JP2017199577A - Manufacturing method of secondary battery - Google Patents

Manufacturing method of secondary battery Download PDF

Info

Publication number
JP2017199577A
JP2017199577A JP2016089834A JP2016089834A JP2017199577A JP 2017199577 A JP2017199577 A JP 2017199577A JP 2016089834 A JP2016089834 A JP 2016089834A JP 2016089834 A JP2016089834 A JP 2016089834A JP 2017199577 A JP2017199577 A JP 2017199577A
Authority
JP
Japan
Prior art keywords
battery
voltage drop
coefficient
drop amount
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016089834A
Other languages
Japanese (ja)
Inventor
嘉夫 松山
Yoshio Matsuyama
嘉夫 松山
極 小林
Kyoku Kobayashi
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016089834A priority Critical patent/JP2017199577A/en
Publication of JP2017199577A publication Critical patent/JP2017199577A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of secondary battery which allows for accurate detection of a battery that has short-circuited in the manufacturing process.SOLUTION: A manufacturing method of secondary battery includes multiple voltage drop amount acquisition steps S4, S5, S6 of performing a voltage drop amount acquisition step of acquiring a voltage drop amount ΔV1, and the like, by leaving a secondary battery 1 in terminal open state under a predetermined temperature over a predetermined time Da, under temperatures T1, and the like, different from each other, a coefficient acquisition step S7 of acquiring the coefficient b of an exponential approximation curve ΔV=aeof the left temperature T and voltage drop amount ΔV1, based on the multiple voltage drop amounts ΔV1, and a short circuit determination step S8 of determining that internal short circuit has occurred in secondary battery 1, when the coefficient b is smaller than a reference coefficient B.SELECTED DRAWING: Figure 3

Description

本発明は、二次電池の内部短絡の有無を判定する短絡判定工程を備える二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a secondary battery including a short-circuit determination step for determining the presence or absence of an internal short circuit of a secondary battery.

リチウムイオン二次電池などの二次電池(以下、単に電池ともいう)の製造過程において、電池に内部短絡(以下、単に短絡ともいう)が生じているか否かの短絡検査を行うことが知られている。具体的には、所定の放置温度下で電池を所定の放置時間にわたって自己放電させ(端子開放した状態で放電させ)、この自己放電前後にそれぞれ測定した電池電圧から自己放電による電圧低下量ΔVを求める。そして、この電圧低下量ΔVが基準電圧低下量ΔVrよりも大きい場合に(ΔV>ΔVr)、その電池に短絡が生じていると判定する。   It is known that in the process of manufacturing a secondary battery such as a lithium ion secondary battery (hereinafter also simply referred to as a battery), a short circuit inspection is performed to determine whether or not an internal short circuit (hereinafter also simply referred to as a short circuit) has occurred in the battery. ing. Specifically, the battery is self-discharged for a predetermined leaving time under a predetermined leaving temperature (discharged with the terminal open), and the voltage drop amount ΔV due to self-discharge is calculated from the battery voltage measured before and after the self-discharging. Ask. When the voltage drop amount ΔV is larger than the reference voltage drop amount ΔVr (ΔV> ΔVr), it is determined that a short circuit has occurred in the battery.

更に、この短絡検査の精度を向上させるため、電池の製造ロットやその他の製造条件、検査条件に基づいて電池を細かく分類し、これらの検査ロット毎に基準電圧低下量ΔVrをそれぞれ設定して短絡検査を行うことも知られている。例えば特許文献1に、このように、電池を細かく分類した検査ロット毎に電池の短絡検査を行うことが記載されている(特許文献1の特許請求の範囲等を参照)。   Furthermore, in order to improve the accuracy of this short-circuit inspection, the batteries are finely classified based on the battery production lot, other production conditions, and inspection conditions, and the reference voltage drop amount ΔVr is set for each of these inspection lots to short-circuit. It is also known to perform inspections. For example, Patent Document 1 describes that a battery short-circuit inspection is performed for each inspection lot in which the batteries are finely classified as described above (see the claims of Patent Document 1).

特開2013−165029号公報JP 2013-165029 A

しかしながら、短絡検査の精度をより向上させるべく、電池の分類をより細かく行うと、同一検査ロットに属する電池の個数が少なくなる場合がある。すると、電池の個数が少ない検査ロットでは、適切に基準電圧低下量ΔVrを設定するのが難しくなるため、精度良く短絡検査を行えない場合が生じ得る。このように従来は、組み立てたすべての電池について精度良く短絡検査を行うことが難しかった。   However, if the batteries are further classified to improve the accuracy of the short circuit inspection, the number of batteries belonging to the same inspection lot may be reduced. Then, in an inspection lot with a small number of batteries, it is difficult to set the reference voltage drop amount ΔVr appropriately, and thus there may be a case where the short-circuit inspection cannot be performed with high accuracy. Thus, conventionally, it has been difficult to perform a short-circuit inspection with high accuracy for all assembled batteries.

本発明は、かかる現状に鑑みてなされたものであって、製造過程で短絡が生じている電池を精度良く検出できる二次電池の製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the manufacturing method of the secondary battery which can detect the battery which has produced the short circuit in the manufacture process accurately.

上記課題を解決するための本発明の一態様は、所定の放置温度下でかつ端子開放した状態で二次電池を所定の放置時間にわたって放置し、上記放置前後の電池電圧の電圧低下量を取得する電圧低下量取得工程を、互いに異なる上記放置温度下で行う複数の電圧低下量取得工程と、得られた複数の上記電圧低下量に基づいて、上記放置温度Tと上記電圧低下量ΔVについての指数近似曲線ΔV=aebT(a,bは係数、但し、a>0,b>0)の係数bを取得する係数取得工程と、得られた上記係数bが基準係数Bよりも小さい(b<B)場合に、当該二次電池に内部短絡が生じていると判定する短絡判定工程と、を備える二次電池の製造方法である。 One aspect of the present invention for solving the above problem is that a secondary battery is left for a predetermined leaving time at a predetermined leaving temperature and a terminal is opened, and a voltage drop amount of the battery voltage before and after the leaving is obtained. The voltage drop amount acquisition step is performed at a plurality of voltage drop amount acquisition steps performed at different stand-by temperatures, and the stand-off temperature T and the voltage drop amount ΔV are determined based on the obtained plurality of voltage drop amounts. Exponential approximation curve ΔV = ae bT (a and b are coefficients, where a> 0, b> 0), a coefficient acquisition step of acquiring the coefficient b, and the obtained coefficient b is smaller than the reference coefficient B (b <B) In the case, a secondary battery manufacturing method comprising: a short circuit determination step for determining that an internal short circuit has occurred in the secondary battery.

所定の放置温度下で所定の放置時間にわたって自己放電させたときの電圧低下量ΔVには、化学反応(負極活物質粒子の粒子表面で被膜が成長する反応など)に起因する電圧低下量ΔVaと、物理反応(内部短絡)に起因する電圧低下量ΔVbが含まれる(ΔV=ΔVa+ΔVb)。化学反応に起因する電圧低下量ΔVaは、電池温度が高くなるほど大きくなる一方、内部短絡に起因する電圧低下量ΔVbは、電池温度に依存せず、ほぼ一定である。このため、正常な(内部短絡が生じていない)電池は、電圧低下量ΔVの温度依存性が大きい一方、内部短絡が生じている電池は、電圧低下量ΔVの温度依存性が小さいことが判ってきた。   The voltage drop amount ΔV when self-discharged for a predetermined standing time at a predetermined standing temperature is a voltage drop amount ΔVa caused by a chemical reaction (such as a reaction in which a film grows on the particle surface of the negative electrode active material particles). , A voltage drop amount ΔVb caused by a physical reaction (internal short circuit) is included (ΔV = ΔVa + ΔVb). The voltage drop amount ΔVa due to the chemical reaction increases as the battery temperature increases, while the voltage drop amount ΔVb due to the internal short circuit does not depend on the battery temperature and is substantially constant. For this reason, it can be seen that a normal battery (with no internal short circuit) has a large temperature dependency of the voltage drop ΔV, whereas a battery with an internal short circuit has a small temperature dependency of the voltage drop ΔV. I came.

上述の二次電池の製造方法では、互いに異なる放置温度T(T1,T2,…)で得た複数の電圧低下量ΔV(ΔV1,ΔV2,…)に基づいて、放置温度Tと電圧低下量ΔVについての指数近似曲線ΔV=aebT の係数bを取得し、得られた係数bが基準係数Bよりも小さい場合に(b<B)、当該電池に短絡が生じていると判定する。上述のように、短絡が生じている電池は、正常な電池に比べて電圧低下量ΔVの温度依存性が小さいため、短絡が生じている電池で取得される指数近似曲線の係数bは、正常な電池で取得される指数近似曲線の係数bに比べて小さい。その上、ある特定の放置温度Tで得られる電圧低下量ΔVでは、正常な電池と短絡が生じている電池とで殆ど差がなく、これらを判別できない場合でも、指数近似曲線の係数bについて見ると、正常な電池と短絡が生じている電池とで大きな差が生じることが判ってきた。このため、取得した指数近似曲線の係数bを基準係数Bと比較することにより、短絡が生じている電池を精度良く検出できる。 In the above-described secondary battery manufacturing method, the leaving temperature T and the voltage drop amount ΔV are based on a plurality of voltage drop amounts ΔV (ΔV1, ΔV2,...) Obtained at different leave temperatures T (T1, T2,...). When the coefficient b of the exponential approximation curve ΔV = ae bT is acquired and the obtained coefficient b is smaller than the reference coefficient B (b <B), it is determined that a short circuit has occurred in the battery. As described above, since the battery in which the short circuit occurs has a smaller temperature dependency of the voltage drop ΔV than the normal battery, the coefficient b of the exponential approximation curve obtained in the battery in which the short circuit occurs is normal. This is smaller than the coefficient b of the exponential approximation curve obtained with a simple battery. In addition, there is almost no difference between the normal battery and the short-circuited battery in the voltage drop amount ΔV obtained at a certain standing temperature T. Even when these cannot be discriminated, the coefficient b of the exponential approximation curve is seen. It has been found that there is a large difference between a normal battery and a battery in which a short circuit occurs. For this reason, by comparing the coefficient b of the acquired exponential approximation curve with the reference coefficient B, it is possible to accurately detect a battery in which a short circuit has occurred.

なお、「放置温度」Tは、いずれもT=0℃以上の温度とするのが好ましい。放置温度Tを0℃以上とすることにより、電池を冷却しつつ放置するための設備を簡略化或いは無くすことができ、生産コストを抑制できる。また、放置温度Tは、後述するように、T=30℃以下とするのが好ましい。
また、「放置時間」Daは、Da=1.0〜7.0日の範囲内とするのが好ましい。放置時間Daを1.0日以上とすることにより、放置前後間の電圧低下量ΔVを大きくできる。一方、放置時間Daを7.0日以下とすることにより、電圧低下量取得工程に掛かる時間を抑制して、電池製造の生産性を向上させることができる。
The “standing temperature” T is preferably T = 0 ° C. or higher. By setting the standing temperature T to 0 ° C. or higher, the equipment for leaving the battery while cooling can be simplified or eliminated, and the production cost can be suppressed. Further, the leaving temperature T is preferably T = 30 ° C. or less, as will be described later.
The “leaving time” Da is preferably within a range of Da = 1.0 to 7.0 days. By setting the leaving time Da to 1.0 day or longer, the voltage drop amount ΔV before and after being left can be increased. On the other hand, by setting the leaving time Da to 7.0 days or less, the time required for the voltage drop amount acquisition step can be suppressed, and the productivity of battery manufacturing can be improved.

更に、上記の二次電池の製造方法であって、前記複数の電圧低下量取得工程は、いずれも、前記放置温度が30℃以下である二次電池の製造方法とするのが好ましい。   Furthermore, in the method for manufacturing a secondary battery described above, it is preferable that each of the plurality of voltage drop amount acquisition steps is a method for manufacturing a secondary battery in which the standing temperature is 30 ° C. or less.

放置温度Tを高くしすぎると、具体的には放置温度Tを30℃よりも高くすると、自己放電による電圧低下量ΔVのうち、化学反応に起因する電圧低下量ΔVaの割合が、内部短絡に起因する電圧低下量ΔVbに比べて大きくなりすぎる。このため、放置温度Tを30℃以上として電圧低下量取得工程を行った場合には、測定される電圧低下量ΔVに含まれる電圧低下量ΔVbが相対的に小さくなるため、電圧低下量ΔVを用いて電圧低下量ΔVbの大小を判定するのが難しくなる。   If the standing temperature T is too high, specifically, if the standing temperature T is higher than 30 ° C., the ratio of the voltage drop ΔVa due to the chemical reaction in the voltage drop ΔV due to self-discharge is caused by the internal short circuit. It is too large compared to the resulting voltage drop amount ΔVb. For this reason, when the voltage drop amount acquisition step is performed with the standing temperature T set to 30 ° C. or higher, the voltage drop amount ΔVb included in the measured voltage drop amount ΔV becomes relatively small. This makes it difficult to determine the magnitude of the voltage drop amount ΔVb.

これに対し、上述の二次電池の製造方法では、いずれの電圧低下量取得工程も、放置温度Tを30℃以下とするので、各々の電圧低下量ΔVは、いずれも、化学反応に起因する電圧低下量ΔVaの割合が、内部短絡に起因する電圧低下量ΔVbに比べて大きくなりすぎない。このため、内部短絡が生じている電池で取得される指数近似曲線の係数bと、正常な電池で取得される指数近似曲線の係数bとの差が明確になる。従って、短絡判定工程で、内部短絡が生じている電池をより精度良く検出できる。   On the other hand, in any of the above-described secondary battery manufacturing methods, since any voltage drop amount acquisition step sets the standing temperature T to 30 ° C. or less, each voltage drop amount ΔV is caused by a chemical reaction. The ratio of the voltage drop amount ΔVa does not become too large compared to the voltage drop amount ΔVb caused by the internal short circuit. For this reason, the difference between the coefficient b of the exponential approximate curve obtained with a battery in which an internal short circuit has occurred and the coefficient b of the exponential approximate curve obtained with a normal battery become clear. Therefore, a battery in which an internal short circuit has occurred can be detected with higher accuracy in the short circuit determination step.

また、他の態様は、所定の放置温度下でかつ端子開放した状態で二次電池を所定の放置時間にわたって放置し、上記放置前後の電池電圧の電圧低下量を取得する電圧低下量取得工程を、互いに異なる上記放置温度下で行う複数の電圧低下量取得工程と、得られた複数の上記電圧低下量に基づいて、上記放置温度Tと上記電圧低下量ΔVについての指数近似曲線ΔV=aebT(a,bは係数、但し、a>0,b>0)の係数bを取得する係数取得工程と、得られた上記係数bが基準係数Bよりも小さい(b<B)場合に、当該二次電池に内部短絡が生じていると判定する短絡判定工程と、を備える二次電池の検査方法である。 According to another aspect, a voltage reduction amount acquisition step is performed in which the secondary battery is left for a predetermined leaving time at a predetermined leaving temperature and a terminal is opened, and the voltage drop amount of the battery voltage before and after the leaving is acquired. A plurality of voltage drop amount acquisition steps performed at the different standing temperatures, and an exponential approximation curve ΔV = ae bT for the standing temperature T and the voltage drop amount ΔV based on the obtained plurality of voltage drop amounts. (A, b are coefficients, where a> 0, b> 0) and a coefficient acquisition step of acquiring the coefficient b, and when the obtained coefficient b is smaller than the reference coefficient B (b <B), And a short circuit determination step for determining that an internal short circuit has occurred in the secondary battery.

上述の二次電池の検査方法では、互いに異なる放置温度Tで得た複数の電圧低下量ΔVに基づいて、放置温度Tと電圧低下量ΔVについての指数近似曲線ΔV=aebT の係数bを取得し、得られた係数bが基準係数Bよりも小さい場合に(b<B)、当該電池に短絡が生じていると判定する。このようにすることで、短絡が生じている電池を精度良く検出できる。 In the secondary battery inspection method described above, the coefficient b of the exponential approximation curve ΔV = ae bT for the leaving temperature T and the voltage drop amount ΔV is obtained based on a plurality of voltage drop amounts ΔV obtained at different standing temperatures T. When the obtained coefficient b is smaller than the reference coefficient B (b <B), it is determined that a short circuit has occurred in the battery. By doing in this way, the battery in which the short circuit has arisen can be detected accurately.

実施形態に係る二次電池の斜視図である。1 is a perspective view of a secondary battery according to an embodiment. 実施形態に係る二次電池の縦断面図である。It is a longitudinal cross-sectional view of the secondary battery which concerns on embodiment. 実施形態に係る二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the secondary battery which concerns on embodiment. 放置温度Tと電圧低下量比ΔVhとの関係と示すグラフである。It is a graph which shows the relationship between the leaving temperature T and the voltage drop amount ratio ΔVh.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る二次電池(以下、単に「電池」ともいう)1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、非水電解液19が収容されており、その一部は電極体20内に含浸されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a perspective view and a longitudinal sectional view of a secondary battery (hereinafter also simply referred to as “battery”) 1 according to the present embodiment. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric car. The battery 1 includes a battery case 10, an electrode body 20 accommodated therein, a positive terminal member 50 and a negative terminal member 60 supported by the battery case 10, and the like. In addition, a non-aqueous electrolyte 19 is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20の正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20の負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。   Among these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (in this embodiment, aluminum). The battery case 10 is composed of a bottomed rectangular tube-shaped case main body member 11 that is open only on the upper side, and a rectangular plate-shaped case lid member 13 that is welded in a form that closes the opening of the case main body member 11. The A positive terminal member 50 made of aluminum is fixed to the case lid member 13 while being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to the positive electrode plate 21 of the electrode body 20 in the battery case 10 to be conductive, and extends through the case lid member 13 to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to and conductive with the negative electrode plate 31 of the electrode body 20 in the battery case 10, and extends through the case lid member 13 to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体17が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を設けてなる。また、セパレータ41は、樹脂からなる多孔質膜であり、帯状でフィルム状をなす。   The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a laid-down state. Between the electrode body 20 and the battery case 10, a bag-shaped insulating film enclosure 17 made of an insulating film is disposed. The electrode body 20 is formed by laminating a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 with a pair of strip-like separators 41 and 41 wound around each other and compressed in a flat shape. The positive electrode plate 21 is provided with a positive electrode active material layer in a band shape at predetermined positions on both main surfaces of a positive electrode current collector foil made of a band-shaped aluminum foil. Moreover, the negative electrode plate 31 is provided with a negative electrode active material layer at a predetermined position on both main surfaces of a negative electrode current collector foil made of a strip-shaped copper foil. The separator 41 is a porous film made of a resin and has a strip shape and a film shape.

次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、電池1を組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体17を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、非水電解液19を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、注液孔13hを封止する。   Next, a method for manufacturing the battery 1 will be described (see FIG. 3). First, in the “assembly process S1”, the battery 1 is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 41 and 41 and wound into a flat shape to form the electrode body 20. Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed thereto (see FIGS. 1 and 2). Thereafter, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film enclosure 17 and inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. The case body member 11 and the case lid member 13 are welded to form the battery case 10. Thereafter, the nonaqueous electrolytic solution 19 is injected into the battery case 10 through the injection hole 13 h and impregnated in the electrode body 20. Thereafter, the liquid injection hole 13h is sealed.

次に、初充電工程S2を行うのに先立ち、電池1を拘束する。具体的には、電池ケース10の幅広な側面を一対の板状の押圧治具で電池厚み方向BHに挟んで、電池1を電池厚み方向BHに押圧した状態で拘束する。なお、本実施形態では、以下に説明する「初充電工程S2」から「内部抵抗値取得・判定工程S10」までを、このように電池1を拘束した状態で行う。   Next, the battery 1 is restrained prior to performing the initial charging step S2. Specifically, the wide side surface of the battery case 10 is sandwiched in the battery thickness direction BH by a pair of plate-shaped pressing jigs, and the battery 1 is restrained while being pressed in the battery thickness direction BH. In the present embodiment, the process from the “initial charging step S2” to the “internal resistance value acquisition / determination step S10” described below is performed in a state where the battery 1 is restrained as described above.

電池1を拘束した後、「初充電工程S2」において、電池1を初充電する。具体的には、電池1を室温(25±5℃)下において、定電流定電圧充電(CCCV充電)により、SOC100%まで初充電する。なお、この初充電工程S2は、室温下以外で行うこともできる。但し、室温下で行うと、電池1を加熱または冷却しなくて済むため、生産コストを低減できる。   After the battery 1 is restrained, the battery 1 is initially charged in the “initial charging step S2”. Specifically, the battery 1 is initially charged to SOC 100% by constant current constant voltage charging (CCCV charging) at room temperature (25 ± 5 ° C.). The initial charging step S2 can also be performed at a temperature other than room temperature. However, if it is performed at room temperature, the battery 1 does not have to be heated or cooled, so that the production cost can be reduced.

次に、「エージング工程S3」において、電池1を放置してエージングする。具体的には、初充電後の電池1を60℃の温度下において、端子開放した状態で、20時間にわたって放置しエージングする。   Next, in the “aging step S3”, the battery 1 is left to age. Specifically, the battery 1 after initial charging is left to age for 20 hours with the terminals open at a temperature of 60 ° C.

次に、「第1電圧低下量取得工程S4」において、自己放電による第1電圧低下量ΔV1を取得する。具体的には、この電池1を30℃以下の第1放置温度T1(本実施形態ではT1=30℃)の環境下において、端子開放した状態で、所定の放置時間Da(本実施形態ではDa=3.0日間)放置する(自己放電させる)。この放電前後の電池電圧Vc(Vc1s,Vc1e)をそれぞれ測定して、第1電圧低下量ΔV1(ΔV1=Vc1s−Vc1e)を取得する。   Next, in the “first voltage decrease amount acquisition step S4”, the first voltage decrease amount ΔV1 due to self-discharge is acquired. Specifically, the battery 1 is left for a predetermined leaving time Da (Da in this embodiment) in a state where the terminal is opened in an environment of a first leaving temperature T1 (T1 = 30 ° C. in this embodiment) of 30 ° C. or less. = 3.0 days) Leave (self-discharge). The battery voltage Vc (Vc1s, Vc1e) before and after this discharge is measured to obtain the first voltage drop amount ΔV1 (ΔV1 = Vc1s−Vc1e).

次に、「第2電圧低下量取得工程S5」において、自己放電による第2電圧低下量ΔV2を取得する。具体的には、この電池1を30℃以下の第1放置温度T1とは異なる第2放置温度T2(本実施形態ではT2=15℃)の環境下において、端子開放した状態で、所定の放置時間Da(Da=3.0日間)放置する。この放電前後の電池電圧Vc(Vc2s,Vc2e)をそれぞれ測定して、第2電圧低下量ΔV2(ΔV2=Vc2s−Vc2e)を取得する。   Next, in the “second voltage drop amount acquisition step S5”, the second voltage drop amount ΔV2 due to self-discharge is acquired. Specifically, the battery 1 is left in a predetermined leaving state with the terminals open in an environment of a second leaving temperature T2 (T2 = 15 ° C. in the present embodiment) different from the first leaving temperature T1 of 30 ° C. or less. Leave for time Da (Da = 3.0 days). The battery voltage Vc (Vc2s, Vc2e) before and after this discharge is measured to obtain the second voltage drop amount ΔV2 (ΔV2 = Vc2s−Vc2e).

次に、「第3電圧低下量取得工程S6」において、自己放電による第3電圧低下量ΔV3を取得する。具体的には、この電池1を30℃以下で、かつ、第1,第2放置温度T1 T2とは異なる第3放置温度T3(本実施形態ではT3=0℃)の環境下において、端子開放した状態で、所定の放置時間Da(Da=3.0日間)放置する。この放電前後の電池電圧Vc(Vc3s,Vc3e)をそれぞれ測定して、第3電圧低下量ΔV3(ΔV3=Vc3s−Vc3e)を取得する。   Next, in the “third voltage decrease amount acquisition step S6”, a third voltage decrease amount ΔV3 due to self-discharge is acquired. Specifically, the terminal of the battery 1 is opened under an environment of a third standing temperature T3 (T3 = 0 ° C. in the present embodiment) that is 30 ° C. or less and different from the first and second standing temperatures T1 and T2. In this state, it is left for a predetermined leaving time Da (Da = 3.0 days). The battery voltage Vc (Vc3s, Vc3e) before and after the discharge is measured to obtain a third voltage drop amount ΔV3 (ΔV3 = Vc3s−Vc3e).

次に、「係数取得工程S7」において、当該電池1についての指数近似曲線の係数bを取得する。具体的には、得られた複数(本実施形態では3つ)の電圧低下量ΔV(第1〜第3電圧低下量ΔV1,ΔV2,ΔV3)に基づいて、放置温度Tと電圧低下量ΔVについての指数近似曲線ΔV=aebT(a,bは係数、但し、a>0,b>0)を求め、係数bを取得する。 Next, in the “coefficient acquisition step S7”, the coefficient b of the exponential approximate curve for the battery 1 is acquired. More specifically, based on the obtained plural (three in this embodiment) voltage drop amounts ΔV (first to third voltage drop amounts ΔV1, ΔV2, ΔV3), the standing temperature T and the voltage drop amount ΔV. The exponent approximate curve ΔV = ae bT (where a and b are coefficients, where a> 0, b> 0), and the coefficient b is obtained.

但し、複数の電圧低下量ΔVを用いて、指数近似曲線のグラフを描いた場合に、正常な電池と内部短絡が生じている電池とでは、係数aにも係数bにも違いが生じ、係数bによる違いが分かり難くなる。そこで、本実施形態では、両者の係数bの違いを理解し易くするため、次述するように、第3放置温度T3=0℃における第3電圧低下量ΔV3を基準として、第1〜第3電圧低下量ΔV1,ΔV2,ΔV3をそれぞれ規格化した電圧低下量比ΔVh1,ΔVh2,ΔVh3(=1.0)について、ΔVh=ebT(bは係数、但し、b>0)の指数近似曲線(図4参照)を求め、係数bを取得した。なおこのようにすると、いずれの場合も、T=0℃で、ΔVh=1を通る。 However, when a graph of an exponential approximate curve is drawn using a plurality of voltage drop amounts ΔV, there is a difference between the coefficient a and the coefficient b between a normal battery and a battery in which an internal short circuit occurs. Differences due to b become difficult to understand. Therefore, in this embodiment, in order to make it easy to understand the difference between the two coefficients b, as described below, the first to third are based on the third voltage drop amount ΔV3 at the third leaving temperature T3 = 0 ° C. An exponential approximation curve of ΔVh = e bT (b is a coefficient, where b> 0) with respect to the voltage drop amount ratios ΔVh1, ΔVh2, ΔVh3 (= 1.0) obtained by standardizing the voltage drop amounts ΔV1, ΔV2, ΔV3, respectively. The coefficient b was obtained. In this case, ΔVh = 1 is passed at T = 0 ° C. in any case.

一方、本実施形態のように電圧低下量比ΔVh1,ΔVh2,ΔVh3を用いて得たΔVh=ebTの指数近似曲線の係数bと、第1〜第3電圧低下量ΔV1,ΔV2,ΔV3を直接用いて、指数近似曲線(ΔV=aebT)を求めることにより得られる係数bとは、ほぼ同じ値となる。
従って、第1〜第3電圧低下量ΔV1,ΔV2,ΔV3を直接用いて、指数近似曲線(ΔV=aebT)を求めた場合でも、係数bを基準指数曲線の基準係数Bと比較することにより、当該電池1に短絡が生じているか否かを判定できることが判る。
On the other hand, the coefficient b of the exponential approximate curve of ΔVh = ebT obtained using the voltage drop ratios ΔVh1, ΔVh2, ΔVh3 as in the present embodiment and the first to third voltage drop amounts ΔV1, ΔV2, ΔV3 are directly calculated. The coefficient b obtained by calculating the exponential approximation curve (ΔV = ae bT ) is almost the same value.
Therefore, even when the exponential approximate curve (ΔV = ae bT ) is obtained by directly using the first to third voltage drop amounts ΔV1, ΔV2, and ΔV3, the coefficient b is compared with the reference coefficient B of the reference exponent curve. It can be seen that whether or not a short circuit has occurred in the battery 1 can be determined.

具体的には、まず、第3電圧低下量ΔV3を基準とした、第1電圧低下量ΔV1の第1電圧低下量比ΔVh1=ΔV1/ΔV3を算出する。
また、第3電圧低下量ΔV3を基準とした、第2電圧低下量ΔV2の第2電圧低下量比ΔVh2=ΔV2/ΔV3を算出する。
なお、第3電圧低下量ΔV3を基準とした、第3電圧低下量ΔV3の第3電圧低下量比ΔVh3は、ΔVh3=ΔV3/ΔV3=1.00である。
Specifically, first, the first voltage drop amount ratio ΔVh1 = ΔV1 / ΔV3 of the first voltage drop amount ΔV1 is calculated with the third voltage drop amount ΔV3 as a reference.
Further, the second voltage drop amount ratio ΔVh2 = ΔV2 / ΔV3 of the second voltage drop amount ΔV2 is calculated with the third voltage drop amount ΔV3 as a reference.
The third voltage drop amount ratio ΔVh3 of the third voltage drop amount ΔV3 with respect to the third voltage drop amount ΔV3 is ΔVh3 = ΔV3 / ΔV3 = 1.00.

次に、得られた電圧低下量比ΔVh(第1,第2電圧低下量比ΔVh1,ΔVh2)から、前述の指数近似曲線ΔV=aebTにおける係数a=1.00として、放置温度Tと電圧低下量比ΔVhについての指数近似曲線ΔVh=ebT(bは係数、但し、b>0)を求め、係数bを取得する。
なお、係数a=1.00としているのは、前述のように、第3放置温度T3=0℃における第3電圧低下量ΔV3の第3電圧低下量比ΔVh3=1.00であるため、T=0、ΔVh=1.00を、ΔVh=aebT に代入すると、a=1.00と求まるからである。
Next, based on the obtained voltage drop amount ratio ΔVh (first and second voltage drop amount ratios ΔVh1, ΔVh2), the coefficient a = 1.00 in the exponential approximation curve ΔV = ae bT described above is used, and the standing temperature T and the voltage An exponential approximation curve ΔVh = e bT (b is a coefficient, where b> 0) is obtained for the decrease amount ratio ΔVh , and a coefficient b is obtained.
The coefficient a = 1.00 is, as described above, because the third voltage drop amount ratio ΔVh3 = 1.00 of the third voltage drop amount ΔV3 at the third leaving temperature T3 = 0 ° C. This is because a = 1.00 can be obtained by substituting = 0 and ΔVh = 1.00 into ΔVh = ae bT .

ここで、図4に指数近似曲線ΔVh=ebTのグラフを示す。正常な(内部短絡が生じていない)電池1の平均的な電圧低下量比ΔVh(第1,第2電圧低下量比ΔVh1,ΔVh2)からは、図4に細い実線で示す指数近似曲線(係数b=0.075)が得られる。これに対し、短絡が生じている電池1では、例えば、図4に不良品1として破線で示す指数近似曲線(係数b=0.040)や、図4に不良品2として一点鎖線で示す指数近似曲線(係数b=0.020)、図4に不良品3として二点鎖線で示す指数近似曲線(係数b=0.007)などが得られる。 Here, FIG. 4 shows a graph of the exponential approximation curve ΔVh = ebT . From the average voltage drop amount ratio ΔVh (first and second voltage drop amount ratios ΔVh1, ΔVh2) of the normal battery 1 (in which no internal short circuit has occurred), an exponential approximation curve (coefficient) shown by a thin solid line in FIG. b = 0.075). On the other hand, in the battery 1 in which a short circuit has occurred, for example, an exponential approximation curve (coefficient b = 0.040) indicated by a broken line as a defective product 1 in FIG. 4 or an index indicated by a one-dot chain line as a defective product 2 in FIG. An approximate curve (coefficient b = 0.020), an exponential approximate curve (coefficient b = 0.007) indicated by a two-dot chain line in FIG.

これらのグラフから明らかなように、短絡が生じている各電池1では、正常な電池1に比べて、得られた指数近似曲線の係数bの値が明らかに小さい。そこで、短絡が生じている電池1と正常な電池1とを区別するための基準指数曲線を設定する(本実施形態では、係数b=B=0.060)。そして、検査した電池1で得られた指数近似曲線の係数bと基準指数曲線の基準係数B(=0.060)との大きさを比較することにより、当該電池1に短絡が生じているか否かを判定する。   As is clear from these graphs, the value of the coefficient b of the obtained exponential approximate curve is clearly smaller in each battery 1 in which a short circuit occurs than in the normal battery 1. Therefore, a reference index curve for distinguishing between the battery 1 in which a short circuit has occurred and the normal battery 1 is set (in this embodiment, the coefficient b = B = 0.060). Then, by comparing the magnitude of the coefficient b of the exponential approximate curve obtained with the inspected battery 1 and the reference coefficient B (= 0.060) of the reference index curve, whether or not the battery 1 is short-circuited is determined. Determine whether.

具体的には、「短絡判定工程S8」において、得られた係数bと予め決めておいた基準係数B(=0.060)とを比較する。そして、得られた係数bが基準係数Bよりも小さい場合に(b<B)、当該電池1に内部短絡が生じている(不良品)と判定し、その電池1を除去する。一方、得られた係数bが基準係数Bよりも大きい(b≧B)場合には、当該電池1を正常(内部短絡が生じていない良品)と判定する。   Specifically, in the “short circuit determination step S8”, the obtained coefficient b is compared with a predetermined reference coefficient B (= 0.060). When the obtained coefficient b is smaller than the reference coefficient B (b <B), it is determined that an internal short circuit has occurred in the battery 1 (defective product), and the battery 1 is removed. On the other hand, when the obtained coefficient b is larger than the reference coefficient B (b ≧ B), it is determined that the battery 1 is normal (non-defective product in which no internal short circuit occurs).

次に、「放電電気量取得・判定工程S9」を行う。即ち、短絡判定工程S8で正常と判定された電池1について、充放電装置を接続して、SOC30%まで強制的に放電させる。また、この放電期間中に、SOC70%からSOC30%に至るまでの間に放電された放電電気量Qaを測定する。そして、この放電電気量Qaを基準放電電気量Qkと比較し、放電電気量Qaが基準放電電気量Qkよりも小さい場合に(Qa<Qk)、当該電池1を不良品と判定し、当該電池1を除去する。一方、得られた放電電気量Qaが基準放電電気量Qkよりも大きい場合には(Qa≧Qk)、当該電池1を正常(良品)と判定する。   Next, “discharge electric quantity acquisition / determination step S9” is performed. That is, for the battery 1 determined to be normal in the short-circuit determination step S8, a charge / discharge device is connected to forcibly discharge to SOC 30%. Further, during this discharge period, the amount of discharged electricity Qa discharged from SOC 70% to SOC 30% is measured. Then, this discharge electricity quantity Qa is compared with the reference discharge electricity quantity Qk, and when the discharge electricity quantity Qa is smaller than the reference discharge electricity quantity Qk (Qa <Qk), the battery 1 is determined as a defective product, and the battery 1 is removed. On the other hand, when the obtained discharge electricity quantity Qa is larger than the reference discharge electricity quantity Qk (Qa ≧ Qk), the battery 1 is determined to be normal (good product).

次に、「内部抵抗値取得・判定工程S10」を行う。即ち、放電電気量取得・判定工程S9で正常と判定された電池1について、その内部抵抗値(IV抵抗値)Raを測定する。具体的には、電池1をSOC40%まで充電する。その後、この電池1を、4Cの定電流で4秒間だけ放電させ、放電前後の電池電圧Vcをそれぞれ測定する。その後、放電により変化した電池電圧Vcの変化量ΔVfを放電電流値(4C)で除して、IV抵抗値(内部抵抗値)Raを取得する。そして、得られた内部抵抗値Raが、予め決めておいた基準範囲から外れている場合に、当該電池1を不良品として判定し、当該電池1を除去する。一方、得られた内部抵抗値Raが基準範囲内である場合には、当該電池1を正常(良品)と判定する。   Next, “internal resistance value acquisition / determination step S10” is performed. That is, the internal resistance value (IV resistance value) Ra of the battery 1 determined to be normal in the discharge electricity quantity acquisition / determination step S9 is measured. Specifically, the battery 1 is charged to SOC 40%. Thereafter, the battery 1 is discharged at a constant current of 4 C for 4 seconds, and the battery voltage Vc before and after the discharge is measured. Thereafter, the change amount ΔVf of the battery voltage Vc changed by the discharge is divided by the discharge current value (4C) to obtain the IV resistance value (internal resistance value) Ra. Then, when the obtained internal resistance value Ra is out of the predetermined reference range, the battery 1 is determined as a defective product, and the battery 1 is removed. On the other hand, when the obtained internal resistance value Ra is within the reference range, the battery 1 is determined to be normal (good product).

内部抵抗値取得・判定工程S10を終えた後は、電池1を拘束している拘束治具を取り外し、電池1の拘束状体を解除する。かくして、電池1が完成する。   After finishing the internal resistance value acquisition / determination step S10, the restraining jig restraining the battery 1 is removed, and the restraining body of the battery 1 is released. Thus, the battery 1 is completed.

以上で説明したように、電池1の製造方法では、互いに異なる放置温度T1,T2,T3で得た複数の電圧低下量ΔV1,ΔV2,ΔV3に基づいて、放置温度Tと電圧低下量ΔVについての指数近似曲線ΔV=aebT の係数bを取得する。より具体的には、本実施形態では、放置温度Tと0℃を基準とした電圧低下量比ΔVhについての指数近似曲線ΔVh=ebT の係数bを取得する。そして、得られた係数bが基準係数Bよりも小さい場合に(b<B)、当該電池1に短絡が生じていると判定する。前述のように、短絡が生じている電池1は、正常な電池1に比べて電圧低下量ΔVの温度依存性が小さいため、短絡が生じている電池1で取得される指数近似曲線の係数bは、正常な電池1で取得される指数近似曲線の係数bに比べて小さい。その上、ある特定の放置温度Tで得られる電圧低下量ΔVでは、正常な電池1と短絡が生じている電池1とで殆ど差がなく、これらを判別できない場合でも、指数近似曲線の係数bについて見ると、正常な電池1と短絡が生じている電池1とで大きな差が生じる。このため、取得した指数近似曲線の係数bと基準係数Bとを比較することにより、短絡が生じている電池1を精度良く検出できる。 As described above, in the manufacturing method of the battery 1, based on the plurality of voltage drop amounts ΔV1, ΔV2, and ΔV3 obtained at different leave temperatures T1, T2, and T3, the stand temperature T and the voltage drop amount ΔV are determined. The coefficient b of the exponential approximation curve ΔV = ae bT is acquired. More specifically, in the present embodiment, the coefficient b of the exponential approximate curve ΔVh = ebT with respect to the voltage drop amount ratio ΔVh based on the standing temperature T and 0 ° C. is acquired. When the obtained coefficient b is smaller than the reference coefficient B (b <B), it is determined that a short circuit has occurred in the battery 1. As described above, since the battery 1 in which the short circuit has occurred has less temperature dependency of the voltage drop ΔV than the normal battery 1, the coefficient b of the exponential approximation curve acquired in the battery 1 in which the short circuit has occurred. Is smaller than the coefficient b of the exponential approximation curve obtained with the normal battery 1. In addition, there is almost no difference between the normal battery 1 and the short-circuited battery 1 in the voltage drop amount ΔV obtained at a certain standing temperature T, and even when these cannot be distinguished, the coefficient b of the exponential approximation curve As for, there is a large difference between the normal battery 1 and the battery 1 in which a short circuit occurs. For this reason, by comparing the coefficient b of the acquired exponential approximation curve with the reference coefficient B, it is possible to accurately detect the battery 1 in which a short circuit has occurred.

更に、本実施形態では、第1〜第2電圧低下量取得工程S4,S5 S6のいずれの工程も、放置温度T1,T2,T3を30℃以下としているので、各々の電圧低下量ΔV1,ΔV2,ΔV3は、いずれも、化学反応に起因する電圧低下量ΔVaの割合が、内部短絡に起因する電圧低下量ΔVbに比べて大きくなりすぎない。このため、内部短絡が生じている電池1で取得される指数近似曲線の係数bと、正常な電池1で取得される指数近似曲線の係数bとの差が明確になる。従って、短絡判定工程S8で、内部短絡が生じている電池1をより精度良く検出できる。   Furthermore, in this embodiment, since any of the first to second voltage drop amount acquisition steps S4, S5, and S6 has the leaving temperatures T1, T2, and T3 of 30 ° C. or less, the respective voltage drop amounts ΔV1, ΔV2 , ΔV3, the ratio of the voltage drop amount ΔVa caused by the chemical reaction does not become too large compared to the voltage drop amount ΔVb caused by the internal short circuit. For this reason, the difference between the coefficient b of the exponential approximate curve acquired with the battery 1 in which an internal short circuit has occurred and the coefficient b of the exponential approximate curve acquired with the normal battery 1 becomes clear. Therefore, the battery 1 in which an internal short circuit has occurred can be detected with higher accuracy in the short circuit determination step S8.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、放置温度Tを第1放置温度T1=30℃、第2放置温度T2=15℃、第3放置温度T3=0℃として、第1〜第3電圧低下量取得工程S4,S5,S6を行ったが、各々の放置温度Tは適宜変更でき、また、放置温度Tに0℃を含めなくてもよい。
また、実施形態では、電圧低下量取得工程を3回(第1電圧低下量取得工程S4、第2電圧低下量取得工程S5及び第3電圧低下量取得工程S6)行ったが、電圧低下量取得工程は、2回または4回以上とすることもできる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the first neglecting temperature T is set as the first neglecting temperature T1 = 30 ° C., the second neglecting temperature T2 = 15 ° C., and the third neglecting temperature T3 = 0 ° C. Although S5 and S6 were performed, each leaving temperature T can be appropriately changed, and the standing temperature T may not include 0 ° C.
In the embodiment, the voltage decrease amount acquisition process is performed three times (first voltage decrease amount acquisition step S4, second voltage decrease amount acquisition step S5, and third voltage decrease amount acquisition step S6). A process can also be made into 2 times or 4 times or more.

また、実施形態の係数取得工程S7では、一旦、第3電圧低下量ΔV3を基準とした、第1電圧低下量比ΔVh1(=ΔV1/ΔV3)及び第2電圧低下量比ΔVh2(=ΔV2/ΔV3)を算出した。その上で、放置温度Tと電圧低下量比ΔVhについての、係数a=1.00とした指数近似曲線ΔVh=ebTを求めて、係数bを取得した。しかし、第1〜第3電圧低下量取得工程S4〜S6で得られた第1〜第3電圧低下量ΔV1,ΔV2,ΔV3を直接用いて、指数近似曲線ΔV=aebTを求めて、係数a,bを取得してもよい。 In the coefficient acquisition step S7 of the embodiment, the first voltage drop amount ratio ΔVh1 (= ΔV1 / ΔV3) and the second voltage drop amount ratio ΔVh2 (= ΔV2 / ΔV3) once based on the third voltage drop amount ΔV3. ) Was calculated. Then, an exponential approximate curve ΔVh = ebT with a coefficient a = 1.00 for the standing temperature T and the voltage drop amount ratio ΔVh was obtained, and the coefficient b was obtained. However, the exponential approximate curve ΔV = ae bT is obtained directly using the first to third voltage drop amounts ΔV1, ΔV2, and ΔV3 obtained in the first to third voltage drop amount acquisition steps S4 to S6 , and the coefficient a , B may be acquired.

また、実施形態では、初充電工程S2から内部抵抗値取得・判定工程S10までを、電池1を拘束した状態で行ったが、これらの工程S2〜S10を電池1を拘束することなく行うこともできる。
また、実施形態では、初充電工程S2において、この電池1をSOC100%まで充電したが、例えば、SOC80%まで充電するなど初充電するSOCの値は適宜変更できる。
また、実施形態では、エージング工程S3を、電池1を端子開放した状態で行ったが、電池1に電源を接続し定電圧に維持した状態で行ってもよい。
In the embodiment, the initial charging step S2 to the internal resistance value acquisition / determination step S10 are performed in a state where the battery 1 is restrained. However, these steps S2 to S10 may be performed without restraining the battery 1. it can.
In the embodiment, the battery 1 is charged to 100% SOC in the initial charging step S2. However, for example, the value of the SOC to be initially charged can be changed as appropriate, such as charging to SOC 80%.
In the embodiment, the aging step S3 is performed in a state where the terminal of the battery 1 is opened. However, the aging step S3 may be performed in a state where a power source is connected to the battery 1 and maintained at a constant voltage.

また、実施形態では、電池1の製造過程において、第1電圧低下量取得工程S4〜短絡判定工程S8までを行って、電池1に内部短絡が生じているか否かを検査したが、製造後の電池1について内部短絡の検査を行うこともできる。即ち、工場から出荷された後の電池1について、前述の第1電圧低下量取得工程S4〜短絡判定工程S8までを行って、内部短絡の有無を検査することもできる。この場合も、内部短絡が生じている電池1を精度良く検出できる。   In the embodiment, in the manufacturing process of the battery 1, the first voltage drop amount acquisition process S <b> 4 to the short circuit determination process S <b> 8 are performed to check whether an internal short circuit has occurred in the battery 1. The battery 1 can be inspected for internal short circuits. That is, the battery 1 after being shipped from the factory can be inspected for the presence of an internal short circuit by performing the first voltage drop amount acquisition step S4 to the short circuit determination step S8. Also in this case, the battery 1 in which an internal short circuit has occurred can be detected with high accuracy.

1 電池
10 電池ケース
20 電極体
50 正極端子部材
60 負極端子部材
S1 組立工程
S2 初充電工程
S3 エージング工程
S4 第1電圧低下量取得工程
S5 第2電圧低下量取得工程
S6 第3電圧低下量取得工程
S7 係数取得工程
S8 短絡判定工程
T 放置温度
T1 第1放置温度
T2 第2放置温度
T3 第3放置温度
Da 放置時間
Vc,Vc1s,Vc1e,Vc2s,Vc2e,Vc3s,Vc3e 電池電圧
ΔV 電圧低下量
ΔV1 第1電圧低下量
ΔV2 第2電圧低下量
ΔV3 第3電圧低下量
a,b 係数
B 基準係数
DESCRIPTION OF SYMBOLS 1 Battery 10 Battery case 20 Electrode body 50 Positive electrode terminal member 60 Negative electrode terminal member S1 Assembly process S2 Initial charge process S3 Aging process S4 1st voltage fall amount acquisition process S5 2nd voltage fall amount acquisition process S6 3rd voltage fall amount acquisition process S7 Coefficient acquisition step S8 Short circuit determination step T Left temperature T1 First left temperature T2 Second left temperature T3 Third left temperature Da Left time Vc, Vc1s, Vc1e, Vc2s, Vc2e, Vc3s, Vc3e Battery voltage ΔV Voltage drop ΔV1 First 1 Voltage drop amount ΔV2 Second voltage drop amount ΔV3 Third voltage drop amount a, b Coefficient B Reference coefficient

Claims (1)

所定の放置温度下でかつ端子開放した状態で二次電池を所定の放置時間にわたって放置し、上記放置前後の電池電圧の電圧低下量を取得する電圧低下量取得工程を、互いに異なる上記放置温度下で行う複数の電圧低下量取得工程と、
得られた複数の上記電圧低下量に基づいて、上記放置温度Tと上記電圧低下量ΔVについての指数近似曲線ΔV=aebT(a,bは係数、但し、a>0,b>0)の係数bを取得する係数取得工程と、
得られた上記係数bが基準係数Bよりも小さい(b<B)場合に、当該二次電池に内部短絡が生じていると判定する短絡判定工程と、を備える
二次電池の製造方法。
The voltage reduction amount acquisition step of acquiring the voltage drop amount of the battery voltage before and after the storage is left under a predetermined storage temperature and with the terminal open for a predetermined storage time. A plurality of voltage drop amount acquisition steps performed in
Based on the obtained plurality of voltage drop amounts, an exponential approximation curve ΔV = ae bT (where a, b are coefficients, where a> 0, b> 0) with respect to the standing temperature T and the voltage drop amount ΔV. A coefficient acquisition step of acquiring the coefficient b;
And a short-circuit determining step for determining that an internal short circuit has occurred in the secondary battery when the obtained coefficient b is smaller than the reference coefficient B (b <B).
JP2016089834A 2016-04-27 2016-04-27 Manufacturing method of secondary battery Pending JP2017199577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089834A JP2017199577A (en) 2016-04-27 2016-04-27 Manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089834A JP2017199577A (en) 2016-04-27 2016-04-27 Manufacturing method of secondary battery

Publications (1)

Publication Number Publication Date
JP2017199577A true JP2017199577A (en) 2017-11-02

Family

ID=60238049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089834A Pending JP2017199577A (en) 2016-04-27 2016-04-27 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP2017199577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500459A (en) * 2023-06-28 2023-07-28 中汽研汽车检验中心(常州)有限公司 Lithium battery safety performance evaluation method and device, storage medium and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500459A (en) * 2023-06-28 2023-07-28 中汽研汽车检验中心(常州)有限公司 Lithium battery safety performance evaluation method and device, storage medium and electronic equipment
CN116500459B (en) * 2023-06-28 2023-08-29 中汽研汽车检验中心(常州)有限公司 Lithium battery safety performance evaluation method and device, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
US10656212B2 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP5746856B2 (en) Battery module manufacturing method
Ranjbar et al. Online estimation of state of charge in Li-ion batteries using impulse response concept
Kim et al. A new direct current internal resistance and state of charge relationship for the Li-ion battery pulse power estimation
US9157964B2 (en) Method for producing secondary battery
JP6202032B2 (en) Secondary battery inspection method
JP2014222603A (en) Inspection method for battery
CN112470325A (en) Method and system for detecting Internal Short Circuits (ISC) in a battery and battery cell implementing such an ISC detection method
Banaei et al. Real time condition monitoring in Li-Ion batteries via battery impulse response
JP2017106867A (en) Manufacturing method for secondary batteries
JP2013114986A (en) Secondary battery manufacturing method
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
KR101471775B1 (en) Method of inspecting for lithium ion secondary battery
Lee et al. A new battery parameter identification considering current, SOC and Peukert's effect for hybrid electric vehicles
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
KR20180014763A (en) A method for determining an anode potential and / or a cathode potential in a battery cell
JP2017199577A (en) Manufacturing method of secondary battery
CN112213650A (en) Method for inspecting electric storage device and method for manufacturing electric storage device
US11609260B2 (en) Method for inspecting insulation of a secondary battery
JP2018067498A (en) Method of manufacturing battery
US20230402666A1 (en) Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program
KR20200054013A (en) Method for Detecting Battery Having Disconnection of Terminal
JP2017126539A (en) Method for manufacturing secondary battery
JP2005251538A (en) Inspection method and device of secondary cell
JP2015185485A (en) Method for self-discharge inspection of nonaqueous electrolyte secondary batteries