JP2009117081A - Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery - Google Patents

Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery Download PDF

Info

Publication number
JP2009117081A
JP2009117081A JP2007286511A JP2007286511A JP2009117081A JP 2009117081 A JP2009117081 A JP 2009117081A JP 2007286511 A JP2007286511 A JP 2007286511A JP 2007286511 A JP2007286511 A JP 2007286511A JP 2009117081 A JP2009117081 A JP 2009117081A
Authority
JP
Japan
Prior art keywords
ion secondary
secondary battery
lithium ion
lithium
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007286511A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ishii
義行 石井
Hiroshi Hasegawa
浩 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007286511A priority Critical patent/JP2009117081A/en
Publication of JP2009117081A publication Critical patent/JP2009117081A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrolyte solution for a lithium-ion secondary battery with generating risk of micro short circuiting remarkably reduced. <P>SOLUTION: The electrolyte solution for the lithium-ion secondary battery contains one kind or two or more kinds of compounds selected from a group consisting of bathocuproine, bathocuproine sulfonate, 4, 7-diphenyl-1, 10-phenanthroline disulfonic acid, thiadiazole kinds, 2-(5-bromo-2-pyridylazo)-5-(N-propyl-3-sulfopropylamino) phenol, 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino) aniline, 4-(2-pyridylazo) resorcin, salicylaldoxime, α-benzoin oxime, dimethyl glyoxime, aluminon, 8-hydroxyquinoline and their derivatives, and a nonaqueous electrolyte solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用電解液、及び該リチウムイオン二次電池用電解液を含むリチウムイオン二次電池に関する。   The present invention relates to an electrolyte for a lithium ion secondary battery and a lithium ion secondary battery including the electrolyte for a lithium ion secondary battery.

近年の電子技術の発展に伴い、移動体通信機器やポータブルコンピュータが広く普及してきている。そして、これら携帯機器の電源として、高エネルギー密度の二次電池が有望視されている。特に、非水電解質二次電池であるリチウムイオン二次電池は、高電圧が期待できることから、機器の小型化、軽量化に寄与し得る。また、リチウムイオン二次電池は、近年環境問題対策で注目を集めているハイブリット自動車用電池としても有望であり、開発が加速されている。   With the recent development of electronic technology, mobile communication devices and portable computers have become widespread. As a power source for these portable devices, a high energy density secondary battery is considered promising. In particular, a lithium ion secondary battery, which is a nonaqueous electrolyte secondary battery, can be expected to have a high voltage, and thus can contribute to downsizing and weight reduction of equipment. In addition, lithium ion secondary batteries are also promising as hybrid automobile batteries that have been attracting attention in recent years as countermeasures for environmental problems, and their development has been accelerated.

リチウムイオン二次電池は、リチウムを吸蔵、放出可能な活物質を含む正極と負極とがセパレーターを介して配された構成を有する。前記正極は、正極活物質としてのLiCoO2、LiNiO2、LiMn24等に、導電剤としてのカーボンブラックや黒鉛、バインダーとしてのポリフッ化ビニリデンやラテックス、ゴム等を混合した正極合剤が、アルミニウム等からなる正極集電体上に被覆されて形成される。一方、前記負極は、負極活物質としてのコークスや黒鉛等に、バインダーとしてのポリフッ化ビニリデンやラテックス、ゴム等を混合した負極合剤が、銅等からなる負極集電体上に被覆されて形成される。前記セパレーターは、多孔性ポリエチレンや多孔性ポリプロピレン等にて形成され、その厚みは数μmから数百μmと非常に薄い。そして、前記正極、負極、セパレーターは電解液に含浸される。電解液としては、LiPF6のようなリチウム塩を、プロピレンカーボネート、エチレンカーボネートのような非プロトン性溶媒やポリエチレンオキシドのようなポリマーに溶解させた電解液が用いられている。 A lithium ion secondary battery has a configuration in which a positive electrode and a negative electrode including an active material capable of inserting and extracting lithium are arranged via a separator. The positive electrode is a positive electrode mixture in which LiCoO 2 as a positive electrode active material, LiNiO 2 , LiMn 2 O 4 or the like, carbon black or graphite as a conductive agent, polyvinylidene fluoride as a binder, latex, rubber or the like is mixed. It is formed by coating on a positive electrode current collector made of aluminum or the like. On the other hand, the negative electrode is formed by coating a negative electrode current collector made of copper or the like with a negative electrode mixture obtained by mixing polyvinylidene fluoride, latex, rubber, or the like as a binder with coke or graphite as a negative electrode active material. Is done. The separator is made of porous polyethylene, porous polypropylene, or the like, and has a very thin thickness of several μm to several hundred μm. And the said positive electrode, a negative electrode, and a separator are impregnated with electrolyte solution. As the electrolytic solution, an electrolytic solution in which a lithium salt such as LiPF 6 is dissolved in an aprotic solvent such as propylene carbonate or ethylene carbonate or a polymer such as polyethylene oxide is used.

このようなリチウムイオン電池においては、特許文献1に記載されているようにマイクロショートと呼ばれる短絡が発生する場合がある。このマイクロショートの原因としては、製造工程中における微小量の金属不純物、特に銅の混入に起因する場合と、正極や、集電体の劣化が除々に進行することにより、銅、コバルト、ニッケル、マンガン等の金属イオンが電池内に溶出し、さらに充放電を繰り返すことによって電極上に上記金属が析出することに起因する場合がある。   In such a lithium ion battery, a short circuit called a micro short circuit may occur as described in Patent Document 1. As a cause of this micro short circuit, when a minute amount of metal impurities in the manufacturing process, particularly due to copper contamination, and the deterioration of the positive electrode and the current collector gradually progress, copper, cobalt, nickel, In some cases, metal ions such as manganese are eluted in the battery, and the metal is deposited on the electrode by repeated charge and discharge.

上記問題を解決するために、例えば、特許文献2には、正極から溶出するマンガン成分を捕捉する手段として、正極中に燐酸リチウム、タングステン酸リチウム、珪酸リチウム、アルミナイト、ホウ酸リチウム、モリブテン酸リチウム、陽イオン交換樹脂の群から選ばれる捕捉剤を添加する方法が開示されている。
また、特許文献3には、不織布からなるセパレーターの表面に水酸基、カルボン酸基、スルホン酸基、又はこれらの塩からなる官能基を表面に付与する方法が開示されている。
さらに、特許文献4には、マンガン系正極から溶出するマンガンを捕捉することを目的として、セパレーター表面を、カルボン酸やスルホン酸等の陽イオン交換樹脂で修飾させる方法が開示されている。しかしながら、電解液中には大量のリチウムイオンが存在し、しかもリチウムは非常に低い電気陰性度を有しているので、たとえ、上述のような陽イオン交換基があっても、微量に溶出した銅等の重金属を効率よく捕捉する事は困難である。
In order to solve the above problem, for example, Patent Document 2 discloses that as a means for capturing a manganese component eluted from the positive electrode, lithium phosphate, lithium tungstate, lithium silicate, aluminite, lithium borate, molybdate acid in the positive electrode A method of adding a scavenger selected from the group of lithium and cation exchange resins is disclosed.
Patent Document 3 discloses a method in which a functional group comprising a hydroxyl group, a carboxylic acid group, a sulfonic acid group, or a salt thereof is imparted to the surface of a separator made of a nonwoven fabric.
Furthermore, Patent Document 4 discloses a method of modifying the separator surface with a cation exchange resin such as carboxylic acid or sulfonic acid for the purpose of capturing manganese eluted from the manganese-based positive electrode. However, a large amount of lithium ions are present in the electrolyte, and lithium has a very low electronegativity, so even if there is a cation exchange group as described above, it is eluted in a trace amount. It is difficult to efficiently capture heavy metals such as copper.

一方、重金属を選択的に捕捉する方法として、重金属イオンを配位的に束縛するキレート官能基を用いる方法が検討されている。例えば、特許文献5には、正極、負極、セパレーターの少なくとも1つにキレート高分子を含有させる方法が開示されている。
また、特許文献6には、マンガン系正極を用いた二次電池において正極又は負極にキレート剤、キレート樹脂を添加する方法が記載されている。
さらに、特許文献7には、バインダー、セパレーター、電解質にキレート剤を添加する方法が開示されている。
On the other hand, as a method for selectively capturing heavy metals, a method using a chelate functional group that coordinately binds heavy metal ions has been studied. For example, Patent Document 5 discloses a method of containing a chelate polymer in at least one of a positive electrode, a negative electrode, and a separator.
Patent Document 6 describes a method of adding a chelating agent or a chelating resin to a positive electrode or a negative electrode in a secondary battery using a manganese-based positive electrode.
Furthermore, Patent Document 7 discloses a method of adding a chelating agent to a binder, a separator, and an electrolyte.

特開2005−209528号公報JP 2005-209528 A 特開2000−11996号公報JP 2000-11996 A 特開2000−268799号公報JP 2000-268799 A 特開2002−25527号公報JP 2002-25527 A 特開H11−121012号公報Japanese Patent Laid-Open No. H11-121021 特開2000−195553号公報JP 2000-195553 A 特開2004−63123号公報JP 2004-63123 A

しかしながら、キレート剤のような低分子化合物を添加しても、電池内で容易に拡散が起こってしまい、活性な電極上ではせっかくキレート化させた重金属イオンが還元され、結果としてマイクロショートが起こってしまう。また、バインダーは、一般的にポリフッ化ビニリデン(PVDF)、スチレンブタジエンコポリマー等の高分子から構成され、一方、セパレーターは、ポリエチレン、ポリプロピレン等のポリオレフィンから構成される。この様なバインダーやセパレーターを構成する高分子は、キレート基のような極性基を持つ高分子との密着性が非常に悪く、また、相溶性も非常に悪いため、均一に混合させる事はできず、界面からの剥離や、バインダーやセパレーターの強度低下を伴う。   However, even if a low molecular weight compound such as a chelating agent is added, diffusion easily occurs in the battery, and the chelated heavy metal ion is reduced on the active electrode, resulting in a micro short circuit. End up. The binder is generally composed of a polymer such as polyvinylidene fluoride (PVDF) or a styrene butadiene copolymer, while the separator is composed of a polyolefin such as polyethylene or polypropylene. The polymers that make up such binders and separators have very poor adhesion to polymers with polar groups such as chelate groups and are also very poor in compatibility, so they can be mixed uniformly. It is accompanied by peeling from the interface and a decrease in strength of the binder and separator.

また、水中の金属イオンを沈殿させる試薬として金属用重量分析試薬が一般的に知られているが、本発明者らの検討の結果、有機溶媒系の非水電解液中では、Cu等の金属イオンを有効に沈殿させることが可能な化合物と、そうでない化合物が存在することが判明した。   In addition, as a reagent for precipitating metal ions in water, a metal gravimetric reagent is generally known. As a result of the study by the present inventors, in an organic solvent-based non-aqueous electrolyte, a metal such as Cu is used. It has been found that there are compounds capable of effectively precipitating ions and compounds that are not.

上記事情に鑑み、本発明が解決しようとする課題は、マイクロショートの発生リスクを顕著に低減したリチウムイオン二次電池用電解液を提供する事を目的とする。   In view of the above circumstances, an object of the present invention is to provide an electrolytic solution for a lithium ion secondary battery that significantly reduces the risk of occurrence of micro shorts.

本発明者らは上記課題を解決すべく鋭意検討した結果、特定の化合物と、非水電解液とを含むリチウムイオン二次電池用電解液が、マイクロショートの発生リスクを顕著に低減できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that a lithium ion secondary battery electrolyte containing a specific compound and a non-aqueous electrolyte can significantly reduce the risk of micro short-circuit occurrence. The present invention has been completed.

すなわち、本発明は以下のとおりである。
[1]
バソクプロイン、スルホン化バスクプロイン、4,7−ジフェニル−1,10−フェナントロリンジスルホン酸、チアジアゾール類、2−(5−ブロモ−2−ピリジルアゾ)−5−(N−プロピルー3−スルホプロピルアミノ)フェノール、2−(5−ブロモ−2−ピリジルアゾ)−5−(N−プロピル−N−スルホプロピルアミノ)アニリン、4−(2−ピリジルアゾ)レゾルシン、サリチルアルドキシム、α−ベンゾインオキシム、ジメチルグリオキシム、アルミノン、8−ヒドロキシキノリン、及びこれらの誘導体よりなる群から選択された1種又は2種以上の化合物と、非水電解液と、を含むリチウムイオン二次電池用電解液。
[2]
前記化合物の含有量は、0.0001質量%〜10質量%である、上記[1]記載のリチウムイオン二次電池用電解液。
[3]
前記チアジアゾール類は、2,5−ジメルカプト−1,3,4−チアジアゾール、5−メルカプト−3−フェニル−1,3,4−チアジアゾール−2−チオン、及びこれらのアルカリ金属塩よりなる群から選ばれる1種又は2種以上である、上記[1]又は[2]記載のリチウムイオン二次電池用電解液。
[4]
正極と、負極と、前記正極と前記負極の間に介在したセパレーターとを備えるリチウムイオン二次電池であって、前記リチウムイオン二次電池は、上記[1]〜[3]のいずれか記載のリチウムイオン二次電池用電解液を含む、リチウムイオン二次電池。
That is, the present invention is as follows.
[1]
Bathocuproin, sulfonated bascuproin, 4,7-diphenyl-1,10-phenanthroline disulfonic acid, thiadiazoles, 2- (5-bromo-2-pyridylazo) -5- (N-propyl-3-sulfopropylamino) phenol 2- (5-bromo-2-pyridylazo) -5- (N-propyl-N-sulfopropylamino) aniline, 4- (2-pyridylazo) resorcin, salicylaldoxime, α-benzoin oxime, dimethylglyoxime, An electrolytic solution for a lithium ion secondary battery, comprising one or two or more compounds selected from the group consisting of aluminone, 8-hydroxyquinoline, and derivatives thereof, and a nonaqueous electrolytic solution.
[2]
Content of the said compound is 0.0001 mass%-10 mass% electrolyte solution for lithium ion secondary batteries of said [1] description.
[3]
The thiadiazole is selected from the group consisting of 2,5-dimercapto-1,3,4-thiadiazole, 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione, and alkali metal salts thereof. The electrolyte solution for lithium ion secondary batteries according to the above [1] or [2], which is one kind or two or more kinds.
[4]
It is a lithium ion secondary battery provided with a positive electrode, a negative electrode, and the separator interposed between the said positive electrode and the said negative electrode, Comprising: The said lithium ion secondary battery is any one of said [1]-[3]. A lithium ion secondary battery comprising an electrolyte for a lithium ion secondary battery.

本発明によれば、マイクロショートの発生リスクを顕著に低減したリチウムイオン二次電池用電解液を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrolyte solution for lithium ion secondary batteries which reduced notably the generation | occurrence | production risk of a micro short circuit can be provided.

以下、本発明を実施するための最良の形態(以下、本実施の形態)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

[リチウムイオン二次電池用電解液]
本実施の形態のリチウムイオン二次電池用電解液は、バソクプロイン、スルホン化バスクプロイン、4,7−ジフェニル−1,10−フェナントロリンジスルホン酸、チアジアゾール類、2−(5−ブロモ−2−ピリジルアゾ)−5−(N−プロピル−3−スルホプロピルアミノ)フェノール、2−(5−ブロモ−2−ピリジルアゾ)−5−(N−プロピル−N−スルホプロピルアミノ)アニリン、4−(2−ピリジルアゾ)レゾルシン、サリチルアルドキシム、α−ベンゾインオキシム、ジメチルグリオキシム、アルミノン、8−ヒドロキシキノリン、及びこれらの誘導体よりなる群から選択された1種又は2種以上の化合物と、非水電解液と、を含む。
[Electrolyte for lithium ion secondary battery]
The electrolyte for the lithium ion secondary battery of this embodiment includes bathocuproin, sulfonated bascuproin, 4,7-diphenyl-1,10-phenanthroline disulfonic acid, thiadiazoles, 2- (5-bromo-2-pyridylazo ) -5- (N-propyl-3-sulfopropylamino) phenol, 2- (5-bromo-2-pyridylazo) -5- (N-propyl-N-sulfopropylamino) aniline, 4- (2-pyridylazo) ) One or more compounds selected from the group consisting of resorcin, salicylaldoxime, α-benzoin oxime, dimethylglyoxime, aluminone, 8-hydroxyquinoline, and derivatives thereof; a non-aqueous electrolyte; including.

本実施の形態の電解液に含まれる上記特定の化合物は、金属用重量分析試薬と言われるものの1種である。金属用重量分析試薬とは、重金属である鉄、鉛、金、白金、銅、クロム、カドミウム、亜鉛、砒素、マンガン、コバルト、モリブテン、タングステン、錫、ビスマス等と難溶性の沈殿物を形成させることのできる試薬であり、本実施の形態においては、上記特定の金属用重量分析試薬を電解液中に含有させる。   The said specific compound contained in the electrolyte solution of this Embodiment is 1 type of what is called the gravimetric analysis reagent for metals. The gravimetric reagent for metals forms a sparingly soluble precipitate with heavy metals such as iron, lead, gold, platinum, copper, chromium, cadmium, zinc, arsenic, manganese, cobalt, molybdenum, tungsten, tin, and bismuth. In this embodiment, the specific metal gravimetric analysis reagent is contained in the electrolytic solution.

上記特定の化合物は、重金属イオンとの錯体の溶解度積が非常に小さいので、有機溶媒系の非水電解液中においても、電極等から溶出する金属イオン(例えば、Niイオン、Cuイオン、Coイオン等)と、効率的に反応して沈殿物を生じさせることにより、溶出金属イオンが結晶成長して電極間にまたがることに起因するマイクロショートの発生を有効に防止することを可能とする。   The specific compound has a very low solubility product of a complex with a heavy metal ion. Therefore, even in an organic solvent-based non-aqueous electrolyte, metal ions (eg, Ni ion, Cu ion, Co ion) eluted from an electrode or the like. And the like) efficiently to generate precipitates, it is possible to effectively prevent the occurrence of micro-shorts caused by crystal growth of the eluted metal ions and straddling between the electrodes.

上記化合物の中でも、重金属イオンと橋かけ構造を採るような錯体を形成するため、特に窒素と硫黄からなる複素環を形成するチアジアゾール類が好ましく、2,5−ジメルカプト−1,3,4−チアジアゾール、5−メルカプト−3−フェニル−1,3,4−チアジアゾール−2−チオン、及びこれらのアルカリ金属塩がより好ましい。アルカリ金属塩の形で供給される場合は、例えば、リチウム塩、カリウム塩、ナトリウム塩等の形で供給される。ここで、2,5−ジメルカプト−1,3,4−チアジアゾールは、「ビスムチオールI」として、5−メルカプト−3−フェニル−1,3,4−チアジアゾール−2−チオンのカリウム塩は、「ビスムチオールII」として知られている。   Among these compounds, thiadiazoles that form a heterocyclic ring composed of nitrogen and sulfur are preferred in order to form a complex that takes a bridge structure with heavy metal ions, and 2,5-dimercapto-1,3,4-thiadiazole is preferred. 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione, and alkali metal salts thereof are more preferable. When supplied in the form of an alkali metal salt, for example, it is supplied in the form of a lithium salt, potassium salt, sodium salt or the like. Here, 2,5-dimercapto-1,3,4-thiadiazole is “bismuthiol I”, and potassium salt of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione is “bismuthiol”. II ".

上記化合物の含有量としては、リチウムイオン二次電池用電解液に対して、好ましくは0.0001質量%〜10質量%、より好ましくは0.0001質量%〜5質量%、さらに好ましくは0.001質量%〜5質量%である。化合物の含有量が0.0001質量%以上であると、マイクロショート防止効果が顕著となる傾向にあり、10質量%以下であると、長期間リチウムイオン二次電池を使用した場合であっても構成部材の劣化を引き起こすおそれが少なくなる。   As content of the said compound, Preferably it is 0.0001 mass%-10 mass% with respect to the electrolyte solution for lithium ion secondary batteries, More preferably, it is 0.0001 mass%-5 mass%, More preferably, it is 0.00. 001 mass% to 5 mass%. When the content of the compound is 0.0001% by mass or more, the effect of preventing a micro short circuit tends to be remarkable, and when the content is 10% by mass or less, even when a lithium ion secondary battery is used for a long time. The possibility of causing deterioration of the constituent members is reduced.

本実施の形態のリチウムイオン二次電池用電解液に含まれる非水電解液としては、例えば、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート;ガンマブチルラクトン等のラクトン類;ジメチルエーテル等のエーテル類;テトラヒドロフラン、ジオキサン等の環状エーテル類;アセトニトリル等が挙げられ、中でも、高いイオン伝導性を確保する観点から、特に、環状カーボネートと鎖状カーボネートの混合物が好ましく、エチレンカーボネートとメチルエチルカーボネートの混合物がより好ましい。   Examples of the non-aqueous electrolyte contained in the lithium ion secondary battery electrolyte of the present embodiment include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as methyl ethyl carbonate, dimethyl carbonate, and diethyl carbonate; Examples include lactones such as gamma butyl lactone; ethers such as dimethyl ether; cyclic ethers such as tetrahydrofuran and dioxane; acetonitrile and the like. Among these, from the viewpoint of ensuring high ion conductivity, in particular, cyclic carbonate and chain carbonate A mixture is preferred, and a mixture of ethylene carbonate and methyl ethyl carbonate is more preferred.

エチレンカーボネートとメチルエチルカーボネートの混合物を用いる場合、両者の混合比としては、(エチレンカーボネート)/(メチルエチルカーボネート)(質量比)として、好ましくは1/9〜9/1、より好ましくは3/7〜7/3である。   When a mixture of ethylene carbonate and methyl ethyl carbonate is used, the mixing ratio between the two is preferably (ethylene carbonate) / (methyl ethyl carbonate) (mass ratio), preferably 1/9 to 9/1, more preferably 3 / 7-7 / 3.

非水電解液としては、電池内での非水電解液の分解を低減することを目的として、フッ素や珪素等で変性されているものを用いてもよい。   As the non-aqueous electrolyte, one modified with fluorine, silicon or the like may be used for the purpose of reducing the decomposition of the non-aqueous electrolyte in the battery.

本実施の形態のリチウムイオン二次電池用電解液は、上述した特定の化合物、及び非水系電解液に加え、さらに、種々のリチウム塩を含むことができる。このようなリチウム塩としては、例えば、LiPF6、LiBF4、LiClO4、LiAsF6等の無機リチウム塩;LiN(SO2CF22、LiN(SO2CF2CF32、LiN(SO2CF2CHF22等のリチウムイミド塩等が好適に用いられる。リチウム塩の電解液中の濃度としては、好ましくは0.1〜2mol/Lである。 In addition to the specific compound and non-aqueous electrolyte described above, the electrolyte for a lithium ion secondary battery of the present embodiment can further include various lithium salts. Examples of such lithium salts include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , and LiAsF 6 ; LiN (SO 2 CF 2 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (SO 2 CF 2 CHF 2) 2 and lithium imide salts such are preferably used. The concentration of the lithium salt in the electrolytic solution is preferably 0.1 to 2 mol / L.

[リチウムイオン二次電池]
本実施の形態のリチウムイオン二次電池は、正極と、負極と、前記正極と前記負極の間に介在したセパレーターとを備える構造を有しており、二次電池中に、上記のリチウムイオン二次電池用電解液を含む。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present embodiment has a structure including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and the lithium ion secondary battery is included in the secondary battery. Including secondary battery electrolyte.

前記正極としては金属酸化物系活物質を用いることができる。金属酸化物系活物質としては、例えば、LiCoO2、LiMn24、LiNiO2、LiNi1/3Mn1/3Co1/32、LiNixCo1-x2、LiFePO4等が挙げられる。金属酸化物系活物質は、単独で用いてもよく、複数の金属酸化物系活物質を混合して用いてもよい。 A metal oxide active material can be used as the positive electrode. As the metal oxide-based active material, for example, LiCoO 2, LiMn 2 O 4 , LiNiO 2, LiNi 1/3 Mn 1/3 Co 1/3 O 2, LiNi x Co 1-x O 2, LiFePO 4 or the like Can be mentioned. The metal oxide active material may be used alone, or a plurality of metal oxide active materials may be mixed and used.

金属酸化物系活物質の平均粒径としては、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmである。なお、本実施の形態において、「平均粒径」とは、レーザー回折式粒度分布法を用いた測定における50%累積径値を意味する。   The average particle diameter of the metal oxide active material is preferably 0.1 μm to 100 μm, more preferably 1 μm to 10 μm. In the present embodiment, the “average particle diameter” means a 50% cumulative diameter value in measurement using a laser diffraction particle size distribution method.

正極は、例えば、上記活物質に必要に応じて導電助剤やバインダー等を加えて混合した正極合剤を溶剤に分散させて正極合剤含有ペーストを調製する。次いで、この正極合剤含有ペーストをアルミニウム箔等からなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧し厚みを調整することによって作製される。   For example, a positive electrode mixture-containing paste is prepared by dispersing, in a solvent, a positive electrode mixture obtained by adding a conductive additive, a binder, or the like to the above active material as necessary. Next, this positive electrode mixture-containing paste is applied to a positive electrode current collector made of an aluminum foil or the like, dried to form a positive electrode mixture layer, and pressurized as necessary to adjust the thickness.

ここで、正極合剤含有ペースト中の固形分濃度は、好ましくは30〜80質量%であり、より好ましくは40〜70質量%である。   Here, the solid content concentration in the positive electrode mixture-containing paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.

一方、前記負極としては、その活物質として、炭素質材料が好適に用いられる。より具体的には、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド等が好適に用いられる。炭素質材料は、単独で用いてもよく、複数の炭素質材料を混合して用いてもよい。   On the other hand, as the negative electrode, a carbonaceous material is suitably used as the active material. More specifically, for example, graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, graphite, carbon colloid, etc. are preferably used. It is done. The carbonaceous material may be used alone, or a plurality of carbonaceous materials may be mixed and used.

このような炭素質材料の平均粒径としては、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmである。   The average particle size of such a carbonaceous material is preferably 0.1 μm to 100 μm, more preferably 1 μm to 10 μm.

負極は、例えば、前記炭素質材料からなる負極活物質に必要に応じて導電助剤やバインダーなどを加えて混合した負極合剤を溶剤に分散させて負極合剤含有ペーストを調製する。次いで、その負極合剤含有ペーストを負極集電体に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧し厚みを調整することによって作製される。   The negative electrode is prepared by, for example, preparing a negative electrode mixture-containing paste by dispersing, in a solvent, a negative electrode mixture prepared by adding a conductive additive or a binder as necessary to the negative electrode active material made of the carbonaceous material. Next, the negative electrode mixture-containing paste is applied to a negative electrode current collector, dried to form a negative electrode mixture layer, and pressurized as necessary to adjust the thickness.

ここで、負極合剤含有ペースト中の固形分濃度は、好ましくは30〜80質量%であり、より好ましくは40〜70質量%である。   Here, the solid content concentration in the negative electrode mixture-containing paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.

正極や、負極の作製にあたって必要に応じて使用する導電助剤としては、例えば、グラファイト、アセチレンブラック、カーボンブラック、ケッチェンブラック、炭素繊維等が挙げられる。また、バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム、フッ素ゴム等が挙げられる。   Examples of the conductive aid used as necessary in the production of the positive electrode and the negative electrode include graphite, acetylene black, carbon black, ketjen black, and carbon fiber. Examples of the binder include PVDF, PTFE, polyacrylic acid, styrene butadiene rubber, and fluorine rubber.

このような導電助剤の平均粒径としては、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmである。   The average particle size of such a conductive assistant is preferably 0.1 μm to 100 μm, more preferably 1 μm to 10 μm.

セパレーターとしては、例えば、織布、不織布、合成樹脂微多孔質等を用いることができ、中でも、合成樹脂多孔質膜を好適に用いることができる。合成樹脂多孔質膜としては、ポリエチレン及びポリプロピレン製微多孔質膜、又はこれらを複合した微多孔質膜等のポリオレフィン系微多孔質膜が好適に用いられる。   As the separator, for example, a woven fabric, a nonwoven fabric, a synthetic resin microporous material, or the like can be used, and among them, a synthetic resin porous membrane can be preferably used. As the synthetic resin porous membrane, a polyolefin-based microporous membrane such as a microporous membrane made of polyethylene and polypropylene, or a microporous membrane obtained by combining these is preferably used.

前記正極と負極とは、その間にセパレーターを介在させて巻回して巻回構造の積層体にしたり、折り曲げや複数層の積層などによって積層体にしたりして、電池として成型することができる。本実施の形態の電解液を内部に注液し、封印することによって、本実施の形態のリチウムイオン二次電池を作製することができる。本実施の形態のリチウムイオン二次電池の電池形態は、特定のものに限ることなく、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、ラミネート形などが好適に用いられる。   The positive electrode and the negative electrode can be formed as a battery by being wound with a separator interposed therebetween to obtain a laminated structure of a wound structure, or by forming a laminated body by bending or laminating a plurality of layers. The lithium ion secondary battery of this embodiment can be manufactured by pouring the electrolyte of this embodiment into the interior and sealing it. The battery form of the lithium ion secondary battery of the present embodiment is not limited to a specific one, and a cylindrical shape, an elliptical shape, a rectangular tube shape, a button shape, a coin shape, a flat shape, a laminate shape, and the like are preferably used. .

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。
(1)上澄み中の銅イオン濃度(ppm)
上澄み中の銅イオン濃度の測定はパーキンエルマー社製ICP発光分析装置(Optima 5300DV)を用いて行った。
(i)溶液の調製
1mol/LのLiBF4を含む非水電解液(エチレンカーボネート/メチルエチルカーボネート=1/2)に、ビスムチオールII(同仁化学社製:商品名Bismuthiol−II)を、下表1に示す所定量溶解し、リチウムイオン二次電池用電解液を調製した。
この電解液にCu(BF42を、下表1に示す所定量加え、室温で一晩静置した。次いで、この溶液を12,000rpmで20分間遠心分離し、サンプル上澄み中の銅イオン濃度をICP−発光分析により測定するために、以下の前処理を行った。
(ii)ICP−発光分析用試料の調製
サンプル上清1mLを白金るつぼに加え、260℃ホットプレート上で1時間乾固後、電気炉で450℃で3時間灰化処理を行った。白金るつぼに濃塩酸(30%)1mLを加えて溶解し、水で50mLにメスアップしてICP−発光分析用試料とした。
(iii)測定条件、計算方法
標準試料としては、市販のCu標準液(関東化学Cu1000)を希塩酸(0.6%HCl)で希釈し、所定濃度としたものを用いた。検量線は0.01〜0.1ppm、0.1〜1ppmを用意して測定に用いた。
Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.
(1) Copper ion concentration (ppm) in the supernatant
The measurement of the copper ion concentration in the supernatant was performed using an ICP emission analyzer (Optima 5300 DV) manufactured by PerkinElmer.
(I) Preparation of solution Bismuthiol II (manufactured by Dojin Chemical Co., Ltd .: trade name Bismuthiol-II) was added to a nonaqueous electrolytic solution (ethylene carbonate / methyl ethyl carbonate = 1/2) containing 1 mol / L LiBF 4 in the table below. A predetermined amount shown in 1 was dissolved to prepare an electrolyte for a lithium ion secondary battery.
A predetermined amount of Cu (BF 4 ) 2 shown in Table 1 below was added to this electrolytic solution and allowed to stand overnight at room temperature. Subsequently, this solution was centrifuged at 12,000 rpm for 20 minutes, and the following pretreatment was performed in order to measure the copper ion concentration in the sample supernatant by ICP-luminescence analysis.
(Ii) Preparation of ICP-luminescence analysis sample 1 mL of the sample supernatant was added to a platinum crucible and dried on a 260 ° C. hot plate for 1 hour, followed by ashing at 450 ° C. for 3 hours in an electric furnace. 1 mL of concentrated hydrochloric acid (30%) was added to a platinum crucible and dissolved, and the volume was made up to 50 mL with water to obtain a sample for ICP-luminescence analysis.
(Iii) Measurement conditions and calculation method As a standard sample, a commercially available Cu standard solution (Kanto Chemical Cu1000) was diluted with dilute hydrochloric acid (0.6% HCl) to obtain a predetermined concentration. Calibration curves of 0.01 to 0.1 ppm and 0.1 to 1 ppm were prepared and used for measurement.

(2)ストリッピングボルタンメトリーの測定
溶液のストリッピングボルタンメトリーの測定は、TraceDetect社のナノバンドエクスプローラーを用いて行った。
(i)溶液の調製
1mol/LのLiBF4を含む非水電解液(エチレンカーボネート/メチルエチルカーボネート=1/2)に、ビスムチオールII(同仁化学社製:商品名Bismuthiol−II)を、下表1に示す所定量溶解し、リチウムイオン二次電池用電解液を調製した。この電解液に所定量のCu(BF42を、下表1に示す所定量加えて直ちに測定した。
(ii)装置の調整
3%の硝酸を含む所定濃度の銅イオン溶液中で0−5回のプレ測定を行い、電極を安定化させた後に、電解液に直接電極を入れて、電位を挿引していき、溶液中に含まれる銅イオンの析出及びその後に続く溶解のシグナルを評価した。参照電極としては、銀/塩化銀電極を使用した。
ストリッピングボルタンメトリーでは、電解液に含まれる銅イオンをいったん電極表面で還元し、電極電位を酸化側に挿引することにより電極表面に析出している銅を銅イオンに変化させるときの電流を測定した。今回の系では、銅が銅イオンとして析出するときの電位は、約800mV(対 銀/塩化銀電極)であった。
(2) Measurement of stripping voltammetry The stripping voltammetry of the solution was measured using NanoDetector of TraceDetect.
(I) Preparation of solution Bismuthiol II (manufactured by Dojin Chemical Co., Ltd .: trade name Bismuthiol-II) was added to a nonaqueous electrolytic solution (ethylene carbonate / methyl ethyl carbonate = 1/2) containing 1 mol / L LiBF 4 in the table below. A predetermined amount shown in 1 was dissolved to prepare an electrolyte for a lithium ion secondary battery. A predetermined amount of Cu (BF 4 ) 2 was added to the electrolytic solution and the measurement was immediately performed as shown in Table 1 below.
(Ii) Adjustment of the device Pre-measurement is performed 0-5 times in a copper ion solution of a predetermined concentration containing 3% nitric acid, and after stabilizing the electrode, the electrode is directly inserted into the electrolyte and the potential is inserted. Then, precipitation of copper ions contained in the solution and subsequent dissolution signals were evaluated. A silver / silver chloride electrode was used as a reference electrode.
In stripping voltammetry, the copper ion contained in the electrolyte is reduced once on the electrode surface, and the current when the copper deposited on the electrode surface is changed to copper ion by inserting the electrode potential to the oxidation side is measured. did. In this system, the potential when copper was deposited as copper ions was about 800 mV (vs. silver / silver chloride electrode).

[実施例1〜4]
表1に示す組成で銅イオンとビスムチオールIIを含む電解液を調製した。いずれもCu(BF42を加えるとすぐに沈殿物を形成した。遠心分離を行った後の上澄み液をICP発光分析したところ銅イオンは検出されなかった。
[Examples 1 to 4]
An electrolytic solution containing copper ions and Bismuthiol II having the composition shown in Table 1 was prepared. In either case, a precipitate was formed as soon as Cu (BF 4 ) 2 was added. When the supernatant liquid after centrifugation was analyzed by ICP emission, no copper ions were detected.

[比較例1]
銅イオンのみを含みビスムチオールIIを含まない電解液を調製した。電解液は均一であり沈殿物は形成していなかった。これを実施例1と同様に遠心分離を行い、上澄み液を用いてICP発光分析したところ仕込んだ銅イオン濃度と同じ20ppmの銅イオンが検出された。
[Comparative Example 1]
An electrolyte solution containing only copper ions and not bismuthiol II was prepared. The electrolyte was uniform and no precipitate was formed. This was centrifuged in the same manner as in Example 1, and ICP emission analysis was performed using the supernatant. As a result, 20 ppm of copper ion, which was the same as the charged copper ion concentration, was detected.

[実施例5,6]
表1に示す組成で銅イオンとビスムチオールIIを含む電解液を調製した。銅イオンを添加した後にストリッピングボルタンメトリーを測定した。800mV付近にはピークが観測されず、電解液中に添加された銅イオンは電気化学的に不活性になっていることがわかった。
[Examples 5 and 6]
An electrolytic solution containing copper ions and Bismuthiol II having the composition shown in Table 1 was prepared. Stripping voltammetry was measured after adding copper ions. No peak was observed near 800 mV, and it was found that the copper ions added to the electrolyte were electrochemically inactive.

[比較例2]
銅イオンのみを含みビスムチオールIIを含まない電解液を調製し、実施例5,6と同様にストリッピングボルタンメトリーを測定した。約800mVに大きなピークが観測され、電解液中に添加された銅イオンは電気化学的に活性でありマイクロショートの原因になることがわかった。
[比較例3,4]
ビスチモールIIのかわりに、「N−ベンゾイルフェニルヒドロキシルアミン」(同仁化学社製:商品名BPA)、又は、「ジアンチピリルメタン」(同仁化学社製:商品名Diantipyrylmethane)を用いた以外は、実施例1と同様の方法によりリチウムイオン二次電池用電解液を調製した。いずれもCu(BF42を加えても沈殿物は形成しなかった。また実施例1と同条件で遠心分離を行った後の上澄み液をICP発光分析したところ、仕込んだ銅イオン濃度と同じ20ppmの銅イオンが検出された。
[Comparative Example 2]
An electrolytic solution containing only copper ions and not bismuthiol II was prepared, and stripping voltammetry was measured in the same manner as in Examples 5 and 6. A large peak was observed at about 800 mV, and it was found that the copper ions added to the electrolyte were electrochemically active and caused microshorts.
[Comparative Examples 3 and 4]
Except for using “N-benzoylphenylhydroxylamine” (manufactured by Dojin Chemical Co., Ltd .: trade name BPA) or “diantipyrylmethane” (manufactured by Dojin Chemical Co., Ltd .: trade name Diantipyrylmethane) instead of Bistimol II, An electrolytic solution for a lithium ion secondary battery was prepared in the same manner as in Example 1. In any case, no precipitate was formed even when Cu (BF 4 ) 2 was added. Moreover, when the supernatant liquid after centrifuging on the same conditions as Example 1 was analyzed by ICP emission, 20 ppm copper ion same as the prepared copper ion concentration was detected.

Figure 2009117081
Figure 2009117081

表1の結果から明らかなように、金属用重量分析試薬としてビスムチオールIIを用いた実施例1〜4の電解液は、Cu(BF42添加後、遠心分離を行った後の上澄み液から銅イオンは検出されず、ビスムチオールIIと銅イオンが効率的に反応して沈殿物を生じていた。
また、実施例5及び6の電解液は、銅イオン添加後のストリッピングボルタンメトリーの測定結果において800mV付近のピークは観測されず、電解液中に添加された銅イオンが電気化学的に不活性な状態となっていた。本実施の形態の電解液をリチウムイオン二次電池の電解液として用いた場合、溶出金属イオンが結晶成長して電極間にまたがることに起因するマイクロショートの発生を有効に防止し得ることが実証された。
一方、金属用重量分析試薬が含まれていない比較例1,2、及び、金属用重量分析試薬としてN−ベンゾイルフェニルヒドロキシルアミンやジアンチピリルメタンを用いた比較例3,4においては銅イオンが電気化学的に活性な状態となっていた。金属用重量分析試薬として分類される化合物の中でも、本実施例において銅イオンを不活性化し得るものとし得ないものとが存在することが確認された。
As is clear from the results in Table 1, the electrolytes of Examples 1 to 4 using Bismuthiol II as a metal gravimetric reagent were obtained from the supernatant after centrifuging after adding Cu (BF 4 ) 2. Copper ions were not detected, and Bismuthiol II and copper ions reacted efficiently to produce precipitates.
In addition, in the electrolyte solutions of Examples 5 and 6, no peak near 800 mV was observed in the stripping voltammetry measurement results after adding copper ions, and the copper ions added to the electrolyte solutions were electrochemically inactive. It was in a state. When the electrolytic solution of this embodiment is used as an electrolytic solution for a lithium ion secondary battery, it has been demonstrated that the occurrence of micro-shorts due to crystal growth of the eluted metal ions and straddling between the electrodes can be effectively prevented. It was done.
On the other hand, in Comparative Examples 1 and 2, which do not contain a metal gravimetric reagent, and in Comparative Examples 3, 4 using N-benzoylphenylhydroxylamine or diantipyrylmethane as a metal gravimetric reagent, copper ions Was in an electrochemically active state. Among the compounds classified as gravimetric reagents for metals, it was confirmed that there were those that could or might not inactivate copper ions in this example.

本発明のリチウムイオン二次電池用電解液は、マイクロショートの発生リスクを顕著に低減することが可能であり、携帯機器の電源等で用いられるリチウムイオン二次電池用の電解液としての産業上利用可能性を有する。   The electrolyte for a lithium ion secondary battery of the present invention can remarkably reduce the risk of occurrence of micro shorts, and is industrially used as an electrolyte for a lithium ion secondary battery used in a power source of a portable device. Has availability.

Claims (4)

バソクプロイン、スルホン化バスクプロイン、4,7−ジフェニル−1,10−フェナントロリンジスルホン酸、チアジアゾール類、2−(5−ブロモ−2−ピリジルアゾ)−5−(N−プロピルー3−スルホプロピルアミノ)フェノール、2−(5−ブロモ−2−ピリジルアゾ)−5−(N−プロピル−N−スルホプロピルアミノ)アニリン、4−(2−ピリジルアゾ)レゾルシン、サリチルアルドキシム、α−ベンゾインオキシム、ジメチルグリオキシム、アルミノン、8−ヒドロキシキノリン、及びこれらの誘導体よりなる群から選択された1種又は2種以上の化合物と、
非水電解液と、
を含むリチウムイオン二次電池用電解液。
Bathocuproin, sulfonated bascuproin, 4,7-diphenyl-1,10-phenanthroline disulfonic acid, thiadiazoles, 2- (5-bromo-2-pyridylazo) -5- (N-propyl-3-sulfopropylamino) phenol 2- (5-bromo-2-pyridylazo) -5- (N-propyl-N-sulfopropylamino) aniline, 4- (2-pyridylazo) resorcin, salicylaldoxime, α-benzoin oxime, dimethylglyoxime, One or more compounds selected from the group consisting of aluminone, 8-hydroxyquinoline, and derivatives thereof;
A non-aqueous electrolyte,
An electrolyte for a lithium ion secondary battery.
前記化合物の含有量は、0.0001質量%〜10質量%である、請求項1記載のリチウムイオン二次電池用電解液。   The electrolyte solution for a lithium ion secondary battery according to claim 1, wherein the content of the compound is 0.0001 mass% to 10 mass%. 前記チアジアゾール類は、2,5−ジメルカプト−1,3,4−チアジアゾール、5−メルカプト−3−フェニル−1,3,4−チアジアゾール−2−チオン、及びこれらのアルカリ金属塩よりなる群から選ばれる1種又は2種以上である、請求項1又は2記載のリチウムイオン二次電池用電解液。   The thiadiazole is selected from the group consisting of 2,5-dimercapto-1,3,4-thiadiazole, 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione, and alkali metal salts thereof. The electrolyte solution for lithium ion secondary batteries of Claim 1 or 2 which is 1 type, or 2 or more types. 正極と、負極と、前記正極と前記負極の間に介在したセパレーターとを備えるリチウムイオン二次電池であって、
前記リチウムイオン二次電池は、請求項1〜3のいずれか1項記載のリチウムイオン二次電池用電解液を含む、リチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode,
The said lithium ion secondary battery is a lithium ion secondary battery containing the electrolyte solution for lithium ion secondary batteries of any one of Claims 1-3.
JP2007286511A 2007-11-02 2007-11-02 Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery Pending JP2009117081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286511A JP2009117081A (en) 2007-11-02 2007-11-02 Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286511A JP2009117081A (en) 2007-11-02 2007-11-02 Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2009117081A true JP2009117081A (en) 2009-05-28

Family

ID=40784017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286511A Pending JP2009117081A (en) 2007-11-02 2007-11-02 Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2009117081A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340029A (en) * 2011-09-22 2012-02-01 合肥国轩高科动力能源有限公司 Functional additive applied to non-aqueou electrolyte of lithium ion battery
CN103400699A (en) * 2013-08-05 2013-11-20 哈尔滨工业大学 Quantum dot-modified ZnO nanorod array electrode and preparation method thereof
WO2014077055A1 (en) * 2012-11-14 2014-05-22 株式会社日立製作所 Lithium-ion cell
JP2014531720A (en) * 2012-08-28 2014-11-27 エルジー・ケム・リミテッド Lithium ion secondary battery with suppressed internal short circuit
US20140370375A1 (en) * 2011-12-22 2014-12-18 Jx Nippon Oil & Energy Corporation Organic electrolyte and organic electrolyte storage battery
WO2015121997A1 (en) * 2014-02-17 2015-08-20 株式会社日立製作所 Lithium ion battery
US9397373B2 (en) 2012-08-28 2016-07-19 Lg Chem, Ltd. Lithium ion secondary battery without internal short
CN107889541A (en) * 2015-08-28 2018-04-06 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
CN109301329A (en) * 2018-10-08 2019-02-01 厦门大学 Two oxime derivatives are preparing the application in lithium-ion battery electrolytes
CN110165299A (en) * 2019-05-06 2019-08-23 中南大学 A kind of lithium-sulfur cell, electrolyte and its application
CN111244547A (en) * 2020-01-21 2020-06-05 四川虹微技术有限公司 Electrolyte containing aromatic oxime additive and preparation method and application thereof
CN112701351A (en) * 2020-12-29 2021-04-23 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte, preparation method thereof and lithium ion battery
KR20210120196A (en) 2020-03-26 2021-10-07 주식회사 엘지에너지솔루션 Electrolyte additives for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same and secondary battery
JP2022531418A (en) * 2019-06-18 2022-07-06 エルジー エナジー ソリューション リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
EP4084154A1 (en) * 2021-04-29 2022-11-02 Advanced Lithium Electrochemistry Co., Ltd. Electrolyte-solution composition and secondary battery using same
TWI834150B (en) 2021-04-29 2024-03-01 台灣立凱電能科技股份有限公司 Electrolyte-solution composition and secondary battery using same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250108A (en) * 1987-04-07 1988-10-18 ニチコン株式会社 Electrolyte for driving electrolytic capacitor
JPH0765863A (en) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd Nonaqueous battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09265989A (en) * 1996-03-27 1997-10-07 Yazaki Corp Electrode material and secondary battery
JP2000195553A (en) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2001210366A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrochemical device and its electrolytic solution
JP2002280064A (en) * 2001-03-16 2002-09-27 Sony Corp Electrolyte and battery
JP2003086184A (en) * 2001-06-27 2003-03-20 Toshiba Corp Positive electrode active material for secondary battery, nonaqueous electrolyte secondary battery using it, and method of analyzing positive electrode active material for secondary battery
JP2004006410A (en) * 2003-07-31 2004-01-08 Ube Ind Ltd Nonaqueous secondary battery
JP2004063233A (en) * 2002-07-29 2004-02-26 Mitsubishi Chemicals Corp Secondary battery and overcharge preventing method
JP2005209528A (en) * 2004-01-23 2005-08-04 Toyota Motor Corp Secondary battery inspection method
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250108A (en) * 1987-04-07 1988-10-18 ニチコン株式会社 Electrolyte for driving electrolytic capacitor
JPH0765863A (en) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd Nonaqueous battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09265989A (en) * 1996-03-27 1997-10-07 Yazaki Corp Electrode material and secondary battery
JP2000195553A (en) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2001210366A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrochemical device and its electrolytic solution
JP2002280064A (en) * 2001-03-16 2002-09-27 Sony Corp Electrolyte and battery
JP2003086184A (en) * 2001-06-27 2003-03-20 Toshiba Corp Positive electrode active material for secondary battery, nonaqueous electrolyte secondary battery using it, and method of analyzing positive electrode active material for secondary battery
JP2004063233A (en) * 2002-07-29 2004-02-26 Mitsubishi Chemicals Corp Secondary battery and overcharge preventing method
JP2004006410A (en) * 2003-07-31 2004-01-08 Ube Ind Ltd Nonaqueous secondary battery
JP2005209528A (en) * 2004-01-23 2005-08-04 Toyota Motor Corp Secondary battery inspection method
JP2006302756A (en) * 2005-04-22 2006-11-02 Sony Corp Battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078529A1 (en) * 2011-09-22 2013-03-28 Hefei Guoxuan High-Tech Power Energy Co., Ltd. Electrolyte additive for improving high temperature performance of lithium ion batteries and lithium ion batteries comprising the same
CN102340029A (en) * 2011-09-22 2012-02-01 合肥国轩高科动力能源有限公司 Functional additive applied to non-aqueou electrolyte of lithium ion battery
US20140370375A1 (en) * 2011-12-22 2014-12-18 Jx Nippon Oil & Energy Corporation Organic electrolyte and organic electrolyte storage battery
US9397373B2 (en) 2012-08-28 2016-07-19 Lg Chem, Ltd. Lithium ion secondary battery without internal short
JP2014531720A (en) * 2012-08-28 2014-11-27 エルジー・ケム・リミテッド Lithium ion secondary battery with suppressed internal short circuit
JP2014099303A (en) * 2012-11-14 2014-05-29 Hitachi Ltd Lithium ion battery
WO2014077055A1 (en) * 2012-11-14 2014-05-22 株式会社日立製作所 Lithium-ion cell
CN103400699B (en) * 2013-08-05 2016-03-09 哈尔滨工业大学 A kind of quantum dot modifies ZnO nanorod array electrode and preparation method thereof
CN103400699A (en) * 2013-08-05 2013-11-20 哈尔滨工业大学 Quantum dot-modified ZnO nanorod array electrode and preparation method thereof
WO2015121997A1 (en) * 2014-02-17 2015-08-20 株式会社日立製作所 Lithium ion battery
JPWO2015121997A1 (en) * 2014-02-17 2017-03-30 株式会社日立製作所 Lithium ion battery
EP3343687A4 (en) * 2015-08-28 2019-09-04 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution for batteries and lithium secondary battery
CN107889541A (en) * 2015-08-28 2018-04-06 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
CN109301329A (en) * 2018-10-08 2019-02-01 厦门大学 Two oxime derivatives are preparing the application in lithium-ion battery electrolytes
CN110165299A (en) * 2019-05-06 2019-08-23 中南大学 A kind of lithium-sulfur cell, electrolyte and its application
CN110165299B (en) * 2019-05-06 2022-02-01 中南大学 Lithium-sulfur battery, electrolyte and application thereof
JP2022531418A (en) * 2019-06-18 2022-07-06 エルジー エナジー ソリューション リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
JP7301447B2 (en) 2019-06-18 2023-07-03 エルジー エナジー ソリューション リミテッド Electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN111244547A (en) * 2020-01-21 2020-06-05 四川虹微技术有限公司 Electrolyte containing aromatic oxime additive and preparation method and application thereof
KR20210120196A (en) 2020-03-26 2021-10-07 주식회사 엘지에너지솔루션 Electrolyte additives for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same and secondary battery
CN114600281A (en) * 2020-03-26 2022-06-07 株式会社Lg新能源 Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
CN112701351A (en) * 2020-12-29 2021-04-23 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte, preparation method thereof and lithium ion battery
EP4084154A1 (en) * 2021-04-29 2022-11-02 Advanced Lithium Electrochemistry Co., Ltd. Electrolyte-solution composition and secondary battery using same
JP2022171591A (en) * 2021-04-29 2022-11-11 台湾立凱電能科技股▲ふん▼有限公司 Electrolyte composition and secondary battery to which electrolyte composition is applied
AU2022202603B2 (en) * 2021-04-29 2023-05-25 Advanced Lithium Electrochemistry Co., Ltd. Electrolyte-solution composition and secondary battery using same
JP7407859B2 (en) 2021-04-29 2024-01-04 台湾立凱電能科技股▲ふん▼有限公司 Electrolyte composition and secondary battery using the same
TWI834150B (en) 2021-04-29 2024-03-01 台灣立凱電能科技股份有限公司 Electrolyte-solution composition and secondary battery using same

Similar Documents

Publication Publication Date Title
JP2009117081A (en) Electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery
KR101878113B1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
JP5882516B2 (en) Lithium secondary battery
EP1995817B1 (en) Lithium rechargeable battery using ionic liquid
US9553338B2 (en) Lithium secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
KR101764072B1 (en) Binder for carbon-coated lithium iron phosphate(c-LiFePO4) electrode with high adhesion and electrode including the binder and lithium secondary battery icluding the electrode
KR101325165B1 (en) Positive electrode active material for lithium-ion battery and lithium-ion battery
KR20170136601A (en) A positive electrode active material for a nonaqueous electrolyte secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery using the positive electrode active material
CN115461904A (en) Non-aqueous electrolyte secondary battery
EP3370297B1 (en) Electrolyte containing polydopamine and lithium-sulfur battery including same
JP2014191865A (en) Negative electrode, nonaqueous electrolyte battery, and battery pack
KR102510290B1 (en) Method for preparing lithium negative electrode coated with lithium nitride, lithium negative electrode prepared therefrom and lithium-sulfur battery including the same
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
US11811018B2 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
CN111316484B (en) High voltage positive electrode material and cathode and lithium ion battery and battery comprising same
CN115133015A (en) Lithium ion secondary battery
JP2019061826A (en) Lithium ion secondary battery
JP2019523973A (en) Method for producing an electrode for an electrochemical storage device
CN110419134B (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
JP6366908B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2023519286A (en) New solid sulfide electrolyte
Baloch Strategies towards performance enhancement in lithium-sulphur batteries
KR20150106203A (en) electrode active material comprising reduced titanium oxide and electrochemical device using the same
JP2015056269A (en) Electrode mixture coating material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, method of manufacturing electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130306