JP2000260482A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2000260482A
JP2000260482A JP11061306A JP6130699A JP2000260482A JP 2000260482 A JP2000260482 A JP 2000260482A JP 11061306 A JP11061306 A JP 11061306A JP 6130699 A JP6130699 A JP 6130699A JP 2000260482 A JP2000260482 A JP 2000260482A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
battery
open circuit
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11061306A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuhisa
一朗 松久
Takashi Yokoyama
敬士 横山
Hideki Okada
秀輝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11061306A priority Critical patent/JP2000260482A/en
Publication of JP2000260482A publication Critical patent/JP2000260482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a defective circuit voltage in a shipment inspection so as to improve battery quality by connecting all the batteries in the corresponding lot in parallel after initial charging for matching open circuit voltages with each other. SOLUTION: A negative electrode using carbon applied to a copper foil as a negative electrode active material and a positive electrode using lithium cobaltate as a positive electrode active material are wounded several times via a separator into a roll-shaped group of components. Constant current charging is finished when a battery voltage reaches 4.1 V. Subsequently, all the batteries in the same production lot are connected in parallel so as to be left standing, and the battery voltage match each other. After again is carried out further, an open circuit voltage inspection is carried out and only a secondary battery with a defective open circuit voltage is rejected. In this way, variation of an open circuit voltage is reduced, and a secondary battery causing minor internal short circuit can be easily selected so as to be removed. Alternatively, matching of voltage may be carried out by performing parallel connection in aging or after aging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関す
る。
[0001] The present invention relates to a secondary battery.

【0002】[0002]

【従来の技術】二次電池は一般的に正極,負極,セパレ
ータからなる構成群を電池ケースに挿入し、次いで電解
液を注入して開口部を封口蓋等で封口して作製してい
る。そして、定電流で充電して二次電池がある電圧に達
した段階で充電を完了させるか、あるいは、定電流で充
電してある電圧に達した段階から定電圧充電するいわゆ
る定電圧,定電流充電(CVCC)で充電を完了させて
いる。その後、二次電池の品質を安定させるために一定
条件の環境下で一定期間エージングし、最終検査の後、
製品として出荷されている。また、少なくとも2個以上
の二次電池を並列に接続後、一定電圧に保持して充電
し、次に、直列に接続後、一定電流で一定時間放電後、
個々の電池毎に一定電流で一定電圧まで放電する技術
が、例えば特開平5−74492号公報に開示されてい
る。
2. Description of the Related Art In general, a secondary battery is manufactured by inserting a component group consisting of a positive electrode, a negative electrode, and a separator into a battery case, injecting an electrolytic solution, and closing the opening with a sealing lid or the like. The secondary battery is charged with a constant current to complete the charging when it reaches a certain voltage, or is charged at a constant voltage when the secondary battery reaches a certain voltage. Charging is completed by charging (CVCC). After that, to stabilize the quality of the rechargeable battery, it is aged for a certain period under certain conditions, and after the final inspection,
Shipped as a product. Also, after connecting at least two or more rechargeable batteries in parallel, hold and charge at a constant voltage, then connect in series, discharge at a constant current for a fixed time,
A technique of discharging a constant current to a constant voltage for each individual battery is disclosed in, for example, Japanese Patent Application Laid-Open No. 5-74492.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記初
期充電では、二次電池内部の極板の一部が均一に充電さ
れていなかったり、充電される雰囲気温度が各二時電池
によりばらついていたり、充電設備の精度のばらつき等
の原因で、初期充電完了直後の開路電圧のばらつきが大
きく、エージングが完了した段階でもその状態が維持拡
大されている。さらに、エージング中には、正極中の金
属不純物等が存在した場合は、正極上で金属イオンとな
って電解液中に溶出し、負極上で金属となってデンドラ
イト状に析出し、それがセパレータを突き破って微小な
内部短絡を発生させる場合がある。このような二次電池
において、仮に微小短絡を発生させる前の電圧がばらつ
きの高い方に分布していると、最終検査の際、不良品の
排除が困難となり、品質の向上を図る上での障害となっ
ていた。
However, in the above-described initial charging, a part of the electrode plate inside the secondary battery is not charged uniformly, or the ambient temperature of the charged battery varies depending on each battery. Due to variations in the accuracy of the charging equipment and the like, the variation in the open circuit voltage immediately after the completion of the initial charging is large, and the state is maintained and expanded even after the aging is completed. Furthermore, during aging, if metal impurities or the like in the positive electrode exist, they become metal ions on the positive electrode and elute into the electrolytic solution, become metal on the negative electrode and precipitate in dendrite form, And a small internal short circuit may occur. In such a secondary battery, if the voltage before the occurrence of a micro short-circuit is distributed in a direction having a higher variation, it is difficult to eliminate defective products at the time of the final inspection, and to improve quality. Was an obstacle.

【0004】本発明はこのような課題に対応すべく、二
次電池の初期充電工程において二次電池の品質の向上を
図ることを目的とするものである。
An object of the present invention is to improve the quality of a secondary battery in an initial charging step of the secondary battery in order to cope with such a problem.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、初期充電完了後、該当ロット全数を並列接
続してロット全体の開路電圧が揃えてあることを特徴と
するものであり、本発明を用いることで、出荷検査で開
路電圧不良の選別が容易になり、電池の品質が向上する
こととなる。
In order to solve the above-mentioned problems, the present invention is characterized in that after the initial charging is completed, all the lots are connected in parallel so that the open circuit voltages of the whole lots are equalized. By using the present invention, it is easy to select an open circuit voltage defect in a shipping inspection, and the quality of a battery is improved.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を以下に示
す。
Embodiments of the present invention will be described below.

【0007】図1に示すように、カーボンを負極活物質
として銅箔に塗着して構成した負極と、コバルト酸リチ
ウムを正極活物質とした正極を、セパレータを介在して
複数回渦巻状に巻回し構成群1とする。そして、構成群
1はニッケルメッキ鋼板製の電池ケース2に挿入し、負
極リード3は電池ケース2の内底部に接続され、正極リ
ード4は封口蓋5に接続される。次に、電解質を注液し
て、封口蓋5で電池ケース2の開口部は封口される。6
は構成群1の上部絶縁板、7は構成群1の下部絶縁板を
示す。電池ケース2の開口部付近に溝部8を設け、この
溝部8に封口蓋5を載せ、電池ケース2の開口部をかし
める。
As shown in FIG. 1, a negative electrode formed by coating carbon foil as a negative electrode active material with carbon and a positive electrode using lithium cobalt oxide as a positive electrode active material are spirally wound a plurality of times with a separator interposed therebetween. This is referred to as a winding configuration group 1. Then, the component group 1 is inserted into a battery case 2 made of a nickel-plated steel plate, the negative electrode lead 3 is connected to the inner bottom of the battery case 2, and the positive electrode lead 4 is connected to the sealing lid 5. Next, an electrolyte is injected, and the opening of the battery case 2 is sealed with the sealing lid 5. 6
Denotes an upper insulating plate of the constituent group 1, and 7 denotes a lower insulating plate of the constituent group 1. A groove 8 is provided near the opening of the battery case 2, and the sealing lid 5 is placed in the groove 8, and the opening of the battery case 2 is swaged.

【0008】次に、定電流で充電し電池電圧が4.1V
に達した段階で充電を完了させる。その後、同一生産ロ
ットのすべての電池を並列接続して放置し、電池電圧を
一定に揃えておく。さらに、エージングを行った後、開
路電圧検査を実施し、開路電圧が不良の二次電池のみ排
除する。本実施の形態の円筒形リチウム二次電池は、そ
の具体的な実施例として電池ケース2の径を17.9m
m、溝部8の内径を15.0mm、開口時、溝部から電
池開口端部までを5.0mm、電池ケース底部から電池
開口端部までを63.2mm、そして、構成群を外径1
7.0mm,長さを58.2mmとする。
Next, the battery is charged with a constant current and the battery voltage is 4.1 V
The charging is completed at the stage when the value reaches. After that, all the batteries of the same production lot are connected in parallel and left to keep the battery voltage constant. Further, after aging, an open-circuit voltage test is performed, and only the secondary battery having a bad open-circuit voltage is excluded. As a specific example of the cylindrical lithium secondary battery of the present embodiment, the diameter of the battery case 2 is 17.9 m.
m, the inner diameter of the groove 8 is 15.0 mm, when open, 5.0 mm from the groove to the battery opening end, 63.2 mm from the battery case bottom to the battery opening end, and the outer diameter of the component group is 1 mm.
The length is 7.0 mm and the length is 58.2 mm.

【0009】ここで、上記円筒形リチウムイオン二次電
池として、図1で示すものを用いて二次電池を作製し、
表1に示す充電方法にて初期充電を実施し、その後、常
温常湿で1ヶ月間エージングを実施して従来例二次電池
とした。また、従来例二次電池と同様に初期充電を実施
し、初期充電後1時間並列接続した二次電池を二次電池
Aとした。さらに、初期充電後に並列接続による電圧揃
えを実施しないで、エージング期間中に並列接続による
電圧揃えを1時間実施した二次電池を二次電池Bとし
た。また、二次電池Bと異なり、エージング完了後、並
列接続による電圧揃えを1時間実施した二次電池を二次
電池Cとした。
Here, as the cylindrical lithium ion secondary battery, a secondary battery was manufactured using the one shown in FIG.
Initial charging was performed by the charging method shown in Table 1, and then aging was performed at normal temperature and normal humidity for one month to obtain a conventional secondary battery. Initial charging was performed in the same manner as the conventional secondary battery, and a secondary battery connected in parallel for 1 hour after the initial charging was designated as secondary battery A. Further, a secondary battery in which the voltage adjustment by the parallel connection was performed for one hour during the aging period without performing the voltage adjustment by the parallel connection after the initial charging was designated as a secondary battery B. Further, unlike the secondary battery B, a secondary battery C in which voltage adjustment by parallel connection was performed for one hour after aging was completed was designated as a secondary battery C.

【0010】[0010]

【表1】 [Table 1]

【0011】これら従来例二次電池、本発明の実施例で
ある二次電池A,二次電池B,二次電池Cをともに、そ
れぞれの試験電池数量と開路電圧の平均値のばらつき
(σ)をそれぞれ、表2,表3,表4,表5に示した。
Each of the conventional secondary batteries and the secondary batteries A, B and C according to the embodiments of the present invention has a variation (σ) in the number of test batteries and the average value of the open circuit voltage. Are shown in Tables 2, 3, 4 and 5, respectively.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【表5】 [Table 5]

【0016】表2,表3の結果より初期充電後、該当ロ
ットの全二次電池を並列接続することで、ばらついてい
た開路電圧の平準化が行われ、従来例二次電池より開路
電圧のばらつきが小さくなっていることが判る。また、
エージング完了後、平均値±3σで検査基準を設定し、
その範囲に入るものを良品とし、それらをさらに1ヶ月
常温常湿にて保管して、再度平均値±3σで検査基準を
設定し開路電圧検査を実施した。その結果を表2,表3
に示しているが、従来例二次電池中には1%の不良が検
出され、エージング後の検査では、不良を完全に検出で
きていないことが判る。それに比べ本発明を実施した二
次電池Aでは不良が検出されず、エージング後の検査で
不良を排出できていることが判った。
According to the results shown in Tables 2 and 3, after the initial charge, all the secondary batteries of the corresponding lot are connected in parallel, so that the open-circuit voltage, which has been varied, is leveled. It can be seen that the variation is small. Also,
After aging is completed, set the inspection standard with the average value ± 3σ,
Non-defective products in the range were stored for one month at room temperature and normal humidity, and an inspection standard was set again with an average value of ± 3σ to perform an open circuit voltage inspection. Table 2 and Table 3 show the results.
As shown in FIG. 1, 1% of the defects were detected in the conventional secondary battery, and it was found that the defects were not completely detected in the inspection after aging. On the other hand, no defect was detected in the secondary battery A according to the present invention, and it was found that the defect could be discharged by the inspection after aging.

【0017】さらに、表4,表5に示すように、エージ
ング期間中、あるいはエージング期間完了後に並列接続
を実施して電圧揃えを実施しても同様の結果が得られる
ことが判った。
Further, as shown in Tables 4 and 5, it has been found that the same result can be obtained even when the parallel connection is performed and the voltage is adjusted during the aging period or after the aging period is completed.

【0018】上記のような検討を、他の二次電池系につ
いて実施したところ、同様の効果を得られることが判っ
た。
When the above study was conducted on other secondary battery systems, it was found that similar effects could be obtained.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によれば、開路電圧のばらつきを小さくでき、さらに微
小な内部短絡を発生しているような二次電池を容易に選
別し取り除くことができるので、品質の安定した信頼性
の高い二次電池を供給することができる。
As is apparent from the above description, according to the present invention, it is possible to reduce the variation of the open circuit voltage and to easily select and remove a secondary battery having a small internal short circuit. Therefore, a highly reliable secondary battery with stable quality can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒形リチウムイオン二次電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical lithium ion secondary battery.

【符号の説明】[Explanation of symbols]

1 構成群 2 電池ケース 3 負極リード 4 正極リード 5 封口蓋 6 上部絶縁板 7 下部絶縁板 8 溝部 DESCRIPTION OF SYMBOLS 1 Constituent group 2 Battery case 3 Negative electrode lead 4 Positive electrode lead 5 Sealing lid 6 Upper insulating plate 7 Lower insulating plate 8 Groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 秀輝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ14 AK03 AL06 BJ02 BJ14 CJ16 5H030 AA03 AA09 AA10 AS20 BB01 FF44  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Okada 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 初期充電後、該当ロットを全数並列接続
することにより開路電圧が揃えてあることを特徴とする
二次電池。
1. A rechargeable battery characterized in that all the lots are connected in parallel after the initial charge so that the open circuit voltages are uniform.
JP11061306A 1999-03-09 1999-03-09 Secondary battery Pending JP2000260482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11061306A JP2000260482A (en) 1999-03-09 1999-03-09 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11061306A JP2000260482A (en) 1999-03-09 1999-03-09 Secondary battery

Publications (1)

Publication Number Publication Date
JP2000260482A true JP2000260482A (en) 2000-09-22

Family

ID=13167370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11061306A Pending JP2000260482A (en) 1999-03-09 1999-03-09 Secondary battery

Country Status (1)

Country Link
JP (1) JP2000260482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2013114986A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Secondary battery manufacturing method
US11777421B2 (en) 2021-02-26 2023-10-03 Prime Planet Energy & Solutions, Inc. Method for adjusting device voltage of power storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP4529364B2 (en) * 2003-03-24 2010-08-25 パナソニック株式会社 Cylindrical battery inspection method
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2013114986A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Secondary battery manufacturing method
US11777421B2 (en) 2021-02-26 2023-10-03 Prime Planet Energy & Solutions, Inc. Method for adjusting device voltage of power storage device

Similar Documents

Publication Publication Date Title
US10345388B2 (en) Method for screening lithium ion battery
US10107863B2 (en) Test method for secondary battery
JP2012084346A (en) Method for producing lithium ion secondary battery
JP2014025858A (en) Secondary battery pre-shipment inspection method
JP4529364B2 (en) Cylindrical battery inspection method
JP2011222358A (en) Charging method of lithium ion secondary battery
JP4048905B2 (en) Battery inspection method
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
JP2006253027A (en) Method for manufacturing secondary battery
JP2000260482A (en) Secondary battery
JPH11297367A (en) Short-circuit inspecting method and short-circuit inspecting device for electrode group of battery
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2000195565A (en) Inspection method of secondary battery
JP6374193B2 (en) Self-discharge inspection method for non-aqueous electrolyte secondary battery
KR101927845B1 (en) Battery testing device and method thereof
CN110707387A (en) Self-discharge screening method for lithium iron phosphate core
CN115436817A (en) Self-discharge screening method
CN113241502B (en) Insufficient solder detection method, insufficient solder detection device and preparation method of lithium battery
JP2017126539A (en) Method for manufacturing secondary battery
JP7052697B2 (en) Manufacturing method of lithium ion secondary battery
JP2018055878A (en) Manufacturing method of battery
US20240103096A1 (en) Method for inspecting a power storage device, method for manufacturing a power storage device, and method for manufacturing a device stack
JP6693393B2 (en) Battery manufacturing method
US20240103095A1 (en) Method for inspecting a power storage device for short circuit, method for manufacturing the power storate device, and method for manufacturing a connected restrained-device module