に適用できるが、固体電解質を使用する電池に対して適用することもできる。   Although the present invention has been described in detail above, the above-described embodiments and examples are merely examples, and the invention disclosed herein includes various modifications and changes of the specific examples described above. For example, the electrode body is not limited to the wound type and may be a so-called laminated type electrode body in which a plurality of plate-shaped positive electrodes and negative electrodes are laminated with a separator interposed therebetween. Further, the technique disclosed herein can be particularly suitably applied to a battery using a non-aqueous electrolytic solution as an electrolyte, but can also be applied to a battery using a solid electrolyte.

1 電池
10 電池ケース
11 ケース本体
12 蓋部材
20 電極体
25 絶縁フィルム
1 Battery 10 Battery Case 11 Case Body 12 Lid Member 20 Electrode 25 Insulating Film

Claims (1)

正極および負極を含む発電要素と電池ケースとの間が絶縁性フィルムで絶縁されている二次電池を用意する工程、
前記二次電池に対して充電する工程、
前記二次電池に対して、前記電池ケースの外側から圧縮した状態で、前記負極と前記電池ケースとの間の電位差である第1電圧を測定する工程、
前記二次電池に対する圧縮が、予め定められた維持時間となるように、引き続き前記圧縮状態を維持する工程、
前記圧縮が前記維持時間以上となった前記二次電池について、前記負極と前記電池ケースとの間の電位差である第2電圧を測定する工程、および、
前記第1電圧と前記第2電圧との少なくとも一方が、予め定められた閾電圧よりも小さいときに、当該二次電池が不良品であると判定する工程、
を含む、二次電池の検査方法。
A step of preparing a secondary battery in which a power generation element including a positive electrode and a negative electrode and a battery case are insulated with an insulating film;
Charging the secondary battery,
Measuring a first voltage, which is a potential difference between the negative electrode and the battery case, in a state where the secondary battery is compressed from the outside of the battery case;
Compression of the secondary battery, so as to have a predetermined maintenance time, the step of continuously maintaining the compression state,
Measuring a second voltage, which is a potential difference between the negative electrode and the battery case, for the secondary battery in which the compression is equal to or longer than the maintenance time; and
Determining that the secondary battery is defective when at least one of the first voltage and the second voltage is smaller than a predetermined threshold voltage,
A method for inspecting a secondary battery, including:
JP2018207471A 2018-11-02 2018-11-02 Secondary battery inspection method Active JP7011782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018207471A JP7011782B2 (en) 2018-11-02 2018-11-02 Secondary battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018207471A JP7011782B2 (en) 2018-11-02 2018-11-02 Secondary battery inspection method

Publications (2)

Publication Number Publication Date
JP2020072059A true JP2020072059A (en) 2020-05-07
JP7011782B2 JP7011782B2 (en) 2022-01-27

Family

ID=70549605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207471A Active JP7011782B2 (en) 2018-11-02 2018-11-02 Secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP7011782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763919A (en) * 2021-02-02 2021-05-07 江苏塔菲尔新能源科技股份有限公司 Method and system for detecting internal short circuit abnormality of power battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2011249239A (en) * 2010-05-28 2011-12-08 Sanyo Electric Co Ltd Method of inspecting lithium ion secondary battery
WO2014147808A1 (en) * 2013-03-22 2014-09-25 オートモーティブエナジーサプライ株式会社 Inspection method for film covered battery
JP2014216128A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 Inspection method for battery and manufacturing method for battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2011249239A (en) * 2010-05-28 2011-12-08 Sanyo Electric Co Ltd Method of inspecting lithium ion secondary battery
WO2014147808A1 (en) * 2013-03-22 2014-09-25 オートモーティブエナジーサプライ株式会社 Inspection method for film covered battery
JP2014216128A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 Inspection method for battery and manufacturing method for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763919A (en) * 2021-02-02 2021-05-07 江苏塔菲尔新能源科技股份有限公司 Method and system for detecting internal short circuit abnormality of power battery
CN112763919B (en) * 2021-02-02 2024-01-09 江苏正力新能电池技术有限公司 Method and system for detecting short circuit abnormality in power battery

Also Published As

Publication number Publication date
JP7011782B2 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
JP5061698B2 (en) Power storage device
JP5172579B2 (en) Cylindrical battery inspection method
JP2014222603A (en) Inspection method for battery
JP6478121B2 (en) Secondary battery recovery processing method and reuse processing method
JP5583480B2 (en) Inspection method for lithium ion secondary battery
JP5590012B2 (en) Manufacturing method of secondary battery
JP2010287408A (en) Square battery and battery pack using this
KR20200059483A (en) Pressure short testing device for detecting a low voltage battery cell
US11372052B2 (en) Jig pressing-type pressing short-circuiting inspection method
JP4529364B2 (en) Cylindrical battery inspection method
KR20200035594A (en) Non-destructive method for detecting disconnection of battery cell using pressing force
JP2003045500A (en) Method and device for inspecting battery
KR20170113085A (en) Lithium secondary battery
JP6531388B2 (en) Non-aqueous electrolyte secondary battery and method of evaluating gas generation amount in battery using the battery.
JP7011782B2 (en) Secondary battery inspection method
JP2013134843A (en) Inspection method of secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2015125091A (en) Method for inspecting secondary battery
JP2005158643A (en) Inspection method for lithium secondary battery
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP6374193B2 (en) Self-discharge inspection method for non-aqueous electrolyte secondary battery
JP2013254653A (en) Method for inspecting secondary battery
US20150140382A1 (en) Electric storage device and electric storage device module
JP6227168B1 (en) Lithium ion battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211229