JP5585470B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5585470B2
JP5585470B2 JP2011015310A JP2011015310A JP5585470B2 JP 5585470 B2 JP5585470 B2 JP 5585470B2 JP 2011015310 A JP2011015310 A JP 2011015310A JP 2011015310 A JP2011015310 A JP 2011015310A JP 5585470 B2 JP5585470 B2 JP 5585470B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
silicon
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011015310A
Other languages
Japanese (ja)
Other versions
JP2012156055A (en
Inventor
悠史 近藤
英明 石川
学 三好
仁俊 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011015310A priority Critical patent/JP5585470B2/en
Publication of JP2012156055A publication Critical patent/JP2012156055A/en
Application granted granted Critical
Publication of JP5585470B2 publication Critical patent/JP5585470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に関し、特に負極活物質として珪素を用いたリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery using silicon as a negative electrode active material.

リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノート型パソコンといった幅広い分野で用いられている。   Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers.

リチウムイオン二次電池は、正極と負極と電解液とセパレータとから構成されている。正極は、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物からなる正極活物質と、正極活物質で被覆された集電体とからなる。   A lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolytic solution, and a separator. The positive electrode is coated with a positive electrode active material composed of a metal composite oxide of lithium and a transition metal, such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide, and a positive electrode active material. Current collector.

負極は、リチウムイオンを吸蔵・放出し得る負極活物質が集電体を被覆して形成されている。リチウムイオンを吸蔵・放出し得る負極活物質として、近年、酸化珪素(SiOx:0.5≦x≦1.5程度)の使用が検討されている。酸化珪素SiOxは、熱処理されると、SiとSiOとに分解することが知られている。これは、不均化反応といい、SiとOとの比が概ね1:1の均質な固体の一酸化珪素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細であり、SiO相により被覆されている。Si相は、Liイオンを吸蔵・放出し得る珪素単体を含み、Liイオンの膨張・収縮により体積が膨張したり収縮したりする。SiO相は、Si相の膨張・収縮を吸収し、また、電解液がSi相に接触することを防止することで電解液の分解反応を抑制して、電池のサイクル特性を向上させる。 The negative electrode is formed by covering a current collector with a negative electrode active material capable of inserting and extracting lithium ions. In recent years, the use of silicon oxide (SiOx: about 0.5 ≦ x ≦ 1.5) has been studied as a negative electrode active material capable of inserting and extracting lithium ions. It is known that silicon oxide SiOx decomposes into Si and SiO 2 when heat-treated. This is called a disproportionation reaction, and if it is a homogeneous solid silicon monoxide SiO in which the ratio of Si to O is approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by solid internal reaction. To do. The Si phase obtained by separation is very fine and is covered with the SiO 2 phase. The Si phase contains silicon alone capable of inserting and extracting Li ions, and the volume expands and contracts due to the expansion and contraction of Li ions. The SiO 2 phase absorbs the expansion and contraction of the Si phase, and prevents the electrolytic solution from contacting the Si phase, thereby suppressing the decomposition reaction of the electrolytic solution and improving the cycle characteristics of the battery.

ところで、リチウムイオン二次電池の性能を向上させるために、様々な処理が提案されている。例えば、特許文献1、2、3に開示されているように、正極と負極とセパレータと電解液とを電池容器内に収容した後に、所定の温度下で予備充電を行った後に、密封する。特許文献4、5に開示されているように、二次電池組み付け後に、所定の温度下で充放電処理を施す。特許文献6,7に開示されているように、二次電池組み付け後に、所定温度下で充電電圧を印加したまま所定期間保存する。   By the way, in order to improve the performance of the lithium ion secondary battery, various treatments have been proposed. For example, as disclosed in Patent Documents 1, 2, and 3, after the positive electrode, the negative electrode, the separator, and the electrolytic solution are accommodated in the battery container, the battery is sealed after being precharged at a predetermined temperature. As disclosed in Patent Documents 4 and 5, after the secondary battery is assembled, a charge / discharge treatment is performed at a predetermined temperature. As disclosed in Patent Documents 6 and 7, after assembling the secondary battery, the battery is stored for a predetermined period while a charging voltage is applied at a predetermined temperature.

特開2000−58130号公報JP 2000-58130 A 特開2003−308880号公報JP 2003-308880 A 特開2010−80116号公報JP 2010-80116 A 特開2000−149996号公報JP 2000-149996 A 特開2004−296179号公報JP 2004-296179 A 特開2010−118161号公報JP 2010-118161 A 特開平10−289733号公報JP-A-10-289733

本願発明者は、負極活物質として酸化珪素を用いて、上記の特許文献1〜7に開示された処理を施した。その結果、電池のサイクル特性が向上することがわかった。また、負極活物質表面に被膜が形成されていた。このことから、電池のサイクル特性の向上は、負極活物質が、被膜に被覆されて電解液分解を抑制するためであると考えられる。本願発明者は、上記処理により形成される被膜について更に鋭意探求を重ね、電池のサイクル特性の更なる向上を図った。   This inventor performed the process disclosed by said patent documents 1-7 using silicon oxide as a negative electrode active material. As a result, it was found that the cycle characteristics of the battery were improved. Moreover, the film was formed in the negative electrode active material surface. From this, it is considered that the improvement of the cycle characteristics of the battery is due to the negative electrode active material being covered with the coating to suppress the electrolytic solution decomposition. The inventor of the present application has further eagerly searched for the film formed by the above-described treatment, and further improved the cycle characteristics of the battery.

本発明はかかる事情に鑑みてなされたものであり、負極活物質表面に形成された被膜の厚みを適切にすることで負極活物質粒子の表面の亀裂や欠損を抑え、電池のサイクル特性に優れたリチウムイオン二次電池を提供することを課題とする。   The present invention has been made in view of such circumstances, and by controlling the thickness of the coating formed on the surface of the negative electrode active material, cracks and defects on the surface of the negative electrode active material particles are suppressed, and the battery has excellent cycle characteristics. Another object is to provide a lithium ion secondary battery.

(1)本発明に係るリチウムイオン二次電池は、正極と、負極と、電解液と、セパレータとを備え、
前記正極は、リチウムイオンを吸蔵・放出可能な正極活物質をもち、
前記負極は、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなるコア部と、前記コア部の表面を被覆しているとともにリチウムイオンが通過可能であってフッ化リチウムを含む被膜とからなる負極活物質粒子をもち、
前記電解液は、フッ化塩を含み、
電圧15kV、電流10mAの条件で放射されるAlKα(単色)線を用いるX線光電子分光法(XPS)により測定されるスペクトルにおいて、前記負極活物質粒子表面の珪素(Si)の2p軌道に起因するピークに対するフッ素(F)の1s軌道に起因するピークの積分強度比が70以下であることを特徴とする。
(1) A lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator.
The positive electrode has a positive electrode active material capable of inserting and extracting lithium ions,
The negative electrode is capable of inserting and extracting lithium ions, covers a core part made of silicon or / and a silicon compound, covers the surface of the core part, and allows lithium ions to pass therethrough and contains lithium fluoride. Having negative electrode active material particles comprising a coating,
The electrolytic solution includes a fluoride salt,
In the spectrum measured by X-ray photoelectron spectroscopy (XPS) using AlKα (monochromatic) radiation emitted under the conditions of a voltage of 15 kV and a current of 10 mA, this is due to the 2p orbit of silicon (Si) on the surface of the negative electrode active material particles The integrated intensity ratio of the peak due to the 1s orbit of fluorine (F) with respect to the peak is 70 or less.

上記構成によれば、負極を構成する負極活物質粒子が、コア部と、その表面を被覆する被膜とからなる。コア部は、珪素又は/及び珪素化合物からなり、被膜は、フッ化リチウムを含んでいる。被膜に含まれるフッ化リチウムは、電解液に含まれるフッ化塩が、負極活物質粒子のコア部を構成している珪素と接触することで、分解反応することにより生成したものである。負極活物質粒子をX線光電子分光法(以下、XPSという。)で分析する。XPSは、負極活物質粒子にX線を照射し、負極活物質粒子から放射される光電子のエネルギー強度を測定する方法である。光電子のエネルギー強度を測定することで、負極活物質表面に位置する元素を同定できる。   According to the said structure, the negative electrode active material particle which comprises a negative electrode consists of a core part and the film which coat | covers the surface. The core portion is made of silicon or / and a silicon compound, and the coating contains lithium fluoride. Lithium fluoride contained in the coating is produced by the decomposition reaction of the fluoride salt contained in the electrolytic solution by contacting silicon constituting the core part of the negative electrode active material particles. The negative electrode active material particles are analyzed by X-ray photoelectron spectroscopy (hereinafter referred to as XPS). XPS is a method of irradiating negative electrode active material particles with X-rays and measuring the energy intensity of photoelectrons emitted from the negative electrode active material particles. By measuring the energy intensity of photoelectrons, an element located on the negative electrode active material surface can be identified.

また、X線を負極活物質粒子表面に照射したときに、負極活物質粒子表面から放出される光電子は、負極活物質粒子の表面から所定の深さHまでの元素から放出されたものに限られる。このため、負極活物質粒子の表面から所定の深さHまでに存在する元素を分析することができる。   Further, when the surface of the negative electrode active material particles is irradiated with X-rays, the photoelectrons emitted from the surface of the negative electrode active material particles are limited to those emitted from an element from the surface of the negative electrode active material particles to a predetermined depth H. It is done. For this reason, it is possible to analyze elements existing from the surface of the negative electrode active material particles to a predetermined depth H.

負極活物質粒子表面に形成された被膜の厚みが変化すると、XPSで検出される元素も変化する。このことを、図1、図2を用いて、概念的に説明する。図1は、被膜2の厚みが、XPSで検出できる負極活物質粒子の表面からの厚みHよりも小さい場合をケースAとして示す。ケースAの場合には、XPSでは、被膜2の元素だけでなく、コア部1の元素も検出される。被膜2は、フッ化リチウムを含み、コア部1は珪素又は/及び珪素化合物からなる。このため、XPSでは、被膜2に含まれるフッ素だけでなく、コア部1に含まれる珪素又は/及び珪素化合物も検出される。   When the thickness of the coating formed on the surface of the negative electrode active material particles changes, the elements detected by XPS also change. This will be conceptually described with reference to FIGS. FIG. 1 shows a case A in which the thickness of the coating 2 is smaller than the thickness H from the surface of the negative electrode active material particles that can be detected by XPS. In case A, XPS detects not only the elements of the film 2 but also the elements of the core part 1. The coating 2 contains lithium fluoride, and the core 1 is made of silicon or / and a silicon compound. For this reason, XPS detects not only fluorine contained in the coating 2 but also silicon and / or silicon compounds contained in the core portion 1.

図2は、被膜2の厚みが、XPSで検出できる負極活物質粒子の表面からの厚みHよりも大きい場合をケースBとして示す。ケースBの場合には、XPSで検出される元素は、概ね被膜2の中のものに限られ、コア部1の中の元素は殆ど検出されない。このため、ケースBでは、ケースAよりも、フッ素の検出量が多くなり、珪素の検出量は少なくなる。   FIG. 2 shows a case B in which the thickness of the coating 2 is larger than the thickness H from the surface of the negative electrode active material particles that can be detected by XPS. In case B, the elements detected by XPS are generally limited to those in the coating 2, and almost no elements in the core portion 1 are detected. For this reason, in case B, the detected amount of fluorine is larger than in case A, and the detected amount of silicon is smaller.

このように、被膜2の厚みが変わると、XPSで検出される各元素の検出量も変わる。そこで、本発明は、XPSで検出される被膜中の物質から生じた光電子に起因する強度と、コア部中の物質から生じた光電子に起因する強度との面積比から、被膜の厚みを規定することとしている。   Thus, when the thickness of the coating 2 changes, the detection amount of each element detected by XPS also changes. Therefore, the present invention defines the thickness of the film from the area ratio between the intensity caused by the photoelectrons generated from the substance in the film detected by XPS and the intensity caused by the photoelectrons generated from the substance in the core. I am going to do that.

即ち、本発明では、XPSにより、負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比を測定している。珪素の2P軌道に起因するピークは、98〜105eVの結合エネルギー領域に出現する。フッ素の1s軌道に起因するピークは、680〜692eVの結合エネルギー領域に出現する。負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比を測定したときの積分強度比は、70以下である。この場合には、コア部に含まれる珪素が比較的強いスペクトル強度を示す。このため、被膜の厚みが薄く、その分だけ、被膜よりも内側に存在するコア部が、負極活物質粒子の表面からの所定の深さHの範囲内かそれともその近傍まで位置していることがわかる。   That is, in the present invention, the integrated intensity ratio of the peak caused by the 1s orbit of fluorine to the peak caused by the 2p orbit of silicon on the surface of the negative electrode active material particle is measured by XPS. The peak due to the 2P orbit of silicon appears in the bond energy region of 98 to 105 eV. A peak due to the 1s orbital of fluorine appears in a binding energy region of 680 to 692 eV. The integrated intensity ratio when the integrated intensity ratio of the peak caused by the 1s orbit of fluorine to the peak caused by the 2p orbit of silicon on the surface of the negative electrode active material particles is 70 or less. In this case, silicon contained in the core portion exhibits a relatively strong spectral intensity. For this reason, the thickness of the coating is thin, and accordingly, the core part existing inside the coating is located within the predetermined depth H from the surface of the negative electrode active material particles or to the vicinity thereof. I understand.

コア部は、Liイオンを吸蔵・放出することにより膨張・収縮する。コア部が膨張・収縮したときに、被膜は比較的薄いため、被膜の外表面に加わる応力が軽減され、被膜の外表面に亀裂や欠損を生じることを抑えることができる。それゆえ、コア部が電解液と接触し難く、コア部に存在するLiイオンが溶出することを抑え、電解液の分解反応を抑えることができる。したがって、電池のサイクル特性を高めることができる。   The core part expands and contracts by inserting and extracting Li ions. Since the coating is relatively thin when the core portion expands and contracts, the stress applied to the outer surface of the coating is reduced, and cracks and defects on the outer surface of the coating can be suppressed. Therefore, it is difficult for the core part to come into contact with the electrolytic solution, it is possible to suppress the elution of Li ions present in the core part, and to suppress the decomposition reaction of the electrolytic solution. Therefore, the cycle characteristics of the battery can be improved.

一方、前記積分強度比が70を超えて大きい場合には、被膜表面の膨張・収縮が大きくなり、被膜に亀裂や欠損を生じやすくなる。亀裂から電解液が被膜に浸入し、コア部まで到達し、コア部内の珪素に接触し、電解液が劣化したり、コア部内に吸蔵されているLiイオンが溶出したりして、電池のサイクル特性が低下するおそれがある。   On the other hand, when the integral intensity ratio is larger than 70, the coating surface expands and contracts, and the coating tends to crack or chip. The electrolyte enters the coating from the crack, reaches the core, contacts the silicon in the core, the electrolyte deteriorates, and Li ions occluded in the core are eluted, resulting in a battery cycle. There is a risk that the characteristics will deteriorate.

(2)前記負極活物質粒子の前記コア部は、Si相とSiO相とからなることが好ましい。 (2) the core part of the negative electrode active material particles are preferably composed of a Si phase and SiO 2 phase.

上記構成において、Si相は、Liイオンを吸蔵・放出し得る珪素単体からなる相であり、Liイオンの吸蔵・放出に伴って膨張・収縮を起こす。Si相が、膨張・収縮しても、その体積変化は、SiO相により吸収される。ゆえに、負極活物質粒子全体の膨張・収縮を抑えることができ、電池のサイクル特性を更に高くすることができる。 In the above configuration, the Si phase is a phase made of silicon alone capable of inserting and extracting Li ions, and causes expansion and contraction as the Li ions are stored and released. Even if the Si phase expands and contracts, the volume change is absorbed by the SiO 2 phase. Therefore, the expansion / contraction of the whole negative electrode active material particles can be suppressed, and the cycle characteristics of the battery can be further enhanced.

(3)前記積分強度比が50以下であることが好ましい。この場合には、コア部を被覆する被膜の厚みが更に薄くなり、被膜の外表面に亀裂や欠損を生じることを更に効果的に抑えることができる。ゆえに、コア部が電解液と接触し難く、電解液の分解反応を効果的に抑えることができ、電池のサイクル特性を更に高めることができる。 (3) The integrated intensity ratio is preferably 50 or less . In this case, the thickness of the coating covering the core portion is further reduced, and it is possible to more effectively suppress the occurrence of cracks and defects on the outer surface of the coating. Therefore, it is difficult for the core portion to come into contact with the electrolytic solution, the decomposition reaction of the electrolytic solution can be effectively suppressed, and the cycle characteristics of the battery can be further enhanced.

本発明のリチウムイオン二次電池によれば、負極の負極活物質粒子の表面に、フッ化リチウムを含む被膜が形成されており、XPSで負極活物質粒子表面にX線を照射したときに検出されるスペクトルにおいて、負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比が50以下である。このため、被膜の厚みを適切に形成することで負極活物質粒子の表面の亀裂や欠損が抑えられ、電池のサイクル特性を高めることができる。   According to the lithium ion secondary battery of the present invention, a coating containing lithium fluoride is formed on the surface of the negative electrode active material particles of the negative electrode, and is detected when the surface of the negative electrode active material particles is irradiated with X-rays by XPS. In the spectrum obtained, the integrated intensity ratio of the peak due to the 1s orbit of fluorine to the peak due to the 2p orbit of silicon on the surface of the negative electrode active material particles is 50 or less. For this reason, by forming the thickness of the coating appropriately, cracks and defects on the surface of the negative electrode active material particles can be suppressed, and the cycle characteristics of the battery can be improved.

被膜の膜厚が薄い場合(ケースA)の負極活物質粒子の断面説明図である。It is sectional explanatory drawing of the negative electrode active material particle when the film thickness of a film is thin (case A). 被膜の膜厚が厚み場合(ケースB)の負極活物質粒子の断面説明図である。It is sectional explanatory drawing of the negative electrode active material particle when the film thickness of a film is thick (case B). 実施例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示す線図である。2 is a diagram showing a spectrum of binding energy of a negative electrode active material particle of Example 1 in a range of 0 to 1000 eV. FIG. 実施例1の負極活物質粒子の680〜692eVの範囲の結合エネルギーのスペクトルを示す線図である。4 is a diagram showing a spectrum of binding energy in a range of 680 to 692 eV of negative electrode active material particles of Example 1. FIG. 比較例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示す線図である。4 is a diagram showing a spectrum of binding energy in a range of 0 to 1000 eV of negative electrode active material particles of Comparative Example 1. FIG. 実施例1及び比較例1の二次電池の各サイクル毎の放電容量維持率を示す線図である。It is a diagram which shows the discharge capacity maintenance factor for every cycle of the secondary battery of Example 1 and Comparative Example 1.

本発明のリチウムイオン二次電池は、負極、正極、電解液及びセパレータをもつ。   The lithium ion secondary battery of this invention has a negative electrode, a positive electrode, electrolyte solution, and a separator.

(負極)
負極は、負極活物質粒子をもつ。負極活物質は、負極活物質層として集電体に圧着されることが一般的である。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。
(Negative electrode)
The negative electrode has negative electrode active material particles. The negative electrode active material is generally pressure-bonded to a current collector as a negative electrode active material layer. As the current collector, for example, a metal mesh or metal foil such as copper or copper alloy may be used.

負極活物質粒子は、粒子状又は粉末状を呈している。負極活物質粒子の平均粒径は、0.01〜10μm、更には、0.01〜5μmであることがよい。   The negative electrode active material particles are in the form of particles or powder. The average particle diameter of the negative electrode active material particles is preferably 0.01 to 10 μm, and more preferably 0.01 to 5 μm.

図1に示すように、負極活物質粒子3は、珪素又は/及び珪素化合物からなるコア部1と、コア部1を被覆する被膜2とからなる。コア部1は、Si相と、SiO相からなる。Si相は、珪素単体からなり、Liイオンを吸蔵・放出し得る相であり、Liイオンの吸蔵・放出に伴って膨張・収縮する。SiO相は、SiOからなり、Si相の膨張・収縮を吸収する。Si相がSiO相により被覆されることで、Si相とSiO相とからなる負極活物質粒子を形成しているとよい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって、1つの粒子、即ち負極活物質粒子を形成しているとよい。この場合には、負極活物質粒子全体の体積変化を効果的に抑えることができる。 As shown in FIG. 1, the negative electrode active material particles 3 include a core portion 1 made of silicon or / and a silicon compound, and a coating 2 covering the core portion 1. The core unit 1 includes a Si phase composed of SiO 2 phase. The Si phase is composed of simple silicon, and is a phase that can occlude and release Li ions, and expands and contracts as Li ions are occluded and released. The SiO 2 phase is made of SiO 2 and absorbs expansion and contraction of the Si phase. By Si phase is covered by SiO 2 phase, it may form a negative electrode active material particles composed of the Si phase and SiO 2 phase. Furthermore, it is preferable that a plurality of refined Si phases are covered with a SiO 2 phase and integrated to form one particle, that is, a negative electrode active material particle. In this case, the volume change of the whole negative electrode active material particle can be suppressed effectively.

コア部におけるSi相に対するSiO相の質量比は、1〜3であることが好ましい。前記質量比が1未満の場合には、コア部の膨張・収縮が大きく、負極活物質層にクラックが生じるおそれがある。一方、前記質量比が3を超える場合には、コア部でのLiの吸蔵・放出量が少なく、電気容量が低くなるおそれがある。 The mass ratio of the SiO 2 phase to the Si phase in the core part is preferably 1 to 3. When the mass ratio is less than 1, the core portion is greatly expanded and contracted, and there is a possibility that a crack may occur in the negative electrode active material layer. On the other hand, when the mass ratio exceeds 3, the amount of insertion / extraction of Li in the core portion is small, and the electric capacity may be lowered.

負極活物質粒子3のコア部1は、Si相とSiO相とのみから構成されていてもよい。また、コア部1は、Si相とSiO相とを主成分としているが、その他に、負極活物質粒子3のコア部1の成分として、公知の活物質を含んでいても良い。具体的には、MeSi (MeはLi,Caなど)のうちの少なくとも1種を混合していてもよい。 The core part 1 of the negative electrode active material particles 3 may be composed of only the Si phase and the SiO 2 phase. The core portion 1, while the main component and Si phase and SiO 2 phase, and other, as a component of the core portion 1 of the anode active material particles 3, may contain known active materials. Specifically, at least one of Me x Si y O z (Me is Li, Ca, etc.) may be mixed.

負極活物質粒子3の被膜2は、Liイオンが通過可能な絶縁膜であり、フッ化リチウムを含む。フッ化リチウムは、電解液に含まれるフッ化系塩がコア部と接触して分解反応して形成されたものである。被膜2の中には、フッ化リチウムのほかに、コア部1の成分である珪素又は/及び珪素化合物や、電解液の成分などを含んでいても良い。この場合、被膜2の中のフッ化リチウムの含有量は、被膜2の厚み方向に均一であっても良いし、被膜2の厚み方向に勾配があってもよい。後者の場合には、コア部1と被膜2の界面が最もフッ化リチウムの含有量が多く、被膜2の厚み方向外側に向かって徐々にフッ化リチウムの含有量が少なくなる場合が多いと考えられる。   The coating 2 of the negative electrode active material particles 3 is an insulating film through which Li ions can pass and contains lithium fluoride. Lithium fluoride is formed by the decomposition reaction of the fluorinated salt contained in the electrolytic solution in contact with the core portion. The coating 2 may contain, in addition to lithium fluoride, silicon or / and a silicon compound that is a component of the core portion 1, a component of an electrolytic solution, and the like. In this case, the content of lithium fluoride in the coating 2 may be uniform in the thickness direction of the coating 2 or may have a gradient in the thickness direction of the coating 2. In the latter case, it is considered that the interface between the core portion 1 and the coating 2 has the largest lithium fluoride content, and the lithium fluoride content gradually decreases toward the outside of the coating 2 in the thickness direction. It is done.

被膜2は、負極活物質粒子3のコア部1の全表面を被覆しているとよい。コア部1が、電解液と接触して、電解液中の電解質を分解することを抑制し、またコア部1に吸蔵されているLiイオンの溶出を抑制するためである。   The coating 2 may cover the entire surface of the core portion 1 of the negative electrode active material particles 3. This is because the core part 1 is brought into contact with the electrolytic solution to suppress decomposition of the electrolyte in the electrolytic solution, and the elution of Li ions occluded in the core part 1 is suppressed.

被膜2の厚みは、例えば、後述のようにコンディショニング処理の条件などにより調整される。被膜2の厚みは、X線光電子分光法(XPS)により測定される。XPSでは、負極活物質粒子に、励起X線としてAlKα線(単色)を照射する。励起X線は、X線源であるX線管のAlKα極に、15kV、10mAの電流を印加することにより発生させる。印加する電流の電圧や電流値が変わると、検出できる負極活物質表面の深さも変わるため、本発明では、15kV、10mAの電流を印加することとしている。15kV、10mAの電流をX線管に印加したときの負極活物質表面から放出される光電子の発生位置は、負極活物質最表面から深さHが5〜50nm程度までであるとされている。   The thickness of the coating 2 is adjusted, for example, according to the condition of the conditioning process as described later. The thickness of the coating 2 is measured by X-ray photoelectron spectroscopy (XPS). In XPS, negative electrode active material particles are irradiated with AlKα rays (monochrome) as excitation X-rays. Excited X-rays are generated by applying a current of 15 kV and 10 mA to the AlKα pole of an X-ray tube that is an X-ray source. When the voltage or current value of the applied current changes, the detectable depth of the negative electrode active material surface also changes. Therefore, in the present invention, a current of 15 kV and 10 mA is applied. The generation position of photoelectrons emitted from the surface of the negative electrode active material when a current of 15 kV and 10 mA is applied to the X-ray tube is said to have a depth H of about 5 to 50 nm from the outermost surface of the negative electrode active material.

負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比は、70以下、60以下、好ましくは50以下である。ここで、珪素の2p軌道に起因するピークと、フッ素の1s軌道に起因するピークは、それぞれ山状に突出している。各ピークのエネルギー領域の両側の端部の間の山状のピーク部分は、珪素の2p軌道に起因するピークとフッ素の1s軌道に起因するピークとの重ね合わせに対応する。このピーク部分の面積比が、積分強度比である。負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比は、負極活物質表面からが大きい場合、たとえば70、60さらには50を超える場合には、珪素を含む被膜の厚みが、大きすぎて、被膜の最表面が、コア部の膨張・収縮に追従できず、応力が集中して、亀裂や欠陥が生じるおそれがある。つまり、被膜最表面の亀裂や欠陥を通じて、電解液がコア部に浸透したり、コア部に吸蔵されているLiイオンが溶出したりして、電池のサイクル特性が低下するおそれがある。   The integrated intensity ratio of the peak due to the 1s orbit of fluorine to the peak due to the 2p orbit of silicon on the surface of the negative electrode active material particles is 70 or less, 60 or less, preferably 50 or less. Here, the peak caused by the 2p orbit of silicon and the peak caused by the 1s orbit of fluorine each protrude in a mountain shape. The mountain-shaped peak portion between the ends on both sides of the energy region of each peak corresponds to the superposition of the peak due to the silicon 2p orbit and the peak due to the fluorine 1s orbit. The area ratio of the peak portion is the integrated intensity ratio. When the integrated intensity ratio of the peak caused by the 1s orbit of fluorine to the peak caused by the 2p orbit of silicon on the surface of the negative electrode active material particle is large from the surface of the negative electrode active material, for example, when it exceeds 70, 60 or even 50 The thickness of the coating film containing silicon is too large, and the outermost surface of the coating film cannot follow the expansion / contraction of the core portion, so that stress concentrates and cracks and defects may occur. That is, the electrolytic solution may permeate into the core portion through cracks or defects on the outermost surface of the coating, or Li ions occluded in the core portion may be eluted, thereby reducing the cycle characteristics of the battery.

負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比は、70以下、60以下、更には、50以下であるとよい。また、前記積分強度比の下限は、5であるとよく、更には、10であることが好ましい。この場合には、被膜2がコア部1の表面全体を被覆するため、コア部に含まれる珪素が、電解液と接触することを抑えることができ、電解液の劣化を抑制し、電池の高いサイクル特性を発揮することができる。また、コア部に吸蔵されているLiイオンの溶出を抑え、電池の容量の低下を抑制することができる。   The integrated intensity ratio of the peak caused by the 1s orbit of fluorine to the peak caused by the 2p orbit of silicon on the surface of the negative electrode active material particles is preferably 70 or less, 60 or less, and further 50 or less. The lower limit of the integrated intensity ratio is preferably 5, and more preferably 10. In this case, since the coating 2 covers the entire surface of the core portion 1, it is possible to suppress the silicon contained in the core portion from coming into contact with the electrolytic solution, to suppress the deterioration of the electrolytic solution, and to increase the battery. Cycle characteristics can be exhibited. Moreover, elution of Li ions occluded in the core portion can be suppressed, and a decrease in battery capacity can be suppressed.

なお、上記の負極活物質粒子を主たる負極活物質とした上で、既に公知の他の負極活物質(たとえば黒鉛、Sn、Siなど)を添加して用いてもよい。   In addition, after making said negative electrode active material particle into the main negative electrode active material, you may add and use other well-known negative electrode active materials (for example, graphite, Sn, Si, etc.).

負極活物質層には、前記負極活物質の他に、結着剤や、導電助材などを含んでいても良い。   In addition to the negative electrode active material, the negative electrode active material layer may contain a binder, a conductive additive, and the like.

結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.05〜1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder is not particularly limited, and a known one may be used. For example, a resin that does not decompose even at a high potential, such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used. The blending ratio of the binder is preferably a mass ratio of negative electrode active material: binder = 1: 0.05 to 1: 0.5. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助材としては、リチウムイオン二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助材の配合割合は、質量比で、負極活物質:導電助材=1:0.01〜1:0.5であるのが好ましい。導電助材が少なすぎると効率のよい導電パスを形成できず、また、導電助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。   As a conductive support material, a material generally used for an electrode of a lithium ion secondary battery may be used. For example, it is preferable to use conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers. Besides conductive carbon materials, known conductive materials such as conductive organic compounds are also used. An auxiliary agent may be used. One of these may be used alone or in combination of two or more. The blending ratio of the conductive additive is preferably a mass ratio of negative electrode active material: conductive additive = 1: 0.01 to 1: 0.5. This is because if the amount of the conductive aid is too small, an efficient conductive path cannot be formed, and if the amount of the conductive aid is too large, the moldability of the electrode is deteriorated and the energy density of the electrode is lowered.

(正極)
正極は、集電体と、集電体の表面を被覆する正極活物質層とからなる。正極活物質層は、正極活物質を含み、好ましくは、更に、結着剤及び/又は導電助材を含む。導電助材および結着剤は、特に限定はなく、非水系二次電池で使用可能なものであればよい。正極活物質としては、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。具体的には、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、Sなどが挙げられる。また、集電体は、アルミニウム、ニッケル、ステンレス鋼など、非水系二次電池の正極に一般的に使用されるものであればよい。
(Positive electrode)
The positive electrode includes a current collector and a positive electrode active material layer that covers the surface of the current collector. The positive electrode active material layer includes a positive electrode active material, and preferably further includes a binder and / or a conductive additive. There are no particular limitations on the conductive additive and the binder, and any conductive auxiliary material and binder can be used as long as they can be used in non-aqueous secondary batteries. As the positive electrode active material, for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Specific examples include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 2 , and S. The current collector may be any material that is generally used for the positive electrode of a non-aqueous secondary battery, such as aluminum, nickel, and stainless steel.

(セパレータ)
セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
(Separator)
The separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

(電解液)
電解液は、非水電解液であるとよい。非水電解液は、有機溶媒に電解質であるフッ化塩を溶解させたものである。電解質であるフッ化塩は、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。
(Electrolyte)
The electrolytic solution may be a nonaqueous electrolytic solution. The nonaqueous electrolytic solution is obtained by dissolving a fluoride salt as an electrolyte in an organic solvent. The electrolyte fluoride salt is preferably an alkali metal fluoride salt soluble in an organic solvent. The alkali metal fluoride salt, e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6. The organic solvent of the non-aqueous electrolyte is preferably an aprotic organic solvent, such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( One or more selected from EMC) and the like can be used.

非水系二次電池の形状に特に限定はなく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を非水電解液とともに電池容器に密閉して電池となる。   The shape of the non-aqueous secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, a coin shape, and a laminated shape can be adopted. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, this electrode body is sealed in a battery container together with a non-aqueous electrolyte to form a battery.

(リチウムイオン二次電池の製造方法)
リチウムイオン二次電池の負極に用いられる負極活物質粒子を製造する方法について説明する。負極活物質粒子のコア部の原料として、一酸化珪素を含む原料粉末を用いるとよい。この場合、原料粉末中の一酸化珪素を、SiO相とSi相との二相に不均化する。一酸化珪素の不均化では、SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素(SiOn:nは0.5≦n≦1.5)が固体内部の反応により、SiO相とSi相との二相に分離する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。
(Method for producing lithium ion secondary battery)
A method for producing negative electrode active material particles used for a negative electrode of a lithium ion secondary battery will be described. A raw material powder containing silicon monoxide may be used as a raw material for the core of the negative electrode active material particles. In this case, silicon monoxide in the raw material powder is disproportionated into two phases of SiO 2 phase and Si phase. In disproportionation of silicon monoxide, silicon monoxide (SiOn: n is 0.5 ≦ n ≦ 1.5), which is a homogeneous solid having an atomic ratio of Si to O of approximately 1: 1, is a reaction inside the solid. To separate into two phases of SiO 2 phase and Si phase. The silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase.

原料粉末の一酸化珪素の不均化は、原料粉末にエネルギーを与えることにより進行する。一例として、原料粉末を加熱する、ミリングする、などの方法が挙げられる。   The disproportionation of silicon monoxide in the raw material powder proceeds by applying energy to the raw material powder. As an example, a method of heating or milling the raw material powder can be mentioned.

原料粉末を加熱する場合、一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中又は不活性ガス中などの不活性雰囲気中で800〜1200℃、1〜5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。 When the raw material powder is heated, it is generally said that almost all silicon monoxide is disproportionated and separated into two phases at 800 ° C. or higher if oxygen is removed. Specifically, the raw material powder containing the amorphous silicon monoxide powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as vacuum or in an inert gas. A silicon oxide powder containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.

原料粉末をミリングする場合には、ミリングの機械的エネルギーの一部が、原料粉末の固相界面における化学的な原子拡散に寄与し、酸化物相と珪素相などを生成する。ミリングでは、原料粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用して混合するとよい。   When milling the raw material powder, part of the mechanical energy of the milling contributes to chemical atomic diffusion at the solid phase interface of the raw material powder, and generates an oxide phase, a silicon phase, and the like. In milling, the raw material powder may be mixed using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas.

ミリング後にさらに熱処理を施すことで、一酸化珪素の不均化をさらに促進させてもよい。   Further heat treatment may be performed after milling to further promote disproportionation of silicon monoxide.

コア部の外表面を被膜で被覆するにあたっては、例えば、二次電池組み付け途中又は組み付け後に、所定の条件下で充放電を行うコンディショニング処理を行うとよい。コンディショニング処理の具体例としては、第1に、負極と正極とセパレータからなる電極体を電池容器内に収容し電解液を注入した後に、所定の温度下で充放電を行った後に、密封する。第2に、電極体及び電解液を電池容器内に収容し密封することで二次電池組み付け後に、所定の温度下で充放電を施す。この中、充放電の作業性の観点から、二次電池組み付け後に、所定の温度下で充放電を施すことがよい。充放電を施す際の温度は、35℃以上80℃以下であることがよく、更にはその下限は40℃であることが好ましく、上限は60℃、更には55℃であることが好ましい。充放電を施す際の温度が低すぎると、被膜が厚くなり、負極活物質粒子のコア部の膨張・収縮により、被膜最表面部に、亀裂や欠損が生じるおそれがある。被膜最表面部の亀裂や欠損した部分から電解液が浸透し、コア部内の珪素と反応して、電解液が劣化し、電池のサイクル特性が低くなるおそれがある。充放電処理の温度が高すぎると、電解液の成分、特に溶媒が変質し、電池特性が低下するおそれがある。   In covering the outer surface of the core portion with the coating, for example, a conditioning process for charging and discharging under predetermined conditions may be performed during or after the secondary battery is assembled. As a specific example of the conditioning treatment, first, after an electrode body composed of a negative electrode, a positive electrode, and a separator is accommodated in a battery container and an electrolytic solution is injected, charging / discharging is performed at a predetermined temperature, and then sealing is performed. Second, the electrode body and the electrolytic solution are housed in a battery container and sealed to charge and discharge at a predetermined temperature after the secondary battery is assembled. Among these, from the viewpoint of workability of charge / discharge, it is preferable to charge / discharge at a predetermined temperature after assembling the secondary battery. The temperature at the time of charging / discharging is preferably 35 ° C. or higher and 80 ° C. or lower. Further, the lower limit is preferably 40 ° C., and the upper limit is preferably 60 ° C., more preferably 55 ° C. If the temperature at the time of charging / discharging is too low, the coating becomes thick, and cracks and defects may occur in the outermost surface portion of the coating due to expansion and contraction of the core portion of the negative electrode active material particles. There is a possibility that the electrolytic solution permeates from cracks or missing portions on the outermost surface portion of the coating, reacts with silicon in the core portion, deteriorates the electrolytic solution, and lowers the cycle characteristics of the battery. If the temperature of the charge / discharge treatment is too high, the components of the electrolytic solution, particularly the solvent, may be altered, and the battery characteristics may be deteriorated.

なお、リチウムイオン二次電池全体の組み付け方法は、公知の方法により行うことができる。   In addition, the assembly method of the whole lithium ion secondary battery can be performed by a well-known method.

(実施例1)
本例のリチウムイオン二次電池を以下のように作製し、電池のサイクル評価試験を行った。
Example 1
The lithium ion secondary battery of this example was produced as follows, and the cycle evaluation test of the battery was performed.

まず、市販のSiO粉末を活性ガス雰囲気中で900℃、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、負極活物質粒子が得られた。この負極活物質粒子について、CuKαを使用したXRD測定を行ったところ、単体珪素と二酸化珪素とに由来する特有のピークが確認された。このことから、負極活物質粒子には、単体珪素と二酸化珪素が生成していることがわかった。 First, a commercially available SiO powder was heat-treated at 900 ° C. for 2 hours in an inert gas atmosphere. Thereby, SiO powder was disproportionated and the negative electrode active material particle was obtained. When the XRD measurement using CuKα was performed on the negative electrode active material particles, a unique peak derived from simple silicon and silicon dioxide was confirmed. From this, it was found that elemental silicon and silicon dioxide were generated in the negative electrode active material particles.

次に、調製された負極活物質粒子と、導電助材としての黒鉛粉末とケッチェンブラックと、結着剤としてのポリアミドイミドとを混合し、溶媒を加えてスラリー状の混合物を得た。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。負極活物質粒子と、導電助材と、結着剤との質量比は、百分率で、48/37/15であった。   Next, the prepared negative electrode active material particles, graphite powder as a conductive additive, ketjen black, and polyamideimide as a binder were mixed, and a solvent was added to obtain a slurry mixture. The solvent was N-methyl-2-pyrrolidone (NMP). The mass ratio of the negative electrode active material particles, the conductive additive, and the binder was 48/37/15 as a percentage.

次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極活物質層が固定されてなる負極が形成された。   Next, the slurry mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool. Thereby, the negative electrode formed by fixing the negative electrode active material layer on the current collector surface was formed.

次に、正極活物質としてのリチウム・ニッケル複合酸化物LiNi1/3Co1/3Mn1/3と、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。これにより、集電体の表面に正極活物質層を固定してなる正極を得た。正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、エチレンカーボネートとジエチルカーボネートとを、3質量部と、7質量部との配合比で混合して調製した。電解液中のLiPFの濃度は、1mol/lであった。 Next, a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry. Was applied to one side of an aluminum foil as a current collector, pressed and fired. This obtained the positive electrode formed by fixing a positive electrode active material layer on the surface of a collector. A polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode. A plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked. The periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape. The laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put. The electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent. The organic solvent was prepared by mixing ethylene carbonate and diethyl carbonate in a mixing ratio of 3 parts by mass and 7 parts by mass. The concentration of LiPF 6 in the electrolytic solution was 1 mol / l.

その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、ラミネート電池を得た。ラミネート電池にはコンディショニング処理を行った。コンディショニング処理は、45℃で3回繰り返して行った。1回目は充電条件を0.2C、4.1VのCC−CV(定電流定電圧)充電とし、放電条件を0.2C、3V、カットオフのCC放電とした。2回目は充電条件を0.2C、4.1VのCC−CV充電とし、放電条件を0.1C、3V、カットオフのCC放電とした。3回目は充電条件を1C、4.2VのCC−CV充電とし、放電条件を1C、3V、カットオフのCC放電とした。コンディショニング処理の後に、リチウムイオン二次電池を常温(25℃)に戻した。   Then, the opening part of the aluminum film was completely airtightly sealed while evacuating. At this time, the tips of the positive electrode side and negative electrode side current collectors were protruded from the edge portions of the film to enable connection to external terminals, thereby obtaining a laminated battery. The laminated battery was conditioned. The conditioning treatment was repeated three times at 45 ° C. The first time, the charging condition was set to 0.2C, 4.1V CC-CV (constant current constant voltage) charging, and the discharging condition was set to 0.2C, 3V, cut-off CC discharge. For the second time, the charging condition was set to CC-CV charging of 0.2C and 4.1V, and the discharging condition was set to CC discharge of 0.1C, 3V and cut-off. In the third time, the charging condition was 1C, 4.2V CC-CV charging, and the discharging condition was 1C, 3V, cut-off CC discharge. After the conditioning treatment, the lithium ion secondary battery was returned to room temperature (25 ° C.).

(比較例1)
本比較例においては、コンディショニング処理の際の温度を25℃とした以外は、実施例1と同様にリチウムイオン二次電池を作製した。
(Comparative Example 1)
In this comparative example, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the temperature during the conditioning treatment was 25 ° C.

<XPS>
実施例1及び比較例1のリチウムイオン二次電池の負極活物質粒子についてXPSにより結合エネルギーのスペクトル強度を測定した。XPSでは、25℃の温度下で、15kV、10mAの条件で放射されるAlKα線を、負極活物質粒子表面に照射した。AlKα線の照射角度θは、負極活物質粒子の表面の接線に対して35°とした。測定結果を、図3〜図5に示した。図3は、実施例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示し、図4は、実施例1の負極活物質粒子の680〜692eVの範囲の結合エネルギーのスペクトルを示し、図5は、比較例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示す。
<XPS>
The spectral intensity of the binding energy of the negative electrode active material particles of the lithium ion secondary batteries of Example 1 and Comparative Example 1 was measured by XPS. In XPS, the surface of the negative electrode active material particles was irradiated with AlKα rays emitted at a temperature of 25 ° C. under conditions of 15 kV and 10 mA. The irradiation angle θ of the AlKα ray was set to 35 ° with respect to the tangent to the surface of the negative electrode active material particles. The measurement results are shown in FIGS. FIG. 3 shows a spectrum of binding energy of the negative electrode active material particles of Example 1 in the range of 0 to 1000 eV, and FIG. 4 shows a spectrum of binding energy of the negative electrode active material particles of Example 1 in the range of 680 to 692 eV. FIG. 5 shows the spectrum of the binding energy of the negative electrode active material particles of Comparative Example 1 in the range of 0 to 1000 eV.

図3,図4に示すように、実施例1の負極活物質粒子から放出されるX線のスペクトルにおいて、結合エネルギーが680〜692eVの範囲に、フッ素の1s軌道に起因するピークが出現し、結合エネルギーが98〜105eVの範囲に、珪素の2P軌道に起因するピークが出現していた。フッ素の1s軌道は、Liと結合している軌道であるため、フッ素の1s軌道のピークが出現したことは、負極活物質粒子の表面にフッ素を含む化合物が生成していることを示している。図4において、フッ素の1sピークの中で684eV近傍に現れているピークはフッ化リチウム起因で出現する。つまり、684eV近傍のピークが出現したことは、負極活物質粒子の表面にフッ化リチウムが生成していることを示している。フッ素の1sのピークはフッ化リチウムが無くてもフッ素を含む化合物が存在すれば出現する。フッ化リチウム起因で出現するピークはフッ素の1sピークの中でも684eV近傍に現れているピークである(図4)。LiFのLi源およびフッ素源は、電解液の電解質LiPFであると推定される。即ち、電解質LiPFが下記の式(1)に示すように分解して、LiFが生成したものである。 As shown in FIGS. 3 and 4, in the X-ray spectrum emitted from the negative electrode active material particles of Example 1, a peak due to the 1s orbital of fluorine appears in the range where the binding energy is 680 to 692 eV, A peak due to the 2P orbital of silicon appeared in the range where the binding energy was 98 to 105 eV. Since the 1s orbital of fluorine is an orbital bonded to Li, the appearance of a peak of 1s orbital of fluorine indicates that a compound containing fluorine is generated on the surface of the negative electrode active material particles. . In FIG. 4, the peak appearing in the vicinity of 684 eV among the 1 s peak of fluorine appears due to lithium fluoride. That is, the appearance of a peak near 684 eV indicates that lithium fluoride is generated on the surface of the negative electrode active material particles. The peak of 1 s of fluorine appears even if there is a compound containing fluorine even without lithium fluoride. The peak that appears due to lithium fluoride is the peak that appears in the vicinity of 684 eV among the 1 s peak of fluorine (FIG. 4). It is estimated that the Li source and the fluorine source of LiF are the electrolyte LiPF 6 of the electrolytic solution. That is, the electrolyte LiPF 6 is decomposed as shown in the following formula (1) to generate LiF.

LiPF6→LiF+PF5・・・(1)
図3,図5に示すように、実施例1と比較例1の負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比を求めた。表1に示すように、実施例1の積分強度比は44であり、比較例1の積分強度比は77であった。実施例1の負極活物質粒子の方が、比較例1に比べてフッ素の1s軌道の相対的な強度が低いため、比較例1よりも、フッ素を含む被膜の厚みが薄いことがわかった。
LiPF 6 → LiF + PF 5 (1)
As shown in FIGS. 3 and 5, the integrated intensity ratio of the peak due to the 1s orbit of fluorine to the peak due to the 2p orbit of silicon on the negative electrode active material particle surfaces of Example 1 and Comparative Example 1 was determined. As shown in Table 1, the integrated intensity ratio of Example 1 was 44, and the integrated intensity ratio of Comparative Example 1 was 77. The negative electrode active material particles of Example 1 were found to have a thinner fluorine-containing film than Comparative Example 1 because the relative strength of the 1s orbit of fluorine was lower than that of Comparative Example 1.

Figure 0005585470
Figure 0005585470

<電池のサイクル実験>
実施例1及び比較例1のリチウムイオン二次電池のサイクル試験を行った。サイクル試験は、25℃で行い、充電条件を1C、4.2VのCC−CV(定電流定電圧)充電とし、放電条件を1C、2.5V、カットオフのCC放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、300サイクル目まで同様の充放電を繰り返し行った。各サイクル毎に、放電容量を測定し、各サイクルにおける放電容量維持率を算出した。放電容量維持率は、Nサイクル目の放電容量を初回の放電容量で除した値の百分率((Nサイクル目の放電容量)/(1サイクル目の放電容量)×100)で求められる値である。Nは1〜20の整数である。各サイクル毎の放電容量維持率を図6に示した。図6には、実施例1及び比較例1の各々2つのリチウムイオン二次電池についてサイクル試験を行った結果を示した(n=2回)。
<Battery cycle experiment>
The cycle test of the lithium ion secondary battery of Example 1 and Comparative Example 1 was performed. The cycle test was performed at 25 ° C., the charge condition was 1 C, 4.2 V CC-CV (constant current constant voltage) charge, and the discharge condition was 1 C, 2.5 V, cut-off CC discharge. The first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 300th cycle. The discharge capacity was measured for each cycle, and the discharge capacity retention rate in each cycle was calculated. The discharge capacity maintenance ratio is a value obtained by dividing the discharge capacity at the Nth cycle by the initial discharge capacity ((discharge capacity at the Nth cycle) / (discharge capacity at the first cycle) × 100). . N is an integer of 1-20. The discharge capacity retention rate for each cycle is shown in FIG. FIG. 6 shows the results of a cycle test performed on each of the two lithium ion secondary batteries of Example 1 and Comparative Example 1 (n = 2 times).

図6に示すように、実施例1のリチウムイオン二次電池は、比較例1のものに比べて、放電容量維持率が高かった。   As shown in FIG. 6, the lithium ion secondary battery of Example 1 had a higher discharge capacity maintenance rate than that of Comparative Example 1.

上記のように、実施例1の負極の負極活物質粒子は、比較例1に比べて、フッ化リチウム(LiF)を含む被膜の厚みが薄く、電池のサイクル特定が良好であった。その理由は、実施例1の負極の負極活物質粒子の被膜は、薄く、コア部の膨張・収縮による被膜最表面の応力が低く抑えられ、被膜最表面に亀裂や欠損が生じにくかったためであると考えられる。   As described above, the negative electrode active material particles of the negative electrode of Example 1 had a thinner coating film containing lithium fluoride (LiF) than that of Comparative Example 1, and the cycle specification of the battery was good. The reason is that the negative electrode active material particle coating of the negative electrode of Example 1 was thin, the stress on the outermost surface of the coating due to the expansion / contraction of the core portion was kept low, and cracks and defects were less likely to occur on the outermost surface of the coating. it is conceivable that.

1:コア部、2:被膜、3:負極活物質粒子 1: Core part, 2: Coating, 3: Negative electrode active material particle

Claims (2)

正極と、負極と、電解液と、セパレータとを備えるリチウムイオン二次電池であって、
電池組み付け途中又は組み付け後に35℃以上80℃以下で充放電を行うコンディショニング処理を行ってなり、
前記正極は、リチウムイオンを吸蔵・放出可能な正極活物質をもち、
前記負極は、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなるコア部と、前記コア部の表面を被覆しているとともにリチウムイオンが通過可能であってフッ化リチウムを含む被膜とからなる負極活物質粒子をもち、
前記電解液は、フッ化塩を含み、
電圧15kV、電流10mAの条件で放射されるAlKα(単色)線を用いるX線光電子分光法(XPS)により測定されるスペクトルにおいて、前記負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比が10以上70以下であり、
前記負極活物質粒子の前記コア部は、Si相とSiO 相とからなることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolyte, and a separator,
During or after battery assembly, the battery is charged and discharged at a temperature of 35 ° C or higher and 80 ° C or lower.
The positive electrode has a positive electrode active material capable of inserting and extracting lithium ions,
The negative electrode is capable of inserting and extracting lithium ions, covers a core part made of silicon or / and a silicon compound, covers the surface of the core part, and allows lithium ions to pass therethrough and contains lithium fluoride. Having negative electrode active material particles comprising a coating,
The electrolytic solution includes a fluoride salt,
In a spectrum measured by X-ray photoelectron spectroscopy (XPS) using AlKα (monochromatic) radiation radiated under conditions of a voltage of 15 kV and a current of 10 mA, fluorine with respect to a peak due to the 2p orbit of silicon on the surface of the negative electrode active material particles the integrated intensity ratio of the peak due to the 1s orbital Ri der 10 or more 70 or less,
The lithium ion secondary battery , wherein the core part of the negative electrode active material particles is composed of a Si phase and a SiO 2 phase .
前記積分強度比が50以下であることを特徴とする請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 , wherein the integrated intensity ratio is 50 or less.
JP2011015310A 2011-01-27 2011-01-27 Lithium ion secondary battery Expired - Fee Related JP5585470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015310A JP5585470B2 (en) 2011-01-27 2011-01-27 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015310A JP5585470B2 (en) 2011-01-27 2011-01-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012156055A JP2012156055A (en) 2012-08-16
JP5585470B2 true JP5585470B2 (en) 2014-09-10

Family

ID=46837566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015310A Expired - Fee Related JP5585470B2 (en) 2011-01-27 2011-01-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5585470B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062026A (en) * 2011-09-12 2013-04-04 Toyota Industries Corp Lithium ion secondary battery and manufacturing method therefor
KR102183396B1 (en) 2014-12-31 2020-11-26 대주전자재료 주식회사 Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same
CN105789555A (en) * 2016-04-26 2016-07-20 中国科学院长春应用化学研究所 Silicon composite material and preparation method thereof as well as battery cathode and lithium ion battery
KR102285979B1 (en) * 2017-09-11 2021-08-04 주식회사 엘지에너지솔루션 Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
US11296312B2 (en) 2017-12-08 2022-04-05 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and method for preparing the same
US20220393170A1 (en) * 2019-09-27 2022-12-08 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
JP7370911B2 (en) * 2020-03-19 2023-10-30 株式会社東芝 Secondary batteries, battery packs, and vehicles
WO2023140192A1 (en) * 2022-01-21 2023-07-27 Tdk株式会社 Negative electrode active material for lithium ion secondary batteries, negative electrode active material layer for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335195A (en) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP5073167B2 (en) * 2004-12-27 2012-11-14 三星エスディアイ株式会社 Lithium secondary battery
KR100684733B1 (en) * 2005-07-07 2007-02-20 삼성에스디아이 주식회사 Lithium secondary battery
JP5224158B2 (en) * 2007-02-23 2013-07-03 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2010080116A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
US20110143195A1 (en) * 2009-06-29 2011-06-16 Shuji Ito Negative electrode for lithium ion battery, method for producing the same, and lithium ion battery

Also Published As

Publication number Publication date
JP2012156055A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5733000B2 (en) Method for producing lithium ion secondary battery
JP5585470B2 (en) Lithium ion secondary battery
JP6705384B2 (en) Lithium secondary battery
JP5598723B2 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode active material
WO2017094416A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
CN111799439B (en) Lithium ion battery
JP6495993B2 (en) Negative electrode
CN103140980B (en) Lithium rechargeable battery
JP2017152294A (en) Positive electrode active material and lithium ion secondary battery
WO2017077986A1 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP7040460B2 (en) A method for manufacturing a graphite-based material for a lithium ion secondary battery, a method for manufacturing a negative electrode for a lithium ion secondary battery, and a method for manufacturing a lithium ion secondary battery.
JP2016192384A (en) Lithium secondary battery and method of manufacturing the same
JP2013137873A (en) Lithium ion secondary battery
CN110323419B (en) Negative electrode material, nonaqueous electrolyte secondary battery, and method for producing same
JP6184273B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP2017103058A (en) Cathode active material used for lithium ion secondary battery
JP2012256539A (en) Lithium ion secondary battery
CN109565032B (en) Negative electrode for nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2011154963A (en) Nonaqueous electrolyte battery
JP2013062026A (en) Lithium ion secondary battery and manufacturing method therefor
JP7070676B2 (en) Reduced graphene-based material
EP3220454B1 (en) Nonaqueous electrolyte battery, battery pack and vehicle
JP5776932B2 (en) Lithium ion secondary battery operating method and battery device
JP2013528916A (en) Lithium electrochemical accumulator with bipolar structure operating based on a pair of lithium sulfur compound electrodes
EP3993099A1 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees