JP2018092790A - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2018092790A
JP2018092790A JP2016235025A JP2016235025A JP2018092790A JP 2018092790 A JP2018092790 A JP 2018092790A JP 2016235025 A JP2016235025 A JP 2016235025A JP 2016235025 A JP2016235025 A JP 2016235025A JP 2018092790 A JP2018092790 A JP 2018092790A
Authority
JP
Japan
Prior art keywords
battery
voltage
battery voltage
amount
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016235025A
Other languages
Japanese (ja)
Inventor
嘉夫 松山
Yoshio Matsuyama
嘉夫 松山
極 小林
Kyoku Kobayashi
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016235025A priority Critical patent/JP2018092790A/en
Publication of JP2018092790A publication Critical patent/JP2018092790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a battery, which makes it possible to determine whether or not a battery property is good in a range of a second battery voltage V2 to a third battery voltage V3 (V3<V2≤V) under the condition of an environment temperature Ts (Ts≤0°C), and which eliminates the need for lowering a battery voltage to a third battery voltage V3 to perform a confirmatory test.SOLUTION: A method for manufacturing a lithium ion secondary battery 1 comprises: an initially charging step S2; an aging step S3; a first decrease measurement step S5 of measuring a first voltage decrease ΔVa under the condition of an environment temperature Ts; a second decrease estimation step S6 of estimating a second voltage decrease ΔVb; an amount-of-electricity calculation step S7 of calculating an electricity amount Qa charged into the battery 1 until reaching a fourth battery voltage V4 from a third battery voltage V3 in the initially charging step S2; and a determination step S8 of determining that the battery 1 is a conforming article if the second voltage decrease ΔVb is equal to or lower than a reference decrease ΔVs and the electricity amount Qa is equal to or higher than a reference electricity amount Qs.SELECTED DRAWING: Figure 3

Description

本発明は、0℃以下の低温環境下におけるリチウムイオン二次電池の特性の良否を確認する検査工程を備えるリチウムイオン二次電池の製造方法に関する。   The present invention relates to a method of manufacturing a lithium ion secondary battery including an inspection process for confirming the quality of a lithium ion secondary battery in a low temperature environment of 0 ° C. or lower.

車載用などのリチウムイオン二次電池(以下、単に「電池」ともいう)は、過酷な温度環境下でも使用されるため、出荷前に様々な温度環境下で電池の性能検査を行う必要がある。例えば、0℃以下の低温環境下(例えば、Ts=−30℃の環境温度下)において、SOC40%に相当する電池電圧V40以下の低電池電圧の領域(例えば、第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲)で、電池出力が基準(例えば、1.5秒、100W)以上の電池出力を得られるか否かを検査したい場合がある。
なお、関連する従来技術として、特許文献1が挙げられる。
Lithium ion secondary batteries for automotive use (hereinafter also simply referred to as “batteries”) are used even in harsh temperature environments, so it is necessary to perform battery performance tests under various temperature environments before shipment. . For example, in a low temperature environment of 0 ° C. or lower (for example, under an environmental temperature of Ts = −30 ° C.), a low battery voltage region having a battery voltage V 40 or lower corresponding to SOC 40 % (for example, the second battery voltage V2 = 3). There is a case where it is desired to check whether or not the battery output can be obtained in the range of .55V to the third battery voltage V3 = 2.70V (between 1.5 seconds and 100 W).
In addition, patent document 1 is mentioned as a related prior art.

特開2013−084508号公報JP 2013-084508 A

前述の電池出力検査を行う場合、例えば、電池をSOC100%まで初充電し、高温下で放置してエージングした後、電池を放電させて電池電圧Veを第2電池電圧V2=3.55V(SOC30%)まで下げる。その後、図4に示すように、Ts=−30℃の環境温度下において、この電池を100W/3.55V=28.2Aの電流値で、放電時間te=1.5秒間にわたり放電させる。そして、放電終了時(放電時間te=1.5秒)の電池電圧Veが第3電池電圧V3=2.70V以上である場合に、その電池を良品と判定する。なお、図4においては、放電終了時の電池電圧Veが約2.80Vであるため、この電池は良品と判断される。   When performing the battery output test described above, for example, the battery is initially charged to SOC 100%, left at high temperature for aging, and then the battery is discharged to obtain the battery voltage Ve as the second battery voltage V2 = 3.55 V (SOC30 %). Thereafter, as shown in FIG. 4, the battery is discharged at a current value of 100 W / 3.55 V = 28.2 A at an environmental temperature of Ts = −30 ° C. for a discharge time te = 1.5 seconds. When the battery voltage Ve at the end of discharge (discharge time te = 1.5 seconds) is equal to or higher than the third battery voltage V3 = 2.70 V, the battery is determined to be non-defective. In FIG. 4, since the battery voltage Ve at the end of the discharge is about 2.80 V, this battery is determined to be a non-defective product.

しかしながら、上述のように、電池電圧Ve(SOC)を低くした状態で電池出力検査を行った場合、その後、電池の出荷にあたり、電池を例えばSOC100%まで再充電し、充電状態を高めてから出荷する。このように、上述の電池出力検査は、電池出力検査の前に、電池を放電させて電池電圧Veを下げる工程と、電池出力検査の後に、電池を再充電して電池電圧Veを上げる工程が必要であるため、検査時間が長くなるという課題がある。   However, as described above, when the battery output inspection is performed in a state where the battery voltage Ve (SOC) is lowered, the battery is then recharged to, for example, SOC 100% and shipped after the state of charge is increased. To do. As described above, the battery output inspection includes a step of discharging the battery to lower the battery voltage Ve before the battery output inspection, and a step of increasing the battery voltage Ve by recharging the battery after the battery output inspection. Since it is necessary, there exists a subject that inspection time becomes long.

本発明は、かかる現状に鑑みてなされたものであって、環境温度Ts(Ts≦0℃)下、SOC40%に相当する電池電圧V40以下の第2電池電圧V2〜第3電池電圧V3(V3<V2≦V40)の範囲における電池の特性の良否を確認できる一方、電池電圧Veを第3電池電圧V3まで下げないで、この確認検査を行うことができるリチウムイオン二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of such a situation, and the second battery voltage V2 to the third battery voltage V3 (less than the battery voltage V40 corresponding to SOC 40 % under an environmental temperature Ts (Ts ≦ 0 ° C.) ( V3 <V2 ≦ V 40 ) A method for producing a lithium ion secondary battery that can confirm the quality of the battery in the range of V3 <V2 ≦ V 40 ) and can perform this confirmation inspection without lowering the battery voltage Ve to the third battery voltage V3. The purpose is to provide.

上記課題を解決するための本発明の一態様は、定電流定電圧(CCCV)充電により、リチウムイオン二次電池をSOC60%に相当する電池電圧V60以上の第1電池電圧V1まで初充電すると共に、この初充電における充電時間tcと電池電圧Veとの関係を取得する初充電工程と、上記初充電工程の後、環境温度Tage(但し、Tage=40〜85℃)下で上記リチウムイオン二次電池を放置するエージング工程と、上記リチウムイオン二次電池は、第1電流値Iaで放電させたときに、放電開始直後に電池の内部抵抗に起因して電池電圧Veが急速に低下し、その後、上記電池電圧Veが徐々に低下する特性を有しており、上記放電開始から上記電池電圧Veの急速な低下が終わるまでの電圧急速低下期間を、所定時間ta(秒)としたとき、上記エージング工程の後、環境温度Ts(但し、Ts≦0℃)下において、上記リチウムイオン二次電池を上記第1電流値Iaで上記所定時間taにわたり放電させて、この放電前後間の第1電圧低下量ΔVaを測定する第1低下量測定工程と、測定した上記第1電圧低下量ΔVaから、上記リチウムイオン二次電池を第2電流値Ibで上記所定時間taにわたり放電させた場合に、この放電前後間で生じる第2電圧低下量ΔVbを推定する第2低下量推定工程と、上記第2低下量推定工程の後、予め上記初充電工程で取得しておいた上記初充電における充電時間tcと電池電圧Veとの関係を用いて、当該初充電工程において、SOC40%に相当する電池電圧V40以下の第3電池電圧V3から、上記電池電圧V40以下の第2電池電圧V2から上記第2電圧低下量ΔVbを差し引いた第4電池電圧V4(=V2−ΔVb)までに(但し、V3<V4<V2≦V40<V60≦V1)、上記リチウムイオン二次電池に充電された電気量Qaを算出する電気量算出工程と、上記第2電圧低下量ΔVbが基準低下量ΔVs以下(ΔVb≦ΔVs)であり、かつ、上記電気量Qaが基準電気量Qs以上(Qa≧Qs)である場合に、当該リチウムイオン二次電池を良品と判定する判定工程と、を備えるリチウムイオン二次電池の製造方法である。 One aspect of the present invention to solve the above problems, the constant current constant voltage (CCCV) charging, to the initial charging to the first battery voltage V1 above the battery voltage V 60 corresponding lithium ion secondary battery to SOC 60% At the same time, after the initial charging step for obtaining the relationship between the charging time tc and the battery voltage Ve in the initial charging, and after the initial charging step, the lithium ion secondary is used under an environmental temperature Tage (where Tage = 40 to 85 ° C.). In the aging step of leaving the secondary battery, and when the lithium ion secondary battery is discharged at the first current value Ia, the battery voltage Ve rapidly decreases due to the internal resistance of the battery immediately after the start of discharge, Thereafter, the battery voltage Ve has a characteristic of gradually decreasing, and the voltage rapid decrease period from the start of the discharge to the end of the rapid decrease of the battery voltage Ve is defined as a predetermined time ta (seconds). After the aging step, the lithium ion secondary battery is discharged at the first current value Ia for the predetermined time ta at an environmental temperature Ts (where Ts ≦ 0 ° C.), When the lithium ion secondary battery is discharged at the second current value Ib over the predetermined time ta from the first reduction amount measurement step for measuring one voltage reduction amount ΔVa and the measured first voltage reduction amount ΔVa. The second charge amount estimation step for estimating the second voltage drop amount ΔVb generated before and after the discharge, and the charge in the initial charge acquired in the initial charge step in advance after the second decrease amount estimation step. time using the relationship between tc and the battery voltage Ve, in the first charging step, the third battery voltage V3 of the battery voltage V 40 below corresponding to SOC 40%, the battery voltage V 40 below the second battery voltage V From to fourth battery voltage minus the second voltage reduction amount ΔVb V4 (= V2-ΔVb) ( where, V3 <V4 <V2 ≦ V 40 <V 60 ≦ V1), the charging to the lithium ion secondary battery An electric quantity calculating step for calculating the electric quantity Qa, the second voltage drop quantity ΔVb is equal to or less than a reference drop quantity ΔVs (ΔVb ≦ ΔVs), and the electric quantity Qa is equal to or greater than a reference quantity of electricity Qs (Qa ≧ Qs), a determination process for determining the lithium ion secondary battery as a non-defective product is a method for manufacturing a lithium ion secondary battery.

上述のリチウムイオン二次電池の製造方法によれば、初充電工程及びエージング工程を行った後、電池を放電させて電池電圧Veを第2電池電圧V2まで下げることなく、第1低下量測定工程において、上述のようにして第1電圧低下量ΔVaを測定する。その後、第2低下量推定工程において、測定された第1電圧低下量ΔVaから、上述のようにして第2電圧低下量ΔVbを推定する。
また、この第2電圧低下量ΔVbと、予め初充電工程で取得しておいた初充電における充電時間tcと電池電圧Veとの関係を用いて、先に行った初充電工程において、第3電池電圧V3〜第4電池電圧V4(=V2−ΔVb)までに(V3<V4<V2≦V40<V60≦V1)、電池に充電された電気量Qaを、第2低下量推定工程後に算出する(電気量算出工程)。
According to the above-described method for manufacturing a lithium ion secondary battery, after performing the initial charging step and the aging step, the first reduction amount measuring step is performed without discharging the battery and lowering the battery voltage Ve to the second battery voltage V2. The first voltage drop amount ΔVa is measured as described above. Thereafter, in the second decrease amount estimation step, the second voltage decrease amount ΔVb is estimated from the measured first voltage decrease amount ΔVa as described above.
Further, in the first charging step performed previously, the third battery is used by using the relationship between the second voltage drop amount ΔVb and the charging time tc and the battery voltage Ve obtained in the initial charging step in advance. voltage V3~ fourth battery voltage V4 (= V2-ΔVb) until the (V3 <V4 <V2 ≦ V 40 <V 60 ≦ V1), the electric quantity Qa charged in the battery, calculated after the second decrease amount estimation step (Electric quantity calculation step).

そして、判定工程において、第2電圧低下量ΔVbが基準低下量ΔVs以下(ΔVb≦ΔVs)で、かつ、電気量Qaが基準電気量Qs以上(Qa≧Qs)である場合に、当該電池を良品と判定する。この判定工程により、後述するように、環境温度Ts(Ts≦0℃)下、SOC40%に相当する電池電圧V40以下の第2電池電圧V2〜第3電池電圧V3(V3<V2≦V40)の範囲における電池の特性の良否を判定できる。 In the determination step, if the second voltage drop amount ΔVb is equal to or less than the reference drop amount ΔVs (ΔVb ≦ ΔVs) and the amount of electricity Qa is equal to or greater than the reference amount of electricity Qs (Qa ≧ Qs), the battery is determined to be a good product. Is determined. This determination process, as will be described later, ambient temperature Ts (Ts ≦ 0 ℃) under a second battery voltage below the battery voltage V 40 corresponding to SOC40% V2~ third battery voltage V3 (V3 <V2 ≦ V 40 ), The quality of the battery can be determined.

しかも、上述のリチウムイオン二次電池の製造方法では、第1低下量測定工程、第2低下量推定工程、電気量算出工程及び判定工程を、電池電圧Veを第3電池電圧V3まで下げずに行うことができる。即ち、電池電圧Veを第3電池電圧V3まで下げることなく、環境温度Ts下、第2電池電圧V2〜第3電池電圧V3(V3<V2≦V40)の範囲における電池の特性の良否を確認できる。 Moreover, in the above-described method for manufacturing a lithium ion secondary battery, the first reduction amount measurement step, the second reduction amount estimation step, the electric quantity calculation step, and the determination step are performed without reducing the battery voltage Ve to the third battery voltage V3. It can be carried out. That is, without lowering the battery voltage Ve to the third battery voltage V3, environment temperature Ts, check the quality of the characteristics of the battery in the range of the second battery voltage V2~ third battery voltage V3 (V3 <V2 ≦ V 40 ) it can.

なお、「リチウムイオン二次電池」の正極活物質は、リチウム遷移金属複合酸化物であるのが好ましく、更には、遷移金属としてニッケル(Ni)とマンガン(Mn)とコバルト(Co)とを含むリチウムニッケルマンガンコバルト複合酸化物であるのが好ましい。また、負極活物質は、炭素材料であるのが好ましく、更には、黒鉛であるのが好ましい。
「初充電工程」は、室温(25±5℃)下で行うのが好ましい。
0℃以下である「環境温度Ts」は、−40〜−10℃とするのが好ましく、更には、−40〜−20℃とするのが好ましい。
The positive electrode active material of the “lithium ion secondary battery” is preferably a lithium transition metal composite oxide, and further includes nickel (Ni), manganese (Mn), and cobalt (Co) as transition metals. Lithium nickel manganese cobalt composite oxide is preferable. Further, the negative electrode active material is preferably a carbon material, and more preferably graphite.
The “initial charging step” is preferably performed at room temperature (25 ± 5 ° C.).
The “environmental temperature Ts” which is 0 ° C. or lower is preferably −40 to −10 ° C., more preferably −40 to −20 ° C.

SOC60%に相当する電池電圧V60以上である「第1電池電圧V1」は、SOC80%に相当する電池電圧V80以上とするのが好ましく、更には、SOC90%に相当する電池電圧V90以上とするのが好ましい。「第1電池電圧V1」は、電池が実際に使用されるSOC範囲のうち、上限である上限SOCに近い値とするのが好ましい。一方、電池が車両(プラグインハイブリッドカー、電気自動車等)や電池搭載機器(パーソナルコンピュータ、携帯電話、電動工具等)に搭載されて実際に使用される際には、その上限SOCは、例えばSOC100%など、SOC80%以上、更にはSOC90%以上とされる場合が多いからである。
SOC40%に相当する電池電圧V40以下である「第2電池電圧V2」は、SOC35%に相当する電池電圧V35以下とするのが好ましい。「第2電池電圧V2」は、電池が実際に使用されるSOC範囲のうち、下限である下限SOCに近い値とするのが好ましい。一方、電池が上述の車両や電池搭載機器などに搭載されて実際に使用される際には、その下限SOCは、例えばSOC0%など、SOC35%以下とされる場合が多いからである。
The “first battery voltage V1” which is a battery voltage V 60 or higher corresponding to SOC 60% is preferably a battery voltage V 80 or higher corresponding to SOC 80 %, and further a battery voltage V 90 or higher corresponding to SOC 90 %. Is preferable. “First battery voltage V1” is preferably set to a value close to the upper limit SOC which is the upper limit in the SOC range in which the battery is actually used. On the other hand, when the battery is actually used by being mounted on a vehicle (plug-in hybrid car, electric vehicle, etc.) or a battery-equipped device (personal computer, mobile phone, electric tool, etc.), the upper limit SOC is, for example, SOC100. This is because there are many cases where the SOC is 80% or more, and further, the SOC is 90% or more.
SOC40 is battery voltage V 40 below corresponding to% "second battery voltage V2 'is preferably equal to the battery voltage V 35 below, which corresponds to SOC35%. “Second battery voltage V2” is preferably set to a value close to the lower limit SOC which is the lower limit in the SOC range in which the battery is actually used. On the other hand, when the battery is mounted and actually used in the above-described vehicle or battery-equipped device, the lower limit SOC is often set to SOC 35% or less, such as SOC 0%.

「第1電流値Ia」は、0.5C〜10Cとするのが好ましく、更には、2C〜5Cとするのが好ましい。
「第2電流値Ib」は、2C〜10Cとするのが好ましく、更には、4C〜7Cとするのが好ましい。
The “first current value Ia” is preferably 0.5 C to 10 C, and more preferably 2 C to 5 C.
The “second current value Ib” is preferably 2C to 10C, and more preferably 4C to 7C.

実施形態に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to an embodiment. 実施形態に係るリチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium ion secondary battery which concerns on embodiment. 実施形態に係るリチウムイオン二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the lithium ion secondary battery which concerns on embodiment. Ts=−30℃の環境温度下で、電池電圧Ve=3.55Vに調整したリチウムイオン二次電池を1.5秒間にわたり放電させたときの放電時間teと電池電圧Veとの関係を示すグラフである。The graph which shows the relationship between the discharge time te and battery voltage Ve when discharging the lithium ion secondary battery adjusted to battery voltage Ve = 3.55V over 1.5 second under environmental temperature of Ts = -30 degreeC. It is. 電池電圧Ve=3.90VまたはVe=3.50Vに調整したリチウムイオン二次電池を、Ts=−30℃の環境温度下で0.2秒間にわたり放電させたときの放電時間teと電圧低下量ΔVとの関係を示すグラフである。Discharge time te and voltage drop when a lithium ion secondary battery adjusted to battery voltage Ve = 3.90V or Ve = 3.50V is discharged for 0.2 seconds at an environmental temperature of Ts = −30 ° C. It is a graph which shows the relationship with (DELTA) V. Ts=20℃またはTs=−30℃の環境温度下で、電池電圧Ve=3.55Vに調整したリチウムイオン二次電池を1.5秒間にわたり放電させたときの放電時間teと電池電圧Veとの関係を示すグラフである。Discharge time te and battery voltage Ve when a lithium ion secondary battery adjusted to battery voltage Ve = 3.55 V was discharged for 1.5 seconds at an environmental temperature of Ts = 20 ° C. or Ts = −30 ° C. It is a graph which shows the relationship. 第1低下量測定工程で放電させる電流値Iと電圧低下量ΔVとの関係を示すグラフである。It is a graph which shows the relationship between the electric current value I discharged in the 1st fall amount measurement process, and the voltage fall amount (DELTA) V.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a perspective view and a longitudinal sectional view of a lithium ion secondary battery (hereinafter also simply referred to as “battery”) 1 according to the present embodiment. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric car. The battery 1 includes a battery case 10, an electrode body 20 accommodated therein, a positive terminal member 50 and a negative terminal member 60 supported by the battery case 10, and the like. In addition, an electrolytic solution 17 is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。   Among these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (in this embodiment, aluminum). The battery case 10 is composed of a bottomed rectangular tube-shaped case main body member 11 that is open only on the upper side, and a rectangular plate-shaped case lid member 13 that is welded in a form that closes the opening of the case main body member 11. The A positive terminal member 50 made of aluminum is fixed to the case lid member 13 while being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to the positive electrode plate 21 of the electrode body 20 in the battery case 10 to be conductive, and extends through the case lid member 13 to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to and conductive with the negative electrode plate 31 of the electrode body 20 in the battery case 10, and extends through the case lid member 13 to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。この正極活物質層は、正極活物質(本実施形態ではリチウム遷移金属複合酸化物、具体的にはリチウムニッケルマンガンコバルト複合酸化物)、導電材(本実施形態ではアセチレンブラック)及び結着剤(本実施形態ではポリフッ化ビニリデン)からなる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を帯状に設けてなる。この負極活物質層は、負極活物質(本実施形態では炭素材料、具体的には黒鉛)、結着剤(本実施形態ではスチレンブタジエンゴム)及び増粘剤(本実施形態ではカルボキシメチルセルロース)からなる。   The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a laid-down state. Between the electrode body 20 and the battery case 10, a bag-shaped insulating film enclosure 19 made of an insulating film is disposed. The electrode body 20 includes a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 that are overlapped with each other via a pair of separators 41 and 41 made of a resin-made porous film and wound around an axis to be flat. Compressed. The positive electrode plate 21 is provided with a positive electrode active material layer in a band shape at predetermined positions on both main surfaces of a positive electrode current collector foil made of a band-shaped aluminum foil. The positive electrode active material layer includes a positive electrode active material (lithium transition metal composite oxide in this embodiment, specifically lithium nickel manganese cobalt composite oxide), a conductive material (acetylene black in this embodiment), and a binder ( In the present embodiment, it is made of polyvinylidene fluoride). Moreover, the negative electrode plate 31 is provided with a negative electrode active material layer in a strip shape at predetermined positions on both main surfaces of a negative electrode current collector foil made of a strip-shaped copper foil. This negative electrode active material layer is composed of a negative electrode active material (carbon material in the present embodiment, specifically graphite), a binder (styrene butadiene rubber in the present embodiment), and a thickener (carboxymethyl cellulose in the present embodiment). Become.

次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、電池1を組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。   Next, a method for manufacturing the battery 1 will be described (see FIG. 3). First, in the “assembly process S1”, the battery 1 is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 41 and 41 and wound into a flat shape to form the electrode body 20. Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed thereto (see FIGS. 1 and 2). Thereafter, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film enclosure 19, and these are inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. The case body member 11 and the case lid member 13 are welded to form the battery case 10. Thereafter, the electrolytic solution 17 is injected into the battery case 10 through the injection hole 13 h and impregnated in the electrode body 20. Thereafter, the injection hole 13 h is sealed with the sealing member 15.

次に、「初充電工程S2」を行うのに先立ち、電池1を拘束する。具体的には、電池ケース10の最も面積が大きい側面10c,10cを一対の板状の押圧治具(不図示)で電池厚み方向BHに挟んで、電池1を電池厚み方向BHに押圧した状態で拘束する。なお、本実施形態では、以下に説明する「初充電工程S2」から「第1低下量測定工程S5」までを、このように電池1を拘束した状態で行う。   Next, the battery 1 is restrained prior to performing the “initial charging step S2”. Specifically, the side surface 10c, 10c having the largest area of the battery case 10 is sandwiched in the battery thickness direction BH by a pair of plate-shaped pressing jigs (not shown), and the battery 1 is pressed in the battery thickness direction BH. Restrain with. In the present embodiment, the process from the “initial charging step S2” to the “first reduction amount measuring step S5” described below is performed in a state where the battery 1 is thus restrained.

電池1を拘束した後、「初充電工程S2」において、この電池1に初充電を行う。具体的には、電池1に充放電装置を接続して、室温(25±5℃)下において、定電流定電圧(CCCV)充電により、SOC60%に相当する電池電圧V60以上、更にはSOC80%に相当する電池電圧V80以上、更にはSOC90%に相当する電池電圧V90以上である第1電池電圧V1=4.10Vまで電池1を初充電する。なお、この第1電池電圧V1=4.10V=V100は、SOC100%のときの電池電圧V100である。本実施形態では、4C=20.0Aの定電流で電池電圧Veが第1電池電圧V1=4.10Vになるまで充電した後、充電電流値が0.2C=1.0Aになるまでこの第1電池電圧V1=4.10Vを維持した。なお、この初充電工程S2における初充電中は、0.1秒ごとに電池電圧Veを測定し、初充電における充電時間tcと電池電圧Veとの関係を取得する。 After the battery 1 is restrained, the battery 1 is initially charged in the “initial charging step S2”. Specifically, by connecting a charging / discharging device to the battery 1 and charging at a constant current and constant voltage (CCCV) at room temperature (25 ± 5 ° C.), the battery voltage V 60 or more corresponding to SOC 60% or more, SOC 80 % to the corresponding battery voltage V 80 above, further to the initial charge of the battery 1 to the first battery voltage V1 = 4.10 V is the battery voltage V 90 or more, which corresponds to SOC90%. Incidentally, the first battery voltage V1 = 4.10V = V 100 is a battery voltage V 100 when the SOC 100%. In the present embodiment, the battery voltage Ve is charged at a constant current of 4C = 20.0A until the battery voltage Ve reaches the first battery voltage V1 = 4.10V, and then the first current is charged until the charge current value becomes 0.2C = 1.0A. 1 Battery voltage V1 was maintained at 4.10V. During the initial charging in the initial charging step S2, the battery voltage Ve is measured every 0.1 seconds, and the relationship between the charging time tc and the battery voltage Ve in the initial charging is acquired.

次に、「エージング工程S3」において、40〜85℃の環境温度Tage下で、電池1を放置してエージングする。具体的には、初充電後の電池1を、環境温度Tage=63℃下において、端子開放した状態で20hrにわたり放置してエージングする。   Next, in the “aging step S3”, the battery 1 is left to age under an environmental temperature Tage of 40 to 85 ° C. Specifically, the battery 1 after the initial charge is aged by leaving it to stand for 20 hours with the terminal open at an environmental temperature Tage = 63 ° C.

次に、「短絡検知工程S4」において、電池1を端子開放した状態で放置して放電させて(自己放電させて)、放置中の電池電圧Veの電圧低下量ΔVhを測定し、当該電池1の内部短絡の有無を検知する。具体的には、電池1を20℃の温度下で端子開放した状態で放置して、エージング工程S3の終了時(短絡検知工程S4の開始時)から2.0日経過後に測定した電池電圧Vh1と、エージング工程S3の終了時(短絡検知工程S4の開始時)から7.0日経過後に測定した電池電圧Vh2とから、電圧低下量ΔVh=Vh1−Vh2を算出する。   Next, in the “short circuit detection step S4”, the battery 1 is left to be discharged with its terminals open (self-discharged), and the voltage drop amount ΔVh of the battery voltage Ve being left is measured. Detects whether there is an internal short circuit. Specifically, the battery voltage Vh1 measured after 2.0 days from the end of the aging step S3 (at the start of the short-circuit detection step S4) is left with the terminal opened at a temperature of 20 ° C. Then, a voltage drop amount ΔVh = Vh1−Vh2 is calculated from the battery voltage Vh2 measured after 7.0 days from the end of the aging step S3 (at the start of the short circuit detection step S4).

そして、取得した当該電池1の電圧低下量ΔVhを、予め定めた基準低下量ΔVrと比較し、電圧低下量ΔVhが基準低下量ΔVrよりも大きい場合(ΔVh>ΔVr)に、当該電池1に内部短絡が生じている不良品と判定し、その電池1を除去する。一方、当該電池1の電圧低下量ΔVhが基準低下量ΔVrよりも小さい場合(ΔVh≦ΔVr)には、当該電池1を内部短絡の無い良品と判定し、次の「第1低下量測定工程S5」を行う。   Then, the obtained voltage decrease amount ΔVh of the battery 1 is compared with a predetermined reference decrease amount ΔVr. When the voltage decrease amount ΔVh is larger than the reference decrease amount ΔVr (ΔVh> ΔVr), The battery 1 is removed by determining that the short circuit has occurred. On the other hand, when the voltage drop amount ΔVh of the battery 1 is smaller than the reference drop amount ΔVr (ΔVh ≦ ΔVr), the battery 1 is determined to be a good product without an internal short circuit, and the next “first drop amount measurement step S5” is performed. "I do.

続く、「第1低下量測定工程S5」から「判定工程S8」では、環境温度Ts=−30℃の低温環境下、SOC40%に相当する電池電圧V40以下、更にはSOC35%に相当する電池電圧V35以下の低電池電圧の領域(第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲)において、電池出力が基準以上(1.5秒、100W以上)であることを、低電池電圧の領域まで電池1を放電させずに代用となる検査より確認する。
即ち、本来であれば、前述したように(図4参照)、第2電池電圧V2=3.55V(SOC30%)に調整した電池1を、Ts=−30℃の環境温度下において、100W/3.55V=28.2Aの電流値(後述する第2電流値Ib)で、放電時間te=1.5秒間にわたり放電させる。そして、放電終了時(放電時間te=1.5秒)の電池電圧Veが第3電池電圧V3=2.70V以上である場合に、その電池1を良品と判定する。
これに対し、本実施形態では、以下の「第1低下量測定工程S5」から「判定工程S8」を行うことで、上記の電池出力検査を代用する。これにより、電池電圧Veを第2電池電圧V2=3.55V(SOC30%)まで下げることなく、電池1の良否を判定できる。
In the subsequent “first reduction amount measurement step S5” to “determination step S8”, the battery voltage corresponding to 40 % SOC or less, and further the battery corresponding to 35% SOC, in a low temperature environment with an environmental temperature Ts = −30 ° C. in the region of the voltage V 35 or lower battery voltage (range of the second battery voltage V2 = 3.55V~ third battery voltage V3 = 2.70V), the battery output is the reference or more (1.5 seconds, 100W or higher) in It is confirmed by a substitute inspection without discharging the battery 1 to the low battery voltage region.
That is, originally, as described above (see FIG. 4), the battery 1 adjusted to the second battery voltage V2 = 3.55 V (SOC 30%) is set to 100 W / 30 at an environmental temperature of Ts = −30 ° C. A discharge time te = 1.5 seconds is discharged at a current value of 3.55V = 28.2 A (second current value Ib described later). When the battery voltage Ve at the end of discharge (discharge time te = 1.5 seconds) is equal to or higher than the third battery voltage V3 = 2.70 V, the battery 1 is determined to be non-defective.
On the other hand, in the present embodiment, the battery output inspection described above is substituted by performing the following “first reduction amount measurement step S5” to “determination step S8”. Thereby, the quality of the battery 1 can be determined without lowering the battery voltage Ve to the second battery voltage V2 = 3.55 V (SOC 30%).

まず、「第1低下量測定工程S5」において、0℃以下の環境温度Ts下において、電池1を第1電流値Iaで所定時間taにわたり放電させて、この放電前後間の第1電圧低下量ΔVaを測定する。具体的には、電池1に充放電装置を接続して、環境温度Ts=−30℃下において、電池1を0.5C〜10C、更には2C〜5Cの範囲内の第1電流値Ia=4C(20.0A)で所定時間ta=0.2秒にわたり放電させて、この放電前後間の第1電圧低下量ΔVaを測定する。例えば、この第1電圧低下量ΔVaとして、ΔVa=0.50Vが測定される。   First, in the “first reduction amount measurement step S5”, the battery 1 is discharged at a first current value Ia for a predetermined time ta under an environmental temperature Ts of 0 ° C. or less, and a first voltage reduction amount before and after the discharge. ΔVa is measured. Specifically, a charging / discharging device is connected to the battery 1, and the battery 1 is set to a first current value Ia = 0.5C to 10C, and further within a range of 2C to 5C at an environmental temperature Ts = −30 ° C. The battery is discharged at 4C (20.0 A) for a predetermined time ta = 0.2 seconds, and the first voltage drop amount ΔVa before and after the discharge is measured. For example, ΔVa = 0.50 V is measured as the first voltage drop amount ΔVa.

なお、電池1を第1電流値Ia=4C(20.0A)で放電させると(図4参照)、放電開始直後に電池1の内部抵抗に起因して電池電圧Veが急速に低下し、その後、電池電圧Veが徐々に低下する。前述の所定時間ta=0.2秒は、この放電開始から電池電圧Veの急速な低下が終わるまでの電圧急速低下期間である。図4は、前述のように、第2電流値Ib=28.2Aで電池1を放電させたときのグラフであるが、第1電流値Ia=20.0Aで放電させたときも、図4と同様な形状のグラフが得られ、そのグラフから電圧急速低下期間が0.2秒であることが判っている。
なお、第1低下量測定工程S5を終えた後は、電池1を拘束している拘束治具を取り外し、電池1の拘束状態を解除する。
When the battery 1 is discharged at the first current value Ia = 4C (20.0 A) (see FIG. 4), the battery voltage Ve rapidly decreases due to the internal resistance of the battery 1 immediately after the discharge starts, and thereafter The battery voltage Ve gradually decreases. The predetermined time ta = 0.2 seconds described above is a voltage rapid decrease period from the start of discharge until the rapid decrease of the battery voltage Ve ends. FIG. 4 is a graph when the battery 1 is discharged at the second current value Ib = 28.2A as described above, but when the battery 1 is discharged at the first current value Ia = 20.0A, FIG. A graph having the same shape as that shown in FIG. 6 is obtained, and it is known from the graph that the voltage rapid decrease period is 0.2 seconds.
In addition, after finishing 1st fall amount measurement process S5, the restraining jig | tool which restrains the battery 1 is removed, and the restraint state of the battery 1 is cancelled | released.

次に、「第2低下量推定工程S6」において、前述の第1低下量測定工程S5で得られた第1電圧低下量ΔVaから、電池1を2C〜10C、更には4C〜7Cの範囲内の第2電流値Ib=5.64C(28.2A)で前述の所定時間ta=0.2秒にわたり放電させた場合に、この放電前後間で生じる第2電圧低下量ΔVbを推定する。
図7に、良品の平均的な特性を有する電池1を用いて、電池1を所定時間ta=0.2秒にわたり放電させたときの電流値Iと電圧低下量ΔVとの関係を示す。この近似直線の傾き(−0.0124)から、放電電流値1A当たりの電圧低下量ΔVは、0.0124V/Aであることが判る。
Next, in the “second reduction amount estimation step S6”, the battery 1 is within the range of 2C to 10C, further 4C to 7C, from the first voltage reduction amount ΔVa obtained in the first reduction amount measurement step S5. When the second current value Ib = 5.64C (28.2A) is discharged for the predetermined time ta = 0.2 seconds, the second voltage drop amount ΔVb generated before and after the discharge is estimated.
FIG. 7 shows the relationship between current value I and voltage drop amount ΔV when battery 1 is discharged for a predetermined time ta = 0.2 seconds using non-defective battery 1 having average characteristics. From the slope of this approximate line (−0.0124), it can be seen that the voltage drop amount ΔV per 1 A of the discharge current value is 0.0124 V / A.

従って、以下の式(1)を用いることにより、第1電流値Ia=20.0Aで放電させたときの第1電圧低下量ΔVaから、第2電流値Ib=28.2Aで放電させた場合の第2電圧低下量ΔVbを推定できる。
ΔVb=0.0124(Ib−Ia)+ΔVa ・・・(1)
例えば、前述のように第1電圧低下量ΔVa=0.50Vであったとすると、第2電圧低下量ΔVbは、ΔVb=0.0124(28.2−20.0)+0.50=0.60Vと推定される。
Therefore, by using the following equation (1), when discharging at the second current value Ib = 28.2A from the first voltage drop amount ΔVa when discharging at the first current value Ia = 20.0A: The second voltage drop amount ΔVb can be estimated.
ΔVb = 0.0124 (Ib−Ia) + ΔVa (1)
For example, if the first voltage drop amount ΔVa = 0.50 V as described above, the second voltage drop amount ΔVb is ΔVb = 0.124 (28.2-20.0) + 0.50 = 0. Estimated to be 60V.

ここで、放電開始前の電池電圧Veの大きさと放電による電圧低下量ΔVの大きさとの関係について説明する。電池電圧Ve=3.90Vに調整した電池1、及び、電池電圧Ve=3.50Vに調整した電池1について、それぞれ、環境温度Ts=−30℃下、第2電流値Ib=28.2Aで所定時間ta=0.2秒にわたり放電させたときの放電時間teと電圧低下量ΔVとの関係を図5に示す。   Here, the relationship between the magnitude of the battery voltage Ve before the start of discharge and the magnitude of the voltage drop amount ΔV due to discharge will be described. For the battery 1 adjusted to the battery voltage Ve = 3.90V and the battery 1 adjusted to the battery voltage Ve = 3.50V, respectively, the environmental current Ts = −30 ° C. and the second current value Ib = 28.2A. FIG. 5 shows the relationship between the discharge time te and the voltage drop amount ΔV when discharging for a predetermined time ta = 0.2 seconds.

図5のグラフから明らかなように、放電時間teが0〜0.2秒までの期間における電圧低下量ΔVは、電池電圧Ve=3.90Vの電池1と、電池電圧Ve=3.50Vの電池1とで殆ど差がないことが判る。つまり、放電時間teが0〜0.2秒までの期間においては、放電開始前の電池電圧Veの大きさに拘わらず、放電による電圧低下量ΔVの大きさはほぼ一定となることが判る。従って、第1電圧低下量ΔVa及び第2電圧低下量ΔVbを求めるにあたり(短絡検知工程S4の後、第1低下量測定工程S5の前に)、電池電圧Veを第2電池電圧V2=3.55Vまで下げる必要はなく、短絡検知工程S4後の電池電圧Veが高い状態のまま、第1低下量測定工程S5を行うことができる。   As apparent from the graph of FIG. 5, the voltage drop amount ΔV during the period from the discharge time te to 0 to 0.2 seconds is the battery 1 with the battery voltage Ve = 3.90V and the battery voltage Ve = 3.50V. It can be seen that there is almost no difference with the battery 1. That is, it can be seen that during the period from 0 to 0.2 seconds of the discharge time te, the magnitude of the voltage drop ΔV due to discharge is substantially constant regardless of the magnitude of the battery voltage Ve before the start of discharge. Accordingly, in obtaining the first voltage drop amount ΔVa and the second voltage drop amount ΔVb (after the short circuit detection step S4 and before the first drop amount measurement step S5), the battery voltage Ve is set to the second battery voltage V2 = 3. There is no need to reduce the voltage to 55 V, and the first reduction amount measurement step S5 can be performed while the battery voltage Ve after the short-circuit detection step S4 remains high.

次に、「電気量算出工程S7」において、予め初充電工程S2で取得しておいた「初充電における充電時間tcと電池電圧Veとの関係」を用いて、当該初充電工程S2において、SOC40%に相当する電池電圧V40以下の第3電池電圧V3=2.70Vから、上記電池電圧V40以下の第2電池電圧V2=3.55Vから第2電圧低下量ΔVbを差し引いた第4電池電圧V4(=V2−ΔVb)までに、電池1に充電された電気量Qaを算出する。 Next, in the “electricity calculation step S7”, using the “relationship between the charging time tc in the initial charging and the battery voltage Ve” acquired in the initial charging step S2, the SOC 40 in the initial charging step S2 is obtained. % from the third battery voltage V3 = 2.70V cell voltage V 40 below corresponding to fourth battery by subtracting the second voltage reduction amount ΔVb from the battery voltage V 40 below the second battery voltage V2 = 3.55 V The amount of electricity Qa charged in the battery 1 up to the voltage V4 (= V2−ΔVb) is calculated.

例えば、前述のように、第2電圧低下量ΔVb=0.60Vであったとすると、初充電工程S2において、電池電圧Veが、第3電池電圧V3=2.70Vから第4電池電圧V4=V2−ΔVb=3.55−0.60=2.95Vとなるまでに、電池1に充電された電気量Qaを算出する。まず、「初充電における充電時間tcと電池電圧Veとの関係」から、電池電圧Veが第3電池電圧V3=2.70Vから第4電池電圧V4=2.95Vになるまでに掛かった時間tg(hr)を求める。そして、初充電工程S2は、前述のように20.0Aの定電流で充電を行っていることから、第3電池電圧V3=2.70Vから第4電池電圧V4=2.95Vになるまでに電池1に蓄えられた電気量Qaは、Qa=20.0×tg(Ahr)により算出する。   For example, as described above, if the second voltage drop amount ΔVb = 0.60 V, the battery voltage Ve is changed from the third battery voltage V3 = 2.70 V to the fourth battery voltage V4 = V2 in the initial charging step S2. The amount of electricity Qa charged in the battery 1 is calculated until −ΔVb = 3.55−0.60 = 2.95V. First, from the “relationship between the charging time tc and the battery voltage Ve in the initial charging”, the time tg required for the battery voltage Ve to change from the third battery voltage V3 = 2.70V to the fourth battery voltage V4 = 2.95V. (Hr) is obtained. In the initial charging step S2, since charging is performed at a constant current of 20.0 A as described above, from the third battery voltage V3 = 2.70V to the fourth battery voltage V4 = 2.95V. The amount of electricity Qa stored in the battery 1 is calculated by Qa = 20.0 × tg (Ahr).

ここで、放電時の環境温度Tsと電池電圧Veとの関係について説明する。電池電圧Ve=3.55Vに調整した電池1を、Ts=20℃またはTs=−30℃の環境温度下で、第2電流値Ib=28.2Aで1.5秒間にわたり放電させたときの放電時間teと電圧低下量ΔVとの関係を図6に示す。
図6のグラフから明らかなように(図6において一点鎖線で囲んだ部分を参照)、放電時間teが0.2〜1.5秒までの期間における電池電圧Veの変化量(低下量)は、環境温度がTs=20℃の場合とTs=−30℃の場合とで殆ど差がないことが判る。つまり、放電時間teが0.2〜1.5秒までの期間においては、環境温度に拘わらず、電池電圧の低下量がほぼ一定となることが判る。従って、電気量Qaを求めるにあたり、環境温度をTs=−30℃にする必要はなく、室温下で行った初充電工程のデータを上記のように用いることができる。
Here, the relationship between the environmental temperature Ts at the time of discharge and the battery voltage Ve will be described. When the battery 1 adjusted to the battery voltage Ve = 3.55 V is discharged for 1.5 seconds at the second current value Ib = 28.2 A under the environmental temperature of Ts = 20 ° C. or Ts = −30 ° C. The relationship between the discharge time te and the voltage drop amount ΔV is shown in FIG.
As is clear from the graph of FIG. 6 (see the portion surrounded by the alternate long and short dash line in FIG. 6), the change amount (decrease amount) of the battery voltage Ve during the discharge time te is 0.2 to 1.5 seconds. It can be seen that there is almost no difference between the case where the environmental temperature is Ts = 20 ° C. and the case where Ts = −30 ° C. That is, it can be seen that the amount of decrease in the battery voltage is substantially constant regardless of the environmental temperature during the period from the discharge time te to 0.2 to 1.5 seconds. Therefore, it is not necessary to set the environmental temperature to Ts = −30 ° C. in obtaining the electric quantity Qa, and the data of the initial charging process performed at room temperature can be used as described above.

次に、「判定工程S8」において、第2低下量推定工程S6で得た第2電圧低下量ΔVbを、予め定めた基準低下量ΔVsと比較し、第2電圧低下量ΔVbが基準低下量ΔVsよりも大きい場合(ΔVb>ΔVs)に、当該電池1を不良品と判定する。
また、電気量算出工程S7で得た電気量Qa(Ahr)を、予め定めた基準電気量Qs(Ahr)と比較し、電気量Qaが基準電気量Qsよりも小さい場合(Qa<Qs)に、当該電池1を不良品と判定する。なお、本実施形態では、基準電気量Qsは、100W/V3=100W/2.70V=37.0Aで、1.5秒−0.2秒=1.3秒放電させたときの電気量=37.0×1.3/3600=0.0134Ahrとした。
Next, in the “determination step S8”, the second voltage decrease amount ΔVb obtained in the second decrease amount estimation step S6 is compared with a predetermined reference decrease amount ΔVs, and the second voltage decrease amount ΔVb is compared with the reference decrease amount ΔVs. Is greater than (ΔVb> ΔVs), the battery 1 is determined to be defective.
Further, the electric quantity Qa (Ahr) obtained in the electric quantity calculation step S7 is compared with a predetermined reference electric quantity Qs (Ahr), and when the electric quantity Qa is smaller than the reference electric quantity Qs (Qa <Qs). The battery 1 is determined as a defective product. In this embodiment, the reference electric quantity Qs is 100 W / V3 = 100 W / 2.70 V = 37.0 A, and the electric quantity when discharging for 1.5 seconds−0.2 seconds = 1.3 seconds = It was set to 37.0 * 1.3 / 3600 = 0.134Ahr.

一方、第2電圧低下量ΔVbが基準低下量ΔVsよりも小さく(ΔVb≦ΔVs)、かつ、電気量Qaが基準電気量Qsよりも大きい場合(Qa≧Qs)には、当該電池1を良品と判定する。これにより、後述するように、Ts=−30℃の環境温度下で、第2電池電圧V2=3.55Vの状態の電池1を、100W/3.55V=28.2Aで1.5秒放電させたときに、放電後の電池電圧Veが第3電池電圧V3=2.70V以上であることを保証できると考えられる。
かくして、電池1が完成する。
On the other hand, when the second voltage drop amount ΔVb is smaller than the reference drop amount ΔVs (ΔVb ≦ ΔVs) and the amount of electricity Qa is larger than the reference amount of electricity Qs (Qa ≧ Qs), the battery 1 is regarded as a good product. judge. As a result, as will be described later, the battery 1 in the state of the second battery voltage V2 = 3.55 V is discharged at 100 W / 3.55 V = 28.2 A for 1.5 seconds at an environmental temperature of Ts = −30 ° C. It is considered that it is possible to ensure that the battery voltage Ve after discharge is equal to or higher than the third battery voltage V3 = 2.70V.
Thus, the battery 1 is completed.

なお、判定工程(ΔVb≦ΔVs、かつ、Qa≧Qs)により、Ts=−30℃の環境温度下、電池電圧V40以下の第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲における電池1の特性の良否を判定できる理由は、以下であると考えられる。
即ち、前述したように、実際に、Ts=−30℃の環境温度下において、第2電流値Ib=28.2Aで第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲の電池出力検査を行うと、放電時間teと電池電圧Veとの関係は、図4に示すグラフのようになる。即ち、放電開始直後は、電池1の内部抵抗に起因して電池電圧Veが急速に低下し、その後、電池電圧Veが徐々に低下する。
The determination step (.DELTA.Vb ≦ .DELTA.Vs and,, Qa ≧ Qs) by, Ts = -30 ° C. under an environment temperature, the battery voltage V 40 below the second battery voltage V2 = 3.55V~ third battery voltage V3 = 2 The reason why the quality of the battery 1 in the range of 70 V can be judged is considered to be as follows.
That is, as described above, the second battery voltage V2 = 3.55 V to the third battery voltage V3 = 2.70 V at the second current value Ib = 28.2 A under the environmental temperature of Ts = −30 ° C. When the battery output inspection in the range is performed, the relationship between the discharge time te and the battery voltage Ve is as shown in the graph of FIG. That is, immediately after the start of discharge, the battery voltage Ve rapidly decreases due to the internal resistance of the battery 1, and then the battery voltage Ve gradually decreases.

このグラフのうち、放電時間teが0〜0.2秒の区間は、放電開始から電池電圧Veの急速な低下が終わるまでの電圧急速低下期間であり、この期間に電池電圧Veは第2電池電圧V2=3.55Vから2.95Vまで低下する。この電圧急速低下期間における電圧低下量ΔVc=3.55V−2.95V=0.60Vは、主に、環境温度Ts=−30℃における電池1の内部抵抗に起因して生じた電圧低下量と考えられる。   In this graph, a section where the discharge time te is 0 to 0.2 seconds is a rapid voltage drop period from the start of discharge until the rapid drop of the battery voltage Ve ends. During this period, the battery voltage Ve is the second battery. The voltage V2 decreases from 3.55V to 2.95V. The voltage drop amount ΔVc = 3.55V−2.95V = 0.60V during this voltage rapid drop period is mainly the amount of voltage drop caused by the internal resistance of the battery 1 at the environmental temperature Ts = −30 ° C. Conceivable.

本実施形態の電池1の製造方法では、第1低下量測定工程S5及び第2低下量推定工程S6を行って、環境温度Ts=−30℃下で、電池1を第2電流値Ib=28.2Aで所定時間ta=0.2秒放電させた場合の第2電圧低下量ΔVbを推定している。この第2電圧低下量ΔVbは、前述したように(図5参照)、放電開始前の電池電圧Veの値に依存しないことが判っている。従って、短絡検知工程S4後の電池電圧Veが高い状態で第1低下量測定工程S5を行って第1電圧低下量ΔVaを測定し、更に第2低下量推定工程S6で第2電圧低下量ΔVbを算出しても、この第2電圧低下量ΔVbは、実際に第2電池電圧V2=3.55Vから放電を行ったときの上述の電圧低下量ΔVc=0.60Vとほぼ同じ値となる。
そして、判定工程S8で第2電圧低下量ΔVbが基準低下量ΔVs以下(ΔVb≦ΔVs)であるか否かを判定しているので、第2電池電圧V2=3.55Vから第4電池電圧V4=2.95Vまでの第2電圧低下量ΔVb=0.60V(上述の電圧低下量ΔVcとほぼ同じ)の範囲における電池の特性の良否を判定できると考えられる。
In the manufacturing method of the battery 1 of the present embodiment, the first reduction amount measurement step S5 and the second reduction amount estimation step S6 are performed, and the battery 1 is connected to the second current value Ib = 28 at the ambient temperature Ts = −30 ° C. The second voltage drop amount ΔVb is estimated when discharging is performed for a predetermined time ta = 0.2 seconds at .2A. As described above (see FIG. 5), it is known that the second voltage drop amount ΔVb does not depend on the value of the battery voltage Ve before the start of discharge. Therefore, in the state where the battery voltage Ve after the short circuit detection step S4 is high, the first decrease amount measurement step S5 is performed to measure the first voltage decrease amount ΔVa, and further in the second decrease amount estimation step S6, the second voltage decrease amount ΔVb. Is calculated, the second voltage drop amount ΔVb is substantially the same value as the voltage drop amount ΔVc = 0.60 V described above when the discharge is actually performed from the second battery voltage V2 = 3.55V.
In the determination step S8, since it is determined whether or not the second voltage drop amount ΔVb is equal to or less than the reference drop amount ΔVs (ΔVb ≦ ΔVs), the second battery voltage V2 = 3.55V to the fourth battery voltage V4. It is considered that the quality of the battery in the range of the second voltage drop amount ΔVb = 0.60 V up to 2.95V (substantially the same as the above-described voltage drop amount ΔVc) can be determined.

一方、図4のグラフのうち、放電時間teが0.2秒以降では、電池電圧Veが第4電池電圧V4=2.95Vからほぼ一定割合で緩やかに低下している。この放電時間te=0.2秒以降の電圧低下量ΔVdは、主に、放電によって電池1に蓄えられた電気量Qaが減少したことによる電圧低下量と考えられる。   On the other hand, in the graph of FIG. 4, when the discharge time te is 0.2 seconds or later, the battery voltage Ve gradually decreases from the fourth battery voltage V4 = 2.95V at an almost constant rate. The voltage drop amount ΔVd after the discharge time te = 0.2 seconds is considered to be a voltage drop amount mainly due to a decrease in the amount of electricity Qa stored in the battery 1 due to discharge.

本実施形態の電池1の製造方法では、電気量算出工程S7において、第3電池電圧V3=2.70V〜第4電池電圧V4=2.95Vまでに、電池1に充電された電気量Qaを算出している。この電気量Qaは、前述したように(図6参照)、環境温度Tsに依存しないことが判っている。従って、電気量Qaの測定は、Ts=−30℃の環境温度下で行う必要はなく、室温下で行った初充電工程S2における充電時間tcと電池電圧Veとの関係を利用して電気量Qaを算出することができる。
そして、判定工程S8で電気量Qaが基準電気量Qs以上(Qa≧Qs)であるか否かを判定しているので、第4電池電圧=2.95Vから第3電池電圧V3=2.70Vまでの範囲における電池1の特性の良否を判定できると考えられる。
In the manufacturing method of the battery 1 of the present embodiment, the amount of electricity Qa charged in the battery 1 is calculated from the third battery voltage V3 = 2.70 V to the fourth battery voltage V4 = 2.95 V in the amount calculation step S7. Calculated. As described above (see FIG. 6), it is known that this quantity of electricity Qa does not depend on the environmental temperature Ts. Therefore, the measurement of the quantity of electricity Qa does not need to be performed at an ambient temperature of Ts = −30 ° C., and the quantity of electricity is utilized by utilizing the relationship between the charging time tc and the battery voltage Ve in the initial charging step S2 performed at room temperature. Qa can be calculated.
Since it is determined whether or not the electric quantity Qa is greater than or equal to the reference electric quantity Qs (Qa ≧ Qs) in the determination step S8, the fourth battery voltage = 2.95V to the third battery voltage V3 = 2.70V. It is considered that the quality of the battery 1 in the range up to this can be determined.

よって、ΔVb≦ΔVs、かつ、Qa≧Qsを満たす場合には、Ts=−30℃の環境温度下、第2電池電圧V2=3.55V〜第4電池電圧V4=2.95V〜第3電池電圧V3=2.70Vの範囲における電池1の特性の良否を判定できると考えられる。   Therefore, when ΔVb ≦ ΔVs and Qa ≧ Qs are satisfied, the second battery voltage V2 = 3.55V to the fourth battery voltage V4 = 2.95V to the third battery at an environmental temperature of Ts = −30 ° C. It is considered that the quality of the battery 1 can be determined in the range of the voltage V3 = 2.70V.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1として、前述の実施形態の製造方法により電池1を製造した。
一方、比較例1として、実施例1で製造した電池1について、放電させて電池電圧Veを第2電池電圧V2=3.55Vまで下げた。その後、Ts=−30℃の環境温度下において、この電池1を100W/3.55V=28.2Aの第2電流値Ibで第3電池電圧V3=2.70Vまで放電させた。この放電において、放電時間te=0〜0.2秒における電圧低下量ΔVbhを測定した。また、放電時間te=0.2秒経過時から電池電圧Veが第3電池電圧V3=2.70Vになるまでに、電池1から放電された電気量Qahを算出した。
(Examples and Comparative Examples)
Subsequently, the result of the test conducted in order to verify the effect of this invention is demonstrated. As Example 1, a battery 1 was manufactured by the manufacturing method of the above-described embodiment.
On the other hand, as Comparative Example 1, the battery 1 manufactured in Example 1 was discharged to lower the battery voltage Ve to the second battery voltage V2 = 3.55V. Thereafter, the battery 1 was discharged to a third battery voltage V3 = 2.70 V at a second current value Ib of 100 W / 3.55 V = 28.2 A under an environmental temperature of Ts = −30 ° C. In this discharge, the voltage drop amount ΔVbh at the discharge time te = 0 to 0.2 seconds was measured. In addition, the amount of electricity Qah discharged from the battery 1 was calculated from the time when the discharge time te = 0.2 seconds until the battery voltage Ve reached the third battery voltage V3 = 2.70V.

そして、実施例1において第2低下量推定工程S6で算出された第2電圧低下量ΔVbと、比較例1において測定された電圧低下量ΔVbhとを比較し、|(ΔVb−ΔVbh)/ΔVbh|×100(%)により、比較例1に対する実施例1の、放電時間te=0〜0.2秒における電圧低下量ΔVの誤差を求めた。その結果、放電時間te=0〜0.2秒における電圧低下量ΔVの誤差は、7%しかなかった。
また、実施例1において電気量算出工程S7で算出された電気量Qaと、比較例1において算出された電気量Qabとを比較し、|(Qa−Qab)/Qab|×100により、比較例1に対する実施例1の電気量Qaの誤差を求めた。その結果、電気量Qaの誤差は、1%しかなかった。
これらの結果から、比較例1の手法に代えて、実施例1の第1低下量測定工程S5〜判定工程S8を行った場合でも、比較例1と同様に、Ts=−30℃の環境温度下、第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲における電池1の特性の良否を確認できることが判る。
Then, the second voltage drop amount ΔVb calculated in the second drop amount estimation step S6 in Example 1 is compared with the voltage drop amount ΔVbh measured in Comparative Example 1, and | (ΔVb−ΔVbh) / ΔVbh | From x100 (%), the error of the voltage drop amount ΔV in the discharge time te = 0 to 0.2 seconds of the first example with respect to the first comparative example was obtained. As a result, the error of the voltage drop amount ΔV in the discharge time te = 0 to 0.2 seconds was only 7%.
Further, the electric quantity Qa calculated in the electric quantity calculation step S7 in Example 1 is compared with the electric quantity Qab calculated in Comparative Example 1, and the comparison example is given by | (Qa−Qab) / Qab | × 100. The error of the electric quantity Qa of Example 1 with respect to 1 was obtained. As a result, the error in the amount of electricity Qa was only 1%.
From these results, even when the first reduction amount measurement step S5 to the determination step S8 of Example 1 were performed instead of the method of Comparative Example 1, the environmental temperature of Ts = −30 ° C. was obtained as in Comparative Example 1. Below, it turns out that the quality of the battery 1 in the range of 2nd battery voltage V2 = 3.55V-3rd battery voltage V3 = 2.70V can be confirmed.

また、実施例2として、前述の実施形態において、第1低下量測定工程S5を行う環境温度TsをTs=−30℃からTs=−10℃に変更して、電池1を製造した。それ以外は、実施形態と同様とした。
一方、比較例2として、前述の比較例1において、放電時の環境温度TsをTs=−30℃からTs=−10℃に変更した。それ以外は、比較例1と同様とした。
In addition, as Example 2, the battery 1 was manufactured by changing the environmental temperature Ts in which the first reduction amount measurement step S5 is performed from Ts = −30 ° C. to Ts = −10 ° C. in the above-described embodiment. Other than that, it was the same as the embodiment.
On the other hand, as Comparative Example 2, in Comparative Example 1 described above, the environmental temperature Ts during discharge was changed from Ts = −30 ° C. to Ts = −10 ° C. Otherwise, it was the same as Comparative Example 1.

そして、前述のように、実施例2の第2低下量推定工程S6で算出された第2電圧低下量ΔVbと、比較例2で測定された電圧低下量ΔVbhとを比較し、比較例2に対する実施例2の、放電時間te=0〜0.2秒における電圧低下量ΔVの誤差を求めた。その結果、放電時間te=0〜0.2秒における電圧低下量ΔVの誤差は、7%しかなかった。
また、前述のように、実施例2の電気量算出工程S7で算出された電気量Qaと、比較例1で算出された電気量Qabとを比較し、比較例2に対する実施例2の電気量Qaの誤差を求めた。その結果、電気量Qaの誤差は、2%しかなかった。
これらの結果から、環境温度TsをTs=−10℃に変更した場合でも、比較例2の手法に代えて、実施例2の第1低下量測定工程S5〜判定工程S8を行った場合、比較例2と同様に、Ts=−10℃の環境温度下、第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲における電池1の特性の良否を確認できることが判る。
Then, as described above, the second voltage drop amount ΔVb calculated in the second drop amount estimation step S6 of the second embodiment is compared with the voltage drop amount ΔVbh measured in the second comparative example. The error of the voltage drop amount ΔV in the discharge time te = 0 to 0.2 seconds in Example 2 was obtained. As a result, the error of the voltage drop amount ΔV in the discharge time te = 0 to 0.2 seconds was only 7%.
Further, as described above, the electric quantity Qa calculated in the electric quantity calculation step S7 of Example 2 is compared with the electric quantity Qab calculated in Comparative Example 1, and the electric quantity of Example 2 relative to Comparative Example 2 is compared. The Qa error was determined. As a result, the error in the amount of electricity Qa was only 2%.
From these results, even when the environmental temperature Ts is changed to Ts = −10 ° C., instead of the method of the comparative example 2, the first reduction amount measurement step S5 to the determination step S8 of the example 2 is performed. As in Example 2, it can be seen that the quality of the battery 1 can be confirmed in the range of the second battery voltage V2 = 3.55 V to the third battery voltage V3 = 2.70 V under an environmental temperature of Ts = −10 ° C.

以上で説明したように、電池1の製造方法では、初充電工程S2、エージング工程S3及び短絡検知工程S4を行った後、電池1を放電させて電池電圧Veを第2電池電圧V2=3.55Vまで下げることなく、電池電圧Veが高い状態のまま、第1低下量測定工程S5で前述のようにして第1電圧低下量ΔVaを測定する。その後、第2低下量推定工程S6で、測定された第1電圧低下量ΔVaから、前述のようにして第2電圧低下量ΔVbを推定する。
また、この第2電圧低下量ΔVbと、予め初充電工程S2で取得しておいた初充電における充電時間tcと電池電圧Veとの関係を用いて、先に行った初充電工程S2において、第3電池電圧V3=2.70V〜第4電池電圧V4=2.95Vまでに、電池1に充電された電気量Qaを、第2低下量推定工程S6後に算出する(電気量算出工程S7)。
As described above, in the manufacturing method of the battery 1, after performing the initial charging step S2, the aging step S3, and the short circuit detection step S4, the battery 1 is discharged and the battery voltage Ve is set to the second battery voltage V2 = 3. The first voltage drop amount ΔVa is measured as described above in the first drop amount measurement step S5 while the battery voltage Ve is kept high without being lowered to 55V. Thereafter, in the second decrease amount estimation step S6, the second voltage decrease amount ΔVb is estimated from the measured first voltage decrease amount ΔVa as described above.
Further, using the relationship between the second voltage drop amount ΔVb and the charging time tc and the battery voltage Ve obtained in the initial charging step S2 in advance, The amount of electricity Qa charged in the battery 1 from 3 battery voltage V3 = 2.70 V to 4th battery voltage V4 = 2.95 V is calculated after the second reduction amount estimating step S6 (electric amount calculating step S7).

そして、判定工程S8において、第2電圧低下量ΔVbが基準低下量ΔVs以下で、かつ、電気量Qaが基準電気量Qs以上である場合に、当該電池1を良品と判定する。この判定工程S8により、前述したように、環境温度Ts(Ts≦0℃)下、SOC40%に相当する電池電圧V40以下の第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲における電池1の特性の良否を判定できる。 In the determination step S8, when the second voltage decrease amount ΔVb is equal to or less than the reference decrease amount ΔVs and the amount of electricity Qa is equal to or greater than the reference amount of electricity Qs, the battery 1 is determined to be a non-defective product. By this determination step S8, as described above, under the environmental temperature Ts (Ts ≦ 0 ° C.), the second battery voltage V2 equal to or lower than the battery voltage V40 corresponding to SOC 40 % = 3.55V to the third battery voltage V3 = 2. The quality of the battery 1 in the range of .70 V can be determined.

しかも、電池1の製造方法では、第1低下量測定工程S5、第2低下量推定工程S6、電気量算出工程S7及び判定工程S8を、電池電圧Veを第3電池電圧V3=2.70Vまで下げずに行うことができる。即ち、電池電圧Veを第3電池電圧V3まで下げることなく、環境温度Ts=−30℃下、第2電池電圧V2=3.55V〜第3電池電圧V3=2.70Vの範囲における電池1の特性の良否を確認できる。   Moreover, in the manufacturing method of the battery 1, the first decrease amount measurement step S5, the second decrease amount estimation step S6, the electric amount calculation step S7, and the determination step S8 are performed, and the battery voltage Ve is changed to the third battery voltage V3 = 2.70V. Can be done without lowering. That is, without lowering the battery voltage Ve to the third battery voltage V3, the battery 1 in the range of the second battery voltage V2 = 3.55V to the third battery voltage V3 = 2.70V at the ambient temperature Ts = −30 ° C. The quality of the characteristics can be confirmed.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、初充電工程S2から第2低下量推定工程S6までを、電池1を拘束した状態で行ったが、これらの工程S2〜S6を電池1を拘束することなく行うこともできる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the initial charging step S2 to the second decrease amount estimation step S6 are performed in a state where the battery 1 is restrained, but these steps S2 to S6 can be performed without restraining the battery 1. .

1 リチウムイオン二次電池(電池)
S2 初充電工程
S3 エージング工程
S5 第1低下量測定工程
S6 第2低下量推定工程
S7 電気量算出工程
S8 判定工程
Ve 電池電圧
V1 第1電池電圧
V2 第2電池電圧
V3 第3電池電圧
V4 第4電池電圧
40 (SOC40%に相当する)電池電圧
60 (SOC60%に相当する)電池電圧
ΔV 電圧低下量
ΔVa 第1電圧低下量
ΔVb 第2電圧低下量
ΔVc 電圧低下量
ΔVd 電圧低下量
Ia 第1電流値
Ib 第2電流値
tc 充電時間
te 放電時間
ta 所定時間
Tage (エージング工程を行う)環境温度
Ts (第1低下量測定工程を行う)環境温度
Qa 電気量
1 Lithium ion secondary battery (battery)
S2 Initial charging step S3 Aging step S5 First reduction amount measurement step S6 Second reduction amount estimation step S7 Electricity amount calculation step S8 Determination step Ve Battery voltage V1 First battery voltage V2 Second battery voltage V3 Third battery voltage V4 Fourth Battery voltage V 40 (corresponding to SOC 40 %) Battery voltage V 60 (corresponding to SOC 60%) Battery voltage ΔV Voltage drop amount ΔVa First voltage drop amount ΔVb Second voltage drop amount ΔVc Voltage drop amount ΔVd Voltage drop amount Ia First 1 current value Ib second current value tc charge time te discharge time ta predetermined time Tage (performs aging process) environmental temperature Ts (performs first decrease measurement process) environmental temperature Qa electric quantity

Claims (1)

定電流定電圧(CCCV)充電により、リチウムイオン二次電池をSOC60%に相当する電池電圧V60以上の第1電池電圧V1まで初充電すると共に、この初充電における充電時間tcと電池電圧Veとの関係を取得する初充電工程と、
上記初充電工程の後、環境温度Tage(但し、Tage=40〜85℃)下で上記リチウムイオン二次電池を放置するエージング工程と、
上記リチウムイオン二次電池は、第1電流値Iaで放電させたときに、放電開始直後に電池の内部抵抗に起因して電池電圧Veが急速に低下し、その後、上記電池電圧Veが徐々に低下する特性を有しており、上記放電開始から上記電池電圧Veの急速な低下が終わるまでの電圧急速低下期間を、所定時間ta(秒)としたとき、上記エージング工程の後、環境温度Ts(但し、Ts≦0℃)下において、上記リチウムイオン二次電池を上記第1電流値Iaで上記所定時間taにわたり放電させて、この放電前後間の第1電圧低下量ΔVaを測定する第1低下量測定工程と、
測定した上記第1電圧低下量ΔVaから、上記リチウムイオン二次電池を第2電流値Ibで上記所定時間taにわたり放電させた場合に、この放電前後間で生じる第2電圧低下量ΔVbを推定する第2低下量推定工程と、
上記第2低下量推定工程の後、予め上記初充電工程で取得しておいた上記初充電における充電時間tcと電池電圧Veとの関係を用いて、当該初充電工程において、SOC40%に相当する電池電圧V40以下の第3電池電圧V3から、上記電池電圧V40以下の第2電池電圧V2から上記第2電圧低下量ΔVbを差し引いた第4電池電圧V4(=V2−ΔVb)までに(但し、V3<V4<V2≦V40<V60≦V1)、上記リチウムイオン二次電池に充電された電気量Qaを算出する電気量算出工程と、
上記第2電圧低下量ΔVbが基準低下量ΔVs以下(ΔVb≦ΔVs)であり、かつ、上記電気量Qaが基準電気量Qs以上(Qa≧Qs)である場合に、当該リチウムイオン二次電池を良品と判定する判定工程と、を備える
リチウムイオン二次電池の製造方法。
With the constant current and constant voltage (CCCV) charging, the lithium ion secondary battery is initially charged to the first battery voltage V1 equal to or higher than the battery voltage V 60 corresponding to SOC 60%, and the charging time tc and the battery voltage Ve in the initial charging are Initial charging process to acquire the relationship,
After the initial charging step, an aging step in which the lithium ion secondary battery is left under an environmental temperature Tage (where Tage = 40 to 85 ° C.),
When the lithium ion secondary battery is discharged at the first current value Ia, the battery voltage Ve drops rapidly due to the internal resistance of the battery immediately after the start of discharge, and then the battery voltage Ve gradually increases. When the voltage rapid decrease period from the start of discharge to the end of the rapid decrease of the battery voltage Ve is a predetermined time ta (seconds), after the aging step, the environmental temperature Ts (Where Ts ≦ 0 ° C.), the first lithium ion secondary battery is discharged at the first current value Ia for the predetermined time ta, and a first voltage drop ΔVa before and after the discharge is measured. A reduction amount measuring step;
From the measured first voltage drop amount ΔVa, when the lithium ion secondary battery is discharged at the second current value Ib for the predetermined time ta, the second voltage drop amount ΔVb generated before and after the discharge is estimated. A second reduction amount estimation step;
After the second reduction amount estimating step, using the relationship between the charging time tc in the initial charging and the battery voltage Ve acquired in the initial charging step in advance, the initial charging step corresponds to SOC 40%. from the battery voltage V 40 following third battery voltage V3, until the fourth battery voltage minus the second voltage reduction amount .DELTA.Vb from the second battery voltage V2 below the battery voltage V 40 V4 (= V2-ΔVb ) ( However, V3 <V4 <V2 ≦ V 40 <V 60 ≦ V1), the electric quantity calculating step of calculating the quantity of electricity Qa charged in the lithium ion secondary batteries,
When the second voltage drop amount ΔVb is equal to or less than the reference drop amount ΔVs (ΔVb ≦ ΔVs) and the amount of electricity Qa is equal to or greater than the reference amount of electricity Qs (Qa ≧ Qs), the lithium ion secondary battery is A method of manufacturing a lithium ion secondary battery comprising: a determination step for determining that the product is non-defective.
JP2016235025A 2016-12-02 2016-12-02 Method for manufacturing lithium ion secondary battery Pending JP2018092790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235025A JP2018092790A (en) 2016-12-02 2016-12-02 Method for manufacturing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235025A JP2018092790A (en) 2016-12-02 2016-12-02 Method for manufacturing lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2018092790A true JP2018092790A (en) 2018-06-14

Family

ID=62566242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235025A Pending JP2018092790A (en) 2016-12-02 2016-12-02 Method for manufacturing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2018092790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039215A (en) * 2018-10-05 2020-04-16 주식회사 엘지화학 Method for diagnosing a low voltage of a secondary cell and apparatus thereof
US11796599B2 (en) 2019-11-05 2023-10-24 Lg Energy Solution, Ltd. Battery diagnosis apparatus, battery diagnosis method and energy storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039215A (en) * 2018-10-05 2020-04-16 주식회사 엘지화학 Method for diagnosing a low voltage of a secondary cell and apparatus thereof
KR102391533B1 (en) 2018-10-05 2022-04-28 주식회사 엘지에너지솔루션 Method for diagnosing a low voltage of a secondary cell and apparatus thereof
US11796599B2 (en) 2019-11-05 2023-10-24 Lg Energy Solution, Ltd. Battery diagnosis apparatus, battery diagnosis method and energy storage system

Similar Documents

Publication Publication Date Title
US10656212B2 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP5172579B2 (en) Cylindrical battery inspection method
KR101486470B1 (en) Apparatus and method for estimating battery state
JP5464116B2 (en) Method for producing lithium ion secondary battery
US9882406B2 (en) Charging control method for lithium-ion battery, charging control apparatus for lithium-ion battery and lithium-ion battery system
JP5464118B2 (en) Method for producing lithium ion secondary battery
JP2012084346A (en) Method for producing lithium ion secondary battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
JP6794974B2 (en) Self-discharge inspection method for power storage devices
JP2009252459A (en) Alkali storage battery inspecting method
JP4529364B2 (en) Cylindrical battery inspection method
JP2018092790A (en) Method for manufacturing lithium ion secondary battery
CN105393128B (en) Method for estimating state of health of electrochemical cell storing electric energy
JP6020378B2 (en) Deterioration state detection device for storage element, degradation state detection method, storage system, and electric vehicle
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
CN114062952B (en) Insulation inspection method for secondary battery
JP2018067498A (en) Method of manufacturing battery
JP2005251538A (en) Inspection method and device of secondary cell
JP7052697B2 (en) Manufacturing method of lithium ion secondary battery
JP2018055878A (en) Manufacturing method of battery
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP7011782B2 (en) Secondary battery inspection method
JP6743758B2 (en) Battery manufacturing method
JP6996470B2 (en) Battery manufacturing method