KR20150106203A - electrode active material comprising reduced titanium oxide and electrochemical device using the same - Google Patents

electrode active material comprising reduced titanium oxide and electrochemical device using the same Download PDF

Info

Publication number
KR20150106203A
KR20150106203A KR1020140028410A KR20140028410A KR20150106203A KR 20150106203 A KR20150106203 A KR 20150106203A KR 1020140028410 A KR1020140028410 A KR 1020140028410A KR 20140028410 A KR20140028410 A KR 20140028410A KR 20150106203 A KR20150106203 A KR 20150106203A
Authority
KR
South Korea
Prior art keywords
active material
electrode active
lithium
tio
electrochemical device
Prior art date
Application number
KR1020140028410A
Other languages
Korean (ko)
Inventor
정연욱
이동훈
박동규
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020140028410A priority Critical patent/KR20150106203A/en
Priority to PCT/KR2015/002366 priority patent/WO2015137728A1/en
Publication of KR20150106203A publication Critical patent/KR20150106203A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides an electrode active material comprising a lithium composite oxide capable of inserting and discharging lithium, and TiO_x, wherein x is greater than or equal to 1 and less than 2. The electrode active material used as a positive electrode active material of a lithium secondary battery can provide a lithium secondary battery with improved output and excellent cycle properties.

Description

환원된 티타늄 산화물 함유 전극 활물질 및 이를 이용한 전기화학소자 {electrode active material comprising reduced titanium oxide and electrochemical device using the same}[0001] The present invention relates to a reduced titanium oxide-containing electrode active material and an electrochemical device using the reduced titanium oxide and an electrochemical device using the same.

본 발명은 리튬 삽입·방출 가능한 리튬 복합 산화물 및 TiOx(1≤x<2)를 함유하는 전극 활물질; 상기 전극 활물질을 함유하는 전극; 및 양극에 상기 전극 활물질을 함유하는 전기화학소자에 관한 것이다.
The present invention relates to an electrode active material containing a lithium complex oxide capable of lithium intercalation / deintercalation and TiO x (1? X <2); An electrode containing the electrode active material; And an electrochemical device containing the electrode active material on a positive electrode.

최근 휴대 전화, 노트북 등 휴대기기의 소형화 및 박형화 추세에 따라, 이들 휴대기기의 에너지원으로 사용되고 있는 리튬 이차 전지의 고용량화가 요구되고 있다.
2. Description of the Related Art Recently, with the trend toward downsizing and thinning of portable devices such as cellular phones and notebooks, there is a demand for high capacity of lithium secondary batteries used as energy sources for these portable devices.

현재 상용화되고 있는 일반적인 리튬 이차 전지는 양극 활물질로 리튬-코발트계 금속 산화물이 사용되고, 음극 활물질로 탄소가 사용되고 있다. 상기 리튬-코발트계 금속 산화물은 합성이 비교적 용이하고, 안정성 및 사이클 특성이 우수하지만, 전지의 고용량화 기술에 적용되기에는 한계가 있다.
In general, lithium-cobalt-based metal oxide is used as a cathode active material and carbon is used as a negative electrode active material. The lithium-cobalt-based metal oxide is comparatively easy to synthesize, has excellent stability and cycle characteristics, but has limitations in application to a high-capacity battery technology.

이러한 문제점으로 인해, 최근에는 양극 활물질로서 리튬-망간계 금속 산화물이나 리튬-니켈계 금속 산화물 등이 주목을 받고 있다. 이중, 층상 구조를 갖는 리튬-망간계 금속 산화물은 용량 면에서는 리튬-코발트계 금속 산화물보다 우수한 장점이 있으나 구조가 불안정하여 사이클 특성이 좋지 않은 것으로 알려져 있다. 그리고, 스피넬 리튬-망간계 금속 산화물은 열안정성이 우수하지만, 용량 면에서 리튬-코발트계 금속 산화물보다 낮다는 단점이 있다. 또한, 리튬-니켈계 금속 산화물은 고용량을 나타낼 수 있지만 사이클 특성이 좋지 않고, 제조 방법이 복잡한 문제점이 있다.
Due to these problems, lithium-manganese-based metal oxides, lithium-nickel-based metal oxides, and the like have recently been attracting attention as cathode active materials. Among these, the lithium-manganese-based metal oxide having a layered structure has an advantage over the lithium-cobalt-based metal oxide in terms of capacity but it is known that the structure is unstable and the cycle characteristics are poor. The spinel lithium-manganese-based metal oxide is excellent in thermal stability, but has a disadvantage in that it is lower in capacity than the lithium-cobalt-based metal oxide. Further, the lithium-nickel-based metal oxide can exhibit a high capacity, but has a poor cycle characteristic and a complicated manufacturing method.

이에, 양극 활물질에 이종 금속을 일부 치환하거나, 양극 활물질의 표면에 이종 금속 산화물 등을 코팅함으로써 열 안정성, 용량, 사이클 특성들을 개선하려는 많은 시도들이 이루어지고 있으나, 아직 그 개선의 정도가 미흡한 실정이다.
Accordingly, many attempts have been made to improve the thermal stability, capacity, and cycle characteristics by partially replacing the dissimilar metal with the cathode active material, or coating the surface of the cathode active material with a dissimilar metal oxide or the like, but the degree of improvement is insufficient .

한편, 다른 재료들은 LiCoO2에 비해 낮은 전자전도도로 인해 고율특성과 저온특성이 열악하며, 낮은 탭밀도로 인해 용량이 높음에도 불구하고 전지의 에너지 밀도가 향상되지 않는다. 특히, Li[Ni1 /2Mn1 /2]O2의 경우 전자전도도가 아주 낮아 실용화하기에는 어려움이 있다. 특히, 이 재료들을 전기자동차용 하이브리드(hybrid) 전원으로 사용하기에는 고출력 특성이 LiCoO2나 LiMn2O4에 비해 떨어진다. 이러한 문제점을 해결하기 위해 일본 특개2003-59491호에는 도전성 카본블랙을 표면에 처리하는 방법이 제안되었으나, 아직 많은 개선이 보고되어 있지는 않다.
On the other hand, other materials have poorer high-temperature characteristics and low-temperature characteristics due to low electronic conductivity than LiCoO 2 , and the energy density of the battery is not improved despite the high capacity due to low tap density. In particular, the Li [Ni 1/2 Mn 1 /2] is difficult to put to practical use a very low electronic conductivity for O 2. In particular, the high output characteristics of these materials as a hybrid power source for electric vehicles are inferior to those of LiCoO 2 and LiMn 2 O 4 . In order to solve such a problem, JP-A-2003-59491 proposes a method of treating conductive carbon black on the surface, but many improvements have not been reported yet.

이에 본 발명자들은 양극 활물질의 성능을 개선하기 위하여 예의 노력한 결과, 양극 활물질에 TiOx(1≤x<2)을 첨가 또는 코팅할 경우 양극 활물질의 성능이 개선됨을 확인하여 본 발명을 완성하였다.
As a result of intensive efforts to improve the performance of the cathode active material, the present inventors have found that the performance of the cathode active material is improved when TiO x (1? X <2) is added or coated on the cathode active material.

본 발명의 목적은 리튬 이차 전지와 같은 전기화학소자의 전극활물질의 전자전도도를 높여 출력 및 사이클 특성을 향상시킬 수 있는 전극활물질의 개질 방법을 제공하고자 한다.
An object of the present invention is to provide a method for modifying an electrode active material which can improve the output and cycle characteristics by increasing the electronic conductivity of an electrode active material of an electrochemical device such as a lithium secondary battery.

본 발명의 제1양태는 리튬 삽입·방출 가능한 리튬 복합 산화물 및 TiOx(1≤x<2)를 함유하는 전극 활물질을 제공한다.A first aspect of the present invention provides an electrode active material containing a lithium composite oxide capable of lithium insertion / discharge and TiO x (1? X <2).

본 발명의 제2양태는 본 발명의 제1양태에 따른 전극 활물질, 도전제 및 결합제를 함유하는 전극을 제공한다.A second aspect of the present invention provides an electrode containing an electrode active material, a conductive agent and a binder according to the first aspect of the present invention.

본 발명의 제3양태는 양극, 음극 및 전해질을 포함하는 전기화학소자에 있어서, 상기 양극은 본 발명의 제1양태에 따른 전극 활물질을 함유하는 것인 전기화학소자를 제공한다.
A third aspect of the present invention provides an electrochemical device comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode contains the electrode active material according to the first aspect of the present invention.

이하, 본 발명을 자세히 설명한다.
Hereinafter, the present invention will be described in detail.

리튬 이차 전지는, 이온 상태로 존재하는 리튬 이온이 방전 시에는 양극에서 음극으로 이동하고, 충전시에는 음극에서 양극으로 이동하면서 전기를 생성하는 전지이다. 리튬 이차 전지의 성능은 양극 재료의 리튬 이온 활성화 능력 및 음극 재료에서 리튬 이온을 삽입할 수 있는 충분한 공간의 존재에 의해 좌우된다. 특히, 리튬은 양극 활물질에 포함되어 있기 때문에, 양극 활물질이 리튬 이차 전지의 성능을 실질적으로 좌우한다.
The lithium secondary battery is a battery in which lithium ions existing in an ion state move from an anode to a cathode when discharging and move from a cathode to an anode when charging to generate electricity. The performance of the lithium secondary battery is dependent on the lithium ion activation capability of the cathode material and the presence of sufficient space for inserting lithium ions in the cathode material. Particularly, since lithium is contained in the positive electrode active material, the positive electrode active material substantially determines the performance of the lithium secondary battery.

양극 활물질은 일반적으로 전이금속산화물로 구성되는데, 이는 리튬 탈삽입시 전하 중성상태를 만족하기 위한 산화수의 변화가 필수적이기 때문이다. 양극 활물질로 요구되는 특성은 높은 작동전압, 충전 및 방전 중 작은 분극, 높은 용량 및 효율, 수명 특성, 전해액과의 안정성이 고려되어야 한다.
The cathode active material is generally composed of a transition metal oxide, because a change in the oxidation number is necessary to satisfy the charge neutral condition during lithium deintercalation. The properties required for the cathode active material should be considered high operating voltage, small polarization during charging and discharging, high capacity and efficiency, life characteristics, and stability with electrolyte.

통상, TiO2는 절연체이다. 그러나, TiO2를 일부 또는 전부 환원시킨 TiOx(1≤x<2)는 전기전도도가 월등히 높다는 점을 이용하여, 리튬 삽입·방출 가능한 리튬 복합 산화물에 TiOx(1≤x<2)를 첨가하고 열처리한 전극 활물질을 리튬 이차전지의 양극에 사용한 결과, 출력 및 사이클 특성이 개선될 뿐만아니라, 고출력 특성이 좋다는 것을 발견하였다. 본 발명은 이에 기초한 것이다.
Typically, TiO 2 is an insulator. However, TiO x (1? X &lt; 2) added to a lithium composite oxide capable of lithium insertion and release by using the fact that TiO x (1? X <2) in which TiO 2 is partially or wholly reduced has a significantly high electric conductivity. As a result of using the heat-treated electrode active material as an anode of a lithium secondary battery, it was found that not only output and cycle characteristics were improved but also high output characteristics were good. The present invention is based on this.

TiOx(1≤x<2)는 환원분위기, 예컨대 수소 가스 함유 분위기 하에서 TiO2를 일부 또는 전부 환원시켜 준비할 수 있다.
TiO x (1? X <2) can be prepared by partially or wholly reducing TiO 2 in a reducing atmosphere, for example, an atmosphere containing hydrogen gas.

본 발명에 따른 전극 활물질은 리튬 삽입·방출 가능한 리튬 복합 산화물 및 TiOx(1≤x<2)를 혼합한 후 건조 및 열처리하여 제조될 수 있다.The electrode active material according to the present invention can be prepared by mixing a lithium complex oxide capable of lithium intercalation / deintercalation and TiO x (1? X <2), followed by drying and heat treatment.

이때, 열처리 온도는 100℃ 내지 500℃인 것이 바람직하다.At this time, the heat treatment temperature is preferably 100 ° C to 500 ° C.

이후 열처리의 효율을 위하여 수분을 미리 제거하기 위해, 혼합 후 건조하는 것이 바람직하다.
In order to remove the moisture in advance for the efficiency of heat treatment, it is preferable to mix and dry.

또한, 상기 환원된 티타늄 산화물(TiOx, 1≤x<2)은 상기 리튬 복합 산화물와 균질하게 혼합된 형태일 수도 있으나, 리튬 복합 산화물 입자를 피복한 형태일 수도 있다.The reduced titanium oxide (TiO x , 1? X <2) may be mixed with the lithium composite oxide homogeneously or may be coated with a lithium composite oxide particle.

상기 리튬 복합 산화물은 LiCoO2, LiNiO2, Li1 + xMn2 - xO4 (0≤x≤0.33), Li2CuO2, LiV3O8, LiFe3O4, LiNi1 - xMxO2 (M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고; 0.01≤x≤0.3), LiMn2 - xMxO2 (M은 Co, Ni, Fe, Cr, Zn 또는 Ta이고; 0.01≤x≤0.1), Li2Mn3MO8 (M은 Fe, Co, Ni, Cu 또는 Zn), Li(Ni1 -x- yCoxMy)O2 (0≤x≤0.33, 0≤y≤0.33, M은 Mn, Al, Mg또는 Fe) 또는 이의 혼합물일 수 있다.The lithium complex oxide is LiCoO 2, LiNiO 2, Li 1 + x Mn 2 - x O 4 (0≤x≤0.33), Li 2 CuO 2, LiV 3 O 8, LiFe 3 O 4, LiNi 1 - x M x O 2 (M is Co, Mn, Al, Cu, Fe, and Mg, B or Ga; 0.01≤x≤0.3), LiMn 2 - x M x O 2 (M is Co, Ni, Fe, Cr, Zn or Ta, 0.01? X ? 0.1), Li 2 Mn 3 MO 8 (M is Fe, Co, Ni, Cu or Zn), Li (Ni 1 -x- y Co x M y ) O 2 0.33, 0? Y? 0.33, and M is Mn, Al, Mg or Fe) or a mixture thereof.

상기 환원된 티타늄 산화물은 전극 활물질 100 중량부에 대해 0.1 내지 10 중량부, 바람직하게는 5 ~ 10 중량부로 함유되어 있는 것이 좋다. 0.1 중량% 미만에서는 환원된 티타늄 산화물에 의한 효과가 미비하고, 10 중량% 초과시에는 리튬 복합 산화물을 과도하게 코팅하는 문제점이 있다.It is preferable that the reduced titanium oxide is contained in an amount of 0.1 to 10 parts by weight, preferably 5 to 10 parts by weight based on 100 parts by weight of the electrode active material. If the amount is less than 0.1 wt%, the effect of the reduced titanium oxide is insufficient, and when the amount is more than 10 wt%, the lithium composite oxide is excessively coated.

티타늄 산화물(TiOx, 1≤x<2) 입자의 크기는 1㎛ 이하인 것이 바람직하다.
The size of the titanium oxide (TiO x , 1? X <2) particles is preferably 1 μm or less.

본 발명에 따른 전극은 본 발명에 따른 전극 활물질, 도전제 및 결합제를 함유한다. The electrode according to the present invention contains the electrode active material, the conductive agent and the binder according to the present invention.

상기 도전제의 비제한적인 예로는 아세틸렌 블랙 또는 카본블랙류가 있다. 이때, 전극에서 사용하는 도전제의 함량은 양극의 경우 0.5 내지 10 중량%, 음극인 경우 10중량% 이하인 것이 바람직하다.Non-limiting examples of the conductive agent include acetylene black or carbon blacks. At this time, the content of the conductive agent used in the electrode is preferably 0.5 to 10% by weight in the case of the anode and 10% by weight or less in the case of the cathode.

본 발명에 사용되는 결합제의 비제한적인 예로는 폴리테트라 플루오르 에틸렌, 폴리 불화 비닐리덴, 폴리불화비닐, 폴리 아크릴로니트릴, 니트릴고무, 폴리부타디엔, 폴리스틸렌, 스티렌 부타디엔 고무, 다황화 고무, 부틸고무, 수첨 스티렌 부타디엔 고무, 니트로 셀룰로오스, 및 카복시메틸셀룰로오스로 이루어진 군으로부터 1 종 이상 선택되는 것이 바람직하다. 상기 결합제의 함량은 0.1 내지 15 중량%인 것이 바람직하다.
Non-limiting examples of the binder used in the present invention include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyacrylonitrile, nitrile rubber, polybutadiene, polystyrene, styrene butadiene rubber, polysulfide rubber, butyl rubber, Hydrogenated styrene-butadiene rubber, nitrocellulose, and carboxymethylcellulose. The content of the binder is preferably 0.1 to 15% by weight.

본 발명에 따른 전기화학소자는 본 발명에 따른 전극 활물질을 함유하는 양극, 음극 및 전해질을 포함한다.The electrochemical device according to the present invention includes a cathode, an anode, and an electrolyte containing the electrode active material according to the present invention.

상기 본 발명에 따른 전극활물질은, 전기화학소자 중 리튬 이차 전지에서 그 효과를 잘 발휘한다.The electrode active material according to the present invention exerts its effect in a lithium secondary battery of an electrochemical device.

일반적으로 리튬 이차 전지는 리튬 이온을 흡착 및 방출 가능한 양극, 리튬 이온을 흡착 및 방출 가능한 음극, 비수전해질, 및 분리막을 포함한다.Generally, a lithium secondary battery includes a positive electrode capable of adsorbing and desorbing lithium ions, a negative electrode capable of adsorbing and releasing lithium ions, a nonaqueous electrolyte, and a separator.

본 발명에 따른 양극 활물질을 양극 집전체, 즉 알루미늄, 니켈, 또는 이들의 조합에 의해서 제조되는 호일(foil)에 결착시킨 형태로 양극을 구성할 수 있다. 상기 양극 활물질의 함량은 80 내지 99 중량%인 것이 바람직하다.The cathode may be formed by binding the cathode active material according to the present invention to a foil produced by a cathode current collector, that is, aluminum, nickel, or a combination thereof. The content of the cathode active material is preferably 80 to 99% by weight.

상기 음극을 구성하기 위한 음극 활물질은 리튬금속, 또는 리튬합금과 카본(carbon), 석유코크(petroleum coke), 활성화 카본(activated carbon), 흑연(graphite), 또는 기타 여러 가지 카본류 등과 같은 리튬흡착물질을 주성분으로 사용할 수 있다. 그리고, 상기 음극 활물질을 음극 집전체, 즉 구리, 금, 니켈 혹은 구리 합금 혹은 이들의 조합에 의해서 제조되는 호일과 결착시킨 형태로 음극을 구성한다. 상기 음극활물질의 함량은 80 내지 99 중량%인 것이 바람직하다.The negative electrode active material for constituting the negative electrode may be lithium metal or lithium alloy and lithium adsorbent such as carbon, petroleum coke, activated carbon, graphite, Materials can be used as the main component. The negative electrode is formed by binding the negative electrode active material with a negative electrode current collector, that is, a foil produced by copper, gold, nickel or a copper alloy or a combination thereof. The content of the negative electrode active material is preferably 80 to 99% by weight.

상기 분리막은 미세 다공 구조를 가지는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 또는 이들 필름의 조합에 의해서 제조되는 다층 필름 등이나, 또는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아크릴로나이트릴 (polyacrylonitrile) 또는 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌(polyvinylidene fluoride hexafluoropropylene) 공중합체와 같은 고체 고분자 전해질용 또는 겔형 고분자 전해질용 고분자 필름 등을 사용한다.The separation membrane may be made of polyethylene, polypropylene, or a combination of these films, or a polyvinylidene fluoride, a polyethylene oxide, or the like, having a microporous structure. A polyacrylonitrile or a polyvinylidene fluoride hexafluoropropylene copolymer, or a polymer film for a gel polymer electrolyte or the like is used.

상기 전해질은 A+B-와 같은 구조의 염을 사용할 수 있으며, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온이나 이들의 조합으로 이루어진 이온을 포함하는 염을 의미한다. 구체적 예를 들면, 리튬염이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드(dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 혹은 이들의 혼합물로 이루어진 유기 용매에 용해, 해리되어 있는 것을 말한다.
The electrolyte is A + B - and may be a salt of such a structure, A + is Li +, Na +,, and comprising an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 - , BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 &lt; - &gt; or an ion consisting of a combination of these. Specific examples of the lithium salt include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone Is dissolved and dissolved in an organic solvent composed of N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), gamma-butyrolactone or a mixture thereof.

본 발명에 따른 전기화학소자를 제조하는 방법의 비제한적인 예는 a)ⅰ) 전극 활물질 입자; ⅱ) 도전제 입자; 및 iii) 결합제가 용매에 분산된 슬러리를 제조하는 단계; b) 상기 슬러리를 집전체에 코팅하고 건조 및 압착하여 전극을 제조하는 단계; 및 c) 상기 전극을 구비한 전기화학소자를 조립하고 비수전해질을 주입하는 단계를 포함한다.Non-limiting examples of the method for producing an electrochemical device according to the present invention include: a) an electrode active material particle; Ii) conductive agent particles; And iii) preparing a slurry in which the binder is dispersed in a solvent; b) coating the slurry with a current collector, drying and pressing the slurry to produce an electrode; And c) assembling the electrochemical device having the electrode and injecting the non-aqueous electrolyte.

상기 슬러리에 사용되는 용매는 특별히 제한되지 아니하며, 일반적으로 양극, 음극 모두 N-메틸-2-피롤리돈(NMP)가 사용될 수 있으며, 수계 음극의 경우는 증류수가 사용될 수 있다.The solvent used for the slurry is not particularly limited. In general, N-methyl-2-pyrrolidone (NMP) can be used for both the positive electrode and the negative electrode, and distilled water can be used for the aqueous negative electrode.

전극 제조시 mixing에 의해 분산이 잘 되어 있으면 전극 코팅 후에 이격된 전극 활물질 입자들을 연결하도록 도전제 입자들이 배열된다.When the electrodes are well dispersed by mixing during the production of the electrodes, the conductive agent particles are arranged so as to connect the electrode active material particles separated after the electrode coating.

필요한 경우, 전극 제조 시 용매를 증발시키기 위해 열처리할 수 있다.
If necessary, heat treatment may be performed to evaporate the solvent during the production of the electrode.

본 발명에 따른 전극활물질을 리튬 이차 전지의 양극 활물질로 사용하면, 리튬 이차 전지에 향상된 출력과 우수한 사이클 특성을 부여할 수 있다.
When the electrode active material according to the present invention is used as a positive electrode active material of a lithium secondary battery, improved output and excellent cycle characteristics can be imparted to the lithium secondary battery.

도 1은, 실시예 1에 따른 양극 활물질의 주사 전자 현미경 사진을 나타낸 것이다.
도 2는, 실시예 2에 따른 양극 활물질의 주사 전자 현미경 사진을 나타낸 것이다.
도 3은, 실시예 1 및 2에 따른 양극 활물질의 XRD 분석 결과를 나타낸 것이다.
도 4는, 본 발명의 일구체예에 따른 리튬 이차 전지의 출력 특성 평가 결과를 나타낸 것이다.
도 5는, 본 발명의 일구체예에 따른 전지의 사이클 특성 평가를 나타낸 것이다.
1 is a scanning electron micrograph of a cathode active material according to Example 1. Fig.
FIG. 2 is a scanning electron microscope photograph of the cathode active material according to Example 2. FIG.
Fig. 3 shows the XRD analysis results of the cathode active materials according to Examples 1 and 2. Fig.
4 shows the output characteristics of the lithium secondary battery according to one embodiment of the present invention.
5 shows evaluation of cycle characteristics of a battery according to one embodiment of the present invention.

이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following examples and experimental examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

실시예Example 1 One

0.12 g의 TiOx(1≤x<2)에 3.88 g의 LiNi0 .6Mn0 .2Co0 .2O2를 첨가하고 3시간 동안 교반하였다. 교반을 종료한 후, 회수된 분말을 80℃에서 6시간 동안 건조한 후, 200℃의 불활성 분위기 하에서 3시간 동안 열처리하여, 표면에 3 중량%의 TiOx(1≤x<2)가 코팅된 양극 활물질을 제조하였다.
To 0.12 g of the TiO x (1≤x <2) was added 3.88 g of LiNi 0 .6 Mn 0 .2 Co 0 .2 O 2 and stirred for 3 hours. After the end of stirring, the recovered powder after the drying at 80 ℃ for 6 hours, 3 hours and heat-treated for a 3% by weight on the surface of the TiO x (1≤x <2) under an inert atmosphere at 200 ℃ coated anode To prepare an active material.

실시예Example 2 2

0.24 g의 TiOx(1≤x<2)에 2.76 g의 LiNi0 .6Mn0 .2Co0 .2O2를 첨가하고 3시간 동안 교반하였다. 교반을 종료한 후, 회수된 분말을 60℃에서 6시간 동안 건조한 후, 200℃의 불활성 분위기 하에서 3시간 동안 열처리하여, 표면에 8 중량%의 TiOx(1≤x<2)가 코팅된 양극 활물질을 제조하였다.
To 0.24 g of the TiO x (1≤x <2) was added 2.76 g of LiNi 0 .6 Mn 0 .2 Co 0 .2 O 2 and stirred for 3 hours. After completion of the stirring, the recovered powder was dried at 60 DEG C for 6 hours and then heat-treated at 200 DEG C for 3 hours in an inert atmosphere to obtain a positive electrode coated with 8 wt% TiOx (1 &lt; x &lt; 2) To prepare an active material.

비교예Comparative Example 1 One

LiNi0 .6Mn0 .2Co0 .2O2 조성의 코팅되지 않은 복합산화물 입자를 비교예로 사용하였다.
LiNi 0 .6 Mn 0 .2 used a composite oxide particles that are not coated with the Co 0 .2 O 2 composition in the comparative example.

제조예Manufacturing example 1 One

실시예 1에서 제조한 양극 활물질을 포함하는 코인 셀을 제조하였다.
A coin cell comprising the cathode active material prepared in Example 1 was prepared.

구체적으로, 실시예 1에 제조한 양극 활물질, 바인더인 폴리비닐리덴플로라이드(PVDF) 및 도전제인 카본블랙(제조사: Timcal)을 95:2:3의 중량비로 혼합하여, 이를 알루미늄 집전체에 코팅한 후, 이를 건조시키고 롤 프레스하여 양극을 제조하였다. 상기와 같이 제조된 양극과 음극으로 리튬금속과 전해질(1M LiPF6 EC/DMC)을 포함하는 코인 셀을 제조하였다.
Concretely, the cathode active material prepared in Example 1, polyvinylidene fluoride (PVDF) as a binder and carbon black (manufactured by Timcal) as a conductive agent were mixed at a weight ratio of 95: 2: 3, After that, it was dried and rolled to produce a positive electrode. A coin cell including lithium metal and an electrolyte (1M LiPF 6 EC / DMC) was fabricated as the positive and negative electrodes.

제조예Manufacturing example 2 내지  2 to 제조예Manufacturing example 3 3

실시예 1에 따른 양극 활물질 대신, 실시예 2(제조예 2), 비교예 1(제조예 3)에 따른 각각의 양극 활물질을 사용한 것을 제외하고, 제조예 1과 동일한 방법으로 제조예 2 내지 제조예 3의 코인 셀을 각각 제조하였다.
Except that each of the cathode active materials according to Example 2 (Production Example 2) and Comparative Example 1 (Production Example 3) was used in place of the cathode active material according to Example 1, Coin cells of Example 3 were prepared.

실험예Experimental Example 1: 주사 전자 현미경을 이용한 입자 표면 관찰 1: Particle surface observation using scanning electron microscope

실시예 1 및 실시예 2에서 제조된 각각의 양극 활물질에 대하여, 주사 전자 현미경(제조사: JEOL)을 이용하여 입자 표면을 관찰하였고, 그 결과를 도 1 및 도 2에 각각 나타내었다. 상기 도면으로부터 TiOx(1≤x<2) 입자가 리튬 복합 산화물 입자 표면에 부분적으로 코팅된 것을 확인할 수 있다.
For each of the cathode active materials prepared in Example 1 and Example 2, particle surfaces were observed using a scanning electron microscope (JEOL), and the results are shown in FIGS. 1 and 2, respectively. It can be seen from the figure that TiO x (1? X <2) particles are partially coated on the surface of the lithium composite oxide particle.

실험예Experimental Example 2: X-선  2: X-ray 회절diffraction 분석 analysis

실시예 1 및 실시예 2 및 비교예 1에서 제조된 각각의 양극 활물질에 대하여, XRD 분석(제조사: PANalytical, 모델명: X'Pert pro MPD)을 수행하였으며, 그 결과를 도 3에 나타내었다. 이때, X-선 회절 분석 시험은 2θ 값이 10° 내지 80° 범위에서 샘플링 폭이 0.01°, 스캔 속도 4°/분인 조건 하에서 Cu-Kα선을 이용하여 수행하였다.
XRD analysis (manufacturer: PANalytical, model name: X'Pert pro MPD) was performed on each of the cathode active materials prepared in Examples 1 and 2 and Comparative Example 1, and the results are shown in FIG. At this time, the X-ray diffraction analysis was performed using Cu-K? Ray under the condition that the 2? Values ranged from 10 to 80, the sampling width was 0.01, and the scan rate was 4 占 min.

실험예Experimental Example 3: 전지의 출력 특성 평가 3: Evaluation of battery output characteristics

제조예 1(실시예 1의 양극 활물질 포함), 제조예 2(실시예 2의 양극 활물질 포함), 및 제조예 3(비교예 1의 양극 활물질 포함)의 코인 셀에 대하여 3.0 V 내지 4.5 V 범위에서 C/5의 속도로 1회 충전 및 방전을 실시한 후, 각각 C/2, 1C, 2C의 속도로 방전을 각각 실시하였다. 상기 실험의 결과를 도 4에 나타내었다.
The coin cell of Production Example 1 (including the positive electrode active material of Example 1), Production Example 2 (including the positive electrode active material of Example 2), and Production Example 3 (including the positive electrode active material of Comparative Example 1) At a rate of C / 5, followed by discharging at a rate of C / 2, 1C, and 2C, respectively. The results of the above experiment are shown in Fig.

도 4에 나타난 바와 같이, 제조예 1(표면에 3 중량%의 TiOx(1≤x<2)가 코팅된 양극 활물질 포함) 및 제조예 2(표면에 8 중량%의 TiOx(1≤x<2)가 코팅된 양극 활물질 포함)의 코인 셀은, 제조예 3(표면에 TiOx(1≤x<2)가 코팅되지 않은 양극 활물질 포함)의 코인 셀에 비하여, 용량 유지율 및 C-rate에 다른 출력 특성이 동등 또는 그 이상으로 향상됨을 확인할 수 있었다.
As shown in Fig. 4, a cathode active material was prepared in the same manner as in Production Example 1 (including a cathode active material coated with 3 wt% of TiO x (1 x <2) on its surface) and 2 wt% of TiO x Coin cells including <2) is coated with a positive electrode active material) is, compared with the coin cells of Production example 3 (the surface of TiO x (including 1≤x <2) the positive electrode active material non-coated), the capacity maintenance rate and the C-rate It was confirmed that the other output characteristics were improved to be equal or higher.

실험예Experimental Example 4: 전지의 사이클 특성 평가 4: Evaluation of cycle characteristics of battery

제조예 1 내지 제조예 3에서 제조한 코인 셀에 대하여, 각각 3.0 V 내지 4.5 V 범위에서 C/5의 속도로 1회 충전 및 방전을 실시한 후, 1C의 속도로 충전 및 방전을 하여 사이클 특성을 평가하였고, 그 결과를 도 5에 나타내었다.
The coin cells prepared in Production Examples 1 to 3 were subjected to charging and discharging once at a speed of C / 5 in the range of 3.0 V to 4.5 V, and then charged and discharged at a speed of 1 C, And the results are shown in Fig.

도 5에 나타난 바와 같이, 제조예 2(표면에 8 중량%의 TiOx(1≤x<2)가 코팅된 양극 활물질 포함)의 코인 셀은 제조예 1(표면에 3 중량%의 TiOx(1≤x<2)가 코팅된 양극 활물질 포함) 및 제조예 3(표면에 TiOx(1≤x<2)가 코팅되지 않은 양극 활물질 포함)의 코인 셀에 비하여, 수명 특성이 향상됨을 확인할 수 있었다.
, Preparation 2 of the coin cell (of 8% by weight on the surface TiO x (including 1≤x <2) is coated with a positive electrode active material) was prepared in Example 1 (3% by weight of TiO x on the surface as shown in Figure 5 ( (Including the positive electrode active material coated with 1 &lt; = x &lt; 2) and the positive electrode active material of Production Example 3 (including the positive electrode active material not coated with TiO x (1? X <2) on the surface) there was.

Claims (11)

리튬 삽입·방출 가능한 리튬 복합 산화물 및 티타늄 산화물(TiOx, 1≤x<2)을 함유하는 전극 활물질.An electrode active material containing a lithium composite oxide capable of lithium insertion and release and a titanium oxide (TiO x , 1? X <2). 제1항에 있어서, 상기 TiOx는 리튬이온 탈삽입 가능한 리튬 복합 산화물 입자를 코팅하는 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the TiO x is coated with a lithium composite oxide particle capable of lithium ion deintercalation. 제1항에 있어서, 상기 TiOx는 전극 활물질 100 중량부에 대해 5 ~ 10 중량부로 함유되어 있는 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the TiO x is contained in an amount of 5 to 10 parts by weight based on 100 parts by weight of the electrode active material. 제1항에 있어서, 상기 리튬 복합 산화물은 LiCoO2, LiNiO2, Li1 + xMn2 - xO4 (0≤x≤0.33), Li2CuO2 , LiV3O8, LiFe3O4, LiNi1 - xMxO2 (M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고; 0.01≤x≤0.3), LiMn2 - xMxO2 (M은 Co, Ni, Fe, Cr, Zn 또는 Ta이고; 0.01≤x≤0.1), Li2Mn3MO8 (M은 Fe, Co, Ni, Cu 또는 Zn), 및 Li(Ni1 -x- yCoxMy)O2 (0≤x≤0.33, 0≤y≤0.33, M은 Mn, Al, Mg또는 Fe)으로 이루어진 군에서 선택된 것이 특징인 전극 활물질.2. The lithium secondary battery according to claim 1, wherein the lithium composite oxide is selected from the group consisting of LiCoO 2 , LiNiO 2 , Li 1 + x Mn 2 - x O 4 (0 ? X? 0.33), Li 2 CuO 2 , LiV 3 O 8 , LiFe 3 O 4 , LiNi 1 - x MxO 2 (M is Co, Mn, Al, Cu, Fe, Mg, B or Ga, and; 0.01≤x≤0.3), LiMn 2 - x MxO 2 (M is Co, Ni, Fe, Cr, Zn, or Ta; 0.01? X? 0.1), Li 2 Mn 3 MO 8 (M is Fe, Co, Ni, Cu, or Zn), and Li (Ni 1 -x- y Co x M y ) O 2 0.33, 0? Y? 0.33, and M is selected from the group consisting of Mn, Al, Mg, and Fe). 제1항에 있어서, TiOx(1≤x<2) 입자의 크기가 1㎛ 이하인 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the size of TiO x (1? X <2) particles is 1 μm or less. 제1항에 있어서, 리튬 삽입·방출 가능한 리튬 복합 산화물 및 TiOx(1≤x<2)를 혼합한 후 건조 및 열처리하여 제조된 것이 특징인 전극 활물질.The electrode active material according to claim 1, which is prepared by mixing a lithium complex oxide capable of lithium intercalation / deintercalation and TiO x (1? X <2), followed by drying and heat treatment. 제6항에 있어서,
상기 열처리 온도는 100℃ 내지 500℃인 것이 특징인 전극 활물질.
The method according to claim 6,
Wherein the heat treatment temperature is 100 ° C to 500 ° C.
제1항 내지 제8항 중 어느 한 항에 있어서, 전극 활물질은 리튬 이차전지용 양극 활물질인 것이 특징인 전극 활물질.The electrode active material according to any one of claims 1 to 8, wherein the electrode active material is a cathode active material for a lithium secondary battery. 제1항 내지 제8항 중 어느 한 항에 기재된 전극 활물질, 도전제 및 결합제를 함유하는 전극.An electrode containing the electrode active material, the conductive agent and the binder according to any one of claims 1 to 8. 양극, 음극 및 전해질을 포함하는 전기화학소자에 있어서,
상기 양극은 제1항 내지 제8항 중 어느 한 항에 기재된 전극 활물질을 함유하는 것인 전기화학소자.
1. An electrochemical device comprising an anode, a cathode, and an electrolyte,
Wherein the positive electrode contains the electrode active material according to any one of claims 1 to 8.
제10항에 있어서, 전기화학소자는 리튬 이차 전지인 것이 특징인 전기화학소자.The electrochemical device according to claim 10, wherein the electrochemical device is a lithium secondary battery.
KR1020140028410A 2014-03-11 2014-03-11 electrode active material comprising reduced titanium oxide and electrochemical device using the same KR20150106203A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140028410A KR20150106203A (en) 2014-03-11 2014-03-11 electrode active material comprising reduced titanium oxide and electrochemical device using the same
PCT/KR2015/002366 WO2015137728A1 (en) 2014-03-11 2015-03-11 Electrode active material containing reduced titanium oxide and electrochemical device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140028410A KR20150106203A (en) 2014-03-11 2014-03-11 electrode active material comprising reduced titanium oxide and electrochemical device using the same

Publications (1)

Publication Number Publication Date
KR20150106203A true KR20150106203A (en) 2015-09-21

Family

ID=54072090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140028410A KR20150106203A (en) 2014-03-11 2014-03-11 electrode active material comprising reduced titanium oxide and electrochemical device using the same

Country Status (2)

Country Link
KR (1) KR20150106203A (en)
WO (1) WO2015137728A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10230106B2 (en) 2016-01-28 2019-03-12 Lg Chem, Ltd. Cathode active material having excellent electrochemical properties and lithium secondary battery comprising the same
KR20210110225A (en) * 2020-02-28 2021-09-07 숙명여자대학교산학협력단 Manufacturing method for oxygen deficient valve metal oxide and oxygen deficient valve metal oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330719A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2003142101A (en) * 2001-10-31 2003-05-16 Nec Corp Positive electrode for secondary battery and secondary battery using the same
US20090117463A1 (en) * 2007-11-02 2009-05-07 Hideharu Takezawa Lithium ion secondary battery
KR101124492B1 (en) * 2009-09-09 2012-03-16 한국과학기술연구원 Method of preparing positine active material for lithium battery
KR101264337B1 (en) * 2010-08-13 2013-05-14 삼성에스디아이 주식회사 Positive active material and lithium battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10230106B2 (en) 2016-01-28 2019-03-12 Lg Chem, Ltd. Cathode active material having excellent electrochemical properties and lithium secondary battery comprising the same
KR20210110225A (en) * 2020-02-28 2021-09-07 숙명여자대학교산학협력단 Manufacturing method for oxygen deficient valve metal oxide and oxygen deficient valve metal oxide

Also Published As

Publication number Publication date
WO2015137728A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5063948B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US10854873B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
US10230106B2 (en) Cathode active material having excellent electrochemical properties and lithium secondary battery comprising the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
WO2007010915A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2011001256A (en) Method for producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide and lithium battery
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
US11967713B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery comprising tungsten coating film, and non-aqueous electrolyte secondary battery
KR20130107092A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP6697377B2 (en) Lithium ion secondary battery
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
KR20090020882A (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
US11329274B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
TWI822958B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries
KR20120076335A (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP6369970B2 (en) Composite positive electrode active material, electrode for lithium secondary battery including the same, and lithium secondary battery
KR20150106203A (en) electrode active material comprising reduced titanium oxide and electrochemical device using the same
KR20150055890A (en) Surface-Modified Anode Active Material and Method for Manufacturing The Same
KR101667967B1 (en) Cathode slurry for electrochemical device, cathode manufactured using the slurry, and a method of making the cathode
KR101490406B1 (en) Positive electrode active material coated with fluorine compounds for lithium secondary battery and preparation method thereof
KR101681545B1 (en) Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
KR101631386B1 (en) Negative Electrode Material For Lithuim Secondary Battery Using Lithuim-Titanium Oxide And Preparation Method Thereof
TWI822957B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application