JP6743758B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP6743758B2
JP6743758B2 JP2017094973A JP2017094973A JP6743758B2 JP 6743758 B2 JP6743758 B2 JP 6743758B2 JP 2017094973 A JP2017094973 A JP 2017094973A JP 2017094973 A JP2017094973 A JP 2017094973A JP 6743758 B2 JP6743758 B2 JP 6743758B2
Authority
JP
Japan
Prior art keywords
battery
inspected
batteries
evaluation
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017094973A
Other languages
Japanese (ja)
Other versions
JP2018190688A (en
Inventor
陽祐 志村
陽祐 志村
友秀 角
友秀 角
拓也 大友
拓也 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017094973A priority Critical patent/JP6743758B2/en
Publication of JP2018190688A publication Critical patent/JP2018190688A/en
Application granted granted Critical
Publication of JP6743758B2 publication Critical patent/JP6743758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、所定の電池電圧におけるIV抵抗値を測定して電池の良否を判断する電池の性能検査を備える電池の製造方法に関する。 The present invention relates to a battery manufacturing method including a battery performance test for determining the quality of a battery by measuring an IV resistance value at a predetermined battery voltage.

リチウムイオン二次電池などの電池は、出荷前に様々な電池の性能検査が行われる。例えば、初充電工程の途中で、被検査電池を所定の充電電流値Idで所定の検査電圧Vaまで初充電した後、被検査電池のIV抵抗値Rbを測定し、このIV抵抗値Rbが閾値以下である場合に、当該被検査電池を良品と判定する性能検査が知られている。なお、良品の電池については、更に初充電工程が継続される。これに関連する従来技術として、例えば特許文献1が挙げられる。 For batteries such as lithium-ion secondary batteries, various battery performance tests are performed before shipment. For example, during the initial charging process, the battery under test is initially charged with a predetermined charging current value Id to a predetermined test voltage Va, and then the IV resistance value Rb of the battery under test is measured. A performance test is known in which the battery under test is determined to be non-defective if the following is true. For non-defective batteries, the initial charging process is further continued. As a related art related to this, for example, Patent Document 1 can be cited.

特開2016−162559号公報JP, 2016-162559, A

ところで、上述の電池の性能検査を行うに当たり、複数の被検査電池を積層し、積層した被検査電池群の両端を拘束治具で拘束した上で、各被検査電池の性能検査を同時に行うことが考えられる。この検査において、各被検査電池をそれぞれ上記のように同じ充電電流値Idで検査電圧Vaまで初充電した場合、各被検査電池が配置された配置場所の違いに起因して、検査電圧Va到達時に各被検査電池がそれぞれ達する電池温度Td(n)に、温度バラツキが生じることが判ってきた。 By the way, when performing the above-mentioned battery performance inspection, stack a plurality of test batteries, restrain both ends of the stacked test battery groups with restraint jigs, and perform the performance test of each test battery at the same time. Is possible. In this inspection, when each inspected battery is initially charged to the inspection voltage Va with the same charging current value Id as described above, the inspection voltage Va is reached due to the difference in the location where each inspected battery is placed. It has been found that the battery temperature Td(n) reached by each battery under test sometimes varies.

このように電池温度Td(n)にバラツキが生じる理由は、例えば以下が考えられる。即ち、被検査電池は充電により発熱して電池温度が上昇するが、拘束治具内の各被検査電池は、その配置された場所によって、電池同士の間や電池と拘束治具との間での伝熱性が異なる。また、被検査電池の配置された場所によって、恒温槽内などの検査空間における気温調節のための気流の当たり方が異なるなどにより、各被検査電池について見ると、電池外の気温や放熱性などの環境が異なる場合もある。これらの場合、各被検査電池の配置場所による検査電圧Va到達時の電池温度Td(n)のバラつきが生じると考えられる。 The reason why the battery temperature Td(n) varies in this way is considered as follows. That is, the battery to be inspected generates heat by charging and the battery temperature rises. However, each battery to be inspected in the restraint jig may be placed between the batteries or between the battery and the restraint jig depending on the place where the battery is placed. Have different heat transfer properties. Also, depending on the location of the battery to be inspected, the airflow for air temperature adjustment in the inspection space such as in the constant temperature chamber may differ. The environment may differ. In these cases, it is considered that the battery temperature Td(n) varies when the inspection voltage Va reaches the arrangement position of each inspected battery.

一方、IV抵抗値Rb(n)は、電池温度Td(n)の違いによって異なる値になることも判ってきた。具体的には、電池温度Td(n)が低いほどIV抵抗値Rb(n)が大きくなり、電池温度Td(n)が高いほどIV抵抗値Rb(n)が小さくなる傾向がある。このため、IV抵抗値Rb(n)の値で被検査電池の良否を判断するに当たり、当該電池の電池温度Td(n)が基準温度とは異なる場合には、測定されたIV抵抗値Rb(n)を所定の閾値と比較して、判定することが難しい。 On the other hand, it has also been found that the IV resistance value Rb(n) varies depending on the battery temperature Td(n). Specifically, the IV resistance value Rb(n) tends to increase as the battery temperature Td(n) decreases, and the IV resistance value Rb(n) tends to decrease as the battery temperature Td(n) increases. Therefore, when determining the quality of the battery under test based on the value of the IV resistance value Rb(n), if the battery temperature Td(n) of the battery is different from the reference temperature, the measured IV resistance value Rb( It is difficult to make a determination by comparing n) with a predetermined threshold value.

本発明は、かかる現状に鑑みてなされたものであって、予め定めた配置場所に配置された複数の被検査電池について、予め定めた温度環境下で充電した後にIV抵抗値Rb(n)を測定し、IV抵抗値Rb(n)の大きさに基づいて、各被検査電池の良否を判定するに当たり、各被検査電池の良否を適切に判定できる電池の製造方法を提供することを目的とする。 The present invention has been made in view of the present situation, and the IV resistance value Rb(n) is set after charging a plurality of batteries to be inspected arranged at a predetermined arrangement location under a predetermined temperature environment. An object of the present invention is to provide a method for manufacturing a battery, which is capable of appropriately determining the quality of each inspected battery when measuring and determining the quality of each inspected battery based on the magnitude of the IV resistance value Rb(n). To do.

上記課題を解決するための本発明の一態様は、予め定めた配置場所にそれぞれ配置された複数の被検査電池を、予め定めた温度環境下で、同じ検査電圧Vaまでそれぞれ充電する充電工程と、上記充電工程に続き、上記複数の被検査電池のIV抵抗値Rb(n)をそれぞれ測定する抵抗値測定工程と、上記複数の被検査電池のうち、上記IV抵抗値Rb(n)が閾値以下である被検査電池を良品と判定する判定工程と、を備え、上記被検査電池と同一構成を有する複数の評価用電池を上記配置場所にそれぞれ配置し、上記温度環境下で、同じ評価充電電流値Icで上記検査電圧Vaまでそれぞれ充電した場合に、上記検査電圧Va到達時に上記評価用電池がそれぞれ達する評価電池温度Tc(n)に基づいて、上記充電工程で上記複数の被検査電池に流す充電電流の検査充電電流値Ia(n)を、上記評価電池温度Tc(n)が高い配置場所に配置された被検査電池ほど小さい値で、かつ、上記複数の被検査電池がいずれも上記良品である場合に、上記充電工程で上記検査電圧Va到達時に上記被検査電池がそれぞれ達する被検査電池温度Ta(n)のバラツキが、上記評価電池温度Tc(n)のバラツキよりも小さくなる値に、予めそれぞれ定めてあり、上記充電工程は、上記配置場所毎に定められた上記検査充電電流値Ia(n)で上記複数の被検査電池をそれぞれ充電する電池の製造方法である。 One mode of the present invention for solving the above-mentioned problem is a charging step of charging a plurality of batteries to be inspected, which are respectively arranged at predetermined arrangement locations, to the same inspection voltage Va under a predetermined temperature environment. Following the charging step, a resistance value measuring step of measuring the IV resistance values Rb(n) of the plurality of tested batteries, and the IV resistance value Rb(n) of the plurality of tested batteries being a threshold value. A determination step of determining the following inspected battery as a non-defective product, and arranging a plurality of evaluation batteries having the same configuration as the inspected battery at each of the arrangement locations, and under the temperature environment, the same evaluation charge When the battery is charged to the inspection voltage Va at the current value Ic, the plurality of batteries to be inspected are charged in the charging step based on the evaluation battery temperatures Tc(n) reached by the evaluation batteries when the inspection voltage Va is reached. The inspection charging current value Ia(n) of the charging current to be passed is as small as the inspected battery arranged in the location where the evaluation battery temperature Tc(n) is high, and all of the plurality of inspected batteries are In the case of a non-defective product, the variation of the inspected battery temperature Ta(n) reached by each of the inspected batteries when the inspection voltage Va reaches in the charging step is smaller than the variation of the evaluation battery temperature Tc(n). In the above, the charging step is a method of manufacturing a battery in which each of the plurality of batteries to be inspected is charged with the inspection charging current value Ia(n) determined for each location.

上述の電池の製造方法では、充電工程における各被検査電池の検査充電電流値Ia(n)を、一律の値にするのではなく、被検査電池の配置場所毎に異なる電流値にして充電を行う。具体的には、各被検査電池の検査充電電流値Ia(n)を、上述のように、評価電池温度Tc(n)が高い配置場所に配置された被検査電池ほど小さい値で、かつ、被検査電池温度Ta(n)のバラツキが評価電池温度Tc(n)のバラツキよりも小さくなる値に予めそれぞれ定めておく。そして、充電工程において、配置場所毎に定められた検査充電電流値Ia(n)で各被検査電池を充電する。これにより、充電工程終了時における各被検査電池の被検査電池温度Ta(n)のバラツキを、検査充電電流値Ia(n)を一律の値にする場合よりも小さくできる。従って、抵抗値測定工程で各被検査電池のIV抵抗値Rb(n)をそれぞれ適切に測定でき、判定工程で所定の閾値により各被検査電池の良否をそれぞれ適切に判定できる。 In the above-described battery manufacturing method, the test charging current value Ia(n) of each inspected battery in the charging step is not set to a uniform value, but charged at different current values for each location of the inspected battery. To do. Specifically, as described above, the inspection charging current value Ia(n) of each inspected battery has a smaller value for the inspected battery placed at the location where the evaluation battery temperature Tc(n) is higher, and The variation of the inspected battery temperature Ta(n) is set in advance to a value smaller than the variation of the evaluation battery temperature Tc(n). Then, in the charging step, each inspected battery is charged with the inspection charging current value Ia(n) determined for each location. As a result, the variation in the inspected battery temperature Ta(n) of each inspected battery at the end of the charging process can be made smaller than in the case where the inspection charging current value Ia(n) is a uniform value. Therefore, the IV resistance value Rb(n) of each inspected battery can be appropriately measured in the resistance value measuring step, and the quality of each inspected battery can be appropriately determined by the predetermined threshold value in the determination step.

なお、複数の被検査電池の「配置場所」としては、例えば、複数の被検査電池を拘束治具を用いて拘束した状態で充電工程を行う場合には、拘束治具に拘束された状態における各被検査電池の配置場所が挙げられる。従って、この場合には、複数の評価用電池を被検査電池の配置場所にそれぞれ配置するとは、被検査電池に用いたのと同じ拘束治具を用いて複数の評価用電池を拘束することを指す。
また、恒温槽内など充電工程を行う部屋内に各被検査電池を配置する場合には、部屋内を流れる気流などの影響をも考慮し、当該部屋において各被検査電池がそれぞれ配置される場所が上述の「配置場所」となる。従って、この場合には、複数の評価用電池を被検査電池の配置場所にそれぞれ配置するとは、部屋内の各被検査電池を配置する場所と同じ場所に各評価用電池をそれぞれ配置することを指す。
また、充電工程を行う「温度環境」には、例えば前述の気流の当たり方なども含まれる。従って、複数の評価用電池を被検査電池の温度環境下で充電するとは、気流の当たり方なども同じにした状態で評価用電池に充電することを指す。
The “placement location” of the plurality of batteries to be inspected is, for example, when the charging process is performed in a state in which the plurality of batteries to be inspected are constrained using a restraint jig, The locations of the batteries to be inspected are listed. Therefore, in this case, arranging the plurality of evaluation batteries at the locations where the inspection batteries are arranged means that the plurality of evaluation batteries are constrained by using the same constraining jig as that used for the inspection batteries. Point to.
In addition, when arranging each battery to be inspected in a room where the charging process is performed, such as in a thermostatic chamber, consider the effect of the air flow in the room, and place each battery to be inspected in the room. Is the above-mentioned "placement location". Therefore, in this case, arranging a plurality of evaluation batteries at the locations of the batteries to be inspected means to arrange the batteries for evaluation at the same locations in the room as the locations of the batteries to be inspected. Point to.
In addition, the “temperature environment” in which the charging process is performed includes, for example, how the airflow hits. Therefore, charging a plurality of evaluation batteries under the temperature environment of the battery to be inspected means charging the evaluation battery in a state in which the airflow strikes are the same.

「検査電圧Va」は、IV抵抗値Rb(n)の測定を開始する電池電圧である。具体的には、SOC5%〜SOC50%の範囲内のSOCに相当する電池電圧とするのが好ましく、更には、SOC10%〜SOC30%の範囲内のSOCに相当する電池電圧とするのが好ましい。
「評価充電電流値Ic」及び「検査充電電流値Ia(n)」は、それぞれ、0.5C〜10.0Cの範囲内とするのが好ましく、更には、1.0C〜7.0Cの範囲内とするのが好ましい。
The “inspection voltage Va” is the battery voltage at which the measurement of the IV resistance value Rb(n) is started. Specifically, it is preferable that the battery voltage corresponds to SOC within the range of SOC 5% to SOC 50%, and further that the battery voltage corresponds to SOC within the range of SOC 10% to SOC 30%.
The "evaluation charging current value Ic" and the "inspection charging current value Ia(n)" are preferably in the range of 0.5C to 10.0C, respectively, and further in the range of 1.0C to 7.0C. It is preferable to set the inside.

更に、上記の電池の製造方法であって、前記複数の被検査電池及び前記複数の評価用電池は、いずれも所定形態の拘束治具に拘束されて、前記配置場所が定められている電池の製造方法とするのが好ましい。 Furthermore, in the above-described battery manufacturing method, the plurality of batteries to be inspected and the plurality of batteries for evaluation are both constrained by a constraining jig of a predetermined form, and the arrangement location is determined. The production method is preferable.

複数の被検査電池を拘束治具で拘束した状態で充電工程を行う場合、前述したように、各被検査電池の配置場所によって被検査電池の伝熱性が異なる。このため、各被検査電池の検査充電電流値Ia(n)を一律の値にすると、充電工程終了時の被検査電池温度Ta(n)が大きくバラつきがちである。
これに対し、上述の電池の製造方法では、前述したように、配置場所毎に定められた検査充電電流値Ia(n)で各被検査電池の充電を行う。このため、拘束治具で複数の被検査電池を拘束した状態で充電工程を行うにも拘わらず、充電工程終了時の被検査電池温度Ta(n)のバラツキが小さくなる。従って、各被検査電池のIV抵抗値Rb(n)を適切に測定し、各被検査電池の良否を適切に判定できる。
When the charging process is performed with a plurality of batteries to be inspected restrained by the restraint jig, the heat conductivity of the batteries to be inspected differs depending on the location of each of the batteries to be inspected, as described above. Therefore, if the inspection charging current value Ia(n) of each inspected battery is set to a uniform value, the inspected battery temperature Ta(n) at the end of the charging process tends to greatly vary.
On the other hand, in the battery manufacturing method described above, as described above, each inspected battery is charged at the inspection charging current value Ia(n) determined for each location. For this reason, even though the charging process is performed while the plurality of batteries to be inspected are held by the restraining jig, the variation in the temperature Ta(n) of the batteries to be inspected at the end of the charging process becomes small. Therefore, the IV resistance value Rb(n) of each inspected battery can be appropriately measured, and the quality of each inspected battery can be appropriately determined.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の縦断面図である。It is a longitudinal section of a battery concerning an embodiment. 実施形態に係る電池の製造方法のフローチャートである。4 is a flowchart of a method for manufacturing a battery according to an embodiment. 実施形態に係り、複数の電池を拘束治具で拘束した状態を示す説明図である。FIG. 6 is an explanatory diagram showing a state in which a plurality of batteries are restrained by a restraint jig according to the embodiment. 7個の被検査電池の配置場所と検査電圧Va到達時の被検査電池温度Ta(n)との関係を示すグラフである。It is a graph which shows the relationship between the arrangement|positioning location of seven to-be-tested batteries, and the to-be-tested battery temperature Ta (n) at the time of reaching|attaining the test voltage Va. 7個の評価用電池の配置場所と検査電圧Va到達時の評価電池温度Tc(n)との関係を示すグラフである。7 is a graph showing the relationship between the locations of seven evaluation batteries and the evaluation battery temperature Tc(n) when the inspection voltage Va is reached. 充電電流値Iと、その充電電流値Iで検査電圧Vaまで充電したときに到達する電池温度Tとの関係を示すグラフである。5 is a graph showing a relationship between a charging current value I and a battery temperature T reached when the charging current value I is charged up to the inspection voltage Va. 検査電圧Va到達時の電池温度Tと、その電池温度Tで測定されるIV抵抗値Rbとの関係を示すグラフである。7 is a graph showing the relationship between the battery temperature T when the inspection voltage Va is reached and the IV resistance value Rb measured at the battery temperature T.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a perspective view and a vertical sectional view of a battery 1 according to this embodiment. In the following description, the battery thickness direction BH, the battery horizontal direction CH, and the battery vertical direction DH of the battery 1 will be described as the directions shown in FIGS. 1 and 2.
The battery 1 is a square and sealed lithium-ion secondary battery that is mounted in a vehicle such as a hybrid car, a plug-in hybrid car, an electric vehicle, or the like. The battery 1 includes a battery case 10, an electrode body 20 housed inside the battery case 10, a positive electrode terminal member 50 and a negative electrode terminal member 60 supported by the battery case 10. Further, the electrolytic solution 17 is contained in the battery case 10, and a part of the electrolytic solution 17 is impregnated in the electrode body 20.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。 Of these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (aluminum in this embodiment). The battery case 10 is composed of a bottomed rectangular tubular case body member 11 having an opening only on the upper side, and a rectangular plate-like case lid member 13 welded to close the opening of the case body member 11. It A positive electrode terminal member 50 made of aluminum is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to the positive electrode plate 21 of the electrode body 20 in the battery case 10 so as to be conductive, while penetrating the case lid member 13 and extending to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to the negative electrode plate 31 of the electrode body 20 in the battery case 10 so as to be conductive, while penetrating the case lid member 13 and extending to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質、導電材及び結着剤からなる正極活物質層を帯状に設けてなる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質、結着剤及び増粘剤からなる負極活物質層を帯状に設けてなる。 The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a state of being laid sideways. A bag-shaped insulating film surrounding body 19 made of an insulating film is arranged between the electrode body 20 and the battery case 10. The electrode body 20 includes a strip-shaped positive electrode plate 21 and a strip-shaped negative electrode plate 31, which are stacked on each other via a pair of separators 41 and 41 made of a resin-made porous film and wound around an axis to be flattened. It is compressed. The positive electrode plate 21 has a positive electrode active material layer made of a positive electrode active material, a conductive material, and a binder provided in a belt shape at predetermined positions on both main surfaces of a positive electrode current collector foil made of a belt-shaped aluminum foil. Further, the negative electrode plate 31 is provided with a strip of a negative electrode active material layer composed of a negative electrode active material, a binder and a thickener at predetermined positions on both main surfaces of a negative electrode current collector foil made of a strip-shaped copper foil.

次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、電池1を組み立てる。以下、この組み立てた電池1を被検査電池1ともいう。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。 Next, a method for manufacturing the battery 1 will be described (see FIG. 3). First, in the "assembly step S1", the battery 1 is assembled. Hereinafter, the assembled battery 1 is also referred to as a battery 1 to be inspected. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are wound on top of each other with a pair of separators 41, 41 interposed therebetween, and compressed into a flat shape to form the electrode body 20. Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixedly attached thereto (see FIGS. 1 and 2). Then, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film surrounding body 19, these are inserted into the case body member 11, and the opening of the case body member 11 is closed with the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded together to form the battery case 10. After that, the electrolytic solution 17 is injected into the battery case 10 through the injection hole 13h to impregnate the inside of the electrode body 20. Then, the sealing member 15 seals the liquid injection hole 13h.

次に、「第1充電工程S2」を行うのに先立ち、被検査電池1を所定形態の拘束治具200で拘束する(図4参照)。具体的には、複数(本実施形態では7個)の被検査電池1と3個のダミー電池1xとを用意し、これらの被検査電池1及びダミー電池1xを電池厚み方向BHに列置する。なお、上述のダミー電池1xは、電解液17が収容されていないために電池として機能しないものであり、それ以外の形態は、被検査電池1と同じである。
なお、以下では、図4中、最も左側の配置場所NO.1に配置された被検査電池1を第1被検査電池1A、そのすぐ右側の配置場所NO.2に配置された被検査電池1を第2被検査電池1B、更にその右側の配置場所NO.3に配置された被検査電池1を第3被検査電池1Cと順番に呼び、配置場所NO.7に配置された被検査電池1を第7被検査電池1Gとする。また、配置場所NO.8に配置されたダミー電池1xを第1ダミー電池1xA、その右側の配置場所NO.9に配置されたダミー電池1xを第2ダミー電池1xB、最も右側の配置場所NO.10に配置されたダミー電池1xを第3ダミー電池1xCとする。
Next, prior to performing the "first charging step S2", the battery 1 to be inspected is restrained by the restraint jig 200 of a predetermined form (see FIG. 4). Specifically, a plurality of (7 in this embodiment) tested batteries 1 and 3 dummy batteries 1x are prepared, and these tested batteries 1 and dummy batteries 1x are arranged in a row in the battery thickness direction BH. .. The dummy battery 1x described above does not function as a battery because it does not contain the electrolytic solution 17, and is otherwise the same as the battery 1 to be inspected.
It should be noted that in the following, the leftmost placement location NO. The battery 1 to be inspected arranged in No. 1 is the first battery 1A to be inspected, and the arrangement location NO. The battery 1 to be inspected arranged in No. 2 is the second battery 1B to be inspected, and the arrangement location NO. The inspected battery 1 arranged in No. 3 is called the third inspected battery 1C in order, and the arrangement location NO. The inspected battery 1 arranged in No. 7 is referred to as a seventh inspected battery 1G. In addition, the location NO. 8 is the first dummy battery 1xA, the dummy battery 1x arranged on the right side of the dummy battery 1x. 9 is the second dummy battery 1xB, and the dummy battery 1x located at the rightmost placement position NO. The dummy battery 1x arranged in No. 10 is referred to as a third dummy battery 1xC.

そして、積層された被検査電池1(第1被検査電池1A〜第7被検査電池1G)及びダミー電池1x(第1ダミー電池1xA〜第3ダミー電池1xC)のうち、両端に位置する第1被検査電池1A及び第3ダミー電池1xCの最も面積が大きい側面10cを、拘束治具200の一対の板状のエンドプレート210,210で電池厚み方向BHに挟むと共に、エンドプレート210,210同士の間を複数の拘束ロッド220で結合する。これにより、複数の被検査電池1(1A〜1G)及び複数のダミー電池1x(1xA〜1xC)を電池厚み方向BHに押圧した状態で拘束する。なお、本実施形態では、以下に説明する「第1充電工程S2」から「エージング工程S6」までを、このように複数の被検査電池1及び複数のダミー電池1xを拘束治具200で拘束した状態で行う。 Then, the first inspection battery 1 (first inspection battery 1A to seventh inspection battery 1G) and the dummy battery 1x (first dummy battery 1xA to third dummy battery 1xC) that are stacked on both ends The side surface 10c having the largest area of the inspected battery 1A and the third dummy battery 1xC is sandwiched between the pair of plate-shaped end plates 210, 210 of the restraint jig 200 in the battery thickness direction BH, and the end plates 210, 210 are not separated from each other. The spaces are connected by a plurality of restraining rods 220. Thereby, the plurality of batteries 1 (1A to 1G) to be inspected and the plurality of dummy batteries 1x (1xA to 1xC) are constrained in a state of being pressed in the battery thickness direction BH. In the present embodiment, the plurality of batteries 1 to be inspected and the plurality of dummy batteries 1x are thus restrained by the restraint jig 200 in the “first charging step S2” to the “aging step S6” described below. Do in the state.

その後、拘束治具200及びこれに拘束された複数の被検査電池1(1A〜1G)及び複数のダミー電池1x(1xA〜1xC)を、エア・コンディショナが設置された部屋の所定位置に配置する。また、本実施形態では、エア・コンディショナからの気流の当たり方が被検査電池1及びダミー電池1xの配置場所NO.1〜NO.10によって異なるため、被検査電池1毎に、またダミー電池1x毎に温度環境が異なる。この温度環境下で「第1充電工程S2」から「第2充電工程S5」までを行う。 After that, the restraint jig 200, the plurality of batteries 1 (1A to 1G) to be inspected and the plurality of dummy batteries 1x (1xA to 1xC) restrained by the restraint jig 200 are arranged at predetermined positions in the room where the air conditioner is installed. To do. Further, in the present embodiment, the way in which the airflow from the air conditioner hits the inspected battery 1 and the dummy battery 1x is NO. 1-NO. 10, the temperature environment differs for each inspected battery 1 and each dummy battery 1x. Under this temperature environment, "first charging step S2" to "second charging step S5" are performed.

次に、「第1充電工程S2」において、被検査電池1(1A〜1G)に初充電を行う。具体的には、各被検査電池1に充放電装置を接続して、すべての被検査電池1を同じ検査電圧Va(本実施形態では、SOC15%に相当する3.44V)までそれぞれ充電する。なお、各ダミー電池1x(1xA〜1xC)については、この初充電や後述するIV抵抗値Rbの測定等は行わない。
この第1充電工程S2では、被検査電池1の配置場所NO.1〜NO.7毎に予め定められた検査充電電流値Ia(n)で各被検査電池1をそれぞれ充電する。具体的には、表1に示すように、第1被検査電池1Aの検査充電電流値Ia(1)を3.75C、第2被検査電池1Bの検査充電電流値Ia(2)を2.50C、第3被検査電池1Cの検査充電電流値Ia(3)を3.75C、第4被検査電池1Dの検査充電電流値Ia(4)を2.50C、第5被検査電池1Eの検査充電電流値Ia(5)を3.75C、第6被検査電池1Fの検査充電電流値Ia(6)を3.75C、第7被検査電池1Gの検査充電電流値Ia(7)を3.75Cとする。なお、これらの検査充電電流値Ia(n)の設定方法については後述する。
Next, in the "first charging step S2", the test battery 1 (1A to 1G) is initially charged. Specifically, a charging/discharging device is connected to each inspected battery 1, and all inspected batteries 1 are charged to the same inspection voltage Va (3.44 V corresponding to SOC 15% in this embodiment). It should be noted that, for each dummy battery 1x (1xA to 1xC), this initial charging and measurement of the IV resistance value Rb described later are not performed.
In the first charging step S2, the arrangement location NO. 1-NO. Each to-be-tested battery 1 is charged with a predetermined test charging current value Ia(n) for each 7. Specifically, as shown in Table 1, the test charging current value Ia(1) of the first tested battery 1A is 3.75C, and the test charging current value Ia(2) of the second tested battery 1B is 2. 50C, inspection charge current value Ia(3) of the third inspected battery 1C is 3.75C, inspection charge current value Ia(4) of fourth inspected battery 1D is 2.50C, inspection of the fifth inspected battery 1E The charging current value Ia(5) is 3.75C, the inspection charging current value Ia(6) of the sixth tested battery 1F is 3.75C, and the inspection charging current value Ia(7) of the seventh tested battery 1G is 3. 75C. The method of setting these inspection charging current values Ia(n) will be described later.

Figure 0006743758
Figure 0006743758

また、すべての被検査電池1について、初充電を開始する直前の電池温度Te(n)をそれぞれ測定した。表1に示すように、いずれの被検査電池1(1A〜1G)も、充電開始直前の電池温度Te(n)は、18.5℃であった。 Further, the battery temperature Te(n) of each of all the batteries 1 to be inspected was measured immediately before starting the initial charging. As shown in Table 1, the battery temperature Te(n) of each of the batteries 1 (1A to 1G) to be inspected was 18.5°C immediately before the start of charging.

また、すべての被検査電池1について、第1充電工程S2終了時(検査電圧Va到達時)の被検査電池温度Ta(n)をそれぞれ測定した。表1及び図5に示すように、第1被検査電池1Aの被検査電池温度Ta(1)は、20.3℃であった。また、第2被検査電池1B及び第4被検査電池1Dの被検査電池温度Ta(2)及び被検査電池温度Ta(4)は、21.0℃であった。また、第3被検査電池1Cの被検査電池温度Ta(3)は、20.2℃であった。また、第5被検査電池1E及び第6被検査電池1Fの被検査電池温度Ta(5)及び被検査電池温度Ta(6)は、20.8℃であった。また、第7被検査電池1Gの被検査電池温度Ta(7)は、20.4℃であった。なお、これらの被検査電池温度Ta(n)のバラツキσaは、0.336であった。このバラツキσaの大きさについては後述する。
なお、表1に示した被検査電池温度Ta(n)の各値は、後述する判定工程S4で良品と判定される被検査電池1についての被検査電池温度Ta(n)である。
Further, the temperature Ta(n) of the inspected batteries at the end of the first charging step S2 (when the inspection voltage Va reached) was measured for each of the inspected batteries 1. As shown in Table 1 and FIG. 5, the inspected battery temperature Ta(1) of the first inspected battery 1A was 20.3° C. The inspected battery temperature Ta(2) and the inspected battery temperature Ta(4) of the second inspected battery 1B and the fourth inspected battery 1D were 21.0°C. The inspected battery temperature Ta(3) of the third inspected battery 1C was 20.2°C. The inspected battery temperature Ta(5) and the inspected battery temperature Ta(6) of the fifth inspected battery 1E and the sixth inspected battery 1F were 20.8°C. The inspected battery temperature Ta(7) of the seventh inspected battery 1G was 20.4°C. The variation σa of these inspected battery temperatures Ta(n) was 0.336. The magnitude of this variation σa will be described later.
Each value of the inspected battery temperature Ta(n) shown in Table 1 is the inspected battery temperature Ta(n) of the inspected battery 1 which is determined as a non-defective product in the determination step S4 described later.

ここで、第1充電工程S2で各被検査電池1に流す充電電流の検査充電電流値Ia(n)の設定方法について説明する。検査充電電流値Ia(n)は、以下のようにして定めた。即ち、上述の被検査電池1と同一構成を有する複数(本実施形態では7個)の評価用電池2及び前述の3個のダミー電池1xを用意した。そして、これらの評価用電池2及びダミー電池1xを、被検査電池1A〜1G及びダミー電池1xA〜1xCを拘束するのに用いた前述の拘束治具200を用い、被検査電池1A〜1G及びダミー電池1xA〜1xCを拘束する場合と同様にして拘束した。 Here, a method of setting the inspection charging current value Ia(n) of the charging current flowing through each inspected battery 1 in the first charging step S2 will be described. The inspection charging current value Ia(n) was determined as follows. That is, a plurality (seven in the present embodiment) of evaluation batteries 2 having the same configuration as the above-described inspected battery 1 and the above-described three dummy batteries 1x were prepared. The evaluation battery 2 and the dummy battery 1x are used by using the above-described restraint jig 200 used to restrain the tested batteries 1A to 1G and the dummy batteries 1xA to 1xC, and the tested batteries 1A to 1G and the dummy. Batteries 1xA to 1xC were restrained in the same manner as when restrained.

なお、図4中、最も左側の配置場所NO.1に(第1被検査電池1Aと同じ位置に)配置される評価用電池2を第1評価用電池2A、そのすぐ右側の配置場所NO.2に(第2被検査電池1Bと同じ位置に)配置される評価用電池2を第2評価用電池2Bと順番に呼び、配置場所NO.7に(第7被検査電池1Gと同じ位置に)配置される評価用電池2を第7評価用電池2Gとする。 In addition, in FIG. 1 (the same position as the first battery 1A to be inspected), the evaluation battery 2 is the first evaluation battery 2A, and the arrangement location NO. The evaluation batteries 2 arranged in the second evaluation battery 2B (at the same position as the second inspected battery 1B) are referred to as the second evaluation battery 2B in order, and the arrangement location NO. The evaluation battery 2 arranged in 7 (at the same position as the seventh inspection battery 1G) is referred to as a seventh evaluation battery 2G.

その後、拘束治具200で拘束された各評価用電池2(2A〜2G)及び各ダミー電池1x(1xA〜1xC)を、被検査電池1(1A〜1G)について第1充電工程S2を行うのと同じ部屋の同じ場所に配置した。また、この部屋のエア・コンディショナの設定を、被検査電池1について第1充電工程S2を行うのと同じ設定とした。
次に、すべての評価用電池2について、初充電を開始する直前の電池温度Tf(n)をそれぞれ測定した。各評価用電池2の室内における配置場所及び温度環境は、前述の各被検査電池1の場合と同じである。このため、表1に示すように、いずれの評価用電池2(2A〜2G)の充電開始直前の電池温度Tf(n)も、各被検査電池1の充電開始直前の電池温度Te(n)と同じ18.5℃であった。
Then, the first charging step S2 is performed on the test batteries 1 (1A to 1G) of the evaluation batteries 2 (2A to 2G) and the dummy batteries 1x (1xA to 1xC) which are restrained by the restraint jig 200. Arranged in the same room and in the same place. In addition, the setting of the air conditioner in this room is the same as the setting of the first charging step S2 for the battery 1 to be inspected.
Next, with respect to all the evaluation batteries 2, the battery temperature Tf(n) immediately before starting the initial charging was measured. The arrangement location and temperature environment of each of the evaluation batteries 2 in the room are the same as in the case of each of the batteries to be inspected 1 described above. Therefore, as shown in Table 1, the battery temperature Tf(n) of any of the evaluation batteries 2 (2A to 2G) immediately before the start of charging is the battery temperature Te(n) of each of the tested batteries 1 immediately before the start of charging. The same was 18.5°C.

その後、すべての評価用電池2について、同じ評価充電電流値Ic(本実施形態では、5.00C)で前述の検査電圧Va(本実施形態では、3.44V)までそれぞれ充電した。そして、検査電圧Va到達時に各評価用電池2がそれぞれ達した評価電池温度Tc(n)を測定した。表1及び図6に示すように、第1評価用電池2Aの評価電池温度Tc(1)は21.3℃、第2評価用電池2Bの評価電池温度Tc(2)は21.9℃、第3評価用電池2C及び第7評価用電池2Gの評価電池温度Tc(3)及び評価電池温度Tc(7)は21.0℃、第4評価用電池2Dの評価電池温度Tc(4)は22.3℃、第5評価用電池2Eの評価電池温度Tc(5)は21.7℃、第6評価用電池2Fの評価電池温度Tc(6)は21.8℃であった。また、これらの評価電池温度Tc(n)のバラツキσcは、0.489である。 After that, all the batteries 2 for evaluation were charged to the above-described inspection voltage Va (3.44 V in this embodiment) with the same evaluation charging current value Ic (5.00 C in this embodiment). Then, the evaluation battery temperature Tc(n) reached by each evaluation battery 2 when the inspection voltage Va reached was measured. As shown in Table 1 and FIG. 6, the evaluation battery temperature Tc(1) of the first evaluation battery 2A is 21.3° C., the evaluation battery temperature Tc(2) of the second evaluation battery 2B is 21.9° C., The evaluation battery temperature Tc(3) and the evaluation battery temperature Tc(7) of the third evaluation battery 2C and the seventh evaluation battery 2G are 21.0° C., and the evaluation battery temperature Tc(4) of the fourth evaluation battery 2D is The evaluation battery temperature Tc(5) of the second evaluation battery 2E was 22.3° C., and the evaluation battery temperature Tc(6) of the sixth evaluation battery 2F was 21.8° C. Further, the variation σc of these evaluation battery temperatures Tc(n) is 0.489.

このように評価用電池2によって評価電池温度Tc(n)が大きくバラつく理由は、以下であると考えられる。即ち、各評価用電池2は充電により発熱して電池温度がそれぞれ上昇するが、拘束治具200内の各評価用電池2は、その配置場所NO.1〜NO.7によって伝熱性が異なる。このため、拘束治具200内の各評価用電池2の配置場所NO.1〜NO.7に起因して、評価電池温度Tc(n)が大きくバラつくと考えられる。また、評価用電池2の配置場所NO.1〜NO.7によって、エア・コンディショナからの気流の当たり方が異なるため、配置場所NO.1〜NO.7に起因して評価電池温度Tc(n)が大きくバラつくと考えられる。 The reason why the evaluation battery temperature Tc(n) greatly varies depending on the evaluation battery 2 is considered as follows. That is, although each evaluation battery 2 generates heat by charging and the battery temperature rises, each evaluation battery 2 in the restraint jig 200 has its location NO. 1-NO. 7 has different heat conductivity. Therefore, the location of the evaluation battery 2 in the restraint jig 200 is NO. 1-NO. 7, it is considered that the evaluation battery temperature Tc(n) varies greatly. Further, the location of the evaluation battery 2 is NO. 1-NO. Since the way the airflow from the air conditioner hits differs depending on the location No. 7, 1-NO. It is considered that the evaluation battery temperature Tc(n) largely varies due to No. 7.

ここで、評価用電池2を初充電した場合における充電電流値Iと、その充電電流値Iで検査電圧Vaまで充電したときに到達する電池温度Tとの関係について説明する(図7参照)。図7は、充電開始直前の電池温度Tが22.5℃の状態の評価用電池2を、前述の検査電圧Va=3.44Vまで初充電した場合の、充電電流値Iと、検査電圧Va到達時の電池温度Tとの関係を示す。図7から明らかなように、充電電流値Iを小さくするほど、検査電圧Va到達時の電池温度Tが低くなることが判る。従って、配置場所NO.1〜NO.7によって評価電池温度Tc(n)が高くなる評価用電池2ほど、充電電流値Iを小さくすれば、配置場所NO.1〜NO.7に起因した評価電池温度Tc(n)のバラツキを抑制できると考えられる。 Here, the relationship between the charging current value I when the evaluation battery 2 is initially charged and the battery temperature T reached when charging the inspection voltage Va with the charging current value I will be described (see FIG. 7 ). FIG. 7 shows the charging current value I and the inspection voltage Va when the evaluation battery 2 in a state where the battery temperature T is 22.5° C. immediately before the start of charging is initially charged to the above-described inspection voltage Va=3.44V. The relationship with the battery temperature T at the time of arrival is shown. As is clear from FIG. 7, the smaller the charging current value I, the lower the battery temperature T when the inspection voltage Va reaches. Therefore, the location NO. 1-NO. If the charging current value I is set to be smaller for the evaluation battery 2 in which the evaluation battery temperature Tc(n) becomes higher due to No. 7, the arrangement location NO. 1-NO. It is considered that variation in the evaluation battery temperature Tc(n) due to No. 7 can be suppressed.

そこで、第1充電工程S2で各被検査電池1に流す充電電流の検査充電電流値Ia(n)を、評価電池温度Tc(n)が高い配置場所NO.1〜NO.7に配置された被検査電池1ほど小さい値に設定する。本実施形態では、評価電池温度Tc(n)が特に高かった配置場所NO.2,NO.4について、第1充電工程S2における検査充電電流値Ia(2),Ia(4)を、表1に示したように、2.50Cと低い値に設定した。一方、これらよりも評価電池温度Tc(n)が低かった配置場所NO.1,NO.3,NO.5〜NO.7については、検査充電電流値Ia(1),Ia(3),Ia(5)〜Ia(7)を3.75Cに設定した。そして、このように検査充電電流値Ia(n)を設定したことで、被検査電池温度Ta(n)のバラツキσa=0.336(図5も参照)が、評価電池温度Tc(n)のバラツキσc=0.489(図6も参照)よりも小さくなった。 Therefore, in the first charging step S2, the inspection charging current value Ia(n) of the charging current flowing through each inspected battery 1 is set to the location NO. 1-NO. The battery 1 to be inspected arranged in No. 7 is set to a smaller value. In the present embodiment, the arrangement location NO. 3 where the evaluation battery temperature Tc(n) was particularly high. 2, NO. 4, the inspection charging current values Ia(2) and Ia(4) in the first charging step S2 were set to a low value of 2.50C as shown in Table 1. On the other hand, the arrangement location NO. 1, NO. 3, NO. 5 to NO. For No. 7, the inspection charging current values Ia(1), Ia(3), Ia(5) to Ia(7) were set to 3.75C. Then, by setting the inspection charging current value Ia(n) in this way, the variation σa=0.336 (see also FIG. 5) of the inspected battery temperature Ta(n) becomes equal to the evaluation battery temperature Tc(n). The variation was smaller than σc=0.489 (see also FIG. 6).

第1充電工程S2が終了したら、続いて「抵抗値測定工程S3」を行い、各被検査電池1(1A〜1G)のIV抵抗値Rb(n)をそれぞれ測定する。具体的には、第1充電工程S2で電池電圧が検査電圧Vaに達した被検査電池1から、他の被検査電池1が検査電圧Vaに達するのを待つことなく、この抵抗値測定工程S3を行う。電池電圧が検査電圧Vaに達した被検査電池1を、所定の放電電流値Ih=5.00C=25.0Aで5.00秒間放電させて、この放電開始からt1秒(本実施形態では、t1=0.00秒)後の電池電圧V1(n)と、t2秒(本実施形態では、t2=4.00秒)後の電池電圧V2(n)とをそれぞれ測定し、Rb(n)=(V1(n)−V2(n))/Ihにより、各被検査電池1のIV抵抗値Rb(n)をそれぞれ算出した。 After the completion of the first charging step S2, the "resistance value measuring step S3" is performed to measure the IV resistance value Rb(n) of each of the tested batteries 1 (1A to 1G). Specifically, the resistance value measuring step S3 is performed without waiting for the other test battery 1 to reach the test voltage Va from the test battery 1 whose battery voltage has reached the test voltage Va in the first charging step S2. I do. The inspected battery 1 whose battery voltage has reached the inspection voltage Va is discharged at a predetermined discharge current value Ih=5.00C=25.0A for 5.00 seconds, and t1 seconds (in the present embodiment, from the start of this discharge). The battery voltage V1(n) after t1=0.00 seconds) and the battery voltage V2(n) after t2 seconds (t2=4.00 seconds in this embodiment) are measured, respectively, and Rb(n) is measured. =(V1(n)-V2(n))/Ih was used to calculate the IV resistance value Rb(n) of each battery 1 to be inspected.

次に、「判定工程S4」において、7個の被検査電池1(1A〜1G)のうち、IV抵抗値Rb(n)が所定の閾値Rs以下(Rb(n)≦Rs)である被検査電池1を良品と判定する。一方、IV抵抗値Rb(n)が閾値Rsを越える被検査電池1は不良品と判定し、後述する「エージング工程S6」を終えて被検査電池1の拘束状態を解除した後に、廃棄する。 Next, in the "judgment step S4", the IV resistance value Rb(n) of the seven test batteries 1 (1A to 1G) is a predetermined threshold value Rs or less (Rb(n)≤Rs) The battery 1 is determined to be good. On the other hand, the inspected battery 1 whose IV resistance value Rb(n) exceeds the threshold value Rs is determined as a defective product, and after the "aging step S6" described later is completed and the restrained state of the inspected battery 1 is released, it is discarded.

ここで、検査電圧Va到達時の電池温度Tと、その電池温度Tで測定されるIV抵抗値Rbとの関係について説明する(図8参照)。図8から明らかなように、IV抵抗測定時の電池温度TによってIV抵抗値Rbの値が異なる。具体的には、IV抵抗測定時の電池温度Tが低いほど、IV抵抗値Rbの値が大きくなることが判る。このため、検査電圧Va到達時(第1充電工程S2終了時)の被検査電池温度Ta(n)が、基準温度Ts(本実施形態では、21.0℃)と大きく異なる場合、測定されたIV抵抗値Rb(n)に基づいて、各被検査電池1の良否を所定の閾値Rsで適切に判定することが難しい。これに対し、本実施形態では、前述のように、第1充電工程S2における各被検査電池1の検査充電電流値Ia(n)を配置場所NO.1〜NO.7毎に設定することにより、被検査電池温度Ta(n)のバラツキσaを小さくして(σa=0.336)、基準温度Tsとの温度差を小さくした。従って、IV抵抗値Rb(n)に基づいて、各被検査電池1の良否を所定の閾値Rsで適切に判定できる。 Here, the relationship between the battery temperature T when the inspection voltage Va reaches and the IV resistance value Rb measured at the battery temperature T will be described (see FIG. 8 ). As is clear from FIG. 8, the IV resistance value Rb varies depending on the battery temperature T when the IV resistance is measured. Specifically, it can be seen that the lower the battery temperature T during the IV resistance measurement, the larger the IV resistance value Rb. Therefore, when the inspection battery temperature Ta(n) when the inspection voltage Va reaches (at the end of the first charging step S2) is significantly different from the reference temperature Ts (21.0° C. in the present embodiment), it was measured. It is difficult to properly determine the quality of each battery under test 1 based on the IV resistance value Rb(n) at a predetermined threshold value Rs. On the other hand, in the present embodiment, as described above, the inspection charging current value Ia(n) of each battery under test 1 in the first charging step S2 is set to the location NO. 1-NO. By setting every seven, the variation σa of the inspected battery temperature Ta(n) is reduced (σa=0.336), and the temperature difference from the reference temperature Ts is reduced. Therefore, based on the IV resistance value Rb(n), it is possible to appropriately determine the quality of each battery under test 1 with the predetermined threshold value Rs.

次に、「第2充電工程S5」において、判定工程S4を終えた被検査電池1から順番に、再充電を行う。具体的には、すべての被検査電池1を、定電流定電圧(CCCV)充電により、SOC100%に相当する4.10Vまでそれぞれ充電する。具体的には、5.00Cの定電流で電池電圧が4.10Vになるまで充電した後、充電電流値が0.25Cになるまでこの電池電圧=4.10Vを維持した。すべての被検査電池1について第2充電工程S5が終了したら、次のエージング工程S6を行う。 Next, in the "second charging step S5", recharging is performed in order from the battery 1 to be inspected, which has completed the determination step S4. Specifically, all the batteries 1 to be inspected are charged to 4.10V corresponding to SOC 100% by constant current constant voltage (CCCV) charging. Specifically, after charging at a constant current of 5.00C until the battery voltage reached 4.10V, this battery voltage=4.10V was maintained until the charging current value reached 0.25C. When the second charging step S5 is completed for all the inspected batteries 1, the next aging step S6 is performed.

次に、拘束治具200で拘束された各被検査電池1(1A〜1G)及び各ダミー電池1xを、別の部屋に移動させて、「エージング工程S6」において、40〜85℃の温度下で各被検査電池1をエージングする。具体的には、63℃の温度下において、各被検査電池1を端子開放した状態で20hrにわたり放置して各被検査電池1をエージングする。このエージング工程S6を終えた後は、各被検査電池1及び各ダミー電池1xを拘束している拘束治具200を取り外し、被検査電池1及びダミー電池1xの拘束状態を解除する。また、前述の判定工程S4で不良品と判定された被検査電池1を廃棄する。かくして、電池1が完成する。 Next, each inspected battery 1 (1A to 1G) and each dummy battery 1x constrained by the constraining jig 200 are moved to another room, and at a temperature of 40 to 85° C. in the “aging step S6”. Then, each inspected battery 1 is aged. Specifically, at a temperature of 63° C., each inspected battery 1 is left for 20 hours with its terminals open, and each inspected battery 1 is aged. After this aging step S6 is completed, the restraint jig 200 that restrains each inspected battery 1 and each dummy battery 1x is removed, and the restrained state of the inspected battery 1 and the dummy battery 1x is released. Further, the battery 1 to be inspected, which has been determined to be defective in the determination step S4, is discarded. Thus, the battery 1 is completed.

以上で説明したように、電池1の製造方法では、第1充電工程S2における各被検査電池1(1A〜1G)の検査充電電流値Ia(n)を、一律の値にするのではなく、被検査電池1の配置場所NO.1〜NO.7毎に異なる電流値にして充電を行う。具体的には、各被検査電池1の検査充電電流値Ia(n)を、前述のように、評価電池温度Tc(n)が高い配置場所NO.1〜NO.7に配置された被検査電池1ほど小さい値で、かつ、被検査電池温度Ta(n)のバラツキσaが評価電池温度Tc(n)のバラツキσcよりも小さくなる値に予めそれぞれ定めておく。 As described above, in the method for manufacturing the battery 1, the inspection charging current value Ia(n) of each inspected battery 1 (1A to 1G) in the first charging step S2 is not a uniform value, but Placement No. of the battery 1 to be inspected 1-NO. Charging is performed with a different current value for each 7. Specifically, as described above, the inspection charging current value Ia(n) of each inspected battery 1 is set to the location NO. 1 where the evaluation battery temperature Tc(n) is high. 1-NO. The battery 1 to be inspected arranged in No. 7 has a smaller value, and the variation σa of the battery temperature Ta(n) to be inspected is smaller than the variation σc of the evaluation battery temperature Tc(n).

そして、第1充電工程S2において、配置場所NO.1〜NO.7毎に定められた検査充電電流値Ia(n)で各被検査電池1を充電する。これにより、第1充電工程S2終了時における各被検査電池1の被検査電池温度Ta(n)のバラツキσaを、検査充電電流値Ia(n)を一律の値にする場合よりも小さくできる。従って、抵抗値測定工程S3で各被検査電池1のIV抵抗値Rb(n)をそれぞれ適切に測定でき、判定工程S4で所定の閾値Rsにより各被検査電池1の良否をそれぞれ適切に判定できる。 Then, in the first charging step S2, the arrangement location NO. 1-NO. Each inspected battery 1 is charged with the inspection charging current value Ia(n) determined for each 7. Thereby, the variation σa of the inspected battery temperature Ta(n) of each inspected battery 1 at the end of the first charging step S2 can be made smaller than in the case where the inspection charging current value Ia(n) is set to a uniform value. Therefore, the IV resistance value Rb(n) of each battery under test 1 can be appropriately measured in the resistance value measuring step S3, and the quality of each battery under test 1 can be appropriately judged by the predetermined threshold value Rs in the judging step S4. ..

更に、本実施形態では、複数の被検査電池1を拘束治具200で拘束した状態で第1充電工程S2を行っているので、各被検査電池1の配置場所NO.1〜NO.7によって被検査電池1の伝熱性が異なる。このため、各被検査電池1の検査充電電流値Ia(n)を一律の値にすると、第1充電工程S2終了時の被検査電池温度Ta(n)が大きくバラつきがちである。しかしながら、本実施形態では、前述したように配置場所NO.1〜NO.7毎に定められた検査充電電流値Ia(n)で各被検査電池1の充電を行っている。このため、拘束治具200で複数の被検査電池1を拘束した状態で第1充電工程S2を行っているにも拘わらず、第1充電工程S2終了時の被検査電池温度Ta(n)のバラツキσaが小さくなる。従って、各被検査電池1のIV抵抗値Rb(n)を適切に測定し、各被検査電池1の良否を適切に判定できる。 Further, in the present embodiment, since the first charging step S2 is performed in a state in which the plurality of batteries 1 to be inspected are restrained by the restraint jig 200, the arrangement location NO. 1-NO. The thermal conductivity of the inspected battery 1 varies depending on 7. Therefore, when the inspection charging current value Ia(n) of each inspected battery 1 is set to a uniform value, the inspected battery temperature Ta(n) at the end of the first charging step S2 tends to greatly vary. However, in the present embodiment, as described above, the location NO. 1-NO. Each inspected battery 1 is charged with the inspection charging current value Ia(n) determined for each 7. Therefore, even though the first charging step S2 is performed in a state in which the plurality of batteries 1 to be inspected are held by the restraint jig 200, the battery temperature Ta(n) to be inspected at the end of the first charging step S2 is The variation σa becomes small. Therefore, the IV resistance value Rb(n) of each inspected battery 1 can be appropriately measured, and the quality of each inspected battery 1 can be appropriately determined.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、複数(7個)の被検査電池1及び複数(3個)のダミー電池1xを拘束治具200で拘束した場合の複数(7個)の被検査電池1について、本発明を適用したが、これに限定されない。例えば、ダミー電池1xは用いずに、10個の被検査電池1を前述の拘束治具200で拘束した場合の10個の被検査電池1について、本発明を適用することができる。或いは、ダミー電池1xは用いずに、7個の被検査電池1を前述の拘束治具200とは別の拘束治具で拘束した場合の7個の被検査電池1について、本発明を適用することもできる。また、複数の被検査電池1を樹脂トレイの所定位置に並べて置くなど、拘束治具で被検査電池1を拘束しない場合にも、上記複数の被検査電池1について、本発明を適用することもできる。
Although the present invention has been described above according to the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the scope of the invention.
For example, in the embodiment, the present invention relates to a plurality (7) of batteries 1 to be inspected when the plurality (7) of batteries 1 to be inspected and a plurality (3) of dummy batteries 1x are held by the holding jig 200. , But is not limited thereto. For example, the present invention can be applied to 10 inspected batteries 1 when 10 inspected batteries 1 are restrained by the restraint jig 200 described above without using the dummy battery 1x. Alternatively, the present invention is applied to seven inspected batteries 1 in the case where the seven inspected batteries 1 are restrained by a restraining jig different from the restraining jig 200 described above without using the dummy battery 1x. You can also The present invention can also be applied to the plurality of batteries 1 to be inspected even when the batteries 1 to be inspected are not constrained by a restraining jig such as placing a plurality of batteries 1 to be inspected at predetermined positions on a resin tray. it can.

1 電池(被検査電池)
2 評価用電池
1A〜1G 第1被検査電池〜第7被検査電池
2A〜2G 第1評価用電池〜第7評価用電池
200 拘束治具
S1 組立工程
S2 第1充電工程
S3 抵抗値測定工程
S4 判定工程
NO.1〜NO.10 配置場所
Ia(n) 検査充電電流値
Ic 評価充電電流値
Va 検査電圧
Te(n) (被検査電池の充電開始直前の)電池温度
Tf(n) (評価用電池の充電開始直前の)電池温度
Ta(n) 被検査電池温度
Tc(n) 評価電池温度
σa (被検査電池温度Ta(n)の)バラツキ
σc (評価電池温度Tc(n)の)バラツキ
Rb(n) IV抵抗値
Rs 閾値
1 battery (battery to be inspected)
2 Evaluation batteries 1A to 1G First inspected battery to seventh inspected battery 2A to 2G First evaluation battery to seventh evaluation battery 200 Restraining jig S1 Assembly step S2 First charging step S3 Resistance value measuring step S4 Judgment step NO. 1-NO. 10 Arrangement Place Ia(n) Inspection Charge Current Value Ic Evaluation Charge Current Value Va Inspection Voltage Te(n) Battery Temperature Tf(n) (Before Starting Charging of Battery Under Test) Battery (Before Starting Charging of Evaluation Battery) Battery Temperature Ta(n) Inspected battery temperature Tc(n) Evaluation battery temperature σa (Inspected battery temperature Ta(n)) variation σc (Evaluated battery temperature Tc(n)) variation Rb(n) IV resistance Rs threshold

Claims (1)

予め定めた配置場所にそれぞれ配置された複数の被検査電池を、予め定めた温度環境下で、同じ検査電圧Vaまでそれぞれ充電する充電工程と、
上記充電工程に続き、上記複数の被検査電池のIV抵抗値Rb(n)をそれぞれ測定する抵抗値測定工程と、
上記複数の被検査電池のうち、上記IV抵抗値Rb(n)が閾値以下である被検査電池を良品と判定する判定工程と、を備え、
上記被検査電池と同一構成を有する複数の評価用電池を上記配置場所にそれぞれ配置し、上記温度環境下で、同じ評価充電電流値Icで上記検査電圧Vaまでそれぞれ充電した場合に、上記検査電圧Va到達時に上記評価用電池がそれぞれ達する評価電池温度Tc(n)に基づいて、
上記充電工程で上記複数の被検査電池に流す充電電流の検査充電電流値Ia(n)を、
上記評価電池温度Tc(n)が高い配置場所に配置された被検査電池ほど小さい値で、かつ、
上記複数の被検査電池がいずれも上記良品である場合に、上記充電工程で上記検査電圧Va到達時に上記被検査電池がそれぞれ達する被検査電池温度Ta(n)のバラツキが、上記評価電池温度Tc(n)のバラツキよりも小さくなる値に、
予めそれぞれ定めてあり、
上記充電工程は、
上記配置場所毎に定められた上記検査充電電流値Ia(n)で上記複数の被検査電池をそれぞれ充電する
電池の製造方法。
A charging step of charging a plurality of batteries to be inspected, which are respectively arranged at predetermined arrangement locations, to the same inspection voltage Va under a predetermined temperature environment;
Following the charging step, a resistance value measuring step of measuring the IV resistance values Rb(n) of the plurality of tested batteries, respectively.
A determination step of determining, as a non-defective battery, an inspected battery whose IV resistance value Rb(n) is equal to or less than a threshold value among the plurality of inspected batteries
When a plurality of batteries for evaluation having the same configuration as the battery to be inspected are respectively arranged at the above arrangement locations and are charged to the above inspection voltage Va at the same evaluation charging current value Ic under the above temperature environment, the above inspection voltage is obtained. Based on the evaluation battery temperatures Tc(n) that the evaluation batteries respectively reach when reaching Va,
The inspection charging current value Ia(n) of the charging current flowing through the plurality of batteries to be inspected in the charging step is
The battery to be inspected arranged at a location where the evaluation battery temperature Tc(n) is high has a smaller value, and
When all of the plurality of batteries to be inspected are non-defective, the variation in the battery temperature to be inspected Ta(n) reached by each of the batteries to be inspected when the inspection voltage Va reaches in the charging step is the evaluation battery temperature Tc. A value smaller than the variation of (n),
Have been set in advance,
The charging process is
A method of manufacturing a battery, wherein each of the plurality of batteries to be inspected is charged with the inspection charging current value Ia(n) determined for each location.
JP2017094973A 2017-05-11 2017-05-11 Battery manufacturing method Active JP6743758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017094973A JP6743758B2 (en) 2017-05-11 2017-05-11 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017094973A JP6743758B2 (en) 2017-05-11 2017-05-11 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2018190688A JP2018190688A (en) 2018-11-29
JP6743758B2 true JP6743758B2 (en) 2020-08-19

Family

ID=64478837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017094973A Active JP6743758B2 (en) 2017-05-11 2017-05-11 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6743758B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441765B2 (en) 2020-09-15 2024-03-01 プライムプラネットエナジー&ソリューションズ株式会社 How to test secondary batteries

Also Published As

Publication number Publication date
JP2018190688A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6885236B2 (en) Short-circuit inspection method for power storage devices and manufacturing method for power storage devices
US9091733B2 (en) Method of inspecting secondary battery
JP6794974B2 (en) Self-discharge inspection method for power storage devices
JP5585718B2 (en) Secondary battery inspection method
JP2017106867A (en) Manufacturing method for secondary batteries
JP2016192278A (en) Inspection method of secondary battery
JP2014134395A (en) Short-circuit inspection method of secondary battery
JP6743758B2 (en) Battery manufacturing method
JP4720221B2 (en) Manufacturing method of secondary battery
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
US11221371B2 (en) Power storage device inspecting method and power storage device manufacturing method
US11609260B2 (en) Method for inspecting insulation of a secondary battery
JP2018067498A (en) Method of manufacturing battery
JP5880972B2 (en) Secondary battery inspection method
JP2018092790A (en) Method for manufacturing lithium ion secondary battery
JP2017126539A (en) Method for manufacturing secondary battery
JP2014207154A (en) Method for inspecting nonaqueous electrolyte secondary battery
JP7192581B2 (en) Voltage measurement method
JP6693393B2 (en) Battery manufacturing method
JP6760213B2 (en) How to manufacture a secondary battery
JP2017199577A (en) Manufacturing method of secondary battery
JP2016194998A (en) Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
JP2018055878A (en) Manufacturing method of battery
JP2014153269A (en) Secondary battery inspection method
US20240012061A1 (en) Method for evaluating a power storage device and method for producing the power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R151 Written notification of patent or utility model registration

Ref document number: 6743758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151