JP5776932B2 - Lithium ion secondary battery operating method and battery device - Google Patents

Lithium ion secondary battery operating method and battery device Download PDF

Info

Publication number
JP5776932B2
JP5776932B2 JP2011152558A JP2011152558A JP5776932B2 JP 5776932 B2 JP5776932 B2 JP 5776932B2 JP 2011152558 A JP2011152558 A JP 2011152558A JP 2011152558 A JP2011152558 A JP 2011152558A JP 5776932 B2 JP5776932 B2 JP 5776932B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
ion secondary
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011152558A
Other languages
Japanese (ja)
Other versions
JP2013020782A (en
Inventor
三好 学
学 三好
林 圭一
圭一 林
下 俊久
俊久 下
加藤 崇行
崇行 加藤
石川 英明
英明 石川
悠史 近藤
悠史 近藤
雄一 平川
雄一 平川
めぐみ 田島
めぐみ 田島
栄克 河端
栄克 河端
俊雄 小田切
俊雄 小田切
裕介 山下
裕介 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011152558A priority Critical patent/JP5776932B2/en
Publication of JP2013020782A publication Critical patent/JP2013020782A/en
Application granted granted Critical
Publication of JP5776932B2 publication Critical patent/JP5776932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池の作動方法及び電池装置に関する。   The present invention relates to a method of operating a lithium ion secondary battery and a battery device.

リチウムイオン二次電池は、小型で大容量であるため、携帯電話やノート型パソコンといった幅広い分野で用いられている。   Lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers.

リチウムイオン二次電池を充放電させると、リチウムイオンが正極(負極)活物質中と電解液との間で挿入・脱離を繰り返し、その際に、電解質が一部還元分解される。還元分解された電解質の分解生成物は、負極活物質表面を被覆し、リチウムイオンは通すが電子は通さないという膜を生成する。これを固体電解質界面被膜(SEI:Solid Electrolyte Interphase)という。   When the lithium ion secondary battery is charged and discharged, lithium ions are repeatedly inserted and desorbed between the positive electrode (negative electrode) active material and the electrolytic solution, and at that time, the electrolyte is partially reduced and decomposed. The reductive decomposition product of the electrolyte coats the surface of the negative electrode active material, and forms a film that allows lithium ions to pass but does not allow electrons to pass. This is called a solid electrolyte interphase (SEI).

SEI被膜は、負極活物質表面を被覆することで、電解質と負極活物質とが直接接触することを防止して電解質の分解劣化を防止している。   The SEI coating covers the surface of the negative electrode active material, thereby preventing direct contact between the electrolyte and the negative electrode active material, thereby preventing degradation of the electrolyte.

ところで、リチウムイオンを吸蔵・放出し得る負極活物質として、近年、粒子状の酸化珪素(SiOx:0.5≦x≦1.5程度)の使用が検討されている。酸化珪素SiOxは、Liイオンの膨張・収縮により体積が膨張したり収縮したりする。このため、酸化珪素からなる負極活物質の表面に形成されたSEI被膜に亀裂が生じやすい。SEI被膜に亀裂が生じると、電解質と負極活物質とが直接接触して、電解質が分解し劣化を引き起こし、電池のサイクル特性を低下させるおそれがある。   By the way, in recent years, the use of particulate silicon oxide (SiOx: about 0.5 ≦ x ≦ 1.5) has been studied as a negative electrode active material capable of inserting and extracting lithium ions. Silicon oxide SiOx expands or contracts due to expansion and contraction of Li ions. For this reason, cracks are likely to occur in the SEI film formed on the surface of the negative electrode active material made of silicon oxide. If a crack occurs in the SEI film, the electrolyte and the negative electrode active material are in direct contact with each other, so that the electrolyte is decomposed and deteriorated, which may deteriorate the cycle characteristics of the battery.

従来、特許文献1〜7には、電池の充電時、放電時の温度を所定温度に制御して、電池特性を良好にすることが提案されている。これらの特許文献には、電池の温度とSEI被膜との関係は記載、示唆されていない。   Conventionally, Patent Documents 1 to 7 propose that the battery characteristics are improved by controlling the temperature during charging and discharging to a predetermined temperature. These patent documents do not describe or suggest the relationship between the battery temperature and the SEI coating.

発明者は鋭意探求の結果、電池の温度と負極活物質表面のSEI被膜との関係を解明し、電池のサイクル特性を向上させることに至った。   As a result of earnest search, the inventors have clarified the relationship between the temperature of the battery and the SEI film on the surface of the negative electrode active material, and have improved the cycle characteristics of the battery.

特開2005−65476号公報JP-A-2005-65476 特開2009−87814号公報JP 2009-87814 A 特開2010−108873号公報JP 2010-108873 A 特開2010−198759号公報JP 2010-198759 A 特開2010−262879号公報JP 2010-262879 A 特開2010−49968号公報JP 2010-49968 A 特表平11−506867号公報Japanese National Patent Publication No. 11-506867

本発明はかかる事情に鑑みてなされたものであり、電池のサイクル特性に優れたリチウムイオン二次電池の作動方法及び電池装置を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the operating method and battery apparatus of a lithium ion secondary battery excellent in the cycling characteristics of a battery.

(1)本発明のリチウムイオン二次電池の作動方法は、リチウムイオンを吸蔵・放出可能な正極活物質をもつ正極と、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなる負極活物質をもつ負極と、電解液とを備えたリチウムイオン二次電池を、少なくとも充電時に40℃以上60℃以下の温度に調整することを特徴とする。   (1) The operating method of the lithium ion secondary battery of the present invention comprises a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, and a negative electrode active comprising silicon and / or silicon compounds capable of occluding and releasing lithium ions. A lithium ion secondary battery including a negative electrode having a substance and an electrolytic solution is adjusted to a temperature of 40 ° C. or higher and 60 ° C. or lower at least during charging.

リチウムイオン二次電池においては、充電時に、負極活物質にリチウムイオンが吸蔵され、この充電時に主として、負極活物質表面にSEI被膜が形成される。SEI被膜とは、電解液の分解物から生成された被膜をいう。少なくとも充電時に40℃以上60℃以下にリチウムイオン二次電池を調整することで、後述のように、安定なSEI被膜が形成される。安定なSEI被膜は薄く、負極活物質の膨張・収縮に柔軟に追従する。このため、SEI被膜に亀裂が生じにくい。   In a lithium ion secondary battery, lithium ions are occluded in the negative electrode active material during charging, and an SEI coating is mainly formed on the surface of the negative electrode active material during this charging. The SEI coating refers to a coating generated from a decomposition product of an electrolytic solution. By adjusting the lithium ion secondary battery at least at 40 ° C. or more and 60 ° C. or less during charging, a stable SEI film is formed as described later. The stable SEI film is thin and flexibly follows the expansion and contraction of the negative electrode active material. For this reason, it is hard to produce a crack in a SEI film.

特に、負極活物質が、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなる。珪素又は/及び珪素化合物からなる負極活物質は、充放電時の体積膨張・収縮の程度が大きい。このため、SEI被膜が負極活物質の体積変化に柔軟に追従することで、SEI被膜の破損を効果的に抑えることができる。   In particular, the negative electrode active material is made of silicon or / and a silicon compound capable of inserting and extracting lithium ions. A negative electrode active material made of silicon or / and a silicon compound has a large volume expansion / contraction during charge / discharge. For this reason, the SEI coating can flexibly follow the volume change of the negative electrode active material, so that damage to the SEI coating can be effectively suppressed.

これにより、電解液が負極活物質に直接接触することを抑え、電解液の劣化を防止することができる。したがって、本発明のリチウムイオン二次電池の作動方法によれば、優れた電池サイクル特性を発揮することができる。   Thereby, it can suppress that electrolyte solution contacts a negative electrode active material directly, and can prevent deterioration of electrolyte solution. Therefore, according to the operating method of the lithium ion secondary battery of this invention, the outstanding battery cycle characteristic can be exhibited.

リチウムイオン二次電池の温度が40℃未満の場合には、SEI被膜の厚みが大きくなり、負極活物質の膨張・収縮によりSEI被膜の最表面部に亀裂や欠損が生じるおそれがある。被膜最表面部の亀裂や欠損した部分から負極活性物質の内部に電解液が浸透し、負極活物質と反応して電解液が劣化し、電池サイクル特性が低くなるおそれがある。リチウムイオン二次電池の温度が60℃を超える場合には、電解液の成分、特に溶媒が変質し、電池特性が低下するおそれがある。   When the temperature of the lithium ion secondary battery is lower than 40 ° C., the thickness of the SEI film increases, and the negative electrode active material may expand or contract, and the SEI film may be cracked or damaged. There is a possibility that the electrolytic solution penetrates into the negative electrode active material from cracks or missing portions on the outermost surface of the coating, reacts with the negative electrode active material, deteriorates the electrolytic solution, and battery cycle characteristics are lowered. When the temperature of the lithium ion secondary battery exceeds 60 ° C., the components of the electrolytic solution, particularly the solvent, may be altered and the battery characteristics may be deteriorated.

(2)前記リチウムイオン二次電池を少なくとも充電時に45℃以上60℃以下の温度に調整することが好ましい。   (2) It is preferable to adjust the lithium ion secondary battery to a temperature of 45 ° C. or more and 60 ° C. or less at least during charging.

この場合には、電解液の変質を抑えつつ、SEI被膜の厚みを更に薄くできる。このため、負極活物質の膨張・収縮によりSEI被膜が柔軟に追従して、SEI被膜の亀裂を抑えることができる。ゆえに、電解液の劣化を抑制でき、電池のサイクル特性を更に向上させることができる。   In this case, the thickness of the SEI film can be further reduced while suppressing the alteration of the electrolytic solution. For this reason, the SEI film can flexibly follow due to the expansion / contraction of the negative electrode active material, and the crack of the SEI film can be suppressed. Therefore, deterioration of the electrolytic solution can be suppressed, and the cycle characteristics of the battery can be further improved.

(3)前記リチウムイオン二次電池には、初期充放電の際に、35℃以上80℃以下の温度に調整することが好ましい。   (3) The lithium ion secondary battery is preferably adjusted to a temperature of 35 ° C. or higher and 80 ° C. or lower during initial charge / discharge.

初期充放電は、リチウムイオン二次電池に対して初期に行う充放電であり、コンディショニング処理とも言われている。リチウムイオン二次電池に初期充放電を行うことにより、負極活物質の表面に薄い安定なSEI被膜が形成される。その後の電池作動中の少なくとも充電時に35℃以上80℃以下の温度にリチウムイオン二次電池を調整すると、薄い安定なSEI被膜を維持し続けることができる。ゆえに、SEI被膜の亀裂を防止でき、更に電解液の劣化を抑え電池のサイクル特性を向上させることができる。   The initial charge / discharge is charge / discharge that is initially performed on the lithium ion secondary battery, and is also referred to as a conditioning process. By performing initial charge / discharge on the lithium ion secondary battery, a thin and stable SEI film is formed on the surface of the negative electrode active material. When the lithium ion secondary battery is adjusted to a temperature of 35 ° C. or higher and 80 ° C. or lower at least during charging during subsequent battery operation, a thin and stable SEI coating can be maintained. Therefore, cracking of the SEI film can be prevented, and further, the deterioration of the electrolyte can be suppressed and the cycle characteristics of the battery can be improved.

初期充放電のリチウムイオン二次電池の温度が35℃未満の場合には、初期充放電時にSEI被膜の厚みが大きくなり、負極活物質の膨張・収縮によりSEI被膜の最表面部に亀裂や欠損が生じるおそれがある。初期充放電のリチウムイオン二次電池の温度が80℃を超える場合には、電解液の成分、特に溶媒が変質し、電池特性が低下するおそれがある。   When the temperature of the lithium ion secondary battery for initial charge / discharge is less than 35 ° C., the thickness of the SEI film increases during initial charge / discharge, and cracks and defects occur in the outermost surface portion of the SEI film due to expansion / contraction of the negative electrode active material. May occur. When the temperature of the initial charge / discharge lithium ion secondary battery exceeds 80 ° C., the components of the electrolytic solution, particularly the solvent, may be altered and the battery characteristics may be deteriorated.

(4)本発明の電池装置は、リチウムイオンを吸蔵・放出可能な正極活物質をもつ正極と、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなる負極活物質をもつ負極と、電解液とを備えたリチウムイオン二次電池、並びに前記リチウムイオン二次電池を少なくとも充電時に40℃以上60℃以下の温度に調整する温度調整手段、を備えることを特徴とする。   (4) The battery device of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material composed of silicon and / or silicon compounds capable of occluding and releasing lithium ions, And a temperature adjusting means for adjusting the lithium ion secondary battery to a temperature of 40 ° C. or more and 60 ° C. or less at least during charging.

リチウムイオン二次電池を少なくとも放電時に温度調整手段で40℃以上60℃以下に調整することで、負極活物質表面に安定なSEI被膜を形成することができる。このため、負極活物質が膨張・収縮した場合にも、SEI被膜が負極活物質の変形により柔軟に追従して、亀裂や欠損を生じることを抑えることができる。ゆえに、負極活物質に電解液が直接接触せず、電解液の劣化を抑えることができる。従って、電池サイクル特性を向上させることができる。   A stable SEI film can be formed on the surface of the negative electrode active material by adjusting the lithium ion secondary battery to at least 40 ° C. and not more than 60 ° C. with a temperature adjusting means at least during discharge. For this reason, even when the negative electrode active material expands / shrinks, it is possible to suppress the SEI coating from flexibly following the deformation of the negative electrode active material and causing cracks and defects. Therefore, the electrolytic solution is not in direct contact with the negative electrode active material, and deterioration of the electrolytic solution can be suppressed. Therefore, battery cycle characteristics can be improved.

本発明によれば、少なくとも充電時にリチウムイオン二次電池を40℃以上60℃以下に調整しているため、電池サイクル特性に優れている。   According to the present invention, since the lithium ion secondary battery is adjusted to 40 ° C. or more and 60 ° C. or less at least during charging, the battery cycle characteristics are excellent.

実験1における、装置1〜3の作動試験時の充放電サイクル数と電池容量維持率との関係を示す線図である。It is a diagram which shows the relationship between the charging / discharging cycle number at the time of the operation test of the apparatuses 1-3 in experiment 1, and a battery capacity maintenance factor. 実験2における、装置4〜6の作動試験時の充放電サイクル数と電池容量維持率との関係を示す線図である。It is a diagram which shows the relationship between the charging / discharging cycle number at the time of the operation test of the apparatuses 4-6 in experiment 2, and a battery capacity maintenance factor. 実験3における、コンディショニング処理を施した電池を備えた装置7〜9における、活物質の質量変化率を示す図である。It is a figure which shows the mass change rate of the active material in the apparatuses 7-9 provided with the battery which performed the conditioning process in Experiment 3. FIG. 実験3における、コンディショニング処理を施した電池を備えた装置7〜9における、活物質の厚さ変化率を示す図である。It is a figure which shows the thickness change rate of the active material in the apparatuses 7-9 provided with the battery which performed the conditioning process in Experiment 3. FIG. 実験4における、作動試験後の装置10〜12における、活物質の質量変化率を示す図である。It is a figure which shows the mass change rate of the active material in the apparatuses 10-12 after the operation test in Experiment 4. FIG. 実験4における、作動試験後の装置10〜12における、活物質の厚さ変化率を示す図である。It is a figure which shows the thickness change rate of the active material in the apparatuses 10-12 after the operation test in Experiment 4. FIG. 実験4における、作動試験後の装置10の負極のSEM写真である。It is a SEM photograph of the negative electrode of the apparatus 10 after the operation test in Experiment 4. 実験4における、作動試験後の装置12の負極のSEM写真である。It is a SEM photograph of the negative electrode of the apparatus 12 after the operation test in Experiment 4.

本発明においては、リチウムイオン二次電池を、電池作動中の少なくとも充電時に40〜60℃の温度に調整している。以下、リチウムイオン二次電池及びその作動方法、並びに電池装置について詳細に説明する。   In the present invention, the lithium ion secondary battery is adjusted to a temperature of 40 to 60 ° C. at least during charging during battery operation. Hereinafter, the lithium ion secondary battery, the operation method thereof, and the battery device will be described in detail.

(リチウムイオン二次電池)
リチウムイオン二次電池は、正極と、負極と、セパレータと、電解液とからなる。
(Lithium ion secondary battery)
A lithium ion secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte.

負極は、リチウムイオンを吸蔵・放出可能な負極活物質をもつ。負極活物質は、負極活物質層として集電体に圧着されることが一般的である。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。   The negative electrode has a negative electrode active material capable of inserting and extracting lithium ions. The negative electrode active material is generally pressure-bonded to a current collector as a negative electrode active material layer. As the current collector, for example, a metal mesh or metal foil such as copper or copper alloy may be used.

負極活物質は、粒子状又は粉末状を呈する負極活物質粒子を構成している。負極活物質粒子の平均粒径は、0.01〜10μm、更には、0.01〜5μmであることがよい。   The negative electrode active material constitutes negative electrode active material particles that are in the form of particles or powder. The average particle diameter of the negative electrode active material particles is preferably 0.01 to 10 μm, and more preferably 0.01 to 5 μm.

負極活物質粒子は、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなり、例えば、Si相と、SiO相とをもつ。Si相は、珪素単体からなり、Liイオンを吸蔵・放出し得る相であり、Liイオンの吸蔵・放出に伴って膨張・収縮する。SiO相は、SiOからなり、Si相の膨張・収縮を吸収する。Si相がSiO相で被覆されることで、Si相とSiO相とからなる負極活物質粒子を形成しているとよい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって、1つの粒子、即ち負極活物質粒子を形成しているとよい。この場合には、負極活物質粒子全体の体積変化を効果的に抑えることができる。 The negative electrode active material particles are made of silicon or / and a silicon compound capable of inserting and extracting lithium ions, and have, for example, a Si phase and a SiO 2 phase. The Si phase is composed of simple silicon, and is a phase that can occlude and release Li ions, and expands and contracts as Li ions are occluded and released. The SiO 2 phase is made of SiO 2 and absorbs expansion and contraction of the Si phase. By Si phase is coated with SiO 2 phase, it may form a negative electrode active material particles composed of the Si phase and SiO 2 phase. Furthermore, it is preferable that a plurality of refined Si phases are covered with a SiO 2 phase and integrated to form one particle, that is, a negative electrode active material particle. In this case, the volume change of the whole negative electrode active material particle can be suppressed effectively.

負極活物質粒子でのSi相に対するSiO相の質量比は、1〜3であることが好ましい。前記質量比が1未満の場合には、負極活物質粒子の膨張・収縮が大きく、負極活物質粒子から構成された負極活物質層にクラックが生じるおそれがある。一方、前記質量比が3を超える場合には、負極活物質粒子でのLiの吸蔵・放出量が少なく、電気容量が低くなるおそれがある。 The mass ratio of the SiO 2 phase to the Si phase in the negative electrode active material particles is preferably 1 to 3. When the mass ratio is less than 1, the negative electrode active material particles are greatly expanded and contracted, and there is a possibility that cracks may occur in the negative electrode active material layer composed of the negative electrode active material particles. On the other hand, when the mass ratio exceeds 3, the amount of insertion and extraction of Li in the negative electrode active material particles is small, and the electric capacity may be lowered.

負極活物質粒子は、Si相とSiO相とのみから構成されていてもよい。また、負極活物質粒子は、Si相とSiO相とを主成分としているが、その他に、負極活物質粒子の成分として、公知の活物質を含んでいても良く、具体的には、MeSi (MeはLi,Caなど)のうちの少なくとも1種を混合していてもよい。 The negative electrode active material particles may be composed only of the Si phase and the SiO 2 phase. Further, the negative electrode active material particles are mainly composed of a Si phase and a SiO 2 phase, but in addition, a known active material may be included as a component of the negative electrode active material particles, specifically, Me. At least one of x Si y O z (Me is Li, Ca, etc.) may be mixed.

負極活物質粒子の原料として、一酸化珪素を含む原料粉末を用いるとよい。この場合、原料粉末中の一酸化珪素を、SiO相とSi相との二相に不均化する。一酸化珪素の不均化では、SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素(SiOn:nは0.5≦n≦1.5)が固体内部の反応により、SiO相とSi相との二相に分離する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。 As a raw material for the negative electrode active material particles, a raw material powder containing silicon monoxide may be used. In this case, silicon monoxide in the raw material powder is disproportionated into two phases of SiO 2 phase and Si phase. In disproportionation of silicon monoxide, silicon monoxide (SiOn: n is 0.5 ≦ n ≦ 1.5), which is a homogeneous solid having an atomic ratio of Si to O of approximately 1: 1, is a reaction inside the solid. To separate into two phases of SiO 2 phase and Si phase. The silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase.

原料粉末の一酸化珪素の不均化は、原料粉末にエネルギーを与えることにより進行する。一例として、原料粉末を加熱する、ミリングする、などの方法が挙げられる。   The disproportionation of silicon monoxide in the raw material powder proceeds by applying energy to the raw material powder. As an example, a method of heating or milling the raw material powder can be mentioned.

原料粉末を加熱する場合、一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中又は不活性ガス中などの不活性雰囲気中で800〜1200℃、1〜5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。 When the raw material powder is heated, it is generally said that almost all silicon monoxide is disproportionated and separated into two phases at 800 ° C. or higher if oxygen is removed. Specifically, the raw material powder containing the amorphous silicon monoxide powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as vacuum or in an inert gas. A silicon oxide powder containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.

原料粉末をミリングする場合には、ミリングの機械的エネルギーの一部が、原料粉末の固相界面における化学的な原子拡散に寄与し、酸化物相と珪素相などを生成する。ミリングでは、原料粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用して混合するとよい。ミリング後にさらに熱処理を施すことで、一酸化珪素の不均化をさらに促進させてもよい。   When milling the raw material powder, part of the mechanical energy of the milling contributes to chemical atomic diffusion at the solid phase interface of the raw material powder, and generates an oxide phase, a silicon phase, and the like. In milling, the raw material powder may be mixed using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas. Further heat treatment may be performed after milling to further promote disproportionation of silicon monoxide.

なお、上記の負極活物質粒子を主たる負極活物質とした上で、既に公知の他の負極活物質(たとえば黒鉛、Sn、Siなど)を添加して用いてもよい。   In addition, after making said negative electrode active material particle into the main negative electrode active material, you may add and use other well-known negative electrode active materials (for example, graphite, Sn, Si, etc.).

負極活物質層には、前記負極活物質の他に、結着剤や、導電助材などを含んでいても良い。   In addition to the negative electrode active material, the negative electrode active material layer may contain a binder, a conductive additive, and the like.

結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.05〜1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder is not particularly limited, and a known one may be used. For example, a resin that does not decompose even at a high potential, such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used. The blending ratio of the binder is preferably a mass ratio of negative electrode active material: binder = 1: 0.05 to 1: 0.5. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助材としては、リチウム二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助材の配合割合は、質量比で、負極活物質:導電助材=1:0.01〜1:0.5であるのが好ましい。導電助材が少なすぎると効率のよい導電パスを形成できず、また、導電助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。   As the conductive aid, a material generally used for an electrode of a lithium secondary battery may be used. For example, it is preferable to use conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers. Besides conductive carbon materials, known conductive materials such as conductive organic compounds are also used. An auxiliary agent may be used. One of these may be used alone or in combination of two or more. The blending ratio of the conductive additive is preferably a mass ratio of negative electrode active material: conductive additive = 1: 0.01 to 1: 0.5. This is because if the amount of the conductive aid is too small, an efficient conductive path cannot be formed, and if the amount of the conductive aid is too large, the moldability of the electrode is deteriorated and the energy density of the electrode is lowered.

正極は、集電体と、集電体の表面を被覆する正極活物質層とからなる。正極活物質層は、リチウムイオンを吸蔵・放出可能な正極活物質を含み、好ましくは、更に、結着剤及び/又は導電助材を含む。導電助材および結着剤は、特に限定はなく、非水系二次電池で使用可能なものであればよい。正極活物質としては、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。具体的には、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、Sなどが挙げられる。また、集電体は、アルミニウム、ニッケル、ステンレス鋼など、非水系二次電池の正極に一般的に使用されるものであればよい。 The positive electrode includes a current collector and a positive electrode active material layer that covers the surface of the current collector. The positive electrode active material layer includes a positive electrode active material capable of inserting and extracting lithium ions, and preferably further includes a binder and / or a conductive aid. There are no particular limitations on the conductive additive and the binder, and any conductive auxiliary material and binder can be used as long as they can be used in non-aqueous secondary batteries. As the positive electrode active material, for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Specific examples include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , and S. The current collector may be any material that is generally used for the positive electrode of a non-aqueous secondary battery, such as aluminum, nickel, and stainless steel.

セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。   The separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

電解液は、電解質を有機溶媒に溶解した非水電解液であるとよい。電解質は、フッ化塩であるとよい。電解質であるフッ化塩は、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。 The electrolytic solution may be a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent. The electrolyte may be a fluoride salt. The electrolyte fluoride salt is preferably an alkali metal fluoride salt soluble in an organic solvent. The alkali metal fluoride salt, e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6. The organic solvent of the non-aqueous electrolyte is preferably an aprotic organic solvent, such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( One or more selected from EMC) and the like can be used.

正極および負極にセパレータを挟装させ電極体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させてリチウムイオン二次電池とするとよい。   A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do.

リチウムイオン二次電池の形状に特に限定はなく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, a coin shape, and a laminated shape can be employed.

(リチウムイオン二次電池の作動方法)
Si系負極を用いたリチウムイオン二次電池は、少なくとも充電時に40℃以上60℃以下の温度に調整する。Si系負極を用いたリチウムイオン二次電池は、好ましくは45℃以上60℃以下、更には50℃以上60℃以下の温度に調整するとよい。Si系負極を用いたリチウムイオン二次電池に40℃以上60℃以下の温度条件下で少なくとも充電を行うことにより、負極活物質粒子の表面に比較的薄く安定なSEI被膜(以下、被膜という。)が形成される。即ち、負極活物質で構成されたコア部と、コア部の表面を被覆する被膜とからなる被覆粒子が形成される。被膜は、Liイオンが通過可能な絶縁膜である。被膜は、例えば、電解液中の成分がコア部を構成する珪素と接触することで分解しその分解生成物がコア部の表面に付着することで生成される。
(Operation method of lithium ion secondary battery)
A lithium ion secondary battery using a Si-based negative electrode is adjusted to a temperature of 40 ° C. or more and 60 ° C. or less at least during charging. The lithium ion secondary battery using the Si-based negative electrode is preferably adjusted to a temperature of 45 ° C. or more and 60 ° C. or less, and further 50 ° C. or more and 60 ° C. or less. A lithium ion secondary battery using a Si-based negative electrode is charged at least under a temperature condition of 40 ° C. or higher and 60 ° C. or lower, whereby a relatively thin and stable SEI coating (hereinafter referred to as coating) is formed on the surface of the negative electrode active material particles. ) Is formed. That is, coated particles comprising a core part composed of a negative electrode active material and a film covering the surface of the core part are formed. The coating is an insulating film through which Li ions can pass. The coating is generated, for example, when a component in the electrolytic solution is decomposed when it comes into contact with silicon constituting the core portion, and the decomposition product adheres to the surface of the core portion.

Si系負極を用いたリチウムイオン二次電池の温度が低すぎると、被膜が厚くなり、コア部の膨張・収縮により、被膜最表面部に、亀裂や欠損が生じるおそれがある。被膜最表面部の亀裂や欠損部分から電解液が浸透し、コア部内の珪素と反応して、電解液が劣化し、電池のサイクル特性が低くなるおそれがある。リチウムイオン二次電池の温度が高すぎると、電解液の成分、特に溶媒が変質し、電池特性が低下するおそれがある。   If the temperature of the lithium ion secondary battery using the Si-based negative electrode is too low, the coating becomes thick, and there is a possibility that cracks and defects occur in the outermost surface of the coating due to expansion and contraction of the core. There is a possibility that the electrolytic solution permeates from cracks or defects on the outermost surface portion of the coating, reacts with silicon in the core portion, deteriorates the electrolytic solution, and lowers the cycle characteristics of the battery. If the temperature of the lithium ion secondary battery is too high, the components of the electrolytic solution, particularly the solvent, may be altered and the battery characteristics may be deteriorated.

少なくとも充電時に上記の所定温度に調整するとよいとしたのは、主として充電時に負極活物質表面に安定な被膜が形成されるからである。好ましくは、充電及び放電の際に上記の所定温度に調整するとよい。この場合には、温度変化が少なく、Si系負極を用いたリチウムイオン二次電池の作動を安定化することができる。   The reason why the temperature should be adjusted to the predetermined temperature at least during charging is mainly because a stable film is formed on the surface of the negative electrode active material during charging. Preferably, the predetermined temperature is adjusted during charging and discharging. In this case, the temperature change is small, and the operation of the lithium ion secondary battery using the Si-based negative electrode can be stabilized.

電解液は、フッ化系塩を含むことがよい。電解液がフッ化系塩を含む場合には、リチウムイオン二次電池を充電することにより、負極活物質からなるコア部の表面に、フッ化リチウムを含む被膜が形成される。フッ化リチウム(LiF)は、電解液のフッ化系塩中のフッ化塩がコア部を構成している珪素と接触することで下記の式(1)に示すように分解して形成されたものである。   The electrolytic solution may contain a fluorinated salt. When the electrolytic solution contains a fluorinated salt, a lithium ion secondary battery is charged to form a film containing lithium fluoride on the surface of the core portion made of the negative electrode active material. Lithium fluoride (LiF) was formed by decomposition as shown in the following formula (1) when the fluoride salt in the fluorinated salt of the electrolytic solution was in contact with silicon constituting the core portion. Is.

LiPF → LiF + PF・・・(1)
被膜の中には、フッ化リチウムのほかに、負極活物質の成分である珪素又は/及び珪素化合物や、電解液の成分などを含んでいても良い。この場合、被膜中のフッ化リチウムの含有量は、被膜の厚み方向に均一であっても良いし、被膜の厚み方向に勾配があってもよい。後者の場合には、コア部と被膜の界面が最もフッ化リチウムの含有量が多く、被膜の厚み方向外側に向かって徐々にフッ化リチウムの含有量が少なくなる場合が多いと考えられる。
LiPF 6 → LiF + PF 5 (1)
In addition to lithium fluoride, the coating film may contain silicon or / and a silicon compound as a component of the negative electrode active material, a component of an electrolytic solution, and the like. In this case, the content of lithium fluoride in the coating may be uniform in the thickness direction of the coating or may have a gradient in the thickness direction of the coating. In the latter case, it is considered that the lithium fluoride content is highest at the interface between the core portion and the coating, and the lithium fluoride content gradually decreases toward the outside in the thickness direction of the coating.

被膜は、コア部の全表面を被覆しているとよい。コア部を構成している負極活物質が、電解液と接触して、電解液中の電解質を分解することを抑制し、また負極活物質に吸蔵されているLiイオンの溶出を抑制するためである。   The coating may cover the entire surface of the core portion. This is because the negative electrode active material constituting the core part is prevented from contacting the electrolytic solution and decomposing the electrolyte in the electrolytic solution, and also suppressing the elution of Li ions occluded in the negative electrode active material. is there.

被膜の厚みは、例えば、上述のリチウムイオン二次電池の充放電時の温度条件により変化する。Si系負極を用いたリチウムイオン二次電池の温度が高いほど、薄く安定な被膜が形成される。   The thickness of the coating varies depending on, for example, the temperature conditions during charging / discharging of the lithium ion secondary battery described above. The higher the temperature of the lithium ion secondary battery using the Si-based negative electrode, the thinner and more stable the film is formed.

更に、Si系負極を用いたリチウムイオン二次電池には、35℃以上80℃以下の温度条件下で初期充放電を行うとよい。リチウムイオン二次電池に初期充放電を行うことにより、負極活物質の表面に被膜が形成される。   Furthermore, the lithium ion secondary battery using the Si-based negative electrode may be initially charged and discharged under a temperature condition of 35 ° C. or higher and 80 ° C. or lower. By performing initial charge / discharge on the lithium ion secondary battery, a film is formed on the surface of the negative electrode active material.

初期充放電としての充放電の回数は、1回以上であればよく、更には2回以上5回以下であることが好ましい。初期充放電時の充電及び放電は、所定の条件下で行うことがよく、例えば、定電流で行うことがよい。また、所定の温度で初期充放電を行うとよい。   The number of times of charge / discharge as the initial charge / discharge may be one or more, and more preferably two or more and five or less. Charging and discharging at the initial charging / discharging is preferably performed under predetermined conditions, for example, at a constant current. Moreover, initial charge / discharge may be performed at a predetermined temperature.

Si系負極を用いたリチウムイオン二次電池に初期充放電を施す際の温度は、35℃以上80℃以下であり、更にはその下限は40℃であることが好ましく、上限は60℃、更には55℃であることが好ましい。初期充放電を施す際の温度が低すぎると、被膜が厚くなり、コア部の膨張・収縮により、被膜最表面部に、亀裂や欠損が生じるおそれがある。被膜最表面部の亀裂や欠損部分から電解液が浸透し、コア部内の珪素と反応して、電解液が劣化し、電池のサイクル特性が低くなるおそれがある。初期充放電の温度が高すぎると、電解液の成分、特に溶媒が変質し、電池特性が低下するおそれがある。   The temperature at which initial charge / discharge is performed on a lithium ion secondary battery using a Si-based negative electrode is 35 ° C. or more and 80 ° C. or less, and the lower limit is preferably 40 ° C., and the upper limit is 60 ° C. Is preferably 55 ° C. If the temperature at the time of initial charge / discharge is too low, the coating becomes thick, and there is a possibility that cracks and defects may occur on the outermost surface of the coating due to expansion / contraction of the core. There is a possibility that the electrolytic solution permeates from cracks or defects on the outermost surface portion of the coating, reacts with silicon in the core portion, deteriorates the electrolytic solution, and lowers the cycle characteristics of the battery. If the initial charging / discharging temperature is too high, the components of the electrolytic solution, particularly the solvent, may change, and the battery characteristics may be deteriorated.

負極と正極とセパレータと電解液とを電池容器に収容し密封することで、リチウムイオン二次電池が作製される。リチウムイオン二次電池の作製の中でリチウムイオン二次電池の初期充放電をどの段階で行うかについては、特に限定しないが、例えば、第1に、負極と正極とセパレータとからなる電極体を電池容器内に収容し電解液を注入した後に、初期充放電を行い、密封する場合、第2に、電極体及び電解液を電池容器内に収容し密封することで二次電池組み付け後に初期充放電を行う場合がある。この中、充放電の作業性の観点から、二次電池組み付け後に、初期充放電を行うことがよい。   A negative electrode, a positive electrode, a separator, and an electrolytic solution are housed in a battery container and sealed, thereby producing a lithium ion secondary battery. There is no particular limitation on the stage at which the initial charge / discharge of the lithium ion secondary battery is performed in the production of the lithium ion secondary battery. For example, first, an electrode body composed of a negative electrode, a positive electrode, and a separator is used. When initial charging / discharging is performed after sealing and injecting the electrolytic solution in the battery container, secondly, the initial charging is performed after the secondary battery is assembled by storing and sealing the electrode body and the electrolytic solution in the battery container. Discharging may occur. Among these, from the viewpoint of workability of charge / discharge, it is preferable to perform initial charge / discharge after assembling the secondary battery.

(電池装置)
本発明の電池装置は、上記リチウムイオン二次電池と、リチウムイオン二次電池を少なくとも充電時に40℃以上60℃以下の温度に調整する温度調整手段とを備える。
(Battery device)
The battery device of the present invention includes the above lithium ion secondary battery and temperature adjusting means for adjusting the lithium ion secondary battery to a temperature of 40 ° C. or higher and 60 ° C. or lower at least during charging.

温度調整手段としては、リチウムイオン二次電池を上記の所定温度に調整し得るものであれば特に限定しないが、例えば、温度制御が可能なヒータが挙げられる。そのほかに、例えば、リチウムイオン二次電池を、内燃機関を備えた車両に装着する場合には、温度調整手段は、リチウムイオン二次電池周辺に設けられた高温の排ガスを流通させる排気管であったりしてもよい。   The temperature adjusting means is not particularly limited as long as it can adjust the lithium ion secondary battery to the above-mentioned predetermined temperature. For example, a heater capable of temperature control can be mentioned. In addition, for example, when a lithium ion secondary battery is mounted on a vehicle equipped with an internal combustion engine, the temperature adjusting means is an exhaust pipe that circulates high-temperature exhaust gas provided around the lithium ion secondary battery. Or you may.

(装置1)
本装置は、リチウムイオン二次電池と温度調整手段とを備える電池装置である。
(Device 1)
This device is a battery device including a lithium ion secondary battery and temperature adjusting means.

リチウムイオン二次電池は、以下のように作製した。   The lithium ion secondary battery was produced as follows.

まず、市販のSiO粉末と、導電助材としての黒鉛粉末と、ケッチェンブラックと、結着剤としてのポリアミドイミドとを混合し、溶媒を加えてスラリー状の混合物を得た。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。負極活物質粒子と黒鉛粉末とケッチェンブラックとポリアミドイミドとの質量比は、百分率で、負極活物質粒子/黒鉛粉末/ケッチェンブラック/ポリアミドイミド=42/40/3/15であった。   First, commercially available SiO powder, graphite powder as a conductive aid, ketjen black, and polyamideimide as a binder were mixed, and a solvent was added to obtain a slurry mixture. The solvent was N-methyl-2-pyrrolidone (NMP). The mass ratio of the negative electrode active material particles, the graphite powder, the ketjen black, and the polyamideimide was, as a percentage, negative electrode active material particles / graphite powder / Ketjen black / polyamideimide = 42/40/3/15.

次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔(厚さ20μm)の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極活物質層が固定されてなる負極が形成された。   Next, the slurry mixture is formed into a film on one side of a copper foil (thickness 20 μm) as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool. did. Thereby, the negative electrode formed by fixing the negative electrode active material layer on the current collector surface was formed.

次に、正極活物質としてのリチウム・ニッケル複合酸化物LiNi1/3Co1/3Mn1/3と、アセチレンブラック、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔(厚さ19μm)の片面に塗布し、プレスし、焼成した。これにより、集電体の表面に正極活物質層を固定してなる正極を得た。正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとを、3/3/7(vol%)の配合比で混合して調製した。電解液中のLiPFの濃度は、1mol/Lであった。 Next, a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry. The slurry was applied to one side of an aluminum foil (thickness 19 μm) as a current collector, pressed and fired. This obtained the positive electrode formed by fixing a positive electrode active material layer on the surface of a collector. A polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode. A plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked. The periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape. The laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put. The electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent. The organic solvent was prepared by mixing ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate at a blending ratio of 3/3/7 (vol%). The concentration of LiPF 6 in the electrolytic solution was 1 mol / L.

その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、ラミネート電池を得た。   Then, the opening part of the aluminum film was completely airtightly sealed while evacuating. At this time, the tips of the positive electrode side and negative electrode side current collectors were protruded from the edge portions of the film to enable connection to external terminals, thereby obtaining a laminated battery.

温度調整手段は、ヒータである。ヒータは、リチウムイオン二次電池の周辺に配設されている。ヒータには、リチウムイオン二次電池を所望の温度に調整可能な制御回路が内蔵されている。   The temperature adjusting means is a heater. The heater is disposed around the lithium ion secondary battery. The heater incorporates a control circuit that can adjust the lithium ion secondary battery to a desired temperature.

上記電池装置は、温度調整手段によりリチウムイオン二次電池を後述の所定温度に調整しながら作動される。   The battery device is operated while adjusting the lithium ion secondary battery to a predetermined temperature described later by the temperature adjusting means.

<実験1>
上記電池装置について、リチウムイオン二次電池のコンディショニング処理を行った後に、充放電を繰り返す作動試験を行った。
<Experiment 1>
About the said battery apparatus, after performing the conditioning process of a lithium ion secondary battery, the operation test which repeats charging / discharging was done.

コンディショニング処理は、25℃で3回充放電を繰り返して行った。1回目は、0.2Cの定電流(CC)で4.1Vまで充電し、0.2Cの定電流で3.0Vまで放電した。2回目は、0.2Cの定電流定電圧(CC−CV)で4.1Vまで充電し、0.1Cの定電流で3.0Vまで放電した。3回目は、1Cの定電流定電圧で4.2Vまで充電とし、1C定電流で3.0Vまで放電した。コンディショニング処理の後には、リチウムイオン二次電池を常温(25℃)に戻した。   The conditioning process was repeated 3 times at 25 ° C. The first time, the battery was charged to 4.1 V with a constant current (CC) of 0.2 C, and discharged to 3.0 V with a constant current of 0.2 C. The second time was charged to 4.1 V with a constant current constant voltage (CC-CV) of 0.2 C, and discharged to 3.0 V with a constant current of 0.1 C. The third time was charged to 4.2V with a constant current constant voltage of 1C and discharged to 3.0V with a constant current of 1C. After the conditioning treatment, the lithium ion secondary battery was returned to room temperature (25 ° C.).

コンディショニング処理後の作動試験では、リチウムイオン二次電池の充電と放電を繰り返した。充電時には、1CのCC−CV(定電流定電圧)で4.2Vまでリチウムイオン二次電池を充電した。放電時には、1CのCC(定電流)で2.5Vまでリチウムイオン二次電池を放電した。コンディショニング処理後の最初の充放電を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。作動試験時の電池の温度は、25℃、45℃、55℃とした。作動試験時の電池の温度が25℃である場合を装置1、45℃である場合を装置2、55℃である場合を装置3とした。   In the operation test after the conditioning treatment, charging and discharging of the lithium ion secondary battery were repeated. At the time of charge, the lithium ion secondary battery was charged to 4.2V with CC-CV (constant current constant voltage) of 1C. At the time of discharging, the lithium ion secondary battery was discharged to 2.5 V with a CC (constant current) of 1C. The first charge / discharge after the conditioning treatment was regarded as the first cycle, and the same charge / discharge was repeated until the 500th cycle. The battery temperature during the operation test was set to 25 ° C, 45 ° C, and 55 ° C. When the temperature of the battery at the time of the operation test was 25 ° C., the device 1 was designated as device 1, when 45 ° C. was designated as device 2 and when 55 ° C. was designated as device 3.

各サイクル毎に電池の放電容量を測定し、各サイクルにおける放電容量維持率を算出した。放電容量維持率は、Nサイクル目の放電容量を初回の放電容量で除した値の百分率((Nサイクル目の放電容量)/(1サイクル目の放電容量)×100)で求められる値である。Nは1〜20の整数である。   The discharge capacity of the battery was measured for each cycle, and the discharge capacity retention rate in each cycle was calculated. The discharge capacity maintenance ratio is a value obtained by dividing the discharge capacity at the Nth cycle by the initial discharge capacity ((discharge capacity at the Nth cycle) / (discharge capacity at the first cycle) × 100). . N is an integer of 1-20.

図1には、装置1、2、3についての各電池のサイクル毎の放電容量維持率を示した。図1に示すように、装置2、3の電池は、装置1のものに比べて、多くのサイクル数経過後まで高い容量維持率を示した。500サイクル経過後では、装置3の方が装置2よりも、高い放電容量維持率を示した。このことから、作動時の温度が40℃以上更には45℃以上望ましくは50℃以上の場合に、優れたサイクル特性を発揮することがわかる。   In FIG. 1, the discharge capacity maintenance rate for each battery cycle for the devices 1, 2, and 3 is shown. As shown in FIG. 1, the batteries of the devices 2 and 3 showed a higher capacity retention rate until after a large number of cycles had elapsed than those of the device 1. After 500 cycles, the device 3 showed a higher discharge capacity maintenance rate than the device 2. This indicates that excellent cycle characteristics are exhibited when the operating temperature is 40 ° C. or higher, further 45 ° C. or higher, and preferably 50 ° C. or higher.

<実験2>
本実験では、電池のコンディショニング処理時及び作動試験時の温度がサイクル特性に与える影響を調べた。上記電池装置の電池のコンディショニング処理時の温度及び作動試験時の温度がともに25℃である場合を装置4とし、コンディショニング処理時の温度が25℃、サイクル試験時の温度が45℃である場合を装置5とし、コンディショニング処理時の温度が45℃、サイクル試験時の温度が25℃である場合を装置6とした。
<Experiment 2>
In this experiment, the effect of the temperature during the conditioning process and the operation test on the cycle characteristics was examined. When the temperature during the conditioning process and the temperature during the operation test of the battery of the battery device are both 25 ° C., the device 4 is used. The temperature during the conditioning process is 25 ° C. and the temperature during the cycle test is 45 ° C. The apparatus 5 was used, and the case where the temperature during the conditioning process was 45 ° C. and the temperature during the cycle test was 25 ° C. was used as the apparatus 6.

温度条件を除いてコンディショニング処理と作動試験を、上記実験1と同条件で行った。250サイクル充放電を行う間の電池の放電容量維持率を図2に示した。図2に示すように、作動試験時の電池の温度が45℃の場合(装置5)には、作動試験時の電池の温度が25℃の場合(装置4、6)に比べて、電池のサイクル特性が優れていた。作動試験時の温度が25℃であって、コンディショニング処理時の温度が45℃の場合には(装置6)、コンディショニング処理時の温度が25℃の場合(装置4)に比べてサイクル特性が優れていた。このことから、コンディショニング処理時の電池の温度を45℃と常温よりも若干高めに保温することで、25℃の場合(常温)よりも、サイクル特性が良くなること、更に、コンディショニング処理時の温度を45℃とする場合(装置6)よりも、作動試験時の電池の温度を45℃とする場合の方(装置5)が、サイクル特性が向上することがわかる。   The conditioning process and the operation test were performed under the same conditions as in Experiment 1 except for the temperature conditions. The discharge capacity retention rate of the battery during the 250 cycle charge / discharge is shown in FIG. As shown in FIG. 2, when the battery temperature during the operation test is 45 ° C. (device 5), the battery temperature is lower than when the battery temperature during the operation test is 25 ° C. (devices 4 and 6). Cycle characteristics were excellent. When the temperature during the operation test is 25 ° C. and the temperature during the conditioning process is 45 ° C. (apparatus 6), the cycle characteristics are superior to that when the temperature during the conditioning process is 25 ° C. (apparatus 4). It was. Therefore, by keeping the temperature of the battery during the conditioning process at 45 ° C., which is slightly higher than room temperature, the cycle characteristics are improved compared to the case of 25 ° C. (room temperature), and the temperature during the conditioning process is further improved. It can be seen that the cycle characteristics are improved when the temperature of the battery during the operation test is 45 ° C. (device 5) than when the temperature is 45 ° C. (device 6).

<実験3>
本実験では、電池のコンディショニング処理時の温度と、コンディショニング処理の前後での活物質の質量及び厚みの変化を測定した。上記電池装置についてコンディショニング処理を25℃、45℃、55℃で行い、順に装置7,装置8、装置9とした。コンディショニング処理の充放電条件は、上記実験1と同様とした。各装置についてコンディショニング処理前後での正極及び負極の質量変化率と厚さ変化率を測定した。
<Experiment 3>
In this experiment, the temperature during the conditioning treatment of the battery and the change in the mass and thickness of the active material before and after the conditioning treatment were measured. The battery device was conditioned at 25 ° C., 45 ° C., and 55 ° C., and the device 7, device 8, and device 9 were used in this order. The charging / discharging conditions of the conditioning treatment were the same as in Experiment 1 above. About each apparatus, the mass change rate and thickness change rate of the positive electrode and negative electrode before and after a conditioning process were measured.

コンディショニング後の質量は、電池から正極、負極を取り出した後、洗浄、乾燥させ重量測定を行い、コンディショニング処理前の質量に対するコンディショニング処理後の質量の比率を求め、これを正極及び負極の活物質の質量変化率とした。そして、コンディショニング処理前の集電体を除いた電極の厚みに対するコンディショニング処理後の集電体を除いた電極の厚みの比率を求め、これを正極及び負極の電極の厚み変化率とした。図3には正極及び負極の質量変化率を示し、図4には正極及び負極の厚さ変化率を示した。   The mass after conditioning is taken out of the battery after removing the positive electrode and negative electrode, washed, dried and weighed to determine the ratio of the mass after conditioning to the mass before conditioning. The mass change rate was used. Then, the ratio of the thickness of the electrode excluding the current collector after the conditioning treatment to the thickness of the electrode excluding the current collector before the conditioning treatment was determined, and this was used as the thickness change rate of the positive electrode and the negative electrode. FIG. 3 shows mass change rates of the positive electrode and the negative electrode, and FIG. 4 shows thickness change rates of the positive electrode and the negative electrode.

図3、図4に示すように、コンディショニング処理前後において、装置7,8,9のいずれも、正極の質量及び厚さの変化は殆ど無かったが、負極の質量及び厚さは増加した。装置8は、装置7、9に比べて質量増加が大きい一方、厚さ増加は少なかった。その理由は、密度が高い化合物がSEIとして生成していると推定している。   As shown in FIG. 3 and FIG. 4, before and after the conditioning treatment, all of the devices 7, 8, and 9 had almost no change in the mass and thickness of the positive electrode, but the mass and thickness of the negative electrode increased. The device 8 had a large increase in mass compared with the devices 7 and 9, but the thickness increase was small. The reason is presumed that a compound having a high density is produced as SEI.

<実験4>
本実験では、電池の作動試験時の温度と、作動試験で500サイクル充放電後の質量変化率及び厚さ変化率を測定した。上記電池装置について25℃の温度でコンディショニング処理を行った後に、充放電を繰り返す作動試験を行った。コンディショニング処理の充放電条件は、上記実験1と同様とした。コンディショニング処理後の作動試験時の充放電条件は、上記実験1と同様とし、電池の保温温度を25℃、45℃、55℃に変化させた。電池の保温温度が、25℃、45℃、55℃の順に装置10、装置11、装置12とした。各装置について作動試験前と、作動試験の中で500回充放電を繰り返した後とで、正極及び負極の質量変化率と厚さ変化率を測定した。質量変化率及び厚さ変化率は、上記実験3と同様の手法により算出した。その結果を表1に示し、正極及び負極の質量変化率を図5に示し、厚さ変化率を図6に示した。
<Experiment 4>
In this experiment, the temperature during battery operation test and the mass change rate and thickness change rate after 500 cycles of charge and discharge were measured in the operation test. About the said battery apparatus, after performing the conditioning process at the temperature of 25 degreeC, the operation test which repeats charging / discharging was done. The charging / discharging conditions of the conditioning treatment were the same as in Experiment 1 above. The charge / discharge conditions during the operation test after the conditioning treatment were the same as in Experiment 1 above, and the temperature of the battery was changed to 25 ° C., 45 ° C., and 55 ° C. Device 10, device 11, and device 12 were used in the order of the heat retention temperature of the battery: 25 ° C., 45 ° C., and 55 ° C. The mass change rate and thickness change rate of the positive electrode and the negative electrode were measured before and after the operation test for each device and after 500 times of charge and discharge were repeated in the operation test. The mass change rate and the thickness change rate were calculated by the same method as in Experiment 3 above. The results are shown in Table 1, the mass change rate of the positive electrode and the negative electrode is shown in FIG. 5, and the thickness change rate is shown in FIG.

表1,図5、図6に示すように、電池を500回充放電した後には、負極質量及び厚さが大きく増加した。中でも、装置10での負極の質量変化率及び厚さ変化率が大きく、装置12では小さかった。このことから、作動試験時の温度が高いほど、負極の厚さ増加が少なくなることがわかる。   As shown in Table 1, FIG. 5, and FIG. 6, after the battery was charged and discharged 500 times, the mass and thickness of the negative electrode increased greatly. Especially, the mass change rate and thickness change rate of the negative electrode in the apparatus 10 were large, and the apparatus 12 was small. From this, it can be seen that the higher the temperature during the operation test, the smaller the increase in the thickness of the negative electrode.

一方、正極活物質は、負極活物質に比べて、作動試験前後での活物質の質量変化及び厚さ変化が少なかった。   On the other hand, the positive electrode active material had less mass change and thickness change of the active material before and after the operation test than the negative electrode active material.

500回充放電後の装置10、12の電池の負極の断面のSEM(走査型電子顕微鏡)像を図7、図8に示した。図7、図8に示すように、装置10、12の電池の負極集電体の表面に、負極活物質粒子からなる活物質層が形成されていた。図7に示すように、活物質層中の多角形状の粒子が活物質粒子である。装置10では、活物質層には隙間が少なかった。一方、図8に示すように、活物質中の比較的大きな粒子が活物質粒子である。作動試験時の電池温度が55℃である装置12では、25℃である装置10の場合に比べて、活物質層に隙間が多かった。装置12の活物質層に隙間が多いのは、活物質表面のSEI被膜の厚みが薄いためであると考えられる。   The SEM (scanning electron microscope) image of the cross section of the negative electrode of the battery of the apparatuses 10 and 12 after 500 charge / discharge cycles is shown in FIGS. As shown in FIGS. 7 and 8, an active material layer composed of negative electrode active material particles was formed on the surface of the negative electrode current collector of the batteries of the devices 10 and 12. As shown in FIG. 7, polygonal particles in the active material layer are active material particles. In the apparatus 10, there were few gaps in the active material layer. On the other hand, as shown in FIG. 8, relatively large particles in the active material are active material particles. In the device 12 in which the battery temperature during the operation test was 55 ° C., there were more gaps in the active material layer than in the case of the device 10 at 25 ° C. The reason why there are many gaps in the active material layer of the device 12 is considered to be that the thickness of the SEI film on the surface of the active material is thin.

Claims (4)

リチウムイオンを吸蔵・放出可能な正極活物質をもつ正極と、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなる負極活物質をもつ負極と、フッ化系塩を含む電解液とを備えたリチウムイオン二次電池を、少なくとも充電時に40℃以上60℃以下の温度に調整することで前記負極活物質の表面にフッ化リチウムを含む被膜を形成することを特徴とするリチウムイオン二次電池の作動方法。 A positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material composed of silicon and / or silicon compounds capable of occluding and releasing lithium ions, and an electrolyte containing a fluorinated salt A lithium ion secondary battery comprising a lithium ion secondary battery , wherein a film containing lithium fluoride is formed on a surface of the negative electrode active material by adjusting the lithium ion secondary battery to a temperature of 40 ° C. or more and 60 ° C. or less at least during charging. How to operate the battery. 前記リチウムイオン二次電池を少なくとも充電時に45℃以上60℃以下の温度に調整する請求項1記載のリチウムイオン二次電池の作動方法。   The method for operating a lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is adjusted to a temperature of 45 ° C. or more and 60 ° C. or less at least during charging. 前記リチウムイオン二次電池には、初期充放電の際に、35℃以上80℃以下の温度に調整する請求項1又は2に記載のリチウムイオン二次電池の作動方法。   The operation method of the lithium ion secondary battery according to claim 1 or 2, wherein the lithium ion secondary battery is adjusted to a temperature of 35 ° C or higher and 80 ° C or lower during initial charge / discharge. リチウムイオンを吸蔵・放出可能な正極活物質をもつ正極と、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなる負極活物質をもつ負極と、フッ化系塩を含む電解液とを備えたリチウムイオン二次電池、
並びに前記リチウムイオン二次電池を少なくとも充電時に40℃以上60℃以下の温度に調整することで前記負極活物質の表面にフッ化リチウムを含む被膜を形成する温度調整手段、を備えることを特徴とする電池装置。
A positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material composed of silicon and / or silicon compounds capable of occluding and releasing lithium ions, and an electrolyte containing a fluorinated salt Lithium ion secondary battery equipped,
And a temperature adjusting means for forming a film containing lithium fluoride on the surface of the negative electrode active material by adjusting the lithium ion secondary battery to a temperature of 40 ° C. or more and 60 ° C. or less at least during charging. Battery device.
JP2011152558A 2011-07-11 2011-07-11 Lithium ion secondary battery operating method and battery device Expired - Fee Related JP5776932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152558A JP5776932B2 (en) 2011-07-11 2011-07-11 Lithium ion secondary battery operating method and battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152558A JP5776932B2 (en) 2011-07-11 2011-07-11 Lithium ion secondary battery operating method and battery device

Publications (2)

Publication Number Publication Date
JP2013020782A JP2013020782A (en) 2013-01-31
JP5776932B2 true JP5776932B2 (en) 2015-09-09

Family

ID=47692050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152558A Expired - Fee Related JP5776932B2 (en) 2011-07-11 2011-07-11 Lithium ion secondary battery operating method and battery device

Country Status (1)

Country Link
JP (1) JP5776932B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062026A (en) * 2011-09-12 2013-04-04 Toyota Industries Corp Lithium ion secondary battery and manufacturing method therefor
JP6577578B2 (en) * 2014-10-02 2019-09-18 トヨタ モーター ヨーロッパ Calcium-based secondary battery and battery including the same
WO2016050329A1 (en) * 2014-10-02 2016-04-07 Toyota Motor Europe Nv/Sa Electrolytes for calcium-based secondary cell and calcium-based secondary cell comprising the same
CN116724440A (en) * 2021-01-29 2023-09-08 松下知识产权经营株式会社 Method for charging and discharging nonaqueous electrolyte secondary battery, and system for charging nonaqueous electrolyte secondary battery
CN116830418A (en) * 2021-01-29 2023-09-29 松下知识产权经营株式会社 Method for charging and discharging nonaqueous electrolyte secondary battery, and system for charging nonaqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417054B2 (en) * 1994-04-28 2003-06-16 株式会社デンソー Manufacturing method of non-aqueous electrolyte secondary battery
JP4489006B2 (en) * 1998-10-29 2010-06-23 株式会社東芝 Non-aqueous electrolyte secondary battery
JP4819409B2 (en) * 2005-06-15 2011-11-24 日本電気株式会社 Non-aqueous electrolyte secondary battery charge / discharge method
JP5733000B2 (en) * 2011-04-25 2015-06-10 株式会社豊田自動織機 Method for producing lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013020782A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
JP4650603B2 (en) Anode material for secondary battery, method for producing the same, and secondary battery using the same
WO2017169616A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP5511128B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
JP5733000B2 (en) Method for producing lithium ion secondary battery
JP7113248B2 (en) Negative electrode for secondary battery, manufacturing method thereof, and secondary battery
JP2007053083A (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2010211925A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2021530855A (en) Negative electrode for lithium secondary battery, its manufacturing method and lithium secondary battery including this
EP2234190A1 (en) Nonaqueous electrolyte secondary battery
JP5585470B2 (en) Lithium ion secondary battery
JP2013137873A (en) Lithium ion secondary battery
CN111095614B (en) Positive electrode for secondary battery, and method for manufacturing positive electrode for secondary battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP7182305B2 (en) Positive electrode for secondary battery, secondary battery, and method for manufacturing positive electrode for secondary battery
JP7118497B2 (en) Method for producing positive electrode additive for lithium secondary battery and positive electrode additive for lithium secondary battery produced therefrom
JP2015162356A (en) Coated positive electrode active material, method for producing coated positive electrode active material, and lithium battery
JP2015204256A (en) Method for producing coated positive electrode active material
JP5776932B2 (en) Lithium ion secondary battery operating method and battery device
JP5811093B2 (en) Secondary battery
JP5082714B2 (en) Positive electrode body, lithium secondary battery and manufacturing method thereof
JP4995409B2 (en) Cathode active material adsorbed with carbon compound and lithium battery employing the same
CN109565032B (en) Negative electrode for nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
KR20190054976A (en) Lithium-cobalt-based positive electrode active material, producing method thereof, positive electrode and secondary battery comprising the same
JP2012256539A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150624

R151 Written notification of patent or utility model registration

Ref document number: 5776932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees