JP2000195565A - Inspection method of secondary battery - Google Patents

Inspection method of secondary battery

Info

Publication number
JP2000195565A
JP2000195565A JP10371538A JP37153898A JP2000195565A JP 2000195565 A JP2000195565 A JP 2000195565A JP 10371538 A JP10371538 A JP 10371538A JP 37153898 A JP37153898 A JP 37153898A JP 2000195565 A JP2000195565 A JP 2000195565A
Authority
JP
Japan
Prior art keywords
battery
voltage
current
short
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10371538A
Other languages
Japanese (ja)
Inventor
Tadashi Ise
忠司 伊勢
Koji Miki
康二 三木
Original Assignee
Sanyo Electric Co Ltd
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, 三洋電機株式会社 filed Critical Sanyo Electric Co Ltd
Priority to JP10371538A priority Critical patent/JP2000195565A/en
Publication of JP2000195565A publication Critical patent/JP2000195565A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To simply discriminate a good battery from a potentially shorted battery by applying a voltage between electrodes before filling an electrolyte and detecting a current causing electric breakdown between electrodes. SOLUTION: Output voltage of a constant voltage power source 2 of a breakdown voltage test device 1 is set to a voltage which does not cause electric breakdown to a good battery but causes electric breakdown to a potentially shorted battery, for example, set to 100-400 V in the inspection of a Ni-hydrogen battery. In the inspection, since the good battery does not cause electric breakdown, voltage is made equal to electric breakdown voltage of the potentially shorted battery, and a current becomes a leak current, and very small. The potentially shorted battery causes electric breakdown, voltage can not rise to electric breakdown voltage of the potentially shorted battery and very high current flows. The good battery and the potentially shorted battery can be discriminated by detecting the current flowing between electrodes 4 with a current detecting circuit 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、製造された状態で
はショートしていないが、将来的にショートする潜在シ
ョート電池を判別する二次電池の検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of inspecting a secondary battery for determining a potential short-circuited battery which is not short-circuited in a manufactured state but short-circuited in the future.
【0002】[0002]
【従来の技術】正極と負極をセパレータを介して積層し
ている電極体を外装缶に入れている二次電池は、正負極
間に、電極のかけら等の異物が混入すると電極と接触し
て、ショートする。内部ショートした電池は、電池の組
立工程で、抵抗や電圧を測定して判別して排除してい
る。
2. Description of the Related Art A secondary battery in which an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween is placed in an outer can, is contacted with the electrode when foreign matter such as fragments of the electrode is mixed between the positive and negative electrodes. , Short. A battery with an internal short circuit is excluded by measuring and determining a resistance and a voltage in a battery assembling process.
【0003】組立られた二次電池を検査する方法は、た
とえば特開昭51−16439号公報に記載される。こ
の公報に記載される検査方法は、1000〜3000V
と極めて高い電圧を、10〜20μsecにパルス電圧
として印加して電極間の内部ショートを検出する。正極
と負極が接触して内部ショートしている二次電池は、パ
ルス電圧を印加したときにショート電流がパルス状に流
れるので、電流を検出して二次電池の内部ショートを検
出できる。この方法は、正極や負極の表面に酸化膜など
があって、実際には正極と負極とが接触しているのに、
ショート電流が流れない弊害を解消するために、100
0V〜3000Vの高電圧を印加する。
A method for inspecting the assembled secondary battery is described in, for example, Japanese Patent Application Laid-Open No. SHO 51-16439. The inspection method described in this publication is 1000-3000V
And an extremely high voltage is applied as a pulse voltage for 10 to 20 μsec to detect an internal short circuit between the electrodes. In a secondary battery in which the positive electrode and the negative electrode are in contact with each other and short-circuited internally, a short-circuit current flows in a pulse shape when a pulse voltage is applied. Therefore, the internal short-circuit of the secondary battery can be detected by detecting the current. In this method, there is an oxide film or the like on the surface of the positive electrode or the negative electrode, and although the positive electrode and the negative electrode are actually in contact,
In order to eliminate the adverse effect that short current does not flow, 100
A high voltage of 0 V to 3000 V is applied.
【0004】[0004]
【発明が解決しようとする課題】以上の公報に記載され
る検査方法で、二次電池の内部ショートを判定できる。
しかしながら、この公報に記載される方法は、検査した
ときには正極と負極とが互いに接触していないが、将来
的に電極が接触して内部ショートを起こす潜在ショート
電池を識別できない。電極間に小さい異物等が付着して
組み立てられた二次電池は、組み立てた時にはショート
していないことがあるからである。しかしながら、充放
電を繰り返すことによって、電極が接触して、ショート
することがある。このような状態にある潜在ショート電
池は、組み立てた時の検査では、良品電池と識別できな
い。特に、水溶液系の電解液を注液している二次電池
は、電解液自身の導電性が高いために、注液した後で
は、電極をショートさせる原因となる異物の有無によら
ず、内部抵抗が極めて低いために、電圧と電流を測定す
る方法では、潜在ショート電池の識別は困難である。ま
た、注液前の状態においても、電極間の抵抗が極めて大
きいために、潜在ショート電池と良品電池とで差異がな
く、潜在ショート電池の識別はできない。
The internal short circuit of the secondary battery can be determined by the inspection method described in the above publication.
However, the method described in this publication cannot identify a potential short-circuit battery in which the positive electrode and the negative electrode are not in contact with each other when inspected, but the electrodes will come into contact and cause an internal short-circuit in the future. This is because a secondary battery assembled by attaching small foreign matter or the like between the electrodes may not be short-circuited when assembled. However, repeated charging and discharging may cause the electrodes to come into contact and cause a short circuit. The latent short battery in such a state cannot be identified as a good battery by inspection at the time of assembly. In particular, secondary batteries in which an aqueous electrolyte solution is injected have high conductivity after the injection, regardless of the presence or absence of foreign matter that may cause a short circuit in the electrode after injection. Due to the extremely low resistance, the method of measuring voltage and current makes it difficult to identify a potential short battery. In addition, even before the injection, since the resistance between the electrodes is extremely large, there is no difference between the latent short battery and the non-defective battery, and the latent short battery cannot be identified.
【0005】潜在ショート電池を識別して除去すること
は、二次電池の製造において極めて大切なことである。
それは、パック電池のように、複数の二次電池を直列に
接続して使用する場合、ひとつの電池の寿命がパック電
池全体の寿命を決定するからである。たとえば、10個
の二次電池を直列に接続して使用する場合、わずかに1
個の二次電池が不良になると、残り9個の二次電池が正
常に使用できる状態にあっても全体が使用できなくなっ
てしまう。このため、多数の二次電池を直列に接続して
使用する場合、潜在ショート電池を除去することは極め
て大切である。しかしながら、潜在ショート電池は、製
造した直後においては、良品電池と同じ電気特性を示す
ために、これを識別するのは極めて難しい。このため、
潜在ショート電池が良品電池と一緒に出荷され、1個の
二次電池のショートが原因で、潜在ショート電池と一緒
に使用している正常な多数の二次電池を有効に使用でき
なくしているのが実状である。この弊害を解消するため
には、潜在ショート電池を確実に識別して除去する必要
がある。さらに、製造された二次電池に含まれる潜在シ
ョート電池の割合は少ないので、潜在ショート電池を除
いても、製造される二次電池の個数はほとんど減少しな
い。
[0005] Identifying and removing potential short batteries is extremely important in the manufacture of secondary batteries.
This is because, when a plurality of secondary batteries are used in series, such as a battery pack, the life of one battery determines the lifetime of the whole battery pack. For example, when 10 secondary batteries are connected in series and used, only 1
If the secondary batteries become defective, the entire battery cannot be used even if the remaining nine secondary batteries can be used normally. Therefore, when a large number of secondary batteries are connected in series and used, it is extremely important to remove the potential short-circuit batteries. However, the potential short-circuited battery has the same electrical characteristics as a good battery immediately after being manufactured, so that it is extremely difficult to identify it. For this reason,
Potential short batteries are shipped together with non-defective batteries, and short-circuiting of one secondary battery prevents many normal secondary batteries used with the potential short battery from being used effectively. Is the actual situation. In order to solve this problem, it is necessary to reliably identify and remove the potential short battery. Furthermore, since the ratio of the potential short-circuit batteries included in the manufactured secondary batteries is small, even if the potential short-circuit batteries are removed, the number of manufactured secondary batteries hardly decreases.
【0006】本発明は、潜在ショート電池を正確に識別
することを目的に開発されたもので、本発明は、極めて
簡単な方法で、サイクル寿命が短い潜在ショート電池を
識別できる二次電池の検査方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been developed for the purpose of accurately identifying a potential short-circuited battery. The present invention is directed to an inspection of a secondary battery capable of identifying a potential short-circuited battery having a short cycle life by an extremely simple method. It is to provide a method.
【0007】[0007]
【課題を解決するための手段】本発明は、正極と負極を
セパレータを介して巻回または積層している電極体を外
装缶に入れて組み立てられる二次電池の検査方法であ
る。本発明の請求項1の二次電池の検査方法は、電解液
を注液しない状態で電極間に電圧を加え、電極間が絶縁
破壊する電流を検出して、良品電池と潜在ショート電池
とを識別する。電極体を外装缶に入れて絶縁破壊電圧を
測定する方法においては、電極体を入れた外装缶に電解
液を注液しない状態で、電極間の絶縁破壊電圧を測定す
る。電極体を外装缶に入れない状態で、絶縁破壊電流を
検出して、潜在ショート電池を識別することもできる。
SUMMARY OF THE INVENTION The present invention is a method for inspecting a secondary battery which is assembled by putting an electrode body in which a positive electrode and a negative electrode are wound or laminated with a separator interposed therebetween in an outer can. In the inspection method for a secondary battery according to the first aspect of the present invention, a voltage is applied between the electrodes in a state where the electrolyte is not injected, a current that causes a dielectric breakdown between the electrodes is detected, and the non-defective battery and the latent short-circuit battery are separated. Identify. In the method of measuring the dielectric breakdown voltage by placing the electrode body in an outer can, the dielectric breakdown voltage between the electrodes is measured in a state where the electrolytic solution is not injected into the outer can containing the electrode body. In a state where the electrode body is not put in the outer can, a potential short-circuit battery can be identified by detecting a dielectric breakdown current.
【0008】潜在ショート電池が絶縁破壊する電圧は、
正極と負極の間隔によって変化する。正極と負極とが接
近する電極体は、絶縁破壊を起こす電圧が低くなる。正
極と負極との間で絶縁破壊を起こす電圧が、電極間の距
離に反比例するからである。本発明の検査方法は、電解
液を注液しない状態で、正極と負極の電極間に電圧を加
えて、絶縁破壊するときの電極間の電流を検出して、良
品電池と潜在ショート電池とを識別する。
[0008] The voltage at which a potential short-circuit battery breaks down is:
It changes depending on the distance between the positive electrode and the negative electrode. An electrode body in which the positive electrode and the negative electrode are close to each other has a low voltage causing dielectric breakdown. This is because the voltage causing dielectric breakdown between the positive electrode and the negative electrode is inversely proportional to the distance between the electrodes. In the inspection method of the present invention, a voltage is applied between the positive electrode and the negative electrode in a state where the electrolytic solution is not injected, a current between the electrodes at the time of dielectric breakdown is detected, and the non-defective battery and the potential short-circuit battery are separated. Identify.
【0009】電解液を充填しない状態において、正極と
負極の間には空気が存在する。対向する電極が空気中で
絶縁破壊を起こす電圧は、約1500V/mmである。
したがって、正極と負極の間隔を0.3mmとすれば、
良品電池の正極と負極の間で絶縁破壊が起こる電圧は約
450Vとなる。電極間に異物が付着して、正極と負極
とが互いに接近している潜在ショート電池は、絶縁破壊
を起こす電圧が450Vよりも低くなる。たとえば、正
極と負極の間隔が半分になっていると、絶縁破壊を起こ
す電圧も、約450Vの半分となる。
In a state where the electrolyte is not filled, air exists between the positive electrode and the negative electrode. The voltage at which the opposing electrodes cause dielectric breakdown in air is about 1500 V / mm.
Therefore, if the interval between the positive electrode and the negative electrode is 0.3 mm,
The voltage at which dielectric breakdown occurs between the positive electrode and the negative electrode of a good battery is about 450 V. In a latent short battery in which a positive electrode and a negative electrode are close to each other due to the adhesion of foreign matter between the electrodes, the voltage causing dielectric breakdown is lower than 450V. For example, if the distance between the positive electrode and the negative electrode is reduced by half, the voltage causing dielectric breakdown is also reduced to approximately 450 V.
【0010】電極間に印加する電圧は、良品電池が絶縁
破壊を起こす電圧よりも低く、潜在ショート電池が絶縁
破壊を起こす電圧よりも高く設定する。
The voltage applied between the electrodes is set lower than the voltage at which the non-defective battery causes the dielectric breakdown, and higher than the voltage at which the latent short battery causes the dielectric breakdown.
【0011】電極間に印加する電圧を、良品電池が絶縁
破壊を起こす電圧よりも低く設定すると、良品電池を絶
縁破壊させることなく、潜在ショート電池を識別でき
る。潜在ショート電池は、正極と負極の間に異物が介在
して、異物によって、正極と負極の間隔が狭くなり、こ
れによって、絶縁破壊を起こす電圧が良品電池よりも低
くなっている。
When the voltage applied between the electrodes is set lower than the voltage at which the non-defective battery causes dielectric breakdown, the potential short-circuit battery can be identified without causing the non-defective battery to undergo dielectric breakdown. In a latent short battery, a foreign substance is interposed between the positive electrode and the negative electrode, and the distance between the positive electrode and the negative electrode is reduced due to the foreign substance. As a result, the voltage causing dielectric breakdown is lower than that of a non-defective battery.
【0012】本発明の請求項2に記載している本発明の
二次電池の検査方法は、電極体を電解液に接触させない
状態で、良品電池においては絶縁破壊しないが、潜在シ
ョート電池においては絶縁破壊を起こす電圧を、電極間
に印加して、電極間の電流を検出する。この状態で、検
出電流が設定電流よりも大きい二次電池を、将来的にシ
ョートにいたる潜在ショート電池と判定し、検出電流が
設定電流よりも小さい二次電池を良品電池と判定する。
According to the method for inspecting a secondary battery of the present invention described in claim 2 of the present invention, in a state in which the electrode body is not brought into contact with the electrolytic solution, no dielectric breakdown occurs in a good battery, but in a latent short battery, A voltage causing dielectric breakdown is applied between the electrodes, and the current between the electrodes is detected. In this state, a secondary battery whose detected current is larger than the set current is determined as a potential short-circuited battery that will be short-circuited in the future, and a secondary battery whose detected current is smaller than the set current is determined as a non-defective battery.
【0013】二次電池は、正極と負極との間にセパレー
タを挟着して積層している。セパレータの厚さが、正極
と負極の間隔を決定する。セパレータは、正極と負極と
を接触させない状態で、できる限り薄く設計される。ほ
とんどの潜在ショート電池は、請求項3に記載するよう
に、絶縁破壊を起こす電圧が約100〜400Vとなる
ので、この電圧で絶縁破壊をする電池を潜在ショート電
池と識別できる。
The secondary battery is laminated with a separator sandwiched between a positive electrode and a negative electrode. The thickness of the separator determines the distance between the positive and negative electrodes. The separator is designed to be as thin as possible without contact between the positive electrode and the negative electrode. Since most potential short-circuit batteries have a voltage that causes dielectric breakdown of about 100 to 400 V, as described in claim 3, a battery that causes dielectric breakdown at this voltage can be identified as a potential short-circuit battery.
【0014】さらに、本発明の請求項4の検査方法は、
ニッケル−水素電池やニッケル−カドミウム電池等の潜
在ショート電池を識別し、請求項5の検査方法は、設定
電流を5mA以上として、潜在ショート電池の絶縁破壊
電圧を印加した状態で、この電流よりも多く電流が流れ
るものを潜在ショート電池とし、これより電流が少なく
いものを良品電池と識別する。
Further, the inspection method according to claim 4 of the present invention,
A potential short-circuited battery such as a nickel-hydrogen battery or a nickel-cadmium battery is identified. A battery with a large current flow is a latent short battery, and a battery with a smaller current is identified as a good battery.
【0015】[0015]
【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。ただし、以下に示す実施例は、本発明
の技術思想を具体化するための二次電池の検査方法を例
示するものであって、本発明は二次電池の検査方法を以
下に特定しない。
Embodiments of the present invention will be described below with reference to the drawings. However, the following examples illustrate a method of inspecting a secondary battery for embodying the technical idea of the present invention, and the present invention does not specify a method of inspecting a secondary battery below.
【0016】さらに、この明細書は、特許請求の範囲を
理解しやすいように、実施例に示される部材に対応する
番号を、「特許請求の範囲の欄」、および「課題を解決
するための手段の欄」に示される部材に付記している。
ただ、特許請求の範囲に示される部材を、実施例の部材
に特定するものでは決してない。
Further, in this specification, in order to make it easier to understand the claims, the numbers corresponding to the members shown in the embodiments will be referred to as "claims" and "claims". In the column of “means”.
However, the members described in the claims are not limited to the members of the embodiments.
【0017】本発明の二次電池の検査方法が、良品電池
と潜在ショート電池を識別する原理を図1に基づいて説
明する。本発明は、ニッケル−水素電池やニッケル−カ
ドミウム電池のように、水溶液系電解液を使用する電池
の検査に最適である。ただ、これ等の電池以外の二次電
池、たとえば、リチウムイオン二次電池等の検査にも使
用できる。リチウムイオン二次電池は、ニッケル−水素
電池やニッケル−カドミウム電池に比較して電極間隔が
狭いので、検査するときに電池に供給する、潜在ショー
ト電池の絶縁破壊電圧を低く設定する。
The principle of the secondary battery inspection method of the present invention for distinguishing a non-defective battery from a potential short-circuited battery will be described with reference to FIG. INDUSTRIAL APPLICABILITY The present invention is most suitable for inspection of a battery using an aqueous electrolyte, such as a nickel-hydrogen battery and a nickel-cadmium battery. However, it can also be used for inspection of secondary batteries other than these batteries, for example, lithium ion secondary batteries. Since the lithium ion secondary battery has a narrower electrode interval than a nickel-hydrogen battery or a nickel-cadmium battery, the potential breakdown voltage of a potential short battery supplied to the battery during inspection is set low.
【0018】本発明は、電極体を外装缶に入れて、電解
液を充填しない状態で潜在ショート電池と良品電池とを
識別する。電極体は、正極と負極とをセパレータを介し
て巻回し、あるいは積層したものである。電極体を入れ
た外装缶に、電解液を充填した状態では、電解液の導電
率が高くて、電極間の絶縁破壊を検出できなくなるの
で、電解液を入れない状態で潜在ショート電池を識別す
る。図1は、良品電池と、潜在ショート電池と、電極体
を外装缶に入れた状態ですでに内部ショートしている電
池の、電流−電圧特性を示している。
According to the present invention, a latent short battery and a non-defective battery are distinguished in a state where an electrode body is put in an outer can and the electrolyte is not filled. The electrode body is obtained by winding or laminating a positive electrode and a negative electrode via a separator. In the state where the electrolyte is filled in the outer can containing the electrode body, the conductivity of the electrolyte is high, and it becomes impossible to detect the dielectric breakdown between the electrodes. Therefore, the latent short battery is identified without the electrolyte. . FIG. 1 shows the current-voltage characteristics of a non-defective battery, a latent short-circuited battery, and a battery already short-circuited internally in a state where an electrode body is placed in an outer can.
【0019】この図において、実線Gは良品電池の電流
電圧特性を、実線Bは潜在ショート電池の電流電圧特性
を、実線NGはすでに内部ショートした電池の電流電圧
特性を示している。さらに、鎖線G’は高湿時における
良品電池の特性を示し、鎖線B’は高湿時における潜在
ショート電池の特性を示している。この図に示すよう
に、内部ショートした電池は、電流電圧特性の傾きが、
良品電池および潜在ショート電池とは著しく異なり、印
加電圧が低い状態で大電流が流れるので、電流電圧特性
から識別できる。しかしながら、良品電池と潜在ショー
ト電池は、電極間の電流が小さい領域においては、電流
電圧特性が極めて近似する。このため、電流電圧特性か
らは、良品電池と潜在ショート電池とを識別できない。
In this figure, the solid line G shows the current-voltage characteristics of a good battery, the solid line B shows the current-voltage characteristics of a latent short-circuited battery, and the solid line NG shows the current-voltage characteristics of a battery already short-circuited internally. Further, a dashed line G 'shows the characteristics of a good battery at high humidity, and a dashed line B' shows the characteristics of a latent short battery at high humidity. As shown in this figure, the battery with an internal short circuit has a current-voltage characteristic with a slope of
Unlike a good battery and a potential short-circuit battery, a large current flows in a state where the applied voltage is low, so that it can be identified from the current-voltage characteristics. However, the non-defective battery and the latent short battery have extremely similar current-voltage characteristics in a region where the current between the electrodes is small. For this reason, a good battery and a latent short battery cannot be distinguished from the current-voltage characteristics.
【0020】しかしながら、実線GとBで示すように、
良品電池と潜在ショート電池は、ある電圧以上では電流
を増加させても電圧は高くならずに一定となる。この状
態が絶縁破壊を起こした状態である。電圧が一定となる
限界電圧、すなわち、絶縁破壊電圧は、正極と負極間の
距離、電極に付着する異物の種類や形状により決定され
る。電極間に異物が存在する潜在ショート電池は、絶縁
破壊電圧の低下を検出して、良品電池と識別できる。
However, as shown by solid lines G and B,
The voltage of the non-defective battery and the potential short-circuit battery are constant without increasing the voltage even if the current is increased above a certain voltage. This state is a state in which dielectric breakdown has occurred. The limit voltage at which the voltage is constant, that is, the breakdown voltage, is determined by the distance between the positive electrode and the negative electrode, and the type and shape of the foreign matter attached to the electrode. A latent short battery in which a foreign substance exists between the electrodes can be identified as a good battery by detecting a decrease in dielectric breakdown voltage.
【0021】具体的には、たとえば、定電圧定電流回路
の出力電圧と出力電流の最大値を、図中A1点に設定し
て、すなわち、潜在ショート電池の絶縁破壊電圧と最大
電流をA1点の電圧と電流に設定して、電極体を電解液
に接触させない状態、すなわち、注液前の二次電池の正
極と負極との間に印加したとき、良品電池はわずかな漏
れ電流が流れるのに対し、潜在ショート電池はこの電圧
では絶縁破壊を起こして大電流が流れる。したがって、
電流の大きさを比較して、良品電池と潜在ショート電池
とを識別できる。
Specifically, for example, the maximum value of the output voltage and the output current of the constant voltage / constant current circuit is set at point A1 in the figure, that is, the dielectric breakdown voltage and the maximum current of the latent short-circuit battery are set at point A1. When the voltage is set to the voltage and the current, and the electrode body is not in contact with the electrolyte, that is, when applied between the positive electrode and the negative electrode of the secondary battery before the injection, a small leakage current flows in the non-defective battery. On the other hand, a latent short-circuit battery causes a dielectric breakdown at this voltage and a large current flows. Therefore,
By comparing the magnitude of the current, a good battery and a potential short battery can be distinguished.
【0022】ただし、注液前の電池においても、湿度が
高いなど、セパレータに水分が吸着していると、抵抗値
の影響により検出精度が低下することが考えられる。高
湿状態では、電流と電圧の関係が、鎖線G’、B’で示
すように変化する。この状態で、たとえば、潜在ショー
ト電池の絶縁破壊電圧と最大電流とを図中A2点とする
状態で、電圧が印加されると、良品電池も潜在ショート
電池も設定値以上となり判別できなくなる。この状態で
は、良品電池が、絶縁破壊を起こさなくても漏れ電流が
大きくなるからである。この弊害は、検出電流をA1点
まで増加させることで解消できる。
However, even in the battery before the injection, if moisture is adsorbed on the separator, for example, due to high humidity, the detection accuracy may be reduced due to the influence of the resistance value. In the high humidity state, the relationship between the current and the voltage changes as shown by chain lines G ′ and B ′. In this state, for example, when a voltage is applied in a state where the breakdown voltage and the maximum current of the latent short battery are set to the point A2 in the figure, the non-defective battery and the latent short battery both exceed the set value and cannot be determined. This is because, in this state, the leakage current of the non-defective battery increases even if the dielectric breakdown does not occur. This problem can be solved by increasing the detection current to point A1.
【0023】以上の方法は、潜在ショート電池は絶縁破
壊を起こすが、良品電池は絶縁破壊を起こさない状態
で、電極間に電圧を加える。本発明の検査方法は、良品
電池と潜在ショート電池の両方の電極体に絶縁破壊を起
こさせて、潜在ショート電池を識別することもできる。
In the above-described method, a voltage is applied between the electrodes in a state in which the latent short battery causes the dielectric breakdown, but the non-defective battery does not cause the dielectric breakdown. The inspection method of the present invention can also identify a potential short-circuit battery by causing a dielectric breakdown in both the non-defective battery and the potential short-circuit battery.
【0024】図2は、本発明の実施例の方法に使用する
検査装置の回路図を示す。この図の検査装置は、耐電圧
試験装置1であって、定電圧電源2と電流検出回路3と
を備える。
FIG. 2 is a circuit diagram of an inspection apparatus used in the method according to the embodiment of the present invention. The inspection apparatus shown in FIG. 1 is a withstand voltage test apparatus 1 and includes a constant voltage power supply 2 and a current detection circuit 3.
【0025】定電圧電源2は、交流の商用電源を、直流
または交流の一定電圧に変換して電極体に供給する。定
電圧電源2の出力電圧は、好ましくは、良品電池は絶縁
破壊を起こさないが、潜在ショート電池は絶縁破壊を起
こす電圧、たとえば、ニッケル−水素電池やニッケル−
カドミウム電池の検査においては、100〜400Vに
設定する。潜在ショート電池が絶縁破壊を起こす電圧
は、検査する電池の正極と負極の間隔で最適値に決定す
る。正極と負極の間隔が広い電池は、潜在ショート電池
の絶縁破壊電圧を高く設定して、狭い電池は低く設定す
る。潜在ショート電池の絶縁破壊電圧が、良品電池の絶
縁破壊電圧に接近するほど、潜在ショート電池をより正
確に識別できる。
The constant voltage power supply 2 converts AC commercial power into DC or AC constant voltage and supplies it to the electrode body. The output voltage of the constant voltage power supply 2 is preferably such that a non-defective battery does not cause a dielectric breakdown, but a latent short battery has a voltage that causes a dielectric breakdown, such as a nickel-hydrogen battery or a nickel-hydrogen battery.
In the inspection of the cadmium battery, the voltage is set to 100 to 400V. The voltage at which the potential short-circuit battery causes dielectric breakdown is determined to be an optimum value depending on the distance between the positive electrode and the negative electrode of the battery to be inspected. For a battery with a large distance between the positive electrode and the negative electrode, the dielectric breakdown voltage of a potential short-circuited battery is set high, and for a narrow battery, the voltage is set low. The closer the breakdown voltage of a potential short battery is to the breakdown voltage of a good battery, the more accurately the potential short battery can be identified.
【0026】電流検出回路3は、電池の電極間で設定電
流値以上の電流が流れたときに、ブザーやランプ等で表
示して、電流を遮断する。出力電圧と検出電流の設定値
は、図3のA3点で示すように、良品電池が絶縁破壊を
起こさないで、潜在ショート電池が絶縁破壊を起こす領
域、図3のハッチングで示す領域に設定される。定電圧
電源2は、図3の実線Dで示す出力特性を示す設定電流
は5mA以上、好ましくは10mA以上に設定される。
When a current equal to or greater than the set current value flows between the electrodes of the battery, the current detection circuit 3 displays the current using a buzzer, a lamp, or the like, and cuts off the current. The set values of the output voltage and the detection current are set in a region where a non-defective battery does not cause a dielectric breakdown and a potential short-circuit battery causes a dielectric breakdown, as indicated by a point A3 in FIG. 3, and a region indicated by hatching in FIG. You. In the constant voltage power supply 2, the set current indicating the output characteristic indicated by the solid line D in FIG. 3 is set to 5 mA or more, preferably 10 mA or more.
【0027】この検査装置に、二次電池を接続して検査
すると、良品電池は絶縁破壊を起こさないので、潜在シ
ョート電池の絶縁破壊電圧に等しくなって、a1点また
はb1点の電圧となり、電流は漏れ電流となって極めて
小さくなる。潜在ショート電池は、絶縁破壊を起こし
て、電圧が潜在ショート電池の絶縁破壊電圧まで上昇で
きなくなり、非常に大きな電流が流れる。したがって、
良品電池と潜在ショート電池は、電極間の電流を検出し
て、良品電池と潜在ショート電池に識別できる。
When a secondary battery is connected to this inspection device and inspected, a non-defective battery does not cause dielectric breakdown, so that it becomes equal to the dielectric breakdown voltage of the latent short battery, and becomes a voltage at point a1 or b1. Becomes extremely small as a leakage current. The latent short battery causes a dielectric breakdown, and the voltage cannot rise to the dielectric breakdown voltage of the latent short battery, so that a very large current flows. Therefore,
The good battery and the potential short battery can be distinguished into a good battery and a potential short battery by detecting the current between the electrodes.
【0028】[0028]
【実施例】以下の工程で、実際に電極体を試作して、潜
在ショート電池を検査した。 [電極体の作製]水素吸蔵合金をパンチングメタルに塗
着して作製した負極と、焼結式ニッケル極である正極
を、不織布製のセパレータを介して巻回し、電極体を作
製した。電極体は、電気接続のために、それぞれ片側縁
に沿って、活物質を塗着しない未塗着部分を設けた。正
極と負極とを捲回するときに、未塗着部分が電極体の両
端にはみ出すように、正極と負極とを多少ずらせて巻回
した。
EXAMPLE In the following steps, an electrode assembly was actually manufactured and a latent short battery was inspected. [Preparation of Electrode Body] A negative electrode prepared by applying a hydrogen storage alloy to a punching metal and a positive electrode which is a sintered nickel electrode were wound through a nonwoven fabric separator to prepare an electrode body. The electrode body was provided with an uncoated portion where the active material was not applied along one side edge for electrical connection. When winding the positive electrode and the negative electrode, the positive electrode and the negative electrode were slightly shifted so that the uncoated portion protruded from both ends of the electrode body.
【0029】さらに、良品電池と潜在ショート電池の識
別検査をするために、意図的に電極の欠片を混入させた
潜在ショート電池の電極体と、電極の欠片を混入させな
い良品電池となる電極体とを試作した。いずれの電極体
も、巻回後、抵抗値を測定して、内部ショートしていな
いことを確認した。
Further, in order to perform a discrimination test between a good battery and a potential short battery, an electrode body of a potential short battery into which a piece of an electrode is intentionally mixed and an electrode body which is a non-defective battery in which no piece of an electrode is mixed. Was prototyped. After winding, the resistance value of each electrode body was measured, and it was confirmed that no internal short circuit occurred.
【0030】[潜在ショート電池の判定の予備検査]検
査には、図2に示す回路からなる耐電圧試験装置(菊水
電子製TOS5051)を使用した。また、印加する電流は
交流(商用波形)にて行った。
[Preliminary Inspection of Judgment of Latent Short Battery] For the inspection, a withstand voltage test device (TOS5051 manufactured by Kikusui Electronics) having the circuit shown in FIG. 2 was used. The applied current was an alternating current (commercial waveform).
【0031】巻回された電極体の上下の未塗着部分に、
検査装置の出力端子を密着して電気接続した。設定電流
値を1mAにして、設定電流以上の電流が検出するま
で、印加電圧を徐々に上げ、電圧値(交流の最大電圧)
を求めた。同様の操作を2、3、4、5、10、20、
30、40、50、60、70、100mAについても
同様に求めた。次に電池を高湿状態(湿度80%)に保
持した状態で、同様の操作を行った。以上の検査を、良
品電池と潜在ショート電池の電極体について行い、電流
と電圧の関係を求めた。
On the upper and lower uncoated portions of the wound electrode body,
The output terminals of the inspection device were closely connected and electrically connected. The set current value is set to 1 mA, and the applied voltage is gradually increased until a current equal to or higher than the set current is detected.
I asked. The same operation is performed for 2, 3, 4, 5, 10, 20,
30, 40, 50, 60, 70, and 100 mA were similarly obtained. Next, the same operation was performed with the battery kept in a high humidity state (80% humidity). The above inspection was performed on the electrode bodies of the non-defective battery and the latent short battery, and the relationship between the current and the voltage was obtained.
【0032】[検査結果]測定結果を表1と図4に示し
ている。図4において、実線G、G’は良品電池の電流
電圧特性を示し、実線Bは潜在ショート電池の電流電圧
特性を示している。この表と図は、良品電池の電極体の
絶縁破壊電圧が450Vであり、潜在ショート電池の電
極体の絶縁破壊電圧が100Vであることを示してい
る。高湿時においては、実線G’に示すように、絶縁破
壊を起こす電流が、約5mA以上と大きくはなるが、絶
縁破壊を起こす電圧は変化しない。このため、電流の設
定値を5mA以上に設定して、潜在ショート電池の電極
体を安定して識別できることがわかった。
[Inspection Results] The measurement results are shown in Table 1 and FIG. In FIG. 4, solid lines G and G ′ indicate the current-voltage characteristics of the non-defective battery, and solid line B indicates the current-voltage characteristics of the latent short-circuited battery. This table and figure show that the electrode body of the non-defective battery has a dielectric breakdown voltage of 450 V, and the electrode body of the latent short battery has a dielectric breakdown voltage of 100 V. At the time of high humidity, as shown by the solid line G ', the current causing dielectric breakdown is as large as about 5 mA or more, but the voltage causing dielectric breakdown does not change. For this reason, it turned out that the electrode body of a latent short battery can be identified stably by setting the set value of the current to 5 mA or more.
【0033】[0033]
【表1】 [Table 1]
【0034】電流の設定値を、50mA以上にすると、
電圧を上昇させたときに、電圧が一瞬ふらつく現象が生
じた。これは、設定電流値が大きすぎたために、絶縁破
壊が生じても、検出されない現象が生じていると考えら
れる。このことから、潜在ショート電池を識別するため
の電流値は5〜50mAが適している。また、良品電池
と潜在ショート電池とを識別する、絶縁破壊電圧は、1
00〜400Vとすることができる。
When the set value of the current is 50 mA or more,
When the voltage was increased, the voltage fluctuated momentarily. This is considered to be due to the fact that the set current value was too large, and even if the dielectric breakdown occurred, the phenomenon was not detected. From this, the current value for identifying the potential short-circuit battery is preferably 5 to 50 mA. The breakdown voltage for distinguishing a good battery from a potential short battery is 1
00 to 400V.
【0035】以上の検査で、良品電池と潜在ショート電
池と判定された電極体を入れた外装缶に、電解液を注液
した後密閉して電池を組み立て、この電池を充放電サイ
クルを繰り返してサイクル寿命を測定した。良品電池と
判定されたものは、サイクル寿命が1000サイクルで
あった。これに対して、潜在ショート電池と判定された
ものはサイクル寿命が半分以下となった。
In the above inspection, the electrolyte was injected into an outer can containing the electrode body determined to be a good battery and a potential short-circuited battery, and then sealed to assemble the battery. The battery was subjected to repeated charge / discharge cycles. The cycle life was measured. A battery determined as a good battery had a cycle life of 1,000 cycles. On the other hand, those that were determined to be latent short-circuit batteries had a cycle life of less than half.
【0036】[潜在ショート電池の識別検査]電池を約
1000固試作し、500サイクルの充放電でショート
する率を測定すると、表2の検査例17に示すようにシ
ョート率は1.0%となった。したがって、潜在ショー
ト率は1.0%であると考えられる。
[Identification Test of Latent Short Battery] When about 1,000 solid batteries were fabricated and the rate of short-circuiting after 500 cycles of charge and discharge was measured, the short-circuit rate was 1.0% as shown in Test Example 17 in Table 2. became. Therefore, the potential short-circuit rate is considered to be 1.0%.
【0037】[0037]
【表2】 [Table 2]
【0038】この表の作成には、図2に示す検査装置を
使用した。検査例1〜12は、定電圧回路の設定電圧を
100〜400V、設定電流を5〜50mAとして、潜
在ショート電池を識別して除去した。この検査例で潜在
ショート電池を除去した集合においては、500サイク
ル充放電させたときにショートする電池はなく、全体の
電池に対してショートした電池の割合、すなわち、ショ
ート率は0%であった。検査例13は、設定電圧を90
Vと低く設定したために、全ての潜在ショート電池を識
別できず、一部の潜在ショート電池のみが識別された。
検査例14で潜在ショート電池を除いた集合の電池は、
500回の充放電時におけるショート率は0%であった
が、設定電圧が450Vと高いために、良品電池も潜在
ショート電池と識別されてしまい検出率が40%となっ
た。検査例15は検出電流値が低いために、良品電池の
一部が湿度等の影響により電流が流れて、潜在ショート
電池として検出された。このため、検出率が高くなっ
た。検査例16は、検出電流値が高いために、絶縁破壊
が生じたにもかかわらず、検出されない電池が生じて、
潜在ショート電池の検出率が0.3%となった。以上の
検査結果から、ニッケル−水素電池の潜在ショート電池
の検出には、電圧を100〜400Vとして、電流を5
〜50mAとすることが最適である。以上の検査結果か
ら、潜在ショート電池の検出率は1.0%であり、潜在
ショート電池がすべて本検査により検出された。本発明
の方法は、電圧と電流をそれぞれの電池に適した値に設
定することによって、全ての潜在ショート電池を確実に
識別できる。
An inspection apparatus shown in FIG. 2 was used to create this table. In Test Examples 1 to 12, the potential short-circuit battery was identified and removed by setting the set voltage of the constant voltage circuit to 100 to 400 V and setting the current to 5 to 50 mA. In the set from which the latent short-circuited battery was removed in this test example, there was no battery that short-circuited when charged and discharged for 500 cycles, and the ratio of the short-circuited battery to the entire battery, that is, the short-circuit rate was 0%. . In the inspection example 13, the set voltage is set to 90
Due to the low setting of V, all potential short batteries could not be identified, and only some potential short batteries were identified.
The set of batteries excluding the potential short battery in Test Example 14 is:
Although the short-circuit rate at the time of 500 charge / discharges was 0%, since the set voltage was as high as 450 V, a non-defective battery was also identified as a potential short-circuit battery, and the detection rate was 40%. In Test Example 15, since the detected current value was low, a part of the non-defective batteries caused a current to flow due to the influence of humidity or the like, and was detected as a potential short-circuited battery. For this reason, the detection rate was increased. In the test example 16, since the detected current value was high, a battery that was not detected occurred despite the occurrence of the dielectric breakdown.
The detection rate of the latent short battery was 0.3%. From the above inspection results, when detecting a potential short-circuited battery of a nickel-hydrogen battery, the voltage was set to 100 to 400 V and the current was set to 5
Optimally, it is set to 5050 mA. From the above test results, the detection rate of the potential short-circuit batteries was 1.0%, and all the potential short-circuit batteries were detected by this test. The method of the present invention ensures that all potential short batteries are identified by setting the voltage and current to values appropriate for each battery.
【0039】本実施例は、電極体の状態で検査を行った
が、外装缶に電極体を入れて電解液を注液しない状態で
行っても同様の効果が得られる。また、本実施例は交流
の電圧を印加したが、直流の電圧を印加しても同様の効
果が得られる。
In this embodiment, the inspection is performed in the state of the electrode body. However, the same effect can be obtained even when the electrode body is put in the outer can and the electrolytic solution is not injected. In this embodiment, an AC voltage is applied. However, a similar effect can be obtained by applying a DC voltage.
【0040】[0040]
【発明の効果】本発明の請求項1の検査方法は、極めて
簡単な方法で、サイクル寿命の短い潜在ショート電池を
確実に特定して識別できる特長がある。それは、本発明
の検査方法が、電極体を電解液に接触させない状態で、
電極間に電圧を加えて電極間が絶縁破壊するのを検出し
て、将来的にショートにいたる潜在ショート電池と良品
電池を識別するからである。
The inspection method according to the first aspect of the present invention has a feature that a latent short battery having a short cycle life can be reliably specified and identified by an extremely simple method. That is, in the state where the inspection method of the present invention does not contact the electrode body with the electrolyte,
This is because a voltage is applied between the electrodes to detect a dielectric breakdown between the electrodes, and a potential short-circuit battery and a non-defective battery that may be short-circuited in the future are identified.
【0041】本発明の検査方法は、良品電池に電気的な
ショックを与えることなく、潜在ショート電池を有効に
識別できる特長がある。良品電池の電極間では絶縁破壊
を起こさないで、潜在ショート電池のみの電極間で絶縁
破壊させて、潜在ショート電池を識別できるからであ
る。
The inspection method of the present invention has a feature that a potential short battery can be effectively identified without giving an electric shock to a good battery. This is because a potential short-circuited battery can be identified by causing a dielectric breakdown only between the electrodes of the potential short-circuited battery without causing the dielectric breakdown between the electrodes of the non-defective battery.
【0042】さらに、本発明の請求項3〜5の検査方法
は、ニッケル−水素電池の製造工程において、潜在ショ
ート電池を極めて正確に識別できる特長がある。
Further, the inspection method according to claims 3 to 5 of the present invention is characterized in that a latent short-circuit battery can be identified very accurately in a nickel-hydrogen battery manufacturing process.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の二次電池の検査方法の動作原理を示す
グラフ
FIG. 1 is a graph showing the principle of operation of a method for testing a secondary battery according to the present invention.
【図2】本発明の実施例に使用する検査装置を示すブロ
ック線図
FIG. 2 is a block diagram showing an inspection apparatus used in an embodiment of the present invention.
【図3】図2に示す検査装置の電圧電流特性を示すグラ
3 is a graph showing voltage-current characteristics of the inspection device shown in FIG.
【図4】良品電池と潜在ショート電池の電圧電流特性を
示すグラフ
FIG. 4 is a graph showing voltage-current characteristics of a non-defective battery and a potential short-circuited battery.
【符号の説明】[Explanation of symbols]
1…耐圧試験装置 2…定電圧電源 3…電流検出回路 4…電極 DESCRIPTION OF SYMBOLS 1 ... Withstand voltage test device 2 ... Constant voltage power supply 3 ... Current detection circuit 4 ... Electrode
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 CA00 CB05 CC01 CC06 CE01 5G003 BA01 EA09 5H028 AA01 BB12 CC12 HH10 5H030 AA09 AS18 FF42 FF43  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G016 CA00 CB05 CC01 CC06 CE01 5G003 BA01 EA09 5H028 AA01 BB12 CC12 HH10 5H030 AA09 AS18 FF42 FF43

Claims (5)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 正極と負極をセパレータを介して巻回ま
    たは積層している電極体と電解液を外装缶に入れて組み
    立てられる二次電池の検査方法において、 電極体を電解液に接触させない状態で、電極間に電圧を
    加えて電極間が絶縁破壊する電流を検出して、将来的に
    ショートにいたる潜在ショート電池と良品電池を識別す
    ることを特徴とする二次電池の検査方法。
    In a method for inspecting a secondary battery assembled by putting an electrolyte and an electrolyte in which a positive electrode and a negative electrode are wound or laminated via a separator in an outer can, a state in which the electrode is not brought into contact with the electrolyte A method for inspecting a secondary battery, characterized in that a voltage is applied between the electrodes to detect a current that causes a dielectric breakdown between the electrodes, and a potential short-circuited battery and a non-defective battery that may be short-circuited in the future are identified.
  2. 【請求項2】 正極と負極をセパレータを介して巻回ま
    たは積層している電極体と電解液を外装缶に入れて組み
    立てられる二次電池の検査方法において、 電極体を電解液に接触させない状態で、良品電池の電池
    が絶縁破壊する電圧よりも低い電圧であって、潜在ショ
    ート電池が絶縁破壊を起こす電圧よりも高い電圧を電極
    間に印加して、電極間の電流を検出し、検出電流が設定
    電流よりも大きい二次電池を、潜在ショート電池と判定
    し、検出電流が設定電流よりも小さい二次電池を良品電
    池と判定することを特徴とする請求項1に記載される二
    次電池の検査方法。
    2. A method for inspecting a secondary battery in which an electrode body in which a positive electrode and a negative electrode are wound or laminated with a separator interposed therebetween and an electrolyte solution placed in an outer can is assembled, wherein the electrode body is not brought into contact with the electrolyte solution. A voltage between the electrodes that is lower than the voltage at which a non-defective battery causes dielectric breakdown and higher than the voltage at which the potential short-circuit battery causes dielectric breakdown is applied, and the current between the electrodes is detected. 2. The secondary battery according to claim 1, wherein a secondary battery whose current is larger than the set current is determined as a potential short-circuit battery, and a secondary battery whose detected current is smaller than the set current is determined as a non-defective battery. Inspection method.
  3. 【請求項3】 電極間に加える電圧を100〜400V
    とする請求項1に記載する二次電池の検査方法。
    3. The voltage applied between the electrodes is 100 to 400 V
    The inspection method for a secondary battery according to claim 1.
  4. 【請求項4】 二次電池がニッケル−水素電池である請
    求項1に記載される二次電池の検査方法。
    4. The method for inspecting a secondary battery according to claim 1, wherein the secondary battery is a nickel-metal hydride battery.
  5. 【請求項5】 潜在ショート電池と良品電池とを識別す
    る設定電流が5mA以上である請求項3に記載される二
    次電池の検査方法。
    5. The method for inspecting a secondary battery according to claim 3, wherein a set current for distinguishing the potential short-circuited battery from the non-defective battery is 5 mA or more.
JP10371538A 1998-12-25 1998-12-25 Inspection method of secondary battery Pending JP2000195565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371538A JP2000195565A (en) 1998-12-25 1998-12-25 Inspection method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371538A JP2000195565A (en) 1998-12-25 1998-12-25 Inspection method of secondary battery

Publications (1)

Publication Number Publication Date
JP2000195565A true JP2000195565A (en) 2000-07-14

Family

ID=18498879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371538A Pending JP2000195565A (en) 1998-12-25 1998-12-25 Inspection method of secondary battery

Country Status (1)

Country Link
JP (1) JP2000195565A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021498A1 (en) * 2002-08-29 2004-03-11 Matsushita Electric Industrial Co., Ltd. Method for testing precursor of secondary cell, its testing instrument, and method for manufacturing secondary cell using the method
JP2007035288A (en) * 2005-07-22 2007-02-08 Furukawa Battery Co Ltd:The Inspection method of lead accumulator
JP2009129674A (en) * 2007-11-22 2009-06-11 Sony Corp Electrode body inspection method and electrode body inspection device
WO2011040446A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
WO2013047779A1 (en) * 2011-09-29 2013-04-04 オートモーティブエナジーサプライ株式会社 Method for inspecting cell
JP2013118122A (en) * 2011-12-05 2013-06-13 Automotive Energy Supply Corp Method for inspecting battery
KR101431952B1 (en) * 2012-01-06 2014-08-19 닛산 지도우샤 가부시키가이샤 Short inspecting method for nonaqueous electrolyte secondary battery
JP2016162487A (en) * 2015-02-26 2016-09-05 トヨタ自動車株式会社 Method of manufacturing secondary battery
CN108279386A (en) * 2018-02-05 2018-07-13 惠州亿纬锂能股份有限公司 A kind of battery core screening technique

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701525B1 (en) * 2002-08-29 2007-03-29 마쯔시다덴기산교 가부시키가이샤 Method for testing precursor of secondary cell, its testing instrument, and method for manufacturing secondary cell using the method
US7239147B2 (en) 2002-08-29 2007-07-03 Matsushita Electric Industrial Co., Ltd. Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
CN100370646C (en) * 2002-08-29 2008-02-20 松下电器产业株式会社 Method for inspecting secondary battery precursor, and method for manufacturing secondary battery using the method
WO2004021498A1 (en) * 2002-08-29 2004-03-11 Matsushita Electric Industrial Co., Ltd. Method for testing precursor of secondary cell, its testing instrument, and method for manufacturing secondary cell using the method
JP4557829B2 (en) * 2005-07-22 2010-10-06 古河電池株式会社 Inspection method of lead acid battery
JP2007035288A (en) * 2005-07-22 2007-02-08 Furukawa Battery Co Ltd:The Inspection method of lead accumulator
JP2009129674A (en) * 2007-11-22 2009-06-11 Sony Corp Electrode body inspection method and electrode body inspection device
US9076601B2 (en) 2009-09-30 2015-07-07 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
WO2011040446A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
US9977090B2 (en) 2009-09-30 2018-05-22 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
WO2013047779A1 (en) * 2011-09-29 2013-04-04 オートモーティブエナジーサプライ株式会社 Method for inspecting cell
US9761915B2 (en) 2011-12-05 2017-09-12 Automotive Energy Supply Corporation Manufacturig method for battery
JP2013118122A (en) * 2011-12-05 2013-06-13 Automotive Energy Supply Corp Method for inspecting battery
KR101431952B1 (en) * 2012-01-06 2014-08-19 닛산 지도우샤 가부시키가이샤 Short inspecting method for nonaqueous electrolyte secondary battery
JP2016162487A (en) * 2015-02-26 2016-09-05 トヨタ自動車株式会社 Method of manufacturing secondary battery
CN108279386A (en) * 2018-02-05 2018-07-13 惠州亿纬锂能股份有限公司 A kind of battery core screening technique

Similar Documents

Publication Publication Date Title
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
EP1130669B1 (en) Short circuit inspection method for battery and method of manufacturing batteries
JP2001236985A5 (en)
JP2004288515A (en) Inspection method of cylinder-shaped battery
JP4313625B2 (en) Secondary battery manufacturing method and secondary battery precursor inspection apparatus
JP2000195565A (en) Inspection method of secondary battery
JP2010231948A (en) Method for inspecting internal short circuit of battery
CN107884720B (en) Detection method and detection device for battery module missing welding detection
JP4887581B2 (en) Battery inspection method and inspection apparatus
JP3677993B2 (en) Battery electrode group short circuit inspection method and short circuit inspection apparatus therefor
JPH09115554A (en) Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
JP2005019241A (en) Method for manufacturing nonaqueous electrolyte secondary cell
JP2004006420A (en) Manufacturing method of battery
JP2002313435A (en) Battery inspection method
JP3183139B2 (en) Short-circuit detection method for cylindrical batteries
KR101769182B1 (en) Method for detecting a secondary battery whose electrolyte is defectively impregnated
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JPH05109436A (en) Method of detecting liquid leaking from battery
JP2532799B2 (en) Welding work placement condition determination method for cylindrical batteries
TW202008001A (en) Battery management system
US20210208208A1 (en) Method and system for detecting internal short-circuit (isc) in batteries and battery cells implementing such isc detection method
JP2021034348A (en) Inspection method of power storage device and manufacturing method of power storage device
JP2000088933A (en) Method for inspecting secondary battery
US20180031637A1 (en) Battery testing device and method thereof
JPH06176767A (en) Inspection in assembly line of spiral battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904