JP2013114986A - Secondary battery manufacturing method - Google Patents

Secondary battery manufacturing method Download PDF

Info

Publication number
JP2013114986A
JP2013114986A JP2011262073A JP2011262073A JP2013114986A JP 2013114986 A JP2013114986 A JP 2013114986A JP 2011262073 A JP2011262073 A JP 2011262073A JP 2011262073 A JP2011262073 A JP 2011262073A JP 2013114986 A JP2013114986 A JP 2013114986A
Authority
JP
Japan
Prior art keywords
unit cell
battery
secondary battery
lithium ion
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262073A
Other languages
Japanese (ja)
Other versions
JP5590012B2 (en
Inventor
Katsuyuki Hojo
勝之 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011262073A priority Critical patent/JP5590012B2/en
Publication of JP2013114986A publication Critical patent/JP2013114986A/en
Application granted granted Critical
Publication of JP5590012B2 publication Critical patent/JP5590012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery manufacturing method which can make it possible to detect a short circuit in a secondary battery in a short time.SOLUTION: In the secondary battery manufacturing method, a unit cell 100 which has had its charging finished is heated and subjected to aging in a high temperature environment until a first reference time elapses. After the high temperature aging, a plurality of unit cells to be simultaneously inspected by subsequent aging in a low temperature environment are combined and their battery voltages are equalized. Then, these unit cells 100 are cooled and, after the battery voltages of each unit cell 100 are made uniform, the aging in the low temperature environment (short circuit inspection) is started. Then, after a reference time has elapsed, the battery voltages of each unit cell 100 are measured, and determination of whether each of the unit cells 100 is good or not is made on the basis of the measured values.

Description

本発明は,二次電池の製造方法に関する。さらに詳細には,二次電池の製造過程において,電池性能の検査を行う技術に関する。   The present invention relates to a method for manufacturing a secondary battery. More specifically, the present invention relates to a technique for inspecting battery performance in the manufacturing process of a secondary battery.

近年,リチウムイオン二次電池に代表される非水電解質二次電池は,携帯型PCや携帯電話を始めとする電子機器のみならず,ハイブリッド車や電気自動車の電源として注目されている。車両用の二次電池は,一般的に,複数の単電池を直列に接続した電池ユニットとして車載される。   In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have attracted attention as power sources not only for electronic devices such as portable PCs and mobile phones, but also for hybrid vehicles and electric vehicles. A secondary battery for a vehicle is generally mounted on a vehicle as a battery unit in which a plurality of single cells are connected in series.

前記した二次電池の製造過程においては,電池性能が不適切なものを市場に流通させないようにするため,電池性能の検査を行う検査工程が含まれる。電池性能の検査を開示した文献としては,例えば特許文献1がある。この特許文献1では,被検二次電池の充放電およびエージングを行うこと,さらに被検二次電池の,充電時電圧,充電後開路時電圧,放電時電圧,放電後開路時電圧,エージング後開路時電圧の少なくとも1つについて測定し,その測定値から予測される電池性能が基準範囲内であれば良品とすることが開示されている。   The manufacturing process of the secondary battery described above includes an inspection process for inspecting the battery performance in order to prevent those having inappropriate battery performance from being distributed to the market. As a document disclosing the inspection of battery performance, there is, for example, Patent Document 1. In this Patent Document 1, charging / discharging and aging of the secondary battery to be tested are performed, and further, the voltage of the secondary battery to be tested, the voltage at the time of opening after charging, the voltage at the time of discharging, the voltage at the time of discharging, and the voltage after opening of the circuit It is disclosed that at least one of the open circuit voltages is measured, and if the battery performance predicted from the measured value is within the reference range, it is determined as a non-defective product.

特開2004−361253号公報JP 2004-361253 A

しかしながら,前記した従来の技術には,次のような問題があった。すなわち,二次電池の短絡検査に時間がかかる。例えば,LiNiCoMnO2 微粒子および導電材を正極材料とし,黒鉛を負極材料とするリチウムイオン二次電池では,電極材料や電解液の性能維持の観点から,常用電圧が3.0V〜4.1Vに設定される。このようなリチウムイオン二次電池は,満充電の状態において,正極と負極の電位はそれぞれ水素基準電位に対し,+1.1V,−3.0V付近となっている。 However, the conventional technique described above has the following problems. That is, it takes time to inspect the short circuit of the secondary battery. For example, in a lithium ion secondary battery using LiNiCoMnO 2 fine particles and a conductive material as a positive electrode material and graphite as a negative electrode material, the normal voltage is set to 3.0 V to 4.1 V from the viewpoint of maintaining the performance of the electrode material and the electrolytic solution. Is done. In such a lithium ion secondary battery, in a fully charged state, the potentials of the positive electrode and the negative electrode are near +1.1 V and −3.0 V with respect to the hydrogen reference potential, respectively.

前述のリチウムイオン二次電池の製造過程においては,金属異物が混入することがある。この金属異物が電池内部で溶解あるいは析出することで微小短絡を引き起こす。具体的に,金属異物としては,鉄系および銅系の金属が考えられ,イオン化傾向はそれぞれ−0.44V,0.34Vとなっている。このことから,それらの金属異物が電池内部に混入した場合には,正極にて溶解し,負極にて金属として析出することで,電池内部に微小な短絡が発生する。このような電池内部の微小短絡は,リチウムイオン二次電池以外の電池であっても起こりえる。   In the manufacturing process of the lithium ion secondary battery described above, metal foreign matter may be mixed. The metal foreign matter is dissolved or precipitated inside the battery, thereby causing a micro short circuit. Specifically, iron-based and copper-based metals are conceivable as the metal foreign matter, and the ionization tendency is −0.44V and 0.34V, respectively. Therefore, when these metallic foreign matters are mixed in the battery, they are dissolved at the positive electrode and deposited as a metal at the negative electrode, thereby causing a minute short circuit inside the battery. Such a micro short circuit inside the battery can occur even in a battery other than a lithium ion secondary battery.

従来の二次電池の製造過程では,被検二次電池の初充電後,電池反応の安定化を目的として,その被検二次電池を高温環境下で所定時間保管する高温エージングが実施されている。そして,高温エージング後に被検二次電池を冷却し,その後に短絡検査としてさらに常温環境下で所定時間保管する低温エージングを実施している。そして,常温での保管前後の電池電圧値を測定し,その電圧変化量が許容範囲から外れた場合には不良と判定している。   In the conventional secondary battery manufacturing process, after the initial charge of the test secondary battery, high temperature aging is performed in which the test secondary battery is stored for a predetermined time in a high temperature environment in order to stabilize the battery reaction. Yes. Then, the secondary battery to be tested is cooled after high temperature aging, and then low temperature aging is performed as a short circuit inspection, which is further stored in a room temperature environment for a predetermined time. Then, the battery voltage value before and after storage at room temperature is measured, and if the voltage change amount is out of the allowable range, it is determined as defective.

しかし,短絡による電圧低下量は,容量の大きい電池にとっては極僅かである。一方で,高温エージング後の二次電池には,電極の活物質塗布量や密度のばらつき等の要因によって,良品であっても電圧降下量にばらつきが生じている。そのため,短絡を起こしている不良電池と良品電池とを明確に切り分けるには,個々の電池に対して高温エージング直後の電圧値を測定し,その後,10日を超えるような長時間の低温エージングを行った後の電圧値を測定し,両測定値を比較して短絡の有無を判定している。   However, the amount of voltage drop due to a short circuit is negligible for a battery with a large capacity. On the other hand, the secondary battery after high-temperature aging has a variation in the voltage drop even if it is a non-defective product due to factors such as variations in the amount of active material applied to the electrode and variations in density. Therefore, in order to clearly distinguish a defective battery that is short-circuited from a non-defective battery, the voltage value immediately after high-temperature aging is measured for each battery, and then long-term low-temperature aging that exceeds 10 days is performed. The voltage value after the measurement is measured, and both measured values are compared to determine whether there is a short circuit.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,二次電池の短絡を短時間で検知することが期待できる二次電池の製造方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, the problem is to provide a method for manufacturing a secondary battery that can be expected to detect a short circuit of the secondary battery in a short time.

この課題の解決を目的としてなされた二次電池の製造方法は,初充電が完了した状態の単電池を第1の温度まで昇温させる昇温ステップと,前記昇温ステップ後に,前記単電池を第1の基準時間が経過するまで前記第1の温度のままエージングを行う高温エージングステップと,前記第1の基準時間が経過した後,複数の前記単電池の電池電圧を均等にする均等化ステップと,前記均等化ステップの後に,前記複数の単電池を前記第1の温度よりも低い第2の温度まで冷却する冷却ステップと,前記冷却ステップの後に,第2の基準時間が経過するまで前記複数の単電池を前記第2の温度のまま前記単電池のエージングを行う低温エージングステップと,前記第2の基準時間が経過した後,前記複数の単電池の各々の電池電圧を測定する測定ステップと,前記測定ステップの後に,その測定値に基づいて前記複数の単電池個々に良品か否かを判定する判定ステップとを含むことを特徴としている。   A method for manufacturing a secondary battery for the purpose of solving this problem includes a temperature raising step of raising a temperature of a single battery in a state where initial charging is completed to a first temperature, and after the temperature raising step, A high-temperature aging step for performing aging at the first temperature until a first reference time elapses, and an equalizing step for equalizing battery voltages of the plurality of single cells after the first reference time has elapsed. And a cooling step for cooling the plurality of single cells to a second temperature lower than the first temperature after the equalizing step, and a second reference time after the cooling step. A low temperature aging step of aging the single cells with the second temperature at the second temperature, and a measurement of measuring the battery voltages of the plurality of single cells after the second reference time has elapsed. And step, after said measuring step is characterized by including a determination step of determining good or not to the plurality of unit cells each on the basis of the measured value.

本発明の二次電池の製造方法では,初充電が完了した単電池を昇温させ,第1の基準時間が経過するまでの間,高温エージングを行う。その高温エージングの後,複数の単電池を組み合わせて電池電圧の均等化を図る。その後,各単電池を冷却し,各単電池の電池電圧が揃えられた状態で,それらの単電池に対して低温エージングを開始する。そして,低温エージングが終了した後,各単電池の電池電圧を測定し,その測定値に基づいて単電池個々の良否を判定する。   In the method for manufacturing a secondary battery according to the present invention, the temperature of the unit cell that has been initially charged is increased, and high-temperature aging is performed until the first reference time elapses. After the high temperature aging, a plurality of single cells are combined to equalize the battery voltage. Thereafter, each unit cell is cooled, and low-temperature aging is started for each unit cell in a state where the cell voltages of the unit cells are aligned. Then, after the low temperature aging is completed, the battery voltage of each unit cell is measured, and the quality of each unit cell is determined based on the measured value.

すなわち,本発明の二次電池の製造方法では,低温エージングによる短絡検査を開始する前に,高温エージングによってばらつきが生じた電池電圧を均等に揃えている。そのため,従来のように高温エージングによる電池電圧のばらつきと区別できるようになるまでの長期間のエージングが必要なく,短絡による自己放電量が少ない段階であっても,短絡が生じている単電池を区別することが期待できる。従って,短絡検査の時間短縮を図ることができる。   That is, in the method for manufacturing a secondary battery according to the present invention, before starting a short-circuit inspection by low-temperature aging, the battery voltages that have varied due to high-temperature aging are evenly aligned. For this reason, there is no need for long-term aging until it becomes distinguishable from battery voltage variations due to high-temperature aging as in the past, and even if the amount of self-discharge due to short-circuit is small, It can be expected to distinguish. Therefore, it is possible to shorten the time for the short circuit inspection.

また,本発明の二次電池の製造方法では,前記高温エージングステップの開始後,前記均等化ステップの開始前に,前記単電池の電池電圧を測定し,その測定値が良品としての許容範囲を超えていた場合には,前記単電池を不良品として除外する除外ステップを含むとよい。高温エージングによって顕著に電圧低下が生じた不良品を含めて電池電圧の均等化を図ると,その不良品の充電に必要な他の単電池の放電量が多くなり,電池電圧の均等化に時間がかかる。そのため,不良品を除外して均等化を図る方が好ましい。   Further, in the method for manufacturing a secondary battery according to the present invention, after the start of the high temperature aging step and before the start of the equalization step, the cell voltage of the unit cell is measured, and the measured value is within an allowable range as a non-defective product. When it exceeds, it is good to include the exclusion step which excludes the said cell as a defective article. If you attempt to equalize the battery voltage, including defective products that have undergone a significant voltage drop due to high-temperature aging, the amount of discharge of other cells required to charge the defective product will increase, and it will take time to equalize the battery voltage. It takes. Therefore, it is preferable to equalize by excluding defective products.

また,前記判定ステップは,前記測定ステップの測定値が,良品としての許容範囲内である場合に,前記単電池を良品と判定するとよい。すなわち,良否判定としては,例えば,低温エージングの開始直前の電池電圧と,低温エージングの終了直後の電池電圧との,2回の電池電圧測定によって電圧変化量を計算し,その電圧変化量が許容範囲内か否かによって判定してもよいが,本発明では,低温エージングの開始直前の電池電圧が概ね一定の電圧値に揃えられている。そのため,低温エージングの開始直前の電池電圧を取得
しなくとも,低温エージングの終了後の電池電圧から単電池の良否を判定できる。この構成のように,低温エージングの終了後の電池電圧によって,つまり1回の電池電圧測定によって単電池の良否を判定することで,計測回数を少なくすることができる。
Moreover, the said determination step is good to determine the said cell as a good product, when the measured value of the said measurement step is in the tolerance | permissible_range as a good product. That is, as the pass / fail judgment, for example, the voltage change amount is calculated by measuring the battery voltage twice, that is, the battery voltage immediately before the start of the low temperature aging and the battery voltage immediately after the end of the low temperature aging, and the voltage change amount is acceptable. Although it may be determined based on whether or not it is within the range, in the present invention, the battery voltage immediately before the start of low-temperature aging is set to a substantially constant voltage value. Therefore, the quality of the unit cell can be determined from the battery voltage after the end of the low temperature aging without acquiring the battery voltage immediately before the start of the low temperature aging. As in this configuration, the number of measurements can be reduced by determining the quality of the unit cell by the battery voltage after the end of the low temperature aging, that is, by measuring the battery voltage once.

また,前記低温エージングステップでは,前記複数の単電池を拘束した状態でエージングを行うとよい。実使用状態と同じように複数の単電池を拘束し,各単電池の正極と負極との距離を近づけることで,短絡が生じている単電池の電圧低下をより促進させることができる。   In the low temperature aging step, aging may be performed in a state where the plurality of single cells are constrained. By constraining a plurality of cells in the same manner as in actual use, and by reducing the distance between the positive electrode and the negative electrode of each cell, it is possible to further promote the voltage drop of the cells that are short-circuited.

また,前記高温エージングステップでは,前記単電池を拘束した状態でエージングを行うとよい。実使用状態と同じように単電池を拘束することで,より実使用状態に即して電池反応を促進させることができる。   In the high temperature aging step, aging may be performed in a state where the unit cell is constrained. By constraining the cell in the same manner as in the actual use state, the battery reaction can be promoted more in line with the actual use state.

また,前記均等化ステップでは,一方の単電池の正極と他方の単電池の正極とを第1の接続部材によって電気的に接続し,前記一方の単電池の負極と前記他方の単電池の負極とを第2の接続部材によって電気的に接続するするとよい。この構成により,各単電池が並列に接続され,電池電圧が低い単電池は他の単電池から充電され,電池電圧が高い単電池は他の単電池を充電するために放電することになる。その結果として,第1および第2の接続部材に接続された各単電池の電池電圧を均等にすることができる。   In the equalizing step, the positive electrode of one unit cell and the positive electrode of the other unit cell are electrically connected by a first connecting member, and the negative electrode of the one unit cell and the negative electrode of the other unit cell are connected. Are preferably electrically connected by a second connecting member. With this configuration, each unit cell is connected in parallel, a unit cell with a low battery voltage is charged from another unit cell, and a unit cell with a high battery voltage is discharged to charge another unit cell. As a result, the battery voltages of the single cells connected to the first and second connection members can be equalized.

また,前記均等化ステップでは,前記第1の接続部材と前記第2の接続部材との少なくとも一方に抵抗を接続するとよい。この構成により,隣り合う単電池の電位差に起因する放電を回避することが期待でき,検査の安全性が高まる。   In the equalizing step, a resistor may be connected to at least one of the first connection member and the second connection member. With this configuration, it can be expected to avoid discharge caused by a potential difference between adjacent unit cells, and the safety of inspection is increased.

本発明によれば,二次電池の短絡を短時間で検知することが期待できる二次電池の製造方法が実現される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the secondary battery which can anticipate detecting the short circuit of a secondary battery in a short time is implement | achieved.

実施の形態にかかるリチウムイオン二次電池の外観および内部構成を示す斜視透視図である。It is a perspective perspective view which shows the external appearance and internal structure of the lithium ion secondary battery concerning embodiment. 実施の形態にかかるリチウムイオン二次電池の製造手順を示すフローチャートである。It is a flowchart which shows the manufacture procedure of the lithium ion secondary battery concerning embodiment. リチウムイオン二次電池の,電圧と温度との時間変化を示すグラフである。It is a graph which shows the time change of a voltage and temperature of a lithium ion secondary battery. リチウムイオン二次電池を電圧均等化回路に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the voltage equalization circuit with the lithium ion secondary battery. 図4に示した電圧均等化回路の模式図である。FIG. 5 is a schematic diagram of the voltage equalization circuit shown in FIG. 4. リチウムイオン単電池の拘束状態を示す図である。It is a figure which shows the restraint state of a lithium ion single battery. 自己放電検査における電圧変化量と時間との関係を示すグラフである。It is a graph which shows the relationship between the voltage variation | change_quantity and time in a self-discharge test | inspection.

以下,本発明にかかる二次電池を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,以下の形態では,ハイブリッド自動車に車載されるリチウムイオン二次電池に本発明を適用する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a secondary battery according to the present invention will be described in detail with reference to the accompanying drawings. In the following embodiment, the present invention is applied to a lithium ion secondary battery mounted on a hybrid vehicle.

[リチウムイオン二次電池の構成]
始めに,電池ユニットを構成するリチウムイオン二次電池100について,図1を参照しつつ説明する。
[Configuration of lithium ion secondary battery]
First, a lithium ion secondary battery 100 constituting a battery unit will be described with reference to FIG.

本形態のリチウムイオン二次電池100は,図1に示すように,リチウムイオン単電池100の外殻を形成する角型の外装部50とを有する密閉角型の二次電池である。図1は,外装部50を透視した状態を示している。以下の説明では,説明の便宜上,外装部
50の幅方向(図1中のX方向)を「幅方向」,外装部50の高さ方向(図1中のY方向)を「高さ方向」,外装部50の奥行き方向(図1中のZ方向)を「列置方向」とする。
As shown in FIG. 1, the lithium ion secondary battery 100 of this embodiment is a sealed rectangular secondary battery having a rectangular exterior portion 50 that forms the outer shell of the lithium ion single battery 100. FIG. 1 shows a state in which the exterior portion 50 is seen through. In the following description, for convenience of explanation, the width direction (X direction in FIG. 1) of the exterior portion 50 is “width direction”, and the height direction (Y direction in FIG. 1) of the exterior portion 50 is “height direction”. The depth direction of the exterior portion 50 (the Z direction in FIG. 1) is defined as the “row placement direction”.

外装部50は,容器となる電池ケース10と,電池ケース10の開口部を封止する封口蓋20とを有している。電池ケース10は,アルミニウム,アルミニウム合金,めっき鋼板,ステンレス鋼板等の金属材からなる。封口蓋20は,アルミニウム,めっき鋼板,ステンレス鋼板等の金属材からなる。電池ケース10や封口蓋20に利用する金属材は,成形が容易であって,剛性があるものであればよい。外装部50の内側全面には,不図示の絶縁フィルムが貼付されている。   The exterior portion 50 includes a battery case 10 serving as a container and a sealing lid 20 that seals an opening of the battery case 10. The battery case 10 is made of a metal material such as aluminum, an aluminum alloy, a plated steel plate, or a stainless steel plate. The sealing lid 20 is made of a metal material such as aluminum, a plated steel plate, or a stainless steel plate. The metal material used for the battery case 10 and the sealing lid 20 may be any material that can be easily molded and has rigidity. An insulating film (not shown) is attached to the entire inner surface of the exterior portion 50.

電池ケース10は,有底矩形の箱体,すなわち上面が開口した直方体をなしている。電池ケース10は,発電要素60を収納しており,矩形板状の封口蓋20にてその開口部を塞ぐことによって発電要素60を密封をしている。具体的に,外装部50は,電池ケース10と封口蓋20とがレーザ溶接によって一体となっている。   The battery case 10 is a bottomed rectangular box, that is, a rectangular parallelepiped having an upper surface opened. The battery case 10 houses the power generation element 60 and seals the power generation element 60 by closing the opening with a rectangular plate-shaped sealing lid 20. Specifically, in the exterior part 50, the battery case 10 and the sealing lid 20 are integrated by laser welding.

封口蓋20には,封口蓋20を貫通し,封口蓋20から外装部50の外側に向けて突出する正極集電端子31および負極集電端子32が取り付けられている。正極集電端子31の封口蓋20への取り付け箇所には,樹脂製の絶縁部材33が介在し,正極集電端子31と封口蓋20とを絶縁している。同様に,負極集電端子32の封口蓋20への取り付け箇所には,樹脂製の絶縁部材34が介在し,負極集電端子32と封口蓋20とを絶縁している。また,封口蓋20には,封口蓋20を貫通する注液孔24が設けられており,その注液孔24から電解液が注入される。また,封口蓋20には,矩形板状の安全弁23も溶接されている。   A positive electrode collector terminal 31 and a negative electrode collector terminal 32 are attached to the sealing lid 20 so as to penetrate the sealing lid 20 and protrude from the sealing lid 20 toward the outside of the exterior portion 50. An insulating member 33 made of resin is interposed at a position where the positive current collecting terminal 31 is attached to the sealing lid 20 to insulate the positive current collecting terminal 31 from the sealing lid 20. Similarly, an insulating member 34 made of resin is interposed at a location where the negative electrode current collecting terminal 32 is attached to the sealing lid 20 to insulate the negative electrode current collecting terminal 32 from the sealing lid 20. Further, the sealing lid 20 is provided with a liquid injection hole 24 penetrating the sealing lid 20, and an electrolytic solution is injected from the liquid injection hole 24. A rectangular plate-shaped safety valve 23 is also welded to the sealing lid 20.

発電要素60は,帯状の正極板61と,同じく帯状の負極板62とを,ポリエチレンからなるセパレータを挟んで捲回し,扁平状にしたものである。正極板61は,アルミ箔の両面に不図示の正極活物質層を担持している。この正極活物質層には,例えば,正極活物質(例えば,LiNi1/3Mn1/3Co1/32 ),導電剤のアセチレンブラック,結着剤のポリフッ化ビニリデン(PVdF),分散剤のポリビニルピロリドン(PVP)が含まれる。また,負極板62は,銅箔の両面に不図示の負極活物質層を担持している。この負極活物質層には,例えば,グラファイトおよび結着剤が含まれる。また,不図示の電解液は,エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを混合した混合有機溶媒に,溶質として6フッ化リン酸リチウム(LiPF6 )を添加し,リチウムイオンを1mol/lの濃度とした有機電解液である。なお,正極板61,正極活物質層,負極板62,負極活物質層,電解液に利用される物質は一例であり,一般的にリチウムイオン電池に利用されるものを適宜選択すればよい。 The power generation element 60 is obtained by winding a belt-like positive electrode plate 61 and a belt-like negative electrode plate 62 with a separator made of polyethylene interposed therebetween to make it flat. The positive electrode plate 61 carries a positive electrode active material layer (not shown) on both surfaces of an aluminum foil. The positive electrode active material layer includes, for example, a positive electrode active material (for example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), a conductive agent acetylene black, a binder polyvinylidene fluoride (PVdF), a dispersion The agent polyvinylpyrrolidone (PVP) is included. The negative electrode plate 62 carries a negative electrode active material layer (not shown) on both sides of the copper foil. This negative electrode active material layer contains, for example, graphite and a binder. In addition, the electrolyte solution (not shown) was added lithium hexafluorophosphate (LiPF 6 ) as a solute to a mixed organic solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed. An organic electrolyte having a lithium ion concentration of 1 mol / l. The materials used for the positive electrode plate 61, the positive electrode active material layer, the negative electrode plate 62, the negative electrode active material layer, and the electrolytic solution are merely examples, and materials generally used for lithium ion batteries may be appropriately selected.

正極板61は,クランク状に屈曲した板状の正極集電端子31と接合され,負極板62は,同じくクランク状に屈曲した板状の負極集電端子32と接合されている。具体的に,正極集電端子31は,発電要素60の幅方向の一方の端部に露出する正極板61と接合している。一方,負極集電端子32は,発電要素60の幅方向の他方の端部に露出する負極板62と接合している。   The positive electrode plate 61 is joined to a plate-like positive electrode current collecting terminal 31 bent in a crank shape, and the negative electrode plate 62 is joined to a plate-like negative electrode current collecting terminal 32 also bent in a crank shape. Specifically, the positive electrode current collecting terminal 31 is joined to the positive electrode plate 61 exposed at one end in the width direction of the power generation element 60. On the other hand, the negative electrode current collecting terminal 32 is joined to the negative electrode plate 62 exposed at the other end in the width direction of the power generation element 60.

[リチウムイオン二次電池の製造方法]
続いて,前述したリチウムイオン二次電池100の製造方法について,単電池作製後の検査工程に着目して説明する。図2は,リチウムイオン二次電池100の製造手順を示すフローチャートである。図3は,リチウムイオン二次電池100の,電池電圧および温度の時間変化を示すグラフである。図3中,上図が電池電圧の推移を示し,下図が電池温度の推移を示している。
[Method for producing lithium ion secondary battery]
Next, a method for manufacturing the above-described lithium ion secondary battery 100 will be described by paying attention to the inspection process after the unit cell is manufactured. FIG. 2 is a flowchart showing a manufacturing procedure of the lithium ion secondary battery 100. FIG. 3 is a graph showing changes over time in the battery voltage and temperature of the lithium ion secondary battery 100. In FIG. 3, the upper diagram shows the transition of the battery voltage, and the lower diagram shows the transition of the battery temperature.

リチウムイオン二次電池100の製造手順では,先ず,リチウムイオン二次電池100単体を作製する(S01)。S01では,例えば,発電要素60を電池ケース10内に収容し,封口蓋20を電池ケース10の開口部に溶接して,発電要素60を外装部50内に封止する。その後,注液孔24から外装部50内に電解液を注入し,その電解液が発電要素60内に浸透まで所定時間保管する。これにより,リチウムイオン二次電池100の単電池(以下,「リチウムイオン単電池100」とする)が作製される。作製後のリチウムイオン単電池100に対しては,外観検査が行われ,不良品が取り除かれる。   In the manufacturing procedure of the lithium ion secondary battery 100, first, the lithium ion secondary battery 100 is manufactured alone (S01). In S01, for example, the power generation element 60 is accommodated in the battery case 10, the sealing lid 20 is welded to the opening of the battery case 10, and the power generation element 60 is sealed in the exterior part 50. Thereafter, an electrolytic solution is injected into the exterior portion 50 from the liquid injection hole 24 and stored for a predetermined time until the electrolytic solution penetrates into the power generation element 60. Thereby, a unit cell of the lithium ion secondary battery 100 (hereinafter referred to as “lithium ion unit cell 100”) is manufactured. A visual inspection is performed on the manufactured lithium ion unit cell 100, and defective products are removed.

次に,S01で作製したリチウムイオン単電池100に対して,初充電を行う(S02)。具体的にS02では,電池使用上限電圧(本形態では,例えば4.10V)まで定電流定電圧で充電を行う。なお,S02では,リチウムイオン単電池100の充電は,個々に行ってもよいし,複数個を纏めて行ってもよい。   Next, initial charge is performed with respect to the lithium ion single cell 100 produced by S01 (S02). Specifically, in S02, charging is performed at a constant current and a constant voltage up to a battery use upper limit voltage (in this embodiment, for example, 4.10 V). In S02, charging of the lithium ion unit cell 100 may be performed individually or may be performed collectively.

リチウムイオン単電池100は,初充電が完了した状態では,電極の活物質量や密度のばらつき,発電要素60を拘束する拘束力のばらつき等により,電解液の浸透度合,充電によって発生するガスの抜け具合,リチウムイオンのインターカレーション度合,SEI皮膜の形成度合等にばらつきが生じる。そのため,初充電が完了した後,高温環境下でエージングを実施することにより,拡散を主とする電池反応を促進させ,安定化を図る。   In the state where the initial charge is completed, the lithium ion unit cell 100 has a degree of penetration of the electrolyte and a gas generated by charging due to variations in the amount and density of the active material of the electrode and variations in the binding force that restrains the power generation element 60. Variation occurs in the degree of omission, the degree of lithium ion intercalation, the degree of SEI film formation, and the like. For this reason, after the initial charge is completed, aging is performed in a high temperature environment to promote the cell reaction mainly of diffusion and to stabilize the battery.

具体的には,充電後のリチウムイオン単電池100を加熱室に収容し,第1の温度(本形態では,例えば60℃)までリチウムイオン単電池100を昇温させる(S03,昇温ステップの一例)。加熱室内には複数のリチウムイオン単電池100が収容され,それら複数のリチウムイオン単電池100が纏めて加熱される。   Specifically, the charged lithium ion unit cell 100 is housed in a heating chamber, and the temperature of the lithium ion unit cell 100 is raised to a first temperature (in this embodiment, for example, 60 ° C.) (S03, temperature increasing step). One case). A plurality of lithium ion unit cells 100 are accommodated in the heating chamber, and the plurality of lithium ion unit cells 100 are heated together.

第1の温度まで昇温させた後,高温環境下でのエージング試験を開始する(S04,高温エージングステップの一例)。すなわち,リチウムイオン単電池100を第1の温度に維持した状態で,第1の基準時間(本形態では,例えば10時間〜30時間)が経過するまで高温エージング室内に保管する。   After raising the temperature to the first temperature, an aging test in a high temperature environment is started (S04, an example of a high temperature aging step). That is, the lithium ion unit cell 100 is stored in the high temperature aging chamber until the first reference time (in this embodiment, for example, 10 hours to 30 hours) elapses while the lithium ion unit cell 100 is maintained at the first temperature.

この高温エージング中,前述した各種のばらつき要因によって,安定化後の電池電圧にばらつきが生じる。ただし,図3中のサンプルX1,X2のように,互いに異なる電池電圧で安定したとしても,良品として想定される許容範囲内であれば,両単電池ともこの高温エージングの段階では良品として扱う。なお,この高温エージング中,図3中のサンプルX3のように顕著に電圧が低下したリチウムイオン単電池100については不良品として排出する。   During the high temperature aging, the stabilized battery voltage varies due to the above-described various variation factors. However, even if the battery voltages are stabilized at different battery voltages as in samples X1 and X2 in FIG. 3, both single cells are treated as non-defective products at the high temperature aging stage as long as they are within acceptable tolerances. In addition, during this high temperature aging, the lithium ion unit cell 100 whose voltage is remarkably lowered as in the sample X3 in FIG. 3 is discharged as a defective product.

次に,高温エージングが完了した後,すなわち各リチウムイオン単電池100の電池電圧が安定した後,後述する短絡検査を同時に実行する複数のリチウムイオン単電池100に,電池電圧均等化回路を接続する(S05,均等化ステップの一例)。このS05によって,複数のリチウムイオン単電池100の電池電圧の均等化を図り,高温エージング中に生じた電池電圧のズレを解消する。   Next, after the high-temperature aging is completed, that is, after the battery voltage of each lithium ion cell 100 is stabilized, a battery voltage equalization circuit is connected to a plurality of lithium ion cells 100 that simultaneously execute a short-circuit inspection described later. (S05, example of equalization step). By this S05, the battery voltages of the plurality of lithium ion cells 100 are equalized, and the battery voltage deviation caused during high temperature aging is eliminated.

具体的にS05では,上述の複数のリチウムイオン単電池100を,図4に示すように扁平面同士を対向させ,列置方向に並ぶように配置する。特に,リチウムイオン単電池100の正極集電端子31が幅方向の一方の側に揃い,負極集電端子32が他方の側に揃うように配置する。そして,同時に均等化する全リチウムイオン単電池100の正極集電端子31をバスバー91に接続する。一方,同時に均等化する全リチウムイオン単電池100の負極集電端子32をバスバー92に接続する。   Specifically, in S05, the above-described plurality of lithium ion cells 100 are arranged so that the flat surfaces are opposed to each other as shown in FIG. In particular, the positive electrode current collecting terminal 31 of the lithium ion cell 100 is arranged on one side in the width direction, and the negative electrode current collecting terminal 32 is arranged on the other side. And the positive electrode current collection terminal 31 of all the lithium ion single cells 100 equalized simultaneously is connected to the bus bar 91. FIG. On the other hand, the negative electrode current collecting terminal 32 of all the lithium ion cells 100 to be equalized at the same time is connected to the bus bar 92.

上記のようにバスバー91およびバスバー92を接続することで,図5の電圧均等化回路90の模式図に示すように,全リチウムイオン単電池100が並列に接続されることになる。このように接続することで,他のリチウムイオン単電池と比較して電池電圧が低いリチウムイオン単電池は,他のリチウムイオン単電池から充電される。一方,他のリチウムイオン単電池と比較して電池電圧が高いリチウムイオン単電池は,他のリチウムイオン単電池を充電するために放電する。これにより,電圧均等化回路90を構成する全リチウムイオン単電池100の電池電圧が均等化される。   By connecting the bus bar 91 and the bus bar 92 as described above, all the lithium ion cells 100 are connected in parallel as shown in the schematic diagram of the voltage equalization circuit 90 of FIG. By connecting in this way, the lithium ion single battery whose battery voltage is lower than that of the other lithium ion single battery is charged from the other lithium ion single battery. On the other hand, a lithium ion cell having a higher battery voltage than other lithium ion cells is discharged to charge the other lithium ion cell. Thereby, the battery voltage of all the lithium ion cells 100 constituting the voltage equalization circuit 90 is equalized.

なお,本形態の電圧均等化回路90では,図5に示したように各リチウムイオン単電池100の正極端子に抵抗93が接続され,さらに各リチウムイオン単電池100の正極端子に接続された抵抗93が並列に接続される。この抵抗93は,隣り合うリチウムイオン単電池100,100間の電位差に基づく放電を抑制するために接続する。抵抗93の抵抗値は,小さすぎると放電抑制効果が少なくなり,大きすぎると電池電圧の均等化に時間がかかる。本形態では,各抵抗93を1kΩとする。この抵抗93は,正極側への接続に限定するものではなく,負極側に接続してもよい。また,両側ともに接続してもよい。   In the voltage equalization circuit 90 of this embodiment, as shown in FIG. 5, a resistor 93 is connected to the positive terminal of each lithium ion unit cell 100, and a resistor connected to the positive terminal of each lithium ion unit cell 100. 93 are connected in parallel. The resistor 93 is connected to suppress discharge based on the potential difference between the adjacent lithium ion cells 100 and 100. If the resistance value of the resistor 93 is too small, the effect of suppressing discharge is reduced, and if it is too large, it takes time to equalize the battery voltage. In this embodiment, each resistor 93 is 1 kΩ. The resistor 93 is not limited to the connection to the positive electrode side, but may be connected to the negative electrode side. Also, both sides may be connected.

また,S03〜S05では,各リチウムイオン単電池100を拘束した状態にするとよい。リチウムイオン単電池100を拘束することで,実装状態に近い環境での,電池反応の促進が可能になる。   Moreover, in S03-S05, it is good to make each lithium ion cell 100 restrained. By restraining the lithium ion cell 100, the battery reaction can be promoted in an environment close to the mounting state.

各リチウムイオン単電池100を拘束状態とする方法としては,例えば,図6に示すように,複数のリチウムイオン単電池100を収容する矩形ケース71と,矩形ケース71内に位置し,矩形ケース71の一方の端部から他方の端部に向けて拘束力を付与する拘束力付与プレート73とを有する拘束治具70を利用する。   For example, as shown in FIG. 6, a rectangular case 71 that accommodates a plurality of lithium ion single cells 100, and a rectangular case 71 that is positioned in the rectangular case 71 are used as a method for bringing each lithium ion single cell 100 into a restrained state. A restraining jig 70 having a restraining force applying plate 73 for applying a restraining force from one end of the head toward the other end is utilized.

具体的には,リチウムイオン単電池100を,図6に示したように,拘束治具70の矩形ケース71内に列置する。隣り合うリチウムイオン単電池100,100間には,難燃性の樹脂スペーサ75が挿入される。この状態で,拘束力付与プレート73が,羽根やネジ締め等によってリチウムイオン単電池100側に付勢される。これにより,矩形ケース71内に配置された各リチウムイオン単電池100に均等に列置方向の拘束力が付与される。   Specifically, the lithium ion cells 100 are arranged in a rectangular case 71 of the restraining jig 70 as shown in FIG. A flame retardant resin spacer 75 is inserted between the adjacent lithium ion cells 100, 100. In this state, the restraining force applying plate 73 is urged toward the lithium ion unit cell 100 side by blades or screw tightening. Thereby, the restraining force in the row direction is equally applied to each lithium ion unit cell 100 arranged in the rectangular case 71.

また,図3中のサンプルX3のように,顕著に電圧が低下したリチウムイオン単電池100については,電圧均等化回路90に接続する前に,予め不良品として除去しておく(除去ステップの一例)。顕著に電圧低下が生じた不良品を含めて電池電圧の均等化を図ると,その不良品の充電に必要な他の単電池の放電量が多くなり,電池電圧の均等化に時間がかかる。また,S07以降の短絡検査において,低温エージング前の基準電圧が下がりすぎてしまい,短絡の誤判定を生むおそれがある。そのため,不良品を除外し,無駄な充電時間を省く。   Further, as in the sample X3 in FIG. 3, the lithium ion unit cell 100 in which the voltage is remarkably lowered is previously removed as a defective product before being connected to the voltage equalizing circuit 90 (an example of a removal step). ). If the battery voltage is equalized, including defective products that have noticeably reduced voltage, the amount of discharge of other cells required for charging the defective products increases, and it takes time to equalize the battery voltage. In addition, in the short circuit inspection after S07, the reference voltage before low-temperature aging is too low, and there is a risk of erroneous determination of short circuit. Therefore, defective products are excluded and useless charging time is saved.

S05にて各リチウムイオン単電池100の電池電圧を均等化した後は,バスバー91,92を取り外し,高温エージング室から各リチウムイオン単電池100を取り出す。そして,各リチウムイオン単電池100を冷却室に収容し,第2の温度(本形態では,例えば20℃)まで同時に冷却する(S06,冷却ステップの一例)。   After equalizing the battery voltage of each lithium ion cell 100 in S05, the bus bars 91 and 92 are removed, and each lithium ion cell 100 is taken out from the high temperature aging chamber. Then, each lithium ion unit cell 100 is housed in a cooling chamber and simultaneously cooled to a second temperature (in this embodiment, for example, 20 ° C.) (S06, an example of a cooling step).

各リチウムイオン単電池100を冷却した後,各リチウムイオン単電池100について自己放電検査を実施し,各リチウムイオン単電池100内に短絡が生じているか否かを判定する。   After each lithium ion unit cell 100 is cooled, a self-discharge test is performed on each lithium ion unit cell 100 to determine whether or not a short circuit has occurred in each lithium ion unit cell 100.

具体的に自己放電検査では,先ず,同時に検査を行う各リチウムイオン単電池100を,低温エージング室内で,冷却完了後から第2の基準時間(本形態では,例えば1日〜4日)が経過するまで保管する(S07,低温エージングステップの一例)。S07の開始時点では,電圧均等化回路90を接続した効果によって,各リチウムイオン単電池100の電池電圧は概ね均等である。   Specifically, in the self-discharge test, first, a second reference time (for example, 1 to 4 days in this embodiment) has elapsed since the completion of cooling of each lithium ion unit cell 100 to be tested at the same time in the low-temperature aging chamber. (S07, an example of a low temperature aging step). At the start of S07, the battery voltages of the lithium ion cells 100 are substantially equal due to the effect of connecting the voltage equalization circuit 90.

第2の基準時間が経過した後,各リチウムイオン単電池100を電池電圧を測定する(S08,測定ステップの一例)。図7は,自己放電検査における電池電圧の変化量の推移を示している。図7に示すように,リチウムイオン単電池100は,自己放電によって微小な電圧低下が生じる。このとき,リチウムイオン単電池100内に短絡が生じていた場合には,良品と比較して電圧低下量が大きくなる。   After the second reference time has elapsed, the battery voltage of each lithium ion single cell 100 is measured (S08, an example of a measurement step). FIG. 7 shows the transition of the change amount of the battery voltage in the self-discharge test. As shown in FIG. 7, in the lithium ion single cell 100, a minute voltage drop occurs due to self-discharge. At this time, if a short circuit occurs in the lithium ion unit cell 100, the amount of voltage drop is larger than that of a non-defective product.

従来,この内部短絡による電圧低下量と良品の電圧低下量との差が,高温エージング時の電池電圧のズレよりも大きくなって,内部短絡を明確に区別できるまでに,10日を超えるような長時間の自己放電が必要であった。一方で,本形態では,高温エージング時の電池電圧のズレを電圧均等化回路90によって解消しているため,内部短絡による電圧低下量と良品の電圧低下量との差を,早期の段階で明確に区別することが期待できる。すなわち,本形態では,従来と比較して,自己放電検査におけるS08の保管時間が短縮される。   Conventionally, the difference between the voltage drop due to this internal short circuit and the voltage drop of non-defective products is greater than the deviation of the battery voltage during high-temperature aging so that it can exceed 10 days before the internal short circuit can be clearly distinguished. Long self-discharge was required. On the other hand, in this embodiment, since the voltage equalization circuit 90 eliminates the deviation of the battery voltage during high temperature aging, the difference between the voltage drop due to the internal short circuit and the voltage drop due to the non-defective product is clarified at an early stage. Can be expected to distinguish. That is, in this embodiment, the storage time of S08 in the self-discharge inspection is shortened compared to the conventional case.

次に,S08での測定結果から,各リチウムイオン単電池100に短絡が発生しているか否かを判定する(S09,判定ステップの一例)。例えば,S08での電圧値が閾値以下であれば短絡が発生していると判定する。あるいは同時に測定した全てのリチウムイオン単電池100から求められる正規分布から外れた場合には短絡が発生しているものと判定してもよい。   Next, from the measurement result in S08, it is determined whether or not a short circuit has occurred in each lithium ion cell 100 (S09, an example of a determination step). For example, if the voltage value in S08 is less than or equal to the threshold value, it is determined that a short circuit has occurred. Or when it remove | deviates from the normal distribution calculated | required from all the lithium ion single cells 100 measured simultaneously, you may determine with the short circuit having generate | occur | produced.

なお,従来では,電池電圧のズレによって,高温エージング直後の各リチウムイオン単電池100の電圧にばらつきがあることを考慮し,自己放電検査開始前に,高温エージング直後の電圧をリチウムイオン電池100個々に測定し,さらに所定時間経過後に再度電圧を測定し,この2回の測定値の差から電圧変化量を求め,その電圧変化量に基づいて短絡の有無を判定していた。一方で,本形態では,高温エージング直後の各リチウムイオン単電池100の電池電圧は均等であり,均等化後の電池電圧値は概ね一定であることから,所定時間経過後に測定した電圧値だけであっても電圧変化量のばらつきを見極めることができる。すなわち,電圧測定回数を1回に減らすことができる。   Conventionally, considering that there is a variation in the voltage of each lithium ion unit cell 100 immediately after high temperature aging due to battery voltage deviation, the voltage immediately after high temperature aging is applied to each lithium ion battery 100 before the start of self-discharge inspection. The voltage was measured again after a lapse of a predetermined time, the amount of voltage change was obtained from the difference between the two measured values, and the presence or absence of a short circuit was determined based on the amount of voltage change. On the other hand, in this embodiment, the battery voltage of each lithium ion cell 100 immediately after high-temperature aging is uniform, and the battery voltage value after equalization is substantially constant. Therefore, only the voltage value measured after a predetermined time has elapsed. Even if it exists, the variation in the amount of voltage change can be determined. That is, the number of voltage measurements can be reduced to one.

S08による判定の結果,短絡が発生しているを判定されたリチウムイオン単電池100は,不良品として取り除かれる。そして,残ったリチウムイオン単電池100が良品として出荷される。   As a result of the determination in S08, the lithium ion unit cell 100 determined to have a short circuit is removed as a defective product. The remaining lithium-ion cell 100 is shipped as a non-defective product.

なお,前述したリチウムイオン二次電池100の製造方法は,あくまでも単電池を製造する方法である。製造後のリチウムイオン単電池100は,その後,同じように製造された複数のリチウムイオン単電池100と組み合わされ,直列に接続されて電池ユニットとなる。そして,市場投入時には,電池ユニットとして,電気自動車やハイブリッド車に車載される。   In addition, the manufacturing method of the lithium ion secondary battery 100 mentioned above is a method of manufacturing a single battery to the last. The manufactured lithium ion unit cell 100 is then combined with a plurality of lithium ion unit cells 100 manufactured in the same manner and connected in series to form a battery unit. And when it is put on the market, it is mounted on an electric vehicle or a hybrid vehicle as a battery unit.

以上詳細に説明したように本形態のリチウムイオン二次電池100の製造方法では,S07での低温エージングによる短絡検査を開始する前に,S04の高温エージングにて電池電圧のズレが生じていた電池電圧を,S05の電圧均等化回路90の接続によって均等に揃えている。そのため,短絡検査において,従来のように高温エージングによる電池電圧のズレと区別できるようになるまでの長期間のエージングが必要なく,短絡による自己放電量が少ない段階であっても,短絡が生じているリチウムイオン単電池100を明確に区別できる。従って,検査時間の短縮を図ることができる。   As described in detail above, in the method of manufacturing the lithium ion secondary battery 100 of this embodiment, the battery voltage has shifted due to the high temperature aging in S04 before the short circuit inspection by the low temperature aging in S07 is started. The voltages are evenly arranged by connecting the voltage equalization circuit 90 in S05. Therefore, in the short-circuit inspection, there is no need for long-term aging until it can be distinguished from battery voltage deviation due to high-temperature aging as in the past, and even if the amount of self-discharge due to short-circuit is small, a short-circuit occurs. The lithium ion cell 100 can be clearly distinguished. Therefore, the inspection time can be shortened.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,リチウムイオン二次電池は,車載用に限らず,家電製品やパソコンに利用されるものであってもよい。また,二次電池はリチウムイオン二次電池に限るものではない。すなわち,ニッケル水素電池やニッカド電池等の二次電池でも本発明を適用できる。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the lithium ion secondary battery is not limited to being mounted on a vehicle, but may be used for home appliances and personal computers. Further, the secondary battery is not limited to the lithium ion secondary battery. That is, the present invention can be applied to a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.

また,実施の形態では,複数のリチウムイオン単電池100を並列に接続することで,それら複数のリチウムイオン単電池100の電池電圧の均等化を図っているが,電池電圧の均等化手段はこれに限るものではない。例えば,均等化対象の各リチウムイオン単電池100の電池電圧を測定し,各リチウムイオン単電池の電池電圧を,その中で最も低電圧のリチウムイオン単電池100に揃うように他のリチウムイオン単電池100を放電してもよい。   In the embodiment, a plurality of lithium ion unit cells 100 are connected in parallel to equalize the battery voltages of the plurality of lithium ion unit cells 100. It is not limited to. For example, the battery voltage of each lithium ion unit cell 100 to be equalized is measured, and the battery voltage of each lithium ion unit cell is aligned with the lithium ion unit cell 100 having the lowest voltage among them. The battery 100 may be discharged.

また,実施の形態では,低温エージング完了時の電池電圧のみから良否判定を行っているが,これに限るものではない。すなわち,均等化完了後や低温エージング開始時の電池電圧も測定し,開始時の電池電圧と完了時の電池電圧との差から良否判定を行ってもよい。この場合であっても,開始時の電池電圧の測定は,複数あるリチウムイオン単電池100のうちの1つだけでよく,全てのリチウムイオン単電池100に対して測定する必要はない。   In the embodiment, the pass / fail determination is made only from the battery voltage at the completion of the low-temperature aging, but the present invention is not limited to this. That is, after completion of equalization, the battery voltage at the start of low-temperature aging may also be measured, and pass / fail judgment may be made from the difference between the battery voltage at the start and the battery voltage at the completion. Even in this case, the measurement of the battery voltage at the start may be performed by only one of the plurality of lithium ion single cells 100, and it is not necessary to measure all the lithium ion single cells 100.

また,実施の形態では,S06の冷却の際に,リチウムイオン単電池100を冷却室に移動させているが,常温の状態で冷却してもよい。また,S05の各リチウムイオン単電池100の電池電圧均等化を高温環境下で行っているが,常温環境下で行ってもよい。   In the embodiment, the lithium ion unit cell 100 is moved to the cooling chamber at the time of cooling in S06, but it may be cooled at room temperature. Moreover, although the battery voltage equalization of each lithium ion single cell 100 of S05 is performed in a high temperature environment, it may be performed in a normal temperature environment.

60 発電要素
90 電圧均等化回路
91,92 バスバー
93 抵抗
100 リチウムイオン単電池(二次電池)
60 Power generation element 90 Voltage equalization circuit 91, 92 Bus bar 93 Resistance 100 Lithium ion cell (secondary battery)

Claims (7)

初充電が完了した状態の単電池を第1の温度まで昇温させる昇温ステップと,
前記昇温ステップ後に,前記単電池を第1の基準時間が経過するまで前記第1の温度のままエージングを行う高温エージングステップと,
前記第1の基準時間が経過した後,複数の前記単電池の電池電圧を均等にする均等化ステップと,
前記均等化ステップの後に,前記複数の単電池を前記第1の温度よりも低い第2の温度まで冷却する冷却ステップと,
前記冷却ステップの後に,第2の基準時間が経過するまで前記複数の単電池を前記第2の温度のまま前記単電池のエージングを行う低温エージングステップと,
前記第2の基準時間が経過した後,前記複数の単電池の各々の電池電圧を測定する測定ステップと,
前記測定ステップの後に,その測定値に基づいて前記複数の単電池個々に良品か否かを判定する判定ステップと,
を含むことを特徴とする二次電池の製造方法。
A temperature raising step for raising the temperature of the unit cell in the initial charge state to the first temperature;
A high temperature aging step for aging the unit cell at the first temperature until a first reference time elapses after the temperature raising step;
An equalizing step for equalizing battery voltages of the plurality of single cells after the first reference time has elapsed;
A cooling step for cooling the plurality of single cells to a second temperature lower than the first temperature after the equalizing step;
A low temperature aging step of aging the single cells at the second temperature until the second reference time elapses after the cooling step;
A measurement step of measuring a battery voltage of each of the plurality of unit cells after the second reference time has elapsed;
A determination step for determining whether each of the plurality of single cells is a non-defective product based on the measurement value after the measurement step;
The manufacturing method of the secondary battery characterized by including.
請求項1に記載する二次電池の製造方法において,
前記高温エージングステップの開始後,前記均等化ステップの開始前に,前記単電池の電池電圧を測定し,その測定値が良品としての許容範囲を超えていた場合には,前記単電池を不良品として除外する除外ステップ
を含むことを特徴とする二次電池の製造方法。
In the manufacturing method of the secondary battery according to claim 1,
After the start of the high temperature aging step and before the start of the equalization step, the cell voltage of the unit cell is measured, and if the measured value exceeds the allowable range as a non-defective product, the unit cell is replaced with a defective unit. The manufacturing method of the secondary battery characterized by including the exclusion step excluded as.
請求項1または請求項2に記載する二次電池の製造方法において,
前記判定ステップは,前記測定ステップの測定値が,良品としての許容範囲内である場合に,前記単電池を良品と判定することを特徴とする二次電池の製造方法。
In the manufacturing method of the secondary battery according to claim 1 or 2,
The method of manufacturing a secondary battery, wherein the determining step determines that the single cell is a non-defective product when a measurement value of the measuring step is within an allowable range as a non-defective product.
請求項1から請求項3のいずれか1つに記載する二次電池の製造方法において,
前記低温エージングステップでは,前記複数の単電池を拘束した状態でエージングを行うことを特徴とする二次電池の製造方法。
In the manufacturing method of the rechargeable battery given in any 1 paragraph of Claims 1-3,
In the low temperature aging step, aging is performed in a state where the plurality of single cells are constrained.
請求項1から請求項4のいずれか1つに記載する二次電池の製造方法において,
前記高温エージングステップでは,前記単電池を拘束した状態でエージングを行うことを特徴とする二次電池の製造方法。
In the manufacturing method of the rechargeable battery given in any 1 paragraph of Claims 1-4,
In the high temperature aging step, aging is performed in a state where the unit cell is constrained.
請求項1から請求項5のいずれか1つに記載する二次電池の製造方法において,
前記均等化ステップでは,一方の単電池の正極と他方の単電池の正極とを第1の接続部材によって電気的に接続し,前記一方の単電池の負極と前記他方の単電池の負極とを第2の接続部材によって電気的に接続することを特徴とする二次電池の製造方法。
In the manufacturing method of the rechargeable battery given in any 1 paragraph of Claims 1-5,
In the equalizing step, the positive electrode of one unit cell and the positive electrode of the other unit cell are electrically connected by a first connecting member, and the negative electrode of the one unit cell and the negative electrode of the other unit cell are connected. A method for manufacturing a secondary battery, wherein the second connection member is electrically connected.
請求項6に記載する二次電池の製造方法において,
前記均等化ステップでは,前記第1の接続部材と前記第2の接続部材との少なくとも一方に抵抗を接続することを特徴とする二次電池の製造方法。
In the manufacturing method of the secondary battery according to claim 6,
In the equalizing step, a resistance is connected to at least one of the first connection member and the second connection member.
JP2011262073A 2011-11-30 2011-11-30 Manufacturing method of secondary battery Active JP5590012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262073A JP5590012B2 (en) 2011-11-30 2011-11-30 Manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262073A JP5590012B2 (en) 2011-11-30 2011-11-30 Manufacturing method of secondary battery

Publications (2)

Publication Number Publication Date
JP2013114986A true JP2013114986A (en) 2013-06-10
JP5590012B2 JP5590012B2 (en) 2014-09-17

Family

ID=48710324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262073A Active JP5590012B2 (en) 2011-11-30 2011-11-30 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP5590012B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090806A (en) * 2013-11-06 2015-05-11 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery
JP2015173039A (en) * 2014-03-11 2015-10-01 トヨタ自動車株式会社 Method of manufacturing secondary cell
WO2015173623A1 (en) 2014-05-14 2015-11-19 Toyota Jidosha Kabushiki Kaisha Method of manufacturing secondary battery
WO2016009261A1 (en) * 2014-07-14 2016-01-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous secondary battery
CN105870507A (en) * 2015-02-09 2016-08-17 特斯拉汽车公司 Cell manufacturing using liquid-based thermal system
JP2016192278A (en) * 2015-03-31 2016-11-10 トヨタ自動車株式会社 Inspection method of secondary battery
JP2016194998A (en) * 2015-03-31 2016-11-17 株式会社Gsユアサ Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
CN106537654A (en) * 2014-07-14 2017-03-22 丰田自动车株式会社 Method of manufacturing nonaqueous secondary battery
CN111566494A (en) * 2017-08-14 2020-08-21 杜克斯有限公司 Battery aging process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128366B2 (en) * 2012-08-06 2017-05-17 トヨタ自動車株式会社 Secondary battery inspection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321250A (en) * 1997-05-15 1998-12-04 Fuji Photo Film Co Ltd Sorting device of article
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JPH11329408A (en) * 1998-05-13 1999-11-30 Fuji Film Celltec Kk Nonaqueous secondary battery electrode sheet and nonaqueous secondary battery using this
JP2000260482A (en) * 1999-03-09 2000-09-22 Matsushita Electric Ind Co Ltd Secondary battery
JP2004179009A (en) * 2002-11-27 2004-06-24 Sony Corp Battery aging method and aging device
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
WO2011036705A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Process for producing secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321250A (en) * 1997-05-15 1998-12-04 Fuji Photo Film Co Ltd Sorting device of article
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JPH11329408A (en) * 1998-05-13 1999-11-30 Fuji Film Celltec Kk Nonaqueous secondary battery electrode sheet and nonaqueous secondary battery using this
JP2000260482A (en) * 1999-03-09 2000-09-22 Matsushita Electric Ind Co Ltd Secondary battery
JP2004179009A (en) * 2002-11-27 2004-06-24 Sony Corp Battery aging method and aging device
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
WO2011036705A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Process for producing secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090806A (en) * 2013-11-06 2015-05-11 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery
JP2015173039A (en) * 2014-03-11 2015-10-01 トヨタ自動車株式会社 Method of manufacturing secondary cell
WO2015173623A1 (en) 2014-05-14 2015-11-19 Toyota Jidosha Kabushiki Kaisha Method of manufacturing secondary battery
CN106537654A (en) * 2014-07-14 2017-03-22 丰田自动车株式会社 Method of manufacturing nonaqueous secondary battery
CN106537654B (en) * 2014-07-14 2020-05-19 丰田自动车株式会社 Method for manufacturing nonaqueous secondary battery
JP2016021301A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
WO2016009261A1 (en) * 2014-07-14 2016-01-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous secondary battery
CN106537677A (en) * 2014-07-14 2017-03-22 丰田自动车株式会社 Method of manufacturing nonaqueous secondary battery
US10249915B2 (en) 2014-07-14 2019-04-02 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous secondary battery
CN106537677B (en) * 2014-07-14 2019-08-09 丰田自动车株式会社 The method for manufacturing non-aqueous secondary batteries
CN105870507A (en) * 2015-02-09 2016-08-17 特斯拉汽车公司 Cell manufacturing using liquid-based thermal system
CN105870507B (en) * 2015-02-09 2020-10-16 特斯拉公司 Battery manufacturing using liquid-based thermal system
JP2016194998A (en) * 2015-03-31 2016-11-17 株式会社Gsユアサ Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
JP2016192278A (en) * 2015-03-31 2016-11-10 トヨタ自動車株式会社 Inspection method of secondary battery
CN111566494A (en) * 2017-08-14 2020-08-21 杜克斯有限公司 Battery aging process
JP2020533607A (en) * 2017-08-14 2020-11-19 デューコシ リミティド Battery maturation process
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells

Also Published As

Publication number Publication date
JP5590012B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5590012B2 (en) Manufacturing method of secondary battery
Gandoman et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges
Lai et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
Brand et al. Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology
JP6256761B2 (en) Secondary battery inspection method and manufacturing method
US9966638B2 (en) Manufacturing method for non-aqueous secondary battery
KR101873659B1 (en) Method of producing nonaqueous secondary battery
Wu et al. Research on overcharge and overdischarge effect on lithium-ion batteries
JP2009145137A (en) Inspection method of secondary battery
JP5590013B2 (en) Manufacturing method of secondary battery
CN103403941A (en) Secondary battery testing method
Zhang et al. Revealing the impact of fast charge cycling on the thermal safety of lithium-ion batteries
JP4179528B2 (en) Secondary battery inspection method
KR101881263B1 (en) Method of manufacturing nonaqueous secondary battery
JP2015008106A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014238961A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6897411B2 (en) How to manufacture a secondary battery
US10797293B2 (en) Battery pack
JP7011782B2 (en) Secondary battery inspection method
JP7052697B2 (en) Manufacturing method of lithium ion secondary battery
Padmanabh et al. Performance and dynamic charge acceptance estimation of different Lithium-Ion batteries for electric and hybrid electric vehicles
Vora Internal Short Circuit in Lithium-Ion Batteries
JP7315606B2 (en) Method for manufacturing non-aqueous secondary battery
Bohinsky Operando Degradation Diagnostics and Fast Charging Analytics in Lithium-Ion Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R151 Written notification of patent or utility model registration

Ref document number: 5590012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151