JP2010165591A - Method of manufacturing battery - Google Patents

Method of manufacturing battery Download PDF

Info

Publication number
JP2010165591A
JP2010165591A JP2009007925A JP2009007925A JP2010165591A JP 2010165591 A JP2010165591 A JP 2010165591A JP 2009007925 A JP2009007925 A JP 2009007925A JP 2009007925 A JP2009007925 A JP 2009007925A JP 2010165591 A JP2010165591 A JP 2010165591A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
positive electrode
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009007925A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Takeno
光弘 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009007925A priority Critical patent/JP2010165591A/en
Publication of JP2010165591A publication Critical patent/JP2010165591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a battery capable of improving productivity without causing changes in composition of electrolyte. <P>SOLUTION: The method of manufacturing a battery includes (a) a process in which a positive electrode 11 and a negative electrode 12 are wound or laminated with a separator 13 interposed in between and an electrode group 20 is constructed, (b) a process in which the electrode group is housed in a battery can 15, and (c) a process in which an electrolyte is impregnated in the electrode group while impressing voltage between the positive electrode and the negative electrode. Thus, the time required for filling the electrolyte solution can be shortened. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池の製造方法に関し、さらに詳しくは、電解質を電池に注入する技術の改善に関する。   The present invention relates to a battery manufacturing method, and more particularly, to an improvement in a technique for injecting an electrolyte into a battery.

リチウムイオン二次電池は、一般に正極芯材および正極芯材に担持された複合リチウム酸化物からなる正極、負極芯材および負極芯材に担持されたリチウムイオンが出入り可能な材料からなる負極、セパレータおよび非水電解液(電解質)を具備する。正極および負極は、両電極間に介在させたセパレータとともに捲回された状態であって、柱状の極板群を構成している。極板群は、負極端子を兼ねる有底円筒容器に入れられ、その状態で電解液が注入される。   Lithium ion secondary batteries are generally composed of a positive electrode core material, a positive electrode made of composite lithium oxide supported on the positive electrode core material, a negative electrode core material, and a negative electrode made of a material capable of entering and exiting lithium ions supported on the negative electrode core material. And a non-aqueous electrolyte (electrolyte). The positive electrode and the negative electrode are wound together with a separator interposed between both electrodes, and constitute a columnar electrode plate group. The electrode plate group is placed in a bottomed cylindrical container that also serves as a negative electrode terminal, and an electrolyte is injected in this state.

近年、リチウムイオン二次電池の高密度化に伴い、電解液の注入に要する時間がますます増大しており、そのことが生産性を向上させる上での障害となっている。
そこで、電解液の注液性を高めるために、界面活性剤を利用することが提案されている(特許文献1参照)。
In recent years, along with the increase in the density of lithium ion secondary batteries, the time required for injecting the electrolyte is increasing, which is an obstacle to improving the productivity.
Then, in order to improve the pouring property of electrolyte solution, utilizing a surfactant is proposed (refer patent document 1).

特開2003−223926号公報JP 2003-223926 A

しかしながら、上記提案の方法によれば、界面活性剤が電解液中に混入されることになるために、電解液の組成に変化が生じてしまう。また、界面活性剤は、通常、塩、並びに極性の高い官能基を有するために、電気化学的に安定な物質であるとは言い難い。このため、電池内で界面活性剤が分解してガスが発生するなどの副反応を生ずるおそれがある。   However, according to the proposed method, the surfactant is mixed in the electrolytic solution, so that the composition of the electrolytic solution changes. Further, since the surfactant usually has a salt and a highly polar functional group, it is difficult to say that the surfactant is an electrochemically stable substance. For this reason, there exists a possibility of producing side reactions, such as a surfactant decomposing | disassembling and generating gas in a battery.

本発明は上記問題点に鑑みてなされたものであり、電解質の組成に変化を来すことなく、生産性を向上させることができる電池の製造方法を提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery manufacturing method capable of improving productivity without causing a change in the composition of the electrolyte.

上記目的を達成するために、本発明の電池の製造方法は、(a)正極、負極および両電極を隔離するセパレータを含む極板群を構成する工程、
(b)前記極板群を容器に収納する工程、並びに
(c)前記正極と前記負極との間に電圧を印加しながら前記極板群に電解質を含浸させる工程、を含む。
In order to achieve the above object, the method for producing a battery of the present invention comprises (a) a step of forming a positive electrode group, a negative electrode, and a plate group including a separator that separates both electrodes,
(B) including a step of accommodating the electrode plate group in a container; and (c) impregnating the electrode group with an electrolyte while applying a voltage between the positive electrode and the negative electrode.

ここで、本発明の製造方法は、前記印加される電圧が、交流であるのが好ましい。
また、前記印加される電圧が、0.1〜2.0Vであるのが更に好ましい。
また、前記電解質がゲル状電解質であるのも好ましい。
また、前記電解質が非水溶媒およびリチウム塩を含むのも好ましい。
Here, in the manufacturing method of the present invention, the applied voltage is preferably an alternating current.
The applied voltage is more preferably 0.1 to 2.0V.
The electrolyte is preferably a gel electrolyte.
The electrolyte preferably contains a non-aqueous solvent and a lithium salt.

本発明によれば、正極と負極との間に電圧を印加しながら極板群に電解質が含浸される。これにより、電気毛管現象を利用して、極板群の正極および負極に電解質を速やかに含浸させることができる。これにより、電池を製造するときの生産性を向上させることができる。   According to the present invention, the electrode group is impregnated with the electrolyte while a voltage is applied between the positive electrode and the negative electrode. Thereby, the electrolyte can be rapidly impregnated in the positive electrode and the negative electrode of the electrode plate group by utilizing the electrocapillary phenomenon. Thereby, productivity at the time of manufacturing a battery can be improved.

本発明の製造方法が適用される電池の代表としては、リチウムイオン二次電池が挙げられる。リチウムイオン二次電池は、正極芯材および正極芯材に担持された複合リチウム酸化物からなる正極と、負極芯材および負極芯材に担持されたリチウムイオンが出入り可能な材料からなる負極を具備する。正極および負極は、それぞれ帯状であり、それぞれその長手方向に沿う一方の端部に芯材露出部を有する。正極芯材にはアルミニウム箔などが好ましく用いられるが、これに限定されない。また、負極芯材には、銅箔などが好ましく用いられるが、これに限定されない。   A representative example of a battery to which the production method of the present invention is applied is a lithium ion secondary battery. The lithium ion secondary battery includes a positive electrode composed of a positive electrode core material and a composite lithium oxide supported on the positive electrode core material, and a negative electrode composed of a negative electrode core material and a material capable of entering and exiting lithium ions supported on the negative electrode core material. To do. Each of the positive electrode and the negative electrode has a strip shape, and has a core material exposed portion at one end portion along the longitudinal direction thereof. An aluminum foil or the like is preferably used for the positive electrode core material, but is not limited thereto. Moreover, although copper foil etc. are used preferably for a negative electrode core material, it is not limited to this.

このような極板を得るには、まず、複合リチウム酸化物もしくはリチウムイオンが出入り可能な材料を分散媒と混合して電極合剤ペーストを調製し、その電極合剤ペーストを所定の端部を除くストリップ状の芯材の両面に塗布し、乾燥することにより得ることができる。電極合剤ペーストを塗布しない芯材端部は、長手方向に沿う一方の端部だけでもよく、長手方向に沿う両方の端部であってもよい。   In order to obtain such an electrode plate, first, an electrode mixture paste is prepared by mixing a composite lithium oxide or a material capable of entering and exiting lithium ions with a dispersion medium, and the electrode mixture paste is applied to a predetermined end. It can be obtained by applying to both surfaces of the strip-shaped core material except for drying. The end portion of the core material to which the electrode mixture paste is not applied may be only one end portion along the longitudinal direction or both end portions along the longitudinal direction.

柱状の極板群は、正極および負極を、両電極間にセパレータを介在させて捲回することにより構成され、負極端子を兼ねる有底円筒型の金属製の容器に入れられる。容器には、更に電解液(電解質)が注液され、注液された電解液が極板群に含浸される。その後、正極端子を有する封口体により容器の開口が封じられ、外装材を被覆して電池が完成される。   The columnar electrode plate group is formed by winding a positive electrode and a negative electrode with a separator interposed between the two electrodes, and is placed in a bottomed cylindrical metal container that also serves as a negative electrode terminal. An electrolytic solution (electrolyte) is further injected into the container, and the electrode plate group is impregnated with the injected electrolytic solution. Thereafter, the opening of the container is sealed by a sealing body having a positive electrode terminal, and the battery is completed by covering the exterior material.

電解液の注液・含浸工程においては、正極と負極との間に電圧を印加しながら電解液が極板群に含浸される。このとき、正極と負極との間には、周波数が0.1〜10Hz、電圧が0.1〜2Vの交流電圧を印加するのが好ましい。ここで、正極と負極との間に電圧を印加するのは、電気毛管現象を利用して、電解液が正極および負極に含浸されやすくするためである。電気毛管現象は、電解液と電極との間に電位差を与えると、与えられた電位差に応じて電解液の界面張力が変化する現象である。   In the injection / impregnation step of the electrolytic solution, the electrode plate group is impregnated with the electrolytic solution while applying a voltage between the positive electrode and the negative electrode. At this time, it is preferable to apply an AC voltage having a frequency of 0.1 to 10 Hz and a voltage of 0.1 to 2 V between the positive electrode and the negative electrode. Here, the reason why the voltage is applied between the positive electrode and the negative electrode is to make the positive electrode and the negative electrode easily impregnated with the electrolyte using the electrocapillary phenomenon. The electrocapillary phenomenon is a phenomenon in which, when a potential difference is applied between the electrolytic solution and the electrode, the interfacial tension of the electrolytic solution changes according to the applied potential difference.

特に、アルカリ性の溶液においては、電極の電位が標準水素電極(standard hydrogen electrode:SHE)に対して卑であり、電極がカソードとして機能するときに、電極と電解液との電位差が比較的小さい段階から電気毛管現象により電極表面における界面張力が極めて小さくなる。したがって、電池の正極と負極に交流電圧を印加することによって、正極および負極が交互にカソードとして機能することになり、正極と負極との間に比較的小さな電圧を印加するだけで正極および負極への電解液の含浸を同時に促進することができる。   In particular, in an alkaline solution, the potential of the electrode is lower than that of a standard hydrogen electrode (SHE), and when the electrode functions as a cathode, the potential difference between the electrode and the electrolyte is relatively small. Therefore, the interfacial tension on the electrode surface becomes extremely small due to electrocapillary phenomenon. Therefore, by applying an AC voltage to the positive electrode and negative electrode of the battery, the positive electrode and the negative electrode function alternately as a cathode, and only by applying a relatively small voltage between the positive electrode and the negative electrode, The impregnation of the electrolyte solution can be promoted at the same time.

また、電圧の範囲を0.1〜2Vとするのは、電解液と電極との電位差が例えば1.5V程度あればそれ以上電位差を大きくしても界面張力はほとんど低下しなくなる一方で、2Vを超えると電気分解が引き起こされるからである。
また、印加する交流の周波数を10Hz以下とするのは、物質の濡れには一定の時間が必要であるので、電解液の含浸を進行させるためには印加する交流の周波数はできるだけ小さい方が好ましいからである。一方、印加する交流の周波数を0.1Hz以上とするのは、正極および負極の両方で電解液の含浸を促進させるためには、最低1周期に亘って交流を印加することが必要であり、これ以上周波数を小さくすると時間がかかりすぎるからである。
Further, the voltage range is 0.1 to 2V because if the potential difference between the electrolyte and the electrode is about 1.5V, for example, the interface tension hardly decreases even if the potential difference is increased further, while 2V It is because electrolysis will be caused when exceeding.
In addition, the frequency of the alternating current applied is set to 10 Hz or less because a certain amount of time is required for the wetting of the substance. Therefore, in order to proceed with the impregnation of the electrolytic solution, the frequency of the alternating current applied is preferably as small as possible. Because. On the other hand, the frequency of the alternating current to be applied is 0.1 Hz or more, in order to promote the impregnation of the electrolytic solution in both the positive electrode and the negative electrode, it is necessary to apply the alternating current over at least one cycle, This is because if the frequency is further reduced, it takes too much time.

なお、本発明は、正極および負極のいずれかがカソードとして機能するように直流電圧を所定時間に亘って印加した後に、極性を変えて、同程度の時間、同程度の電圧の直流電圧を印加することによっても実現できる。   In the present invention, after applying a DC voltage for a predetermined time so that either the positive electrode or the negative electrode functions as a cathode, the polarity is changed and a DC voltage of the same voltage is applied for the same time. This can also be realized.

負極は、少なくともリチウムイオンが出入り可能な材料からなる負極活物質と、結着剤と、増粘剤とを含む。
負極活物質としては、各種天然黒鉛、各種人造黒鉛、石油コークス、炭素繊維、有機高分子焼成物などの炭素材料、酸化物、シリサイドなどのシリコン含有複合材料、各種金属もしくは合金材料を用いることができる。
The negative electrode includes at least a negative electrode active material made of a material that allows lithium ions to enter and exit, a binder, and a thickener.
As the negative electrode active material, it is possible to use various natural graphites, various artificial graphites, petroleum coke, carbon fibers, organic polymer fired products, silicon-containing composite materials such as oxides and silicides, various metals or alloy materials. it can.

負極の結着剤としては、前述のようにリチウムイオン受入れ性を向上させる観点から、ゴム性状高分子が用いられる。このようなゴム性状高分子としては、スチレン単位およびブタジエン単位含むものが好ましく用いられる。例えばスチレン−ブタジエン共重合体(SBR)、SBRの変性体などを用いることができるが、これらに限定されない。   As the negative electrode binder, a rubbery polymer is used from the viewpoint of improving the lithium ion acceptability as described above. As such a rubbery polymer, those containing styrene units and butadiene units are preferably used. For example, a styrene-butadiene copolymer (SBR), a modified SBR, or the like can be used, but it is not limited thereto.

負極の結着剤を構成するゴム性状高分子は、水溶性高分子からなる増粘剤と併用することができる。ここで、水溶性高分子としては、セルロース系樹脂が好ましく、特にカルボキシメチルセルロース(CMC)が好ましい。   The rubber-like polymer constituting the negative electrode binder can be used in combination with a thickener made of a water-soluble polymer. Here, as the water-soluble polymer, a cellulose-based resin is preferable, and carboxymethyl cellulose (CMC) is particularly preferable.

負極に含まれるゴム性状高分子からなる結着剤および水溶性高分子からなる増粘剤の量は、負極活物質100重量部あたり、それぞれ0.1〜5重量部および0.1〜5重量部であることが好ましい。   The amount of the binder composed of a rubbery polymer and the thickener composed of a water-soluble polymer contained in the negative electrode is 0.1 to 5 parts by weight and 0.1 to 5 parts by weight per 100 parts by weight of the negative electrode active material, respectively. Part.

正極は、少なくとも複合リチウム酸化物からなる正極活物質と、結着剤と、導電剤とを含む。
複合リチウム酸化物としては、コバルト酸リチウム(LiCoO2)、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO2)、ニッケル酸リチウムの変性体、マンガン酸リチウム(LiMn2O4)、マンガン酸リチウムの変性体、これらの酸化物のCo、MnもしくはNiの一部を他の遷移金属元素で置換したものなどが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものがある。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものもある。LiMn2O4などのMn系リチウム含有遷移金属酸化物は、特に、地球上に豊富に存在し、低価格である点で有望である。
The positive electrode includes at least a positive electrode active material made of a composite lithium oxide, a binder, and a conductive agent.
Composite lithium oxides include lithium cobaltate (LiCoO2), lithium cobaltate modified, lithium nickelate (LiNiO2), lithium nickelate modified, lithium manganate (LiMn2O4), lithium manganate modified, these In the oxide, a part of Co, Mn, or Ni is preferably substituted with another transition metal element. Some modified bodies contain elements such as aluminum and magnesium. There are also those containing at least two of cobalt, nickel and manganese. Mn-based lithium-containing transition metal oxides such as LiMn2O4 are particularly promising because they exist abundantly on the earth and are inexpensive.

正極の結着剤は、特に限定されず、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などを用いることができる。PTFEは、正極合剤層の原料ペーストの増粘剤となるCMC、ポリエチレンオキシド(PEO)、などと組み合わせて用いることが好ましい。PVDFは、溶媒としてn-メチルピロリジノン(NMP)を用いることによって、単一で、結着剤としての機能と、増粘剤としての機能とを有する。   The binder for the positive electrode is not particularly limited, and polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or the like can be used. PTFE is preferably used in combination with CMC, polyethylene oxide (PEO), or the like that serves as a thickener for the raw material paste of the positive electrode mixture layer. PVDF has a single function as a binder and a function as a thickener by using n-methylpyrrolidinone (NMP) as a solvent.

正極の導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the conductive agent for the positive electrode, acetylene black, ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.

非水電解液には、リチウム塩を溶質として溶解する非水溶媒を用いることが好ましい。リチウム塩としては、6フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)などを用いることが好ましく、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などを用いることが好ましい。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。非水溶媒に溶解する溶質濃度は、一般に0.5〜2mol/Lである。また、   As the non-aqueous electrolyte, it is preferable to use a non-aqueous solvent that dissolves a lithium salt as a solute. As the lithium salt, lithium hexafluorophosphate (LiPF 6), lithium perchlorate (LiClO 4), lithium borofluoride (LiBF 4) or the like is preferably used. As the nonaqueous solvent, ethylene carbonate (EC), propylene carbonate is used. (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like are preferably used. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. The solute concentration dissolved in the non-aqueous solvent is generally 0.5 to 2 mol / L. Also,

正極および/または負極上に、良好な皮膜を形成させ、過充電時の安定性等を確保するために、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、VCやCHBの変性体などを用いることもできる。   Use vinylene carbonate (VC), cyclohexylbenzene (CHB), modified products of VC and CHB, etc. to form a good film on the positive electrode and / or negative electrode and to ensure stability during overcharge. You can also.

セパレータは、リチウムイオン電池の使用環境に耐え得る材料からなるものであれば、特に限定されないが、ポリオレフィン樹脂からなる微多孔性シートを用いることが一般的である。また、ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレンなどが用いられる。微多孔性シートは、1種のポリオレフィン樹脂からなる単層膜であってもよく、2種以上のポリオレフィン樹脂からなる多層膜であってもよい。セパレータの厚みは、特に限定されないが、電池の設計容量を維持する観点から、8〜30μmであることが好ましい。   The separator is not particularly limited as long as it is made of a material that can withstand the usage environment of the lithium ion battery, but a microporous sheet made of a polyolefin resin is generally used. In addition, as the polyolefin resin, polyethylene, polypropylene, or the like is used. The microporous sheet may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resins. Although the thickness of a separator is not specifically limited, From a viewpoint of maintaining the design capacity of a battery, it is preferable that it is 8-30 micrometers.

次に、本発明を実施例および比較例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
《実施例1》
図1を参照しながら説明する。
Next, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to these.
Example 1
This will be described with reference to FIG.

(a)正極の作製
コバルト酸リチウム3kgと、正極の結着剤としての呉羽化学(株)製のPVDF#1320(PVDFを12重量%含むN−メチル−2−ピロリドン(NMP)溶液)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製した。このペーストを正極芯材である15μm厚のアルミニウム箔11bの両面に塗布し、乾燥後圧延して、正極合剤層11aを形成した。この際、アルミニウム箔11bの長手方向に沿う一方の端部には幅5mmの芯材露出部を残した。また、アルミニウム箔11bおよび正極合剤層11aからなる極板の厚みを160μmに制御した。その後、円筒型電池(品番18650)の缶状電池ケースに挿入可能な幅に極板をスリットし、正極11のフープを得た。
(A) Production of positive electrode 3 kg of lithium cobaltate and 1 kg of PVDF # 1320 (N-methyl-2-pyrrolidone (NMP) solution containing 12% by weight of PVDF) as a positive electrode binder manufactured by Kureha Chemical Co., Ltd. Then, 90 g of acetylene black and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture paste. This paste was applied to both surfaces of a 15 μm-thick aluminum foil 11b as a positive electrode core material, dried and then rolled to form a positive electrode mixture layer 11a. At this time, a core material exposed portion having a width of 5 mm was left at one end portion along the longitudinal direction of the aluminum foil 11b. Further, the thickness of the electrode plate made of the aluminum foil 11b and the positive electrode mixture layer 11a was controlled to 160 μm. Thereafter, the electrode plate was slit to a width that can be inserted into a can-shaped battery case of a cylindrical battery (Part No. 18650) to obtain a hoop of the positive electrode 11.

(b)負極の作製
人造黒鉛3kgと、負極の結着剤としてのJSR(株)の製品番号0656(スチレン−ブタジエン共重合体(ゴム粒子)を40重量%含む水性分散液)を75gと、増粘剤としてのCMC30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。このペーストを負極芯材である10μm厚の銅箔12bの両面に塗布し、乾燥後圧延して、負極合剤層12aを形成した。この際、銅箔12bの長手方向に沿う一方の端部には幅5mmの芯材露出部を残した。また、銅箔12bおよび負極合剤層12aからなる極板の厚みを180μmに制御した。その後、円筒型電池(品番18650)の電池缶15に挿入可能な幅に極板をスリットし、負極12のフープを得た。
(B) Production of negative electrode 3 kg of artificial graphite, 75 g of JSR product number 0656 (an aqueous dispersion containing 40% by weight of styrene-butadiene copolymer (rubber particles)) as a binder for the negative electrode, 30 g of CMC as a thickener and an appropriate amount of water were stirred with a double-arm kneader to prepare a negative electrode mixture paste. This paste was applied to both sides of a 10 μm-thick copper foil 12b as a negative electrode core material, dried and rolled to form a negative electrode mixture layer 12a. At this time, a core material exposed portion having a width of 5 mm was left at one end portion along the longitudinal direction of the copper foil 12b. Further, the thickness of the electrode plate made of the copper foil 12b and the negative electrode mixture layer 12a was controlled to 180 μm. Then, the electrode plate was slit to a width that can be inserted into the battery can 15 of the cylindrical battery (product number 18650), and a hoop of the negative electrode 12 was obtained.

(c)非水電解液の調製
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)とを体積比2:3:3で含む混合溶媒に、LiPF6を1mol/Lの濃度で溶解し、さらにビニレンカーボネート(VC)を3重量%添加して、電解液を調製した。
(C) Preparation of non-aqueous electrolyte solution In a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) in a volume ratio of 2: 3: 3, LiPF6 was added at a concentration of 1 mol / L. It melt | dissolved and also 3 weight% of vinylene carbonate (VC) was added, and electrolyte solution was prepared.

(d)極板群の構成
正極11と負極12とを、それぞれ所定の長さで切断し、両電極間にポリエチレン樹脂からなる厚さ20μmの微多孔性シート13をセパレータとして介在させて捲回し、柱状の極板群20を構成した。ただし、捲回工程においては、正極11および負極12の芯材露出部を、それぞれ柱状の極板群の一方および他方の端面において、他方の電極の端部よりも2mmほど突出させた。
(D) Structure of electrode plate group Each of the positive electrode 11 and the negative electrode 12 is cut at a predetermined length, and a microporous sheet 13 made of polyethylene resin and having a thickness of 20 μm is interposed between the electrodes as a separator. A columnar electrode plate group 20 was configured. However, in the winding process, the core material exposed portions of the positive electrode 11 and the negative electrode 12 were protruded by about 2 mm from the end portions of the other electrode on one and the other end surfaces of the columnar electrode plate group, respectively.

(e)集電部の作製
極板群を、捲回軸を中心に回転させながら、所定の治具を極板群の一方の端面にある正極芯材の露出部に押し当てながら、端面の外周側から中心に向かって治具を移動させた。その結果、芯材露出部は、外周側から内周側に向かって順次屈曲し、平坦な正極集電部21が形成された。同様に、極板群の他方の端面にある負極芯材の露出部に治具を押し当てながら、端面の外周側から中心に向かって治具を移動させ、平坦な負極集電部22を形成した。
(E) Production of current collector part While rotating the electrode plate group around the winding axis, while pressing a predetermined jig against the exposed part of the positive electrode core member on one end face of the electrode plate group, The jig was moved from the outer peripheral side toward the center. As a result, the core material exposed portion was sequentially bent from the outer peripheral side toward the inner peripheral side, and a flat positive electrode current collector 21 was formed. Similarly, while pressing the jig against the exposed portion of the negative electrode core material on the other end face of the electrode plate group, the jig is moved from the outer peripheral side of the end face toward the center to form a flat negative electrode current collector 22. did.

(f)集電板の取付
平坦な正極集電部21および負極集電部22に、平板状の正極集電板18および負極集電板19をそれぞれ押しつけた。この状態で、各集電板の外側から、放射状にレーザビームを照射して、正極集電部21および負極集電部22に正極集電板18および負極集電板19をそれぞれ溶接した。
(F) Attaching the current collector plate The flat positive electrode current collector 21 and negative electrode current collector 22 were pressed against the flat positive electrode current collector 18 and negative electrode current collector 19, respectively. In this state, the positive electrode current collector 18 and the negative electrode current collector 19 were welded to the positive electrode current collector 21 and the negative electrode current collector 22 by irradiating a laser beam radially from the outside of each current collector.

(g)電解液の注液・含浸および電池の組立
正極集電板18に正極リード18aの一端を溶接し、負極集電板19に負極リード19aの一端を溶接した。次いで、極板群を電池缶15の内空間に収容した。極板群と電池缶15の内面との間にはセパレータを介装させた。正極リード18aの他端は電池蓋6の裏面に溶接した。また、負極リード19aの他端は電池缶15の内底面に溶接した。
その後、電池缶15の内空間に非水電解液5.5gを注液した。そして、極板群に電解液を真空含浸させた。このとき、正極と負極との間に、周波数1.0Hz、電圧1.2Vの交流電圧を30秒間印加した。
これにより、電解液の注液・含浸の工程は、3分で完了した。
(G) Electrolyte Injection / Impregnation and Battery Assembly One end of the positive electrode lead 18 a was welded to the positive electrode current collector plate 18, and one end of the negative electrode lead 19 a was welded to the negative electrode current collector plate 19. Next, the electrode plate group was accommodated in the inner space of the battery can 15. A separator was interposed between the electrode plate group and the inner surface of the battery can 15. The other end of the positive electrode lead 18 a was welded to the back surface of the battery lid 6. The other end of the negative electrode lead 19 a was welded to the inner bottom surface of the battery can 15.
Thereafter, 5.5 g of a nonaqueous electrolytic solution was injected into the inner space of the battery can 15. Then, the electrode group was vacuum impregnated with the electrolytic solution. At this time, an AC voltage having a frequency of 1.0 Hz and a voltage of 1.2 V was applied between the positive electrode and the negative electrode for 30 seconds.
As a result, the electrolyte injection / impregnation step was completed in 3 minutes.

そして、電池蓋6で電池缶15の開口を塞ぎ、電池缶15の開口端を電池蓋6の周縁に配した絶縁パッキン17にかしめて密閉した。こうして円筒型のリチウムイオン二次電池を完成した。   Then, the opening of the battery can 15 was closed with the battery lid 6, and the opening end of the battery can 15 was caulked and sealed with an insulating packing 17 disposed on the periphery of the battery lid 6. Thus, a cylindrical lithium ion secondary battery was completed.

《実施例2》
極板群に電解液を真空含浸させる際に、正極と負極との間に、電圧1.2Vの直流電圧を30秒間印加し、次に、同電圧の直流電圧を、極性を変えて30秒間印加したこと以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
ここで、電解液の注液・含浸の工程は、2.5分で完了した。
Example 2
When the electrode plate is vacuum impregnated with the electrolyte, a DC voltage of 1.2 V is applied between the positive electrode and the negative electrode for 30 seconds, and then the DC voltage of the same voltage is changed for 30 seconds by changing the polarity. A lithium ion secondary battery was produced in the same manner as in Example 1 except that it was applied.
Here, the step of injecting and impregnating the electrolyte was completed in 2.5 minutes.

《比較例1》
極板群に電解液を真空含浸させる際に、正極と負極との間に電圧を印加しないこと以外は実施例1と同様の方法によりリチウムイオン二次電池を作製した。
ここで、電解液の注液・含浸の工程は、7分で完了した。
<< Comparative Example 1 >>
A lithium ion secondary battery was produced in the same manner as in Example 1 except that no voltage was applied between the positive electrode and the negative electrode when the electrode plate group was vacuum impregnated with the electrolyte.
Here, the step of pouring and impregnating the electrolytic solution was completed in 7 minutes.

《評価》
以上の結果から、電圧の印加によって、注液した電解液の含浸が早くなることがわかった。
<Evaluation>
From the above results, it was found that impregnation of the injected electrolyte solution was accelerated by application of voltage.

本発明の電池の製造方法は、特に高密度化された電池の電解液の注液時間を短縮することができるので、リチウムイオン二次電池等の高容量電池の生産性を向上させることができる。   The method for producing a battery of the present invention can reduce the time for injecting the electrolyte solution of a highly densified battery, and thus can improve the productivity of a high capacity battery such as a lithium ion secondary battery. .

リチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of a lithium ion secondary battery.

11 正極
12 負極
13 セパレータ
15 電池缶
20 極板群
11 Positive electrode 12 Negative electrode 13 Separator 15 Battery can 20 Electrode plate group

Claims (5)

(a)正極、負極および両電極を隔離するセパレータを含む極板群を構成する工程、
(b)前記極板群を容器に収納する工程、並びに
(c)前記正極と前記負極との間に電圧を印加しながら前記極板群に電解質を含浸させる工程、を含む電池の製造方法。
(A) a step of constituting an electrode plate group including a positive electrode, a negative electrode, and a separator that separates both electrodes;
(B) A method of manufacturing a battery, comprising: housing the electrode plate group in a container; and (c) impregnating the electrode group with an electrolyte while applying a voltage between the positive electrode and the negative electrode.
前記印加される電圧が、交流である請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the applied voltage is an alternating current. 前記印加される電圧が、0.1〜2.0Vである請求項1または2記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the applied voltage is 0.1 to 2.0V. 前記電解質がゲル状電解質である請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the electrolyte is a gel electrolyte. 前記電解質が非水溶媒およびリチウム塩を含む請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the electrolyte contains a nonaqueous solvent and a lithium salt.
JP2009007925A 2009-01-16 2009-01-16 Method of manufacturing battery Pending JP2010165591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007925A JP2010165591A (en) 2009-01-16 2009-01-16 Method of manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007925A JP2010165591A (en) 2009-01-16 2009-01-16 Method of manufacturing battery

Publications (1)

Publication Number Publication Date
JP2010165591A true JP2010165591A (en) 2010-07-29

Family

ID=42581602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007925A Pending JP2010165591A (en) 2009-01-16 2009-01-16 Method of manufacturing battery

Country Status (1)

Country Link
JP (1) JP2010165591A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028290A (en) * 2010-07-28 2012-02-09 Nissan Motor Co Ltd Method and device for impregnating electrolyte
CN102694192A (en) * 2011-03-24 2012-09-26 株式会社东芝 Secondary battery and method of manufacturing secondary battery
WO2013042590A1 (en) * 2011-09-21 2013-03-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2019021492A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Method of manufacturing battery
JP2021051990A (en) * 2019-09-19 2021-04-01 株式会社東芝 Secondary battery, battery pack, vehicle, and stationary power supply
JP7475942B2 (en) 2019-09-19 2024-04-30 株式会社東芝 Secondary batteries, battery packs, vehicles, and stationary power sources

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028290A (en) * 2010-07-28 2012-02-09 Nissan Motor Co Ltd Method and device for impregnating electrolyte
KR101347416B1 (en) 2010-07-28 2014-01-02 닛산 지도우샤 가부시키가이샤 Electrolyte impregnation method and electrolyte impregnation apparatus
CN102694192A (en) * 2011-03-24 2012-09-26 株式会社东芝 Secondary battery and method of manufacturing secondary battery
WO2013042590A1 (en) * 2011-09-21 2013-03-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2019021492A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Method of manufacturing battery
JP2021051990A (en) * 2019-09-19 2021-04-01 株式会社東芝 Secondary battery, battery pack, vehicle, and stationary power supply
JP7475942B2 (en) 2019-09-19 2024-04-30 株式会社東芝 Secondary batteries, battery packs, vehicles, and stationary power sources

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6256001B2 (en) Manufacturing method of secondary battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP6056955B2 (en) Lithium secondary battery
CN105591148A (en) Nonaqueous electrolyte secondary battery
JP6319089B2 (en) Lithium secondary battery
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
CN107112583A (en) Lithium rechargeable battery
CN101483262A (en) Battery
JP2010165591A (en) Method of manufacturing battery
JP6137747B2 (en) Sodium secondary battery active material, sodium secondary battery electrode, sodium secondary battery
JP7064270B2 (en) Non-aqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2013114847A (en) Lithium ion secondary batty and method for manufacturing the same
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
JP5720411B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6184104B2 (en) Non-aqueous electrolyte battery
JP2012113870A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2008153084A (en) Lithium secondary cell and its manufacturing method
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery