JP5073167B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP5073167B2
JP5073167B2 JP2004377813A JP2004377813A JP5073167B2 JP 5073167 B2 JP5073167 B2 JP 5073167B2 JP 2004377813 A JP2004377813 A JP 2004377813A JP 2004377813 A JP2004377813 A JP 2004377813A JP 5073167 B2 JP5073167 B2 JP 5073167B2
Authority
JP
Japan
Prior art keywords
negative electrode
phase
compound
sif
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004377813A
Other languages
Japanese (ja)
Other versions
JP2006185728A (en
Inventor
恵子 松原
利章 津野
輝 高椋
性洙 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004377813A priority Critical patent/JP5073167B2/en
Priority to KR1020050054471A priority patent/KR100749496B1/en
Publication of JP2006185728A publication Critical patent/JP2006185728A/en
Application granted granted Critical
Publication of JP5073167B2 publication Critical patent/JP5073167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウム二次電池に関するものであり、特に、サイクル特性に優れたリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having excellent cycle characteristics.

リチウム二次電池は、一般的にLiCoOを正極活物質とし、黒鉛を負極活物質とし、更に非水溶液を電解液とする電池であり、携帯電話機、デジタルスチルカメラ、デジタルビデオカメラ、ノートパソコン等の電源として広く普及している。このリチウム二次電池においては、充放電時に電解液成分が黒鉛表面で分解されて黒鉛表面にLiFの被膜が形成される。このLiFの被膜形成は不可逆反応であって、LiFからリチウムイオンが生成することがないので、このLiFの形成が進みすぎると正極と負極との間を行き来するリチウムが減少し、これにより充放電効率が悪くなる。また表面に厚い皮膜が形成されることにより、インピーダンスが上昇し、レート特性が低下する。 A lithium secondary battery is generally a battery that uses LiCoO 2 as a positive electrode active material, graphite as a negative electrode active material, and a non-aqueous solution as an electrolyte, such as a mobile phone, a digital still camera, a digital video camera, and a laptop computer. Widely used as a power source. In this lithium secondary battery, the electrolyte component is decomposed on the graphite surface during charge and discharge, and a LiF film is formed on the graphite surface. This LiF film formation is an irreversible reaction, and lithium ions are not generated from LiF. Therefore, if this LiF formation proceeds too much, the amount of lithium traveling between the positive electrode and the negative electrode decreases, thereby charging and discharging. The efficiency becomes worse. Further, when a thick film is formed on the surface, the impedance increases and the rate characteristic decreases.

一方、最近では、黒鉛に代えてSiを主成分とする負極活物質の研究が進められている。Siを主成分とする負極活物質は、黒鉛と比べて10倍近くの充放電容量を有することから、将来の電極材料として有望である。このSiは、充電時にリチウムと合金を形成してその体積が膨張したり、電解液を分解するなどの不具合があった。しかし最近になって、Siが含まれ、かつ表面のみからSiが除去されてなる多相合金粉末から構成された負極活物質が開発され(特許文献1)、Siを含む負極活物質の実用化が現実のものになってきている。
特願2003−299282号明細書
On the other hand, recently, research on a negative electrode active material containing Si as a main component instead of graphite has been advanced. A negative electrode active material mainly composed of Si is promising as a future electrode material because it has a charge / discharge capacity nearly 10 times that of graphite. This Si has problems such as forming an alloy with lithium during charging and expanding its volume or decomposing the electrolytic solution. Recently, however, a negative electrode active material composed of a multiphase alloy powder containing Si and having Si removed from only the surface has been developed (Patent Document 1), and a negative electrode active material containing Si has been put to practical use. Is becoming a reality.
Japanese Patent Application No. 2003-299282

しかし、Siを含む負極活物質は、充電時の体積膨張、収縮が黒鉛に比べて大きいため、黒鉛のときに比べ、同じ電解液を用いると安定した皮膜が形成されにくく、毎回、新鮮なSi相面が次々に形成され、Si相面で電解液と反応してLiFの被膜形成反応がおきる。その結果、正極と負極との間を行き来するリチウムが減少して、充放電サイクル特性が劣化する問題があった。   However, since the negative electrode active material containing Si has larger volume expansion and contraction during charging than graphite, a stable coating is less likely to be formed when the same electrolyte is used compared to graphite. Phase surfaces are formed one after another and react with the electrolyte at the Si phase surface to cause a LiF film formation reaction. As a result, there is a problem in that lithium traveling between the positive electrode and the negative electrode is reduced, and charge / discharge cycle characteristics are deteriorated.

本発明は上記事情に鑑みてなされたものであり、LiFの形成を抑えて充放電サイクル特性を向上させることが可能なリチウム二次電池を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the lithium secondary battery which can suppress formation of LiF and can improve charging / discharging cycling characteristics.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池は、負極活物質が含まれてなる負極と正極活物質が含まれてなる正極と非水電解液とから少なくとも構成されるリチウム二次電池において、その電池内にSiF形成化合物が少なくとも備えられ、充電後の前記負極に対する二次イオン質量スペクトルにおけるLiイオンとSiFイオンの強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲にあることを特徴とする。
また本発明のリチウム二次電池は、Siを含む負極活物質が含まれてなる負極と、LiPFが含まれてなる非水電解液と、SiF形成化合物とが少なくとも備えられ、充電後の負極に対する二次イオン質量スペクトルにおけるLiイオンとSiFイオンの強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲にあることが望ましい。
また本発明のリチウム二次電池においては、充電後の負極において、全フッ化物に対するLiF化合物の成分比が50%以下であることが好ましい。
また本発明のリチウム二次電池においては、前記SiF形成化合物が、シリコーン化合物、ハロゲン化ケイ素、二酸化ケイ素、硫化ケイ素、窒化ケイ素、ヘキサフルオロケイ酸、メタケイ酸、シクロキサン化合物、シラザン化合物、あるいはSiC基、SiCH基、SiC基を少なくとも一種類以上含む化合物、の内の少なくとも1種以上の化合物であることが好ましい。
更に本発明のリチウム二次電池における前記負極活物質は、Siと、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Y、Ag、Auのうちから選択される少なくとも1種以上の元素から構成される材料であることが好ましい。
更に本発明のリチウム二次電池における前記負極活物質には、Si相及びSiM相が必ず含まれ、かつX相またはSiX相のいずれか一方または両方が含まれる多相合金粉末からなり、前記多相合金粉末の粒子表面におけるSi相の量が粒子内部におけるSi相の量より少なくされていることが特に好ましい。ただし、前記MはNi、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素であり、元素XはAg、Cu、Auのうちの少なくとも1種以上の元素であり、Cuは元素Mと元素Xに同時に選択されないものとする。
In order to achieve the above object, the present invention employs the following configuration.
The lithium secondary battery of the present invention is a lithium secondary battery comprising at least a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte. A forming compound is provided at least, and an intensity ratio (SiF + / Li + ) between Li + ions and SiF + ions in a secondary ion mass spectrum with respect to the negative electrode after charging is 2.0 × 10 −3 or more and 1.0 × 10 It is in the range of −1 or less.
The lithium secondary battery of the present invention includes at least a negative electrode containing a negative electrode active material containing Si, a non-aqueous electrolyte containing LiPF 6 and a SiF-forming compound, and is a negative electrode after charging. It is desirable that the intensity ratio (SiF + / Li + ) of Li + ions and SiF + ions in the secondary ion mass spectrum with respect to is in the range of 2.0 × 10 −3 or more and 1.0 × 10 −1 or less.
Moreover, in the lithium secondary battery of this invention, it is preferable that the component ratio of the LiF compound with respect to a total fluoride is 50% or less in the negative electrode after charge.
In the lithium secondary battery of the present invention, the SiF-forming compound is a silicone compound, silicon halide, silicon dioxide, silicon sulfide, silicon nitride, hexafluorosilicic acid, metasilicic acid, cycloxanic compound, silazane compound, or SiC 6. It is preferably at least one compound among compounds containing at least one kind of H 5 group, SiCH 3 group, and SiC 2 H 5 group.
Furthermore, the negative electrode active material in the lithium secondary battery of the present invention is at least one selected from Si, Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, Y, Ag, and Au. A material composed of the above elements is preferable.
Furthermore, the negative electrode active material in the lithium secondary battery of the present invention comprises a multiphase alloy powder that necessarily contains an Si phase and an SiM phase, and contains either one or both of an X phase and an SiX phase, It is particularly preferable that the amount of Si phase on the particle surface of the phase alloy powder is smaller than the amount of Si phase inside the particle. Where M is at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, and element X is at least one element selected from Ag, Cu, and Au. In the above elements, Cu is not selected as the element M and the element X at the same time.

上記構成において、充電後の負極とは、充電後の電池の開回路電圧が3.5V以上の充電状態になっているものが好ましい。
また、二次イオン質量スペクトルは特に、飛行時間型二次イオン質量スペクトル(TOF-SIMS)を用いることが好ましい。
またSiF形成化合物とは、シリコーン化合物等といった、フッ素イオン若しくはフッ化物イオンと化合してSi−F結合を有するSiF化合物を形成する化合物をいう。
更に、全フッ化物とは、充放電反応によって負極中において形成されるLiF、SiF化合物などのフッ素を含有する化合物の全てをいう。
更にまたLiF化合物とは、充放電反応によって負極中において形成されるフッ化リチウム(LiF)をはじめとするリチウムとフッ素を含有してなる化合物の全てをいう。
In the above configuration, the negative electrode after charging is preferably one in which the open circuit voltage of the battery after charging is in a charged state of 3.5 V or more.
The secondary ion mass spectrum is particularly preferably a time-of-flight secondary ion mass spectrum (TOF-SIMS).
The SiF-forming compound refers to a compound that forms a SiF compound having a Si—F bond by combining with fluorine ions or fluoride ions, such as a silicone compound.
Further, the total fluoride refers to all fluorine-containing compounds such as LiF and SiF compounds formed in the negative electrode by charge / discharge reactions.
Furthermore, the LiF compound refers to all compounds containing lithium and fluorine, including lithium fluoride (LiF) formed in the negative electrode by a charge / discharge reaction.

上記のリチウム二次電池によれば、充電放電過程のなかで、新鮮なSi相面が露出した場合でも、SiF形成化合物によってSiF化合物が形成される。充放電の過程でも、形成したSiFは安定であり、これによりLiイオンとSiFイオンの強度比(SiF/Li)が常に上記の範囲内となるため、充放電サイクルの進行によってLiFが蓄積されることがない。これによりリチウム二次電池の正極と負極との間を行き来するリチウムが減少するおそれが無く、充放電サイクルの劣化が防止される。
また、形成されたSiFによって電解液の分解反応も抑制されるので、電池内部における分解ガスの発生が抑制され、内圧の上昇を防ぐことができると同時に、各サイクルの充放電効率が向上される。
According to the above lithium secondary battery, the SiF compound is formed by the SiF-forming compound even when a fresh Si phase surface is exposed during the charge / discharge process. In the charge / discharge process, the formed SiF is stable, and the intensity ratio of Li + ions to SiF + ions (SiF + / Li + ) is always within the above range. Will not accumulate. Thereby, there is no possibility that the lithium which goes back and forth between the positive electrode and the negative electrode of the lithium secondary battery is reduced, and deterioration of the charge / discharge cycle is prevented.
In addition, since the decomposition reaction of the electrolytic solution is suppressed by the formed SiF, generation of decomposition gas inside the battery is suppressed, and an increase in internal pressure can be prevented, and at the same time, charge / discharge efficiency of each cycle is improved. .

また上記のリチウム二次電池によれば、全フッ化物に対するLiF化合物の成分比が50%以下とされているので、正極と負極との間を行き来するリチウムが減少するおそれが無く、充放電サイクルの劣化が防止される。   Further, according to the above lithium secondary battery, since the component ratio of the LiF compound with respect to the total fluoride is 50% or less, there is no fear that lithium traveling between the positive electrode and the negative electrode decreases, and the charge / discharge cycle Deterioration is prevented.

更に上記のリチウム二次電池によれば、SiF形成化合物としてシリコーン化合物等を用いることにより、LiF化合物が形成される前にSiF化合物を優先的に形成させることが可能となり、正極と負極との間を行き来するリチウムが減少するおそれが無くなって充放電サイクルの劣化が防止される。   Further, according to the above lithium secondary battery, by using a silicone compound or the like as the SiF forming compound, it becomes possible to preferentially form the SiF compound before the LiF compound is formed, and between the positive electrode and the negative electrode. Therefore, there is no possibility that the lithium flowing back and forth decreases, and deterioration of the charge / discharge cycle is prevented.

更にまた上記のリチウム二次電池によれば、負極活物質として粒子表面におけるSi相の量が粒子内部におけるSi相の量より少なくされている多相合金粉末を用いるので、LiPFの負極活物質表面での分解反応を抑制することができ、LiF化合物の形成が抑制されて正極と負極との間を行き来するリチウムが減少するおそれが無くなり、充放電サイクルの劣化が防止される。 Furthermore, according to the above lithium secondary battery, since the multiphase alloy powder in which the amount of Si phase on the particle surface is smaller than the amount of Si phase inside the particle is used as the negative electrode active material, the negative electrode active material of LiPF 6 The decomposition reaction on the surface can be suppressed, the formation of the LiF compound is suppressed, and there is no possibility that lithium traveling between the positive electrode and the negative electrode is reduced, and deterioration of the charge / discharge cycle is prevented.

また、前記SiF形成化合物が前記負極に添加されることで、SiF形成化合物を効率よく反応させることができ、充放電サイクルの劣化が防止される。   Moreover, by adding the SiF-forming compound to the negative electrode, the SiF-forming compound can be reacted efficiently, and deterioration of the charge / discharge cycle is prevented.

本発明のリチウム二次電池用の負極によれば、充放電サイクルの進行によってLiFが蓄積される前にSiF化合物が形成され、リチウム二次電池の正極と負極との間を行き来するリチウムが減少するおそれが無いので、リチウム二次電池のサイクル特性を向上することができる。   According to the negative electrode for the lithium secondary battery of the present invention, the SiF compound is formed before LiF is accumulated by the progress of the charge / discharge cycle, and the lithium traveling between the positive electrode and the negative electrode of the lithium secondary battery is reduced. Therefore, the cycle characteristics of the lithium secondary battery can be improved.

以下、本発明の実施の形態を図面を参照して説明する。
本発明のリチウム二次電池は、正極と、負極と、非水電解液とを具備してなり、これらが例えば円筒形、角形、コイン型、シート状の各種形状の電池ケースに収納されて構成されている。また正極と負極との間にはセパレータが介在されている。また、本発明のリチウム二次電池にはSiF形成化合物が添加されている。このSiF形成化合物は、負極にあらかじめ混合しておくことが望ましいが、非水電解液に添加しても良く、また電池ケースの内側に塗布しておいても良く、更にセパレータに塗布しておいても良い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte, and these are housed in battery cases of various shapes such as a cylindrical shape, a square shape, a coin shape, and a sheet shape. Has been. A separator is interposed between the positive electrode and the negative electrode. In addition, a SiF-forming compound is added to the lithium secondary battery of the present invention. This SiF-forming compound is preferably mixed in advance with the negative electrode, but it may be added to the non-aqueous electrolyte, applied to the inside of the battery case, and further applied to the separator. May be.

(正極)
正極には、正極活物質と導電助材と結着剤とが含有されてなる正極合材と、この正極合材に接合される正極集電体とからなるシート状の電極を用いることができる。また、上記の正極合材を円板状に成形させてなるペレット型若しくはシート状の電極も用いることができる。
(Positive electrode)
As the positive electrode, a sheet-like electrode comprising a positive electrode mixture containing a positive electrode active material, a conductive additive and a binder, and a positive electrode current collector bonded to the positive electrode mixture can be used. . Moreover, the pellet type or sheet-like electrode formed by shape | molding said positive electrode compound material in a disk shape can also be used.

正極活物質としては、Liを含んだ化合物、酸化物、硫化物であり、含まれる金属としては、例えば、Mn、Co、Ni、Fe、Al等、少なくとも一種類以上含む物質が例示できる。更に具体的にはLiMn、LiCoO、LiNiO、LiFeO2、LiNi1/3Co1/3Mn1/32、LiNi0.8Co0.2等を例示できる。また結着剤としてはポリフッ化ビニリデン、ポリ4フッ化エチレン等を例示できる。更に導電助材としては、カーボンブラック、ケッチェンブラック、黒鉛等の炭素化物を例示できる。更に正極集電体としては、アルミニウム、ステンレス等からなる金属箔または金属網を例示できる。 Examples of the positive electrode active material include compounds containing Li, oxides, and sulfides. Examples of the metal contained include at least one type of material such as Mn, Co, Ni, Fe, and Al. More specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNi 0.8 Co 0.2 O 2 and the like can be exemplified. Examples of the binder include polyvinylidene fluoride and polytetrafluoroethylene. Furthermore, examples of the conductive aid include carbonized materials such as carbon black, ketjen black, and graphite. Furthermore, examples of the positive electrode current collector include a metal foil or a metal net made of aluminum, stainless steel, or the like.

(負極)
負極には、負極活物質及び結着剤及び必要に応じて導電助材とが含有されてなる負極合材と、この負極合材に接合される負極集電体とからなるシート状の電極を用いることができる。また、上記の負極合材を円板状に成形させてなるペレット型若しくはシート状の電極も用いることができる。
(Negative electrode)
The negative electrode includes a sheet-like electrode composed of a negative electrode mixture containing a negative electrode active material, a binder, and if necessary, a conductive additive, and a negative electrode current collector bonded to the negative electrode mixture. Can be used. Moreover, the pellet type or sheet-like electrode formed by shape | molding said negative electrode compound material in a disk shape can also be used.

負極の結着剤は、有機質または無機質のいずれでも良いが、次に説明する多相合金粉末と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより多相合金粉末同士を結着させるものであればどのようなものでもよい。また、多相合金粉末と共に混合し、加圧成形等の固化成形を行うことにより多相合金粉末同士を結着させるものでもよい。このような結着剤として例えば、ビニル系樹脂、セルロース系樹脂、フェノール樹脂、熱可塑性樹脂、熱硬化性樹脂などが使用でき、例えばポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、スチレンブタジエンラバー、等の樹脂を例示できる。また、負極活物質及び結着剤の他に、導電助材としてカーボンブラック、黒鉛粉末、炭素繊維、金属粉末、金属繊維等を添加しても良い。更に負極集電体としては、銅からなる金属箔または金属網を例示できる。   The binder for the negative electrode may be either organic or inorganic, but it is dispersed or dissolved in a solvent together with the multiphase alloy powder described below, and the multiphase alloy powder is bound by removing the solvent. Anything is acceptable. Moreover, it may mix with multiphase alloy powder, and may bind multiphase alloy powders by performing solidification molding such as pressure molding. As such a binder, for example, vinyl resin, cellulose resin, phenol resin, thermoplastic resin, thermosetting resin and the like can be used, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, etc. Resins can be exemplified. In addition to the negative electrode active material and the binder, carbon black, graphite powder, carbon fiber, metal powder, metal fiber, or the like may be added as a conductive additive. Furthermore, examples of the negative electrode current collector include a metal foil or a metal net made of copper.

次に負極活物質は、Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む多相合金粉末からなり、多相合金粉末の粒子表面におけるSi相の量が粒子内部におけるSi相の量より少なくされて構成されている。図1には、多相合金粉末を構成する一粒子の外観模式図の一例を示し、図2には図1に示した一粒子の断面模式図の一例を示す。図1及び図2に示すように、負極活物質を構成する多相合金粉末粒子11の組織にはSi相12とSiM相13とX相もしくはSiX相14とが含有されている。   Next, the negative electrode active material is composed of a multiphase alloy powder that necessarily includes an Si phase and an SiM phase, and includes one or both of the X phase and the SiX phase, and the amount of the Si phase on the particle surface of the multiphase alloy powder is The amount is smaller than the amount of Si phase inside the particles. FIG. 1 shows an example of a schematic external view of one particle constituting the multiphase alloy powder, and FIG. 2 shows an example of a schematic cross-sectional view of the single particle shown in FIG. As shown in FIGS. 1 and 2, the structure of the multiphase alloy powder particles 11 constituting the negative electrode active material contains a Si phase 12, a SiM phase 13, and an X phase or a SiX phase 14.

Si相12は、粒子表面よりも粒子内部に多く存在している。このSi相12は、充電時にリチウムと合金化してLiSi相を形成し、放電時にはリチウムを放出してSi単相に戻る。また、粒子表面でのSi相は、存在しないかもしくは少なくなっているため、Si相による電解液の分解反応が抑制される。 The Si phase 12 is present in the interior of the particle more than the particle surface. The Si phase 12 is alloyed with lithium during charging to form a LiSi x phase, and during discharging, lithium is released to return to the Si single phase. Moreover, since the Si phase on the particle surface does not exist or decreases, the decomposition reaction of the electrolytic solution by the Si phase is suppressed.

また、SiM相13は、充放電時にリチウムと反応することなく、当該一粒子11の形状を維持して粒子11自体の膨張収縮を抑制する。SiM相13を構成する元素Mは、リチウムと合金化しない金属元素であり、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yの中から選択される少なくとも1種以上の元素である。特に元素MとしてはNiを用いることが好ましく、この場合のSiM相の組成はSiNi相となる。 In addition, the SiM phase 13 does not react with lithium during charge and discharge, and maintains the shape of the one particle 11 to suppress the expansion and contraction of the particle 11 itself. The element M constituting the SiM phase 13 is a metal element that is not alloyed with lithium, and is at least one selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y. It is an element. In particular, Ni is preferably used as the element M, and the composition of the SiM phase in this case is the Si 2 Ni phase.

またX相14は、多相合金粉末に導電性を付与して負極活物質自体の比抵抗を低減させる。X相14を構成する元素Xは、比抵抗が3Ω・m以下の金属元素であり、Ag、Cu、Auの中から選択される少なくとも1種以上の元素である。特にCuはリチウムと合金化しないので、膨張抑制効果があり好ましい。また、AgはSiとほとんど合金化しないため、元素MにAgと合金化しない金属を選択することにより、Agが単独相として存在し、粒子の伝導度を向上させることができるので好ましい。
なお、CuはSiと合金化するとともに、Siよりも低抵抗であるため、元素Mと元素Xの両方の性質を有する元素である。従って、本発明においては、元素Mと元素Xの双方にCuを加えることにするが、Cuは元素Mと元素Xに同時に選択されないものとした。
The X phase 14 imparts conductivity to the multiphase alloy powder to reduce the specific resistance of the negative electrode active material itself. The element X constituting the X phase 14 is a metal element having a specific resistance of 3 Ω · m or less, and is at least one element selected from Ag, Cu, and Au. In particular, Cu is preferable because it does not alloy with lithium and has an effect of suppressing expansion. Further, since Ag hardly alloyed with Si, selecting a metal that does not alloy with Ag as element M is preferable because Ag exists as a single phase and the conductivity of the particles can be improved.
Note that Cu is an element having both properties of element M and element X because it is alloyed with Si and has a lower resistance than Si. Therefore, in the present invention, Cu is added to both the element M and the element X, but Cu is not selected for the element M and the element X at the same time.

また、X相14に代えて、あるいはX相14とともに、SiX相が析出していても良い。SiX相は、X相14と同様に多相合金粉末に導電性を付与して負極活物質自体の比抵抗を低減させる。   Further, instead of the X phase 14 or together with the X phase 14, a SiX phase may be precipitated. The SiX phase, like the X phase 14, imparts conductivity to the multiphase alloy powder and reduces the specific resistance of the negative electrode active material itself.

Si相12、SiM相13、X相14、SiX相の結晶形態は、急冷速度、合金組成、急冷後の熱処理の有無により定まる。本実施形態の負極活物質においては、各相の全てが結晶質相であってもよく、非晶質相であっても良く、結晶質相と非晶質相とが混在したものであってもよい。また、Si相、SiM相、X相、SiX相の他に他の合金相を含んでいても良い。   The crystal forms of the Si phase 12, the SiM phase 13, the X phase 14, and the SiX phase are determined by the rapid cooling rate, the alloy composition, and the presence or absence of heat treatment after the rapid cooling. In the negative electrode active material of the present embodiment, all of the phases may be a crystalline phase, an amorphous phase, or a mixture of a crystalline phase and an amorphous phase. Also good. In addition to the Si phase, SiM phase, X phase, and SiX phase, other alloy phases may be included.

次に合金組成について言及すると、Siは、Si単相とSiM相さらにはSiX相を形成する元素であるため、合金の状態図より判断して、SiM相、SiX相を形成してもなおSi単相が生成されるように組成比を選ぶことにより、Siの容量を得ることができる。しかし、Si量が過剰に増えると、Si相が多く析出して充放電時の負極活物質全体の膨張収縮量が大きくなり、負極活物質が微粉化してサイクル特性が低下するので好ましくない。具体的には、負極活物質におけるSiの組成比が30質量%以上70質量%以下の範囲であることが好ましい。   Next, referring to the alloy composition, since Si is an element that forms a Si single phase, a SiM phase, and further a SiX phase, judging from the state diagram of the alloy, even if the SiM phase and the SiX phase are formed, Si is still Si. By selecting the composition ratio so that a single phase is generated, the capacity of Si can be obtained. However, an excessive increase in the amount of Si is not preferable because a large amount of Si phase precipitates and the amount of expansion and contraction of the entire negative electrode active material during charge / discharge increases, and the negative electrode active material is pulverized to deteriorate cycle characteristics. Specifically, the composition ratio of Si in the negative electrode active material is preferably in the range of 30% by mass to 70% by mass.

元素Mは、SiとともにSiM相を形成する元素であるため、合金の状態図より判断してその全量がSiと合金化するように添加することが好ましい。M量がSiと合金化できる量を上回ると、Siがすべて合金化され、容量の大幅な低下を招くので好ましくない。また、M量が少ないと、SiM相が少なくなり、Si相の膨張抑制効果が減少し、サイクル劣特性が低下してしまうので好ましくない。また、M相は異なる元素、M1相、M2相、M3相というように複数存在してもかまわない。Mの組成比はSiとの固溶限界が元素により異なるため具体的に限定することはできないが、SiとMが固溶限界まで合金化したとしてもなおSi相が存在するように考慮した組成比であることが好ましい。また、元素Mはリチウムと合金化しないので、不可逆容量を持つことがない。更に元素Mはアルカリ溶液に対して不溶であることが好ましい。   Since the element M is an element that forms a SiM phase together with Si, it is preferable to add the element M so that the entire amount thereof is alloyed with Si as judged from the phase diagram of the alloy. If the amount of M exceeds the amount that can be alloyed with Si, all of Si is alloyed, which causes a significant decrease in capacity, which is not preferable. On the other hand, when the amount of M is small, the SiM phase is decreased, the effect of suppressing the expansion of the Si phase is decreased, and the cycle inferior characteristics are deteriorated, which is not preferable. A plurality of M phases may exist such as different elements, such as M1, M2, M3, and so on. The composition ratio of M cannot be specifically limited because the solid solubility limit with Si differs depending on the element, but the composition is considered so that the Si phase still exists even if Si and M are alloyed to the solid solubility limit. The ratio is preferable. Further, since the element M is not alloyed with lithium, it does not have an irreversible capacity. Further, the element M is preferably insoluble in the alkaline solution.

またXの組成比が多くなると、比抵抗が低減するものの、Si相が相対的に減少して充放電容量が低下してしまう。一方、Xの組成比が少ないと、負極活物質の比抵抗が高くなって充放電効率が低下する。このため、負極活物質におけるXの組成比は1質量%以上30質量%以下の範囲であることが好ましい。更に元素Xはアルカリ溶液に対して不溶であることが好ましい。   Further, when the composition ratio of X increases, although the specific resistance is reduced, the Si phase is relatively reduced and the charge / discharge capacity is reduced. On the other hand, when the composition ratio of X is small, the specific resistance of the negative electrode active material increases and the charge / discharge efficiency decreases. For this reason, it is preferable that the composition ratio of X in a negative electrode active material is the range of 1 mass% or more and 30 mass% or less. Further, the element X is preferably insoluble in the alkaline solution.

多相合金粉末の平均粒径は5μm以上30μm以下の範囲が好ましい。一般にSiが含まれる合金粉末はリチウム二次電池の既存負極材料として用いられている黒鉛粉末より抵抗が高いため、導電助材を使用することが好ましいが、平均粒径5μm以下になると、導電助材の粒径より多相合金粉末の平均粒径が小さくなる場合が生じ、導電助材の効果が得にくくなり、容量やサイクル特性などの電池特性が低下するので好ましくない。平均粒径が30μmを越えると、リチウム二次電池における負極活物質の充填密度が低下するので好ましくない。   The average particle size of the multiphase alloy powder is preferably in the range of 5 μm to 30 μm. In general, an alloy powder containing Si has a higher resistance than graphite powder used as an existing negative electrode material of a lithium secondary battery. Therefore, it is preferable to use a conductive additive. However, when the average particle size is 5 μm or less, the conductive powder is used. In some cases, the average particle size of the multiphase alloy powder is smaller than the particle size of the material, and it becomes difficult to obtain the effect of the conductive additive, and battery characteristics such as capacity and cycle characteristics are deteriorated. When the average particle size exceeds 30 μm, the packing density of the negative electrode active material in the lithium secondary battery is lowered, which is not preferable.

また図1及び図2に示すように、多相合金粉末の粒子表面には、多数の微細孔15が形成されている。この微細孔15は、合金溶湯を急冷した後にアルカリ性溶液に含侵処理したことによって形成されたものであり、急冷直後において粒子表面に露出していたSi相が溶出した後の痕跡である。このようにSiが粒子表面に露出しないことで充電時の電解液との反応が抑制されるとともに、この微細孔5が形成されることによって多相合金粉末の比表面積が増大し、電解液との接触面積が大きくなって充放電効率が向上する。   As shown in FIGS. 1 and 2, a large number of fine holes 15 are formed on the particle surface of the multiphase alloy powder. The fine holes 15 are formed by quenching the molten alloy and then impregnating it with an alkaline solution, and are traces after the Si phase exposed on the particle surface is eluted immediately after quenching. Thus, since Si is not exposed to the particle surface, the reaction with the electrolytic solution during charging is suppressed, and the formation of the micropores 5 increases the specific surface area of the multiphase alloy powder. The contact area becomes larger and the charge / discharge efficiency is improved.

微細孔15の平均孔径は10nm以上5μm以下の範囲が好ましい。また、微細孔15の深さは10nm以上1μm以下の範囲が好ましい。更に、多相合金粉末の比表面積は0.2m/g以上5m/g以下の範囲が好ましい。 The average pore diameter of the micropores 15 is preferably in the range of 10 nm to 5 μm. Further, the depth of the fine holes 15 is preferably in the range of 10 nm to 1 μm. Furthermore, the specific surface area of the multiphase alloy powder is preferably in the range of 0.2 m 2 / g to 5 m 2 / g.

この負極活物質は、例えば次のような方法で製造することができる。
負極活物質の製造方法は、Siと元素Mと元素Xを含有する急冷合金粉末を得る工程と、得られた急冷合金粉末をアルカリ性溶液に含侵処理する工程とから概略構成されている。以下、各工程を順に説明する。
This negative electrode active material can be manufactured, for example, by the following method.
The manufacturing method of a negative electrode active material is roughly comprised from the process of obtaining the quenching alloy powder containing Si, the element M, and the element X, and the process of impregnating the obtained quenching alloy powder in an alkaline solution. Hereinafter, each process is demonstrated in order.

まず、急冷合金粉末を製造する工程では、Siと元素Mと元素Xを含む合金溶湯を急冷して急冷合金粉末とする。合金溶湯は、上記元素M及び元素Xと、Siとを含むものであり、これらの単体あるいは合金を例えば高周波誘導加熱法により同時に溶解することによって得られる。   First, in the process of manufacturing a rapidly cooled alloy powder, a molten alloy containing Si, element M, and element X is rapidly cooled to obtain a rapidly cooled alloy powder. The molten alloy contains the element M, the element X, and Si, and is obtained by simultaneously melting these simple substances or alloys by, for example, a high frequency induction heating method.

合金溶湯におけるまたSiの含有率は30質量%以上70質量%以下の範囲であることが好ましい。合金溶湯におけるSiの含有率が前記の範囲を外れると、Siが少なすぎてSi相が析出されなかったり、Si量が多すぎて膨張収縮しやすい負極活物質が得られてしまうので好ましくない。   The Si content in the molten alloy is preferably in the range of 30% by mass to 70% by mass. If the Si content in the molten alloy is out of the above range, it is not preferable because there is too little Si and no Si phase is precipitated, or a negative electrode active material that is easily expanded and contracted due to too much Si.

合金溶湯を急冷する方法としては、例えば、ガスアトマイズ法、水アトマイズ法、ロール急冷法等を用いることができる。ガスアトマイズ法及び水アトマイズ法では粉末状の急冷合金が得られ、ロール急冷法では薄帯状の急冷合金が得られる。薄帯状の急冷合金は更に粉砕して粉末にする。こうして得られた急冷合金粉末の平均粒径が、最終的に得ようとする多相合金粉末の平均粒径となる。従って、急冷合金粉末を得る際には、その平均粒径を5μm以上30μm以下の範囲に調整することが必要である。   As a method for rapidly cooling the molten alloy, for example, a gas atomizing method, a water atomizing method, a roll quenching method, or the like can be used. In the gas atomization method and the water atomization method, a powdery quenching alloy is obtained, and in the roll quenching method, a ribbon-like quenching alloy is obtained. The ribbon-like quenched alloy is further pulverized into a powder. The average particle size of the quenched alloy powder thus obtained is the average particle size of the multiphase alloy powder to be finally obtained. Therefore, when obtaining a rapidly cooled alloy powder, it is necessary to adjust the average particle size in the range of 5 μm to 30 μm.

合金溶湯から得られた急冷合金粉末は、組織全体が非晶質相である急冷合金、若しくは一部が非晶質相であるとともに残部が結晶質相粒からなる急冷合金、若しくは組織全体が結晶質相である急冷合金となる。また急冷合金粉末には、SiX相及びSiM相が必ず含まれ、かつX相とSiX相のいずれか一方または両方が含まれる。また、これらSi相、SiM相、X相、SiX相の各相は合金組織中で均一に混在した状態にある。   The quenched alloy powder obtained from the molten alloy is a quenched alloy whose entire structure is an amorphous phase, or a quenched alloy whose part is an amorphous phase and the remainder is composed of crystalline phase grains, or the entire structure is crystalline. It becomes a quenched alloy that is a temperate phase. The quenched alloy powder always includes a SiX phase and a SiM phase, and includes one or both of an X phase and a SiX phase. Further, these Si phase, SiM phase, X phase, and SiX phase are uniformly mixed in the alloy structure.

尚、急冷の際の急冷速度は、100K/秒以上であることが好ましい。急冷速度が100K/秒未満では、Si相、SiM相、X相、SiX相の各相が合金組織中で均一に析出しないおそれがあり、また各相の結晶の大きさが大きくなりすぎ、均一な膨張抑制効果、導電性付与効果が得にくくなるので好ましくない。   In addition, it is preferable that the rapid cooling rate at the time of rapid cooling is 100 K / second or more. If the quenching rate is less than 100 K / sec, the Si phase, SiM phase, X phase, and SiX phase may not precipitate uniformly in the alloy structure, and the crystal size of each phase becomes too large. It is not preferable because it is difficult to obtain a sufficient expansion suppressing effect and conductivity imparting effect.

次に、急冷合金をアルカリ性溶液に含侵処理する工程では、急冷合金粉末の粒子表面に析出しているSi相を溶出除去する。具体的には、急冷合金粉末を、アルカリ性溶液に含浸させた後、洗浄及び乾燥を行う。含侵条件は室温で30分〜5時間程度ゆっくり攪拌しながら行う条件とするのがよい。またアルカリ性溶液としては、例えば水酸化ナトリウムや水酸化カリウムの水溶液を用いるのがよく、濃度は1〜5Nの範囲がよい。   Next, in the step of impregnating the quenched alloy with an alkaline solution, the Si phase precipitated on the particle surface of the quenched alloy powder is eluted and removed. Specifically, the quenched alloy powder is impregnated with an alkaline solution, and then washed and dried. The impregnation condition is preferably a condition that is slowly stirred at room temperature for about 30 minutes to 5 hours. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or potassium hydroxide is preferably used, and the concentration is preferably in the range of 1 to 5N.

尚、ここで述べた含侵条件はあくまで目安であり、実際には粒子表面に析出していたSi相のみが溶出除去されるのを確認することで含侵条件を定めることができる。含侵処理を過度に行うと、表面のみならず粒子内部のSi相まで溶出除去させてしまい、負極活物質の充放電容量が低下してしまうので好ましくない。また粒子内部のSi相まで溶出されてしまうと、粒子自体の強度が低下するので好ましくない。更に、含侵条件が不十分だと、粒子表面にSi相が残存し、電解液の分解反応を起こしてしまうので好ましくない。   The impregnation conditions described here are only a guideline. In practice, it is possible to determine the impregnation conditions by confirming that only the Si phase precipitated on the particle surface is eluted and removed. Excessive impregnation treatment is not preferable because not only the surface but also the Si phase inside the particles are eluted and removed, and the charge / discharge capacity of the negative electrode active material is reduced. If the Si phase inside the particle is eluted, the strength of the particle itself is lowered, which is not preferable. Furthermore, if the impregnation conditions are insufficient, the Si phase remains on the particle surface, causing a decomposition reaction of the electrolytic solution, which is not preferable.

具体的には、Si相除去後の粉末の比表面積が、Si相除去前の急冷合金粉末の比表面積の1.2倍以上になるまでアルカリ性溶液による含侵処理を行うことが好ましい。比表面積が当初の1.2倍以上になるまで含侵処理を行うことで、表面のSiの一部またはすべてを除去することができ、電解液との反応を抑制することができる。   Specifically, it is preferable to perform the impregnation treatment with the alkaline solution until the specific surface area of the powder after the Si phase removal becomes 1.2 times or more the specific surface area of the quenched alloy powder before the Si phase removal. By performing the impregnation treatment until the specific surface area becomes 1.2 times or more of the initial surface, part or all of Si on the surface can be removed, and the reaction with the electrolytic solution can be suppressed.

また、Si相除去後の粉末の比表面積が少なくとも、Si相除去前の急冷合金粉末の比表面積の50倍以下となるようにアルカリ性溶液による含侵処理を行うことが好ましい。これにより、必要以上のSiの溶解を阻止し、電池容量の減少を防止することができる。   Moreover, it is preferable to perform the impregnation treatment with an alkaline solution so that the specific surface area of the powder after the Si phase removal is at least 50 times the specific surface area of the quenched alloy powder before the Si phase removal. Thereby, dissolution of Si more than necessary can be prevented, and a decrease in battery capacity can be prevented.

上記の含侵処理を行うことにより、急冷合金粉末の粒子表面に析出しているSi相が溶出除去され、粒子表面にはSiM相とX相もしくはSiX相が残存する。また、Si相が除去された部分には微細孔が形成される。更に、粒子表面のSi相が除去されることで、粒子表面におけるSi相の量が粒子内部におけるSi相の量よりも少なくなる。
尚、元素M及び元素Xはアルカリ溶液に対して不溶であり、更にSiM相、SiX相もアルカリ溶液に溶けにくいのでSi相が優先して溶出することになる。
By performing the above impregnation treatment, the Si phase precipitated on the surface of the quenched alloy powder particles is eluted and removed, and the SiM phase and the X phase or SiX phase remain on the particle surface. Micropores are formed in the portion where the Si phase has been removed. Furthermore, by removing the Si phase on the particle surface, the amount of Si phase on the particle surface becomes smaller than the amount of Si phase inside the particle.
The element M and the element X are insoluble in the alkaline solution, and the SiM phase and the SiX phase are also hardly soluble in the alkaline solution, so that the Si phase is eluted with priority.

上記の製造方法によれば、元素Mと元素XとSiを含有する合金溶湯を急冷することによって、SiX相及びSiM相が必ず含まれ、かつX相とSiX相のいずれか一方または両方を有する急冷合金粉末が容易に形成される。そして、得られた急冷合金粉末をアルカリ性溶液に含侵させて粒子表面のSi相を除去することで、粒子表面におけるSi相の量が粒子内部におけるSi相の量よりも少なくなる。こうして得られた負極活物質は、電解液の分解反応を抑制させ、かつ粒子自体の膨張収縮量を少なくすることができ、サイクル特性を向上することが可能になる。   According to the above manufacturing method, the alloy melt containing the element M, the element X, and Si is rapidly cooled, so that the SiX phase and the SiM phase are necessarily included, and either one or both of the X phase and the SiX phase are included. Quenched alloy powder is easily formed. Then, by impregnating the obtained quenched alloy powder with an alkaline solution to remove the Si phase on the particle surface, the amount of the Si phase on the particle surface becomes smaller than the amount of the Si phase inside the particle. The negative electrode active material thus obtained can suppress the decomposition reaction of the electrolytic solution and can reduce the amount of expansion and contraction of the particles themselves, thereby improving the cycle characteristics.

また、SiX相及びSiM相が必ず含まれ、かつX相とSiX相のいずれか一方または両方を含む多相合金粉末が容易に得られる。特にガスアトマイズ法または水アトマイズ法によれば、球状粉末が得られるので、負極活物質の充填密度を高めることができ、負極活物質のエネルギー密度を高めることが可能になる。   In addition, a multiphase alloy powder that always includes a SiX phase and a SiM phase and includes one or both of an X phase and a SiX phase can be easily obtained. In particular, according to the gas atomization method or the water atomization method, since spherical powder is obtained, the packing density of the negative electrode active material can be increased, and the energy density of the negative electrode active material can be increased.

(SiF形成化合物)
次に、SiF形成化合物は、フッ素イオン若しくはフッ化物イオンと化合してSi−F結合を有するSiF化合物を形成する化合物であり、具体的には、シリコーン化合物、ハロゲン化ケイ素、二酸化ケイ素、硫化ケイ素、窒化ケイ素、ヘキサフルオロケイ酸、メタケイ酸、シクロキサン化合物、シラザン化合物、SiC基またはSiCH基またはSiC基を含む化合物、の内の少なくとも1種以上の化合物であることが好ましい。SiF形成化合物は、負極に混合してもよく、非水電解液に添加してもよく、電池ケースに塗布しておいても良く、セパレータに塗布しておいても良い。特に、シリコーン化合物等の液状の化合物は非水電解液に添加することが好ましい。また、ハロゲン化ケイ素のように固体の場合には負極に添加しておくと良い。
(SiF-forming compound)
Next, the SiF-forming compound is a compound that combines with fluorine ions or fluoride ions to form a SiF compound having a Si-F bond. Specifically, silicone compounds, silicon halides, silicon dioxide, silicon sulfide , Silicon nitride, hexafluorosilicic acid, metasilicic acid, cycloxan compound, silazane compound, SiC 6 H 5 group or compound containing SiCH 3 group or SiC 2 H 5 group, at least one kind of compound preferable. The SiF-forming compound may be mixed in the negative electrode, added to the non-aqueous electrolyte, applied to the battery case, or applied to the separator. In particular, liquid compounds such as silicone compounds are preferably added to the non-aqueous electrolyte. In the case of a solid such as silicon halide, it may be added to the negative electrode.

シリコーン化合物としては、下記の[化1]ないし[化3]に示した構造のうちのいずれか1種または2種以上のものを用いることができる。尚、下記[化1]ないし[化3]中、kは0〜50の範囲であり、mは2〜10の範囲の自然数であり、nは1〜50の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。 As the silicone compound, any one or two or more of the structures shown in the following [Chemical Formula 1] to [Chemical Formula 3] can be used. In the following [Chemical Formula 1] to [Chemical Formula 3], k is in the range of 0-50, m is a natural number in the range of 2-10, n is a natural number in the range of 1-50, and R is Either CH 3 or C 6 H 5 and Z is either CH 3 or C 2 H 5 .

kが50を越えると熱安定性が向上するものの、粘度が極めて高くなるおそれがあり、リチウムイオンとの溶媒和する能力が低下してイオン伝導度が低下するので好ましくない。また、mが2未満だと、シリコーン化合物の合成が困難になり、mが10を越えると粘度が高くなって結果的にイオン伝導度が低下するので好ましくない。
また、nが1未満(即ちnが0)だと、ポリシロキサン鎖に連結するポリエーテル鎖がほとんどなくなり、電解液に含まれる溶媒成分との相溶性が低下するので好ましくなく、nが50を越えるとポリエーテル鎖が長くなって粘度が極めて高くなり、イオン伝導度が低下するので好ましくない。更に、RがCHまたはCのいずれかであり、ZがCHまたはCのいずれかであれば、シリコーン化合物の合成が容易になる。
If k exceeds 50, the thermal stability is improved, but the viscosity may be extremely high, and the ability to solvate with lithium ions is reduced, resulting in a decrease in ionic conductivity. Moreover, when m is less than 2, synthesis of the silicone compound becomes difficult, and when m exceeds 10, the viscosity increases and as a result, the ionic conductivity decreases, which is not preferable.
Further, when n is less than 1 (that is, n is 0), there is almost no polyether chain linked to the polysiloxane chain, and the compatibility with the solvent component contained in the electrolytic solution is lowered. Exceeding this is not preferable because the polyether chain becomes long and the viscosity becomes extremely high, and the ionic conductivity is lowered. Furthermore, when R is either CH 3 or C 6 H 5 and Z is either CH 3 or C 2 H 5 , the silicone compound can be easily synthesized.

Figure 0005073167
Figure 0005073167

Figure 0005073167
Figure 0005073167

Figure 0005073167
Figure 0005073167

シリコーン化合物を製造するには、例えば、R基の一部を水素に置換したポリシロキサンに対して、例えば(CH=CH-)のような二重結合を有するポリエーテル化合物をハイドロシリレーション反応により化合させることによって得られる。 In order to produce a silicone compound, for example, a polyether compound having a double bond such as (CH 2 ═CH—) is subjected to a hydrosilylation reaction with respect to polysiloxane in which a part of R group is substituted with hydrogen. Can be obtained by combining.

これらシリコーン化合物は、ケイ素(Si)をその分子内に含むため、負極活物質を構成するSi微粒子と馴染みやすく、場合によってはSi微粒子表面を被覆して保護層を形成する場合がある。これにより、Si微粒子表面での溶質成分の分解を抑制することができる。
また、これらのシリコーン化合物は、LiPFの分解生成物であるFイオンあるいはPFxイオンと反応し、シリコーン化合物のSiにFが結合したSi−F結合を有するSiF化合物を形成させる。このSiF化合物は負極活物質の表面において皮膜となって蓄積され、電解と負極活物質中のSi相との接触を妨げる。またSiF化合物がLiF化合物よりも優先的に形成されるので、正極及び負極の間を行き来するLiイオンが減少するおそれがない。
Since these silicone compounds contain silicon (Si) in their molecules, they are easily compatible with Si fine particles constituting the negative electrode active material, and in some cases, the surface of the Si fine particles may be covered to form a protective layer. Thereby, decomposition | disassembly of the solute component in Si microparticle surface can be suppressed.
In addition, these silicone compounds react with F ions or PFx ions which are decomposition products of LiPF 6 to form SiF compounds having Si—F bonds in which F is bonded to Si of the silicone compound. This SiF compound accumulates as a film on the surface of the negative electrode active material, and prevents contact between electrolysis and the Si phase in the negative electrode active material. Further, since the SiF compound is formed preferentially over the LiF compound, there is no possibility that Li ions traveling between the positive electrode and the negative electrode are reduced.

SiF形成化合物として上記の[化1]ないし[化3]に記載のシリコーン化合物を用いる場合のその配合比は、電解液にシリコーン化合物を0.2質量%以上20質量%以下の範囲が好ましい。シリコン化合物の配合比が低下するとSiF化合物が少なくなってLiイオンが減少したり、リチウム塩の分解反応が進行してしまうので好ましくない。また、シリコーン化合物の配合比が過剰になると相対的に負極活物質量が少なくなり、充放電容量が低下するので好ましくない。   When the silicone compound described in the above [Chemical Formula 1] to [Chemical Formula 3] is used as the SiF-forming compound, the blending ratio thereof is preferably in the range of 0.2% by mass or more and 20% by mass or less of the silicone compound in the electrolytic solution. If the compounding ratio of the silicon compound is lowered, the amount of SiF compound is decreased, Li ions are decreased, and the decomposition reaction of the lithium salt proceeds. Moreover, when the compounding ratio of the silicone compound is excessive, the amount of the negative electrode active material is relatively decreased, and the charge / discharge capacity is decreased, which is not preferable.

(非水電解液)
非水電解液としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒を例示でき、特にプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)のいずれか1つを必ず含むとともにジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)のいずれか1つを必ず含むものが好ましい。
(Nonaqueous electrolyte)
Examples of the nonaqueous electrolytic solution include an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent.
Examples of aprotic solvents include propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl An aprotic solvent such as ether or a mixed solvent obtained by mixing two or more of these solvents can be exemplified, and in particular, any one of propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC) In addition, it is preferable to always contain any one of dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).

また、リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものを例示でき、特にLiPFを含むものが好ましい。 As the lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y is a natural number), LiCl, by mixing one or more lithium salts of such LiI In particular, those containing LiPF 6 are preferred.

また非水電解液に代えて、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに有機電解液を含浸させたもの等、いわゆるポリマー電解質を用いても良い。
更に、本発明のリチウム二次電池は、正極、負極、電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。
In place of the non-aqueous electrolyte, a polymer such as PEO or PVA mixed with any of the lithium salts described above, or a polymer having a high swellability impregnated with an organic electrolyte, a so-called polymer electrolyte May be used.
Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the electrolyte, and may include other members as necessary. For example, the lithium secondary battery may include a separator that separates the positive electrode and the negative electrode. .

次に、上記のリチウム二次電池の充電反応について説明する。
充電反応は、例えば次のようにして進行する。まず、正極活物質であるLiCoOからリチウムイオンがデインターカレートして非水電解液中に溶出する。このリチウムイオンは非水電解液により輸送されて負極活物質の表面に到達する。そして、リチウムイオンが負極活物質において電子と一体化されて金属リチウムとして析出し、この金属リチウムが負極活物質に含まれるSi相と合金化してLiSi相を形成する。充電反応を継続するとLiSi相が徐々に増加し、これにより負極活物質を構成する合金粒子が膨張して合金粒子に一部が割れが生じる。
一方、非水電解液に含まれるリチウム塩は、Si相に接触すると分解してFイオンまたはPFイオンを形成する。このFイオンまたはPFイオンは、SiF形成化合物と反応してSiF化合物を形成し、負極活物質のSi相の表面に皮膜となって蓄積される。FイオンまたはPFイオンの一部は、正極活物質からデインターカレートされたリチウムイオンと化合してLiF化合物を形成する場合があるが、FイオンまたはPFイオンの大部分は上述したようにSiF形成化合物と反応してSiF化合物を形成する。これにより、正極及び負極の間を行き来するリチウムイオンが減少するおそれが無くなる。
また、Si相表面に蓄積されたSiF化合物は、リチウム塩とSi相との接触を防止してリチウム塩との分解反応を抑制する効果もある。これにより、非水電解液のイオン伝導度の低下が防止される。
Next, the charging reaction of the lithium secondary battery will be described.
The charging reaction proceeds as follows, for example. First, lithium ions are deintercalated from LiCoO 2 which is a positive electrode active material and eluted into the non-aqueous electrolyte. The lithium ions are transported by the nonaqueous electrolytic solution and reach the surface of the negative electrode active material. Then, lithium ions are integrated with electrons in the negative electrode active material and precipitated as metal lithium, and this metal lithium is alloyed with the Si phase contained in the negative electrode active material to form a Li x Si phase. When the charging reaction is continued, the Li x Si phase gradually increases, whereby the alloy particles constituting the negative electrode active material expand and partly cracks in the alloy particles.
On the other hand, the lithium salt contained in the nonaqueous electrolytic solution decomposes to form F ions or PF x ions when it comes into contact with the Si phase. The F ions or PF x ions react with the SiF-forming compound to form a SiF compound, and are accumulated as a film on the surface of the Si phase of the negative electrode active material. Some of the F ions or PF x ions may combine with lithium ions deintercalated from the positive electrode active material to form a LiF compound, but most of the F ions or PF x ions are as described above. React with the SiF-forming compound to form a SiF compound. As a result, there is no possibility that lithium ions traveling between the positive electrode and the negative electrode will decrease.
In addition, the SiF compound accumulated on the surface of the Si phase also has an effect of preventing the decomposition reaction with the lithium salt by preventing the contact between the lithium salt and the Si phase. Thereby, the fall of the ionic conductivity of a non-aqueous electrolyte is prevented.

このようなリチウム二次電池において、充電状態の負極を取り出し、その表面に対して飛行時間型二次イオン質量分析(TOF-SIMS)を行うと、様々なイオン種が検出されるが、特にLiイオンとSiFイオンに着目すると、二次イオン質量スペクトルにおけるこれらのイオンの強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲になる。Liイオンは、FイオンまたはPFイオンとリチウムイオンとの反応により形成されたLiFに由来する。また、SiFイオンは、FイオンまたはPFイオンとSiF形成化合物との反応により形成されたSiF化合物に由来する。従って、強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲にあれば、LiFよりもSiF化合物の方が量的に多くなり、SiF化合物の生成がLiF生成よりも優先されたことを示唆する。強度比(SiF/Li)が2.0×10−3未満にあると、LiFの量が増加し、正極及び負極の間を行き来するリチウムイオンが減少していることを示唆する。また、強度比(SiF/Li)が1.0×10−1を越えると、SiF化合物の量が過剰となり、負極のインピーダンスが増加してしまう。
従って本実施形態の負極においては、充電後の負極に対する二次イオン質量スペクトルにおけるLiイオンとSiFイオンの強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲となるように、負極活物質およびSiF形成化合物の配合比、添加方法等を調整することが望ましい。なお、二次イオン質量分析(SIMS)には様々な種類があるが、特に感度に優れる点で飛行時間型二次イオン質量スペクトル(TOF-SIMS)を用いることが好ましい。
In such a lithium secondary battery, when the charged negative electrode is taken out and subjected to time-of-flight secondary ion mass spectrometry (TOF-SIMS) on its surface, various ion species are detected. Focusing on + ions and SiF + ions, the intensity ratio (SiF + / Li + ) of these ions in the secondary ion mass spectrum is in the range of 2.0 × 10 −3 or more and 1.0 × 10 −1 or less. . Li + ions are derived from LiF formed by the reaction of F ions or PF x ions with lithium ions. SiF + ions are derived from SiF compounds formed by reaction of F ions or PF x ions with SiF-forming compounds. Accordingly, if the intensity ratio (SiF + / Li + ) is in the range of 2.0 × 10 −3 or more and 1.0 × 10 −1 or less, the SiF compound is quantitatively larger than LiF. This suggests that the production of has priority over LiF production. When the intensity ratio (SiF + / Li + ) is less than 2.0 × 10 −3 , the amount of LiF increases, suggesting that lithium ions traveling between the positive electrode and the negative electrode are decreasing. On the other hand, if the intensity ratio (SiF + / Li + ) exceeds 1.0 × 10 −1 , the amount of the SiF compound becomes excessive and the impedance of the negative electrode increases.
Therefore, in the negative electrode of this embodiment, the intensity ratio (SiF + / Li + ) between Li + ions and SiF + ions in the secondary ion mass spectrum with respect to the negative electrode after charging is 2.0 × 10 −3 or more and 1.0 ×. It is desirable to adjust the compounding ratio, addition method, and the like of the negative electrode active material and the SiF-forming compound so that the range is 10 −1 or less. Although there are various types of secondary ion mass spectrometry (SIMS), it is preferable to use a time-of-flight secondary ion mass spectrum (TOF-SIMS) in terms of particularly excellent sensitivity.

また、充電状態の負極を取り出し、その表面に対してX線光電子分光分析(XPS)を行うと、様々な化合物に由来する元素が検出されるが、特にフッ素に着目して、全フッ化物に対するLiF化合物の成分比を測定すると、LiF化合物の成分比が50%以下となる。これは、LiFを含むLiF化合物の量が少なく、SiF化合物の方が量的に多くなり、SiF化合物の生成がLiF生成よりも優先されたことを示唆している。LiF化合物の成分比が50%を越えると、LiFの量が増加し、正極及び負極の間を行き来するリチウムイオンが減少してしまう。従って本実施形態の負極においては、全フッ化物に対するLiF化合物の成分比が50%以下の範囲となるように、負極活物質およびSiF形成化合物の配合比、添加方法等を調整することが望ましい。   Moreover, when the negative electrode in a charged state is taken out and subjected to X-ray photoelectron spectroscopy (XPS) on its surface, elements derived from various compounds are detected. When the component ratio of the LiF compound is measured, the component ratio of the LiF compound is 50% or less. This suggests that the amount of LiF compound containing LiF is small, the amount of SiF compound is larger, and the generation of SiF compound is prioritized over the generation of LiF. When the component ratio of the LiF compound exceeds 50%, the amount of LiF increases, and lithium ions traveling between the positive electrode and the negative electrode decrease. Therefore, in the negative electrode of this embodiment, it is desirable to adjust the mixing ratio of the negative electrode active material and the SiF-forming compound, the addition method, etc. so that the component ratio of the LiF compound to the total fluoride is in the range of 50% or less.

以上説明したように、本実施形態のリチウム二次電池によれば、電解液中のLiPFが負極活物質表面で分解した場合でも、SiF形成化合物によってSiF化合物が形成されるとともに、LiイオンとSiFイオンの強度比(SiF/Li)が常に上記の範囲内となるため、充放電サイクルの進行によってLiFが蓄積されることがなく、これによりリチウム二次電池の正極と負極との間を行き来するリチウムが減少するおそれが無く、充放電サイクルの劣化を防止できる。
また、全フッ化物に対するLiF化合物の成分比が50%以下とされているので、正極と負極との間を行き来するリチウムが減少するおそれが無く、充放電サイクルの劣化を防止できる。
更に、SiF形成化合物としてシリコーン化合物等を用いることにより、LiF化合物が形成される前にSiF化合物を優先的に形成させることが可能となり、正極と負極との間を行き来するリチウムが減少するおそれが無くなって充放電サイクルの劣化を防止できる。
As described above, according to the lithium secondary battery of the present embodiment, even when LiPF 6 in the electrolytic solution is decomposed on the surface of the negative electrode active material, a SiF compound is formed by the SiF-forming compound, and Li + ions And the intensity ratio of SiF + ions (SiF + / Li + ) are always within the above range, so that LiF is not accumulated by the progress of the charge / discharge cycle. There is no possibility that the amount of lithium traveling between the two will decrease, and deterioration of the charge / discharge cycle can be prevented.
Moreover, since the component ratio of the LiF compound with respect to the total fluoride is 50% or less, there is no possibility that lithium flowing back and forth between the positive electrode and the negative electrode will decrease, and deterioration of the charge / discharge cycle can be prevented.
Furthermore, by using a silicone compound or the like as the SiF-forming compound, it becomes possible to preferentially form the SiF compound before the LiF compound is formed, and there is a risk that lithium traveling between the positive electrode and the negative electrode is reduced. Loss of charge and discharge cycle can be prevented.

更にまた、負極活物質として粒子表面におけるSi相の量が粒子内部におけるSi相の量より少なくされている多相合金粉末を用いるので、リチウム塩の負極活物質表面での分解反応を抑制することができ、LiF化合物の形成が抑制されて正極と負極との間を行き来するリチウムが減少するおそれが無くなり、充放電サイクルの劣化を防止できる。
また、上記のリチウム二次電池によれば、リチウム塩の分解反応も抑制されるので、電池内部における分解ガスの発生が抑制され、これにより正極と負極との間に隙間が生じることがなく、各電極の反応面積の低下を防止して重負荷特性を向上できる。
Furthermore, since the multiphase alloy powder in which the amount of Si phase on the particle surface is smaller than the amount of Si phase inside the particle is used as the negative electrode active material, the decomposition reaction of lithium salt on the negative electrode active material surface is suppressed. Thus, the formation of the LiF compound is suppressed, and there is no possibility that the lithium flowing back and forth between the positive electrode and the negative electrode is reduced, and deterioration of the charge / discharge cycle can be prevented.
In addition, according to the above lithium secondary battery, the decomposition reaction of the lithium salt is also suppressed, so that the generation of decomposition gas inside the battery is suppressed, so that there is no gap between the positive electrode and the negative electrode, The heavy load characteristic can be improved by preventing the reaction area of each electrode from decreasing.

[実験例1]
リチウム二次電池を製造してサイクル特性を評価した。
(実施例1)
電池の製造は次のようにして行った。まず、平均粒径10μmのLiCoOからなる正極活物質と、ポリフッ化ビニリデンからなる結着剤と、平均粒径3μmの炭素粉末からなる導電助材とを混合し、更にN−メチル−2−ピロリドンを混合して正極スラリーとした。この正極スラリーを、ドクターブレード法により厚み20μmのアルミニウム箔からなる集電体上に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして正極活物質を含む合材が集電体に積層されてなる正極を製造した。
[Experimental Example 1]
A lithium secondary battery was manufactured and its cycle characteristics were evaluated.
Example 1
The battery was manufactured as follows. First, a positive electrode active material made of LiCoO 2 having an average particle size of 10 μm, a binder made of polyvinylidene fluoride, and a conductive additive made of carbon powder having an average particle size of 3 μm were mixed, and further N-methyl-2- Pyrrolidone was mixed to make a positive electrode slurry. The positive electrode slurry was applied onto a current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method, dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methyl-2-pyrrolidone, and then rolled. did. Thus, the positive electrode formed by laminating the composite material containing the positive electrode active material on the current collector was manufactured.

また、以下の手順で多相合金粉末からなる負極活物質を製造した。まず、5mm角程度の大きさの塊状のSiを60質量部と、Ni粉末を30質量部と、Ag粉末10質量部をそれぞれ用意し、これらを混合してからアルゴン雰囲気中において高周波加熱法により溶解して合金溶湯とした。この合金溶湯を80kg/cmの圧力のヘリウムガスを用いたガスアトマイズ法によって急冷することにより、平均粒径10μmの急冷合金粉末を得た。このときの急冷速度は1×10K/秒であった。
次に、得られた急冷合金粉末30gを5Nの水酸化ナトリウム水溶液500ml中に入れ、室温でゆっくり攪拌しながら1時間かけて含侵処理した。その後、ナトリウムの残留がないように純水で十分に洗浄してから乾燥した後、粒度の調整を行って平均粒径12μmとした。このようにして、負極活物質を製造した。この負極活物質については、X線回折および電子顕微鏡による形態観察を行った。
Moreover, the negative electrode active material which consists of multiphase alloy powder was manufactured in the following procedures. First, 60 parts by mass of massive Si having a size of about 5 mm square, 30 parts by mass of Ni powder, and 10 parts by mass of Ag powder are prepared, mixed, and then subjected to high-frequency heating in an argon atmosphere. It melted to obtain a molten alloy. The molten alloy was quenched by a gas atomization method using helium gas at a pressure of 80 kg / cm 2 to obtain a quenched alloy powder having an average particle size of 10 μm. The rapid cooling rate at this time was 1 × 10 5 K / sec.
Next, 30 g of the rapidly quenched alloy powder obtained was put into 500 ml of 5N sodium hydroxide aqueous solution and impregnated for 1 hour with slow stirring at room temperature. Then, after sufficiently washing with pure water so that no sodium remains, the particle size was adjusted to an average particle size of 12 μm. In this way, a negative electrode active material was produced. This negative electrode active material was observed for morphology by X-ray diffraction and an electron microscope.

得られた負極活物質を70質量部と、平均粒径3μmの黒鉛粉末を20質量部と、ポリフッ化ビニリデンからなる結着剤10質量部とを混合し、更にN−メチル−2−ピロリドンを混合して負極スラリーとした。この負極スラリーを、ドクターブレード法により厚み14μmのCu箔からなる集電体上に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして負極活物質を含む密度2.5g/cmの合材が集電体に積層されてなる負極を製造した。 70 parts by mass of the obtained negative electrode active material, 20 parts by mass of graphite powder having an average particle diameter of 3 μm, and 10 parts by mass of a binder made of polyvinylidene fluoride were mixed, and N-methyl-2-pyrrolidone was further added. It mixed and it was set as the negative electrode slurry. This negative electrode slurry was applied onto a current collector made of Cu foil having a thickness of 14 μm by a doctor blade method, dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methyl-2-pyrrolidone, and then rolled. did. In this way, a negative electrode was produced in which a composite material having a negative electrode active material and a density of 2.5 g / cm 3 was laminated on the current collector.

更に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=30:70で混合させてなる混合溶媒に、1.3モル/Lの濃度となるようにLiPFを添加した。更に、シリコーン化合物を濃度が1質量%となるように添加した。このようにして非水電解液を調製した。なお、添加したシリコーン化合物の構造式は、上記[化1]の構造式において、k=0とし、m=4とし、n=2とし、RおよびZをCHとしたものである。 Further, LiPF 6 was added to a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 30: 70 so as to have a concentration of 1.3 mol / L. Furthermore, the silicone compound was added so that the concentration was 1% by mass. In this way, a non-aqueous electrolyte was prepared. The structural formula of the added silicone compound is that in the structural formula of [Chemical Formula 1] where k = 0, m = 4, n = 2, and R and Z are CH 3 .

上記の正極を直径14mmの円板状に切り出し、また上記の負極を直径16mmの円板状に切り出し、正極と負極の間にポリプロピレン製多孔質セパレータを配置してこれらを電池ケースに収納し、上記の電解液を注液してから電池ケースを密閉することにより、直径20mm、厚み1.6mmのコイン型の実施例1のリチウム二次電池を製造した。   The positive electrode is cut into a disk shape with a diameter of 14 mm, the negative electrode is cut into a disk shape with a diameter of 16 mm, a polypropylene porous separator is placed between the positive electrode and the negative electrode, and these are stored in a battery case. The battery case was sealed after injecting the above electrolytic solution to produce a coin-type lithium secondary battery of Example 1 having a diameter of 20 mm and a thickness of 1.6 mm.

(実施例2)
負極活物質を製造する際の各原料の配合比を、Si:50質量部、Ni粉末:40質量部、Ag粉末:10質量部としたこと以外は実施例1と同様にして実施例2のリチウム二次電池を製造した。
(Example 2)
Example 2 is the same as Example 1 except that the mixing ratio of each raw material when producing the negative electrode active material is 50 parts by mass of Si, 40 parts by mass of Ni powder, and 10 parts by mass of Ag powder. A lithium secondary battery was manufactured.

(実施例3)
負極活物質を製造する際の各原料種類およびその配合比を、Si:60質量部、Ni粉末:30質量部、Cu粉末:10質量部としたこと以外は実施例1と同様にして実施例3のリチウム二次電池を製造した。
(Example 3)
An example was prepared in the same manner as in Example 1 except that each raw material type and its blending ratio when producing the negative electrode active material were Si: 60 parts by mass, Ni powder: 30 parts by mass, and Cu powder: 10 parts by mass. 3 lithium secondary batteries were produced.

(実施例4)
SiF形成化合物としてシリコーン化合物に代えて窒化珪素を電解液に対して1質量%添加した以外は実施例1と同様にして実施例4のリチウム二次電池を製造した。
Example 4
A lithium secondary battery of Example 4 was manufactured in the same manner as in Example 1 except that 1% by mass of silicon nitride was added as an SiF forming compound instead of the silicone compound.

(実施例5)
SiF形成化合物としてシリコーン化合物に代えて二酸化珪素を電解液に対して1質量%添加した以外は実施例1と同様にして実施例4のリチウム二次電池を製造した。
(Example 5)
A lithium secondary battery of Example 4 was produced in the same manner as in Example 1 except that 1% by mass of silicon dioxide was added to the electrolytic solution instead of the silicone compound as the SiF-forming compound.

(比較例1)
シリコーン化合物を添加しなかったこと以外は実施例1と同様にして比較例1のリチウム二次電池を製造した。
(Comparative Example 1)
A lithium secondary battery of Comparative Example 1 was produced in the same manner as Example 1 except that no silicone compound was added.

(比較例2)
シリコーン化合物を添加しなかったこと以外は実施例2と同様にして比較例2のリチウム二次電池を製造した。
(Comparative Example 2)
A lithium secondary battery of Comparative Example 2 was produced in the same manner as in Example 2 except that no silicone compound was added.

(比較例3)
シリコーン化合物を添加しなかったこと以外は実施例3と同様にして比較例3のリチウム二次電池を製造した。
(Comparative Example 3)
A lithium secondary battery of Comparative Example 3 was produced in the same manner as Example 3 except that no silicone compound was added.

得られたリチウム二次電池を15時間エージングし、0.2Cで4.15Vまで定電流充電してから電流値が0.01Cになるまで定電圧充電する定電流定電圧充電を行い、次に、0.2Cで2.75Vまで放電する定電流放電を行って初期充放電を行った。   The obtained lithium secondary battery was aged for 15 hours, charged at a constant current of 0.2C to 4.15V, and then charged at a constant voltage until the current value reached 0.01C. The initial charge / discharge was performed by performing a constant current discharge at 0.2C up to 2.75V.

そして、初期充放電後のリチウム二次電池について、1C(0.8mA)で4.15Vまで定電流充電してから電流値が0.01Cになるまで定電圧充電する定電流定電圧充電を行い、次に、1C(0.8mA)で2.75Vまで放電する定電流放電を1サイクルとし、この充放電サイクルを100サイクルまで行って、リチウム二次電池の100サイクル後の容量維持率を調査した。結果を表1に示す。
また、100サイクル後の負極を取り出し、飛行時間型二次イオン質量分析(TOF-SIMS)及びX線光電子分光分析(XPS)を行って、二次イオン質量スペクトルにおけるLiイオンとSiFイオンの強度比(SiF/Li)と、全フッ化物に対するLiF化合物の成分比を分析した。結果を表1に示す。
Then, the lithium secondary battery after the initial charge / discharge is subjected to constant current / constant voltage charge in which constant current charge is performed until the current value becomes 0.01C after constant current charge to 4.15V at 1C (0.8 mA). Next, constant current discharge at 1 C (0.8 mA) to 2.75 V is defined as one cycle, and this charge / discharge cycle is performed up to 100 cycles, and the capacity retention rate after 100 cycles of the lithium secondary battery is investigated. did. The results are shown in Table 1.
In addition, the negative electrode after 100 cycles was taken out, subjected to time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS), and Li + ions and SiF + ions in the secondary ion mass spectrum. The intensity ratio (SiF + / Li + ) and the component ratio of the LiF compound to the total fluoride were analyzed. The results are shown in Table 1.

なお、飛行時間型二次イオン質量分析は、電池を不活性ガス中で分解して負極を取り出し、更に電極を切断して断面を露出させ、この断面に対して0amu−1000amuの範囲で測定した。また、Gaを一次イオンとし、一次イオンエネルギーを25kV、パルス周波数8.3kHz、パルス幅12nsの条件で測定を行った。測定真空度は4×10-7Paとした。この、飛行時間型二次イオン質量分析はPhysical Electronics製TFS-2000を用いた。
また、X線光電子分光分析は、電池を不活性ガス中で分解して負極を取り出し、この電極を大気に触れさせずにX線光電子分光分析装置に設置し、X線源を単結晶分光AlKα線として、出力10kV、16.5mAの条件で測定した。X線光電子分光分析はVG Scientific社製ESCALAB220iXLを用いた。
The time-of-flight secondary ion mass spectrometry was performed by decomposing the battery in an inert gas and taking out the negative electrode, further cutting the electrode to expose the cross section, and measuring this cross section within the range of 0 amu-1000 amu. . In addition, measurement was performed under the conditions of Ga + as primary ions, primary ion energy of 25 kV, pulse frequency of 8.3 kHz, and pulse width of 12 ns. The measurement vacuum was 4 × 10 −7 Pa. For this time-of-flight secondary ion mass spectrometry, TFS-2000 manufactured by Physical Electronics was used.
The X-ray photoelectron spectroscopic analysis is performed by decomposing the battery in an inert gas, taking out the negative electrode, and setting the electrode in an X-ray photoelectron spectroscopic analyzer without touching the atmosphere. As a line, it measured on the conditions of output 10kV and 16.5mA. For X-ray photoelectron spectroscopy, ESCALAB220iXL manufactured by VG Scientific was used.

Figure 0005073167
Figure 0005073167

負極活物質についてX線回折を行ったところ、Si結晶質相と、NiSiなる組成の結晶質相とAg結晶質相が混在した組織が確認された。またSiの含有量は原料配合比の60%に対し、全体で50%に低下していた。
また、負極活物質について電子顕微鏡によって形態観察を行ったところ、表面に微細孔が多数形成されていることが確認された。この微細孔は、表面に露出していたSi相が溶出して形成されたものと思われる。また、粒子表面についてX線による元素分析を行ったところ、表面はNiSi相で占められ、Si相はほとんど検出されなかった。これはアルカリ性溶液による含浸処理のよって表面のSi相が除去されたためである。従ってX線回折により検出されたSi相は、粒子の内部に存在するものと考えられる。
When X-ray diffraction was performed on the negative electrode active material, a structure in which a Si crystalline phase, a crystalline phase having a composition of NiSi 2, and an Ag crystalline phase were mixed was confirmed. Further, the Si content was reduced to 50% as a whole with respect to 60% of the raw material blending ratio.
Moreover, when the form observation was performed with the electron microscope about the negative electrode active material, it was confirmed that many micropores are formed in the surface. These micropores are thought to be formed by elution of the Si phase exposed on the surface. Furthermore, was subjected to elemental analysis by X-ray for the particle surface, the surface is occupied by NiSi 2 phase, Si phase was hardly detected. This is because the Si phase on the surface was removed by the impregnation treatment with the alkaline solution. Therefore, the Si phase detected by X-ray diffraction is considered to exist inside the particles.

また、表1に示すように、シリコーン化合物を加えた実施例1−3の電池は、強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲にあり、LiF成分量が50%以下の範囲にあり、容量比並びに容量維持率も優れていることがわかる。一方、シリコーン化合物を添加していない比較例1−3では、強度比(SiF/Li)が2.0×10−3未満であり、またLiF成分量が50%を越えており、容量比並びに容量維持率も低いことがわかる。
このように、強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲とし、LiF成分量を50%以下の範囲とすることにより、容量維持率を向上できることが判明した。
Moreover, as shown in Table 1, the battery of Example 1-3 to which the silicone compound was added had a strength ratio (SiF + / Li + ) of 2.0 × 10 −3 or more and 1.0 × 10 −1 or less. It can be seen that the LiF component amount is in the range of 50% or less, and the capacity ratio and capacity retention ratio are excellent. On the other hand, in Comparative Example 1-3 in which no silicone compound was added, the strength ratio (SiF + / Li + ) was less than 2.0 × 10 −3 and the LiF component amount exceeded 50%. It can be seen that the ratio and capacity retention rate are also low.
Thus, the capacity ratio is maintained by setting the strength ratio (SiF + / Li + ) in the range of 2.0 × 10 −3 to 1.0 × 10 −1 and the LiF component amount in the range of 50% or less. It has been found that the rate can be improved.

[実験例2]
(実施例6〜
シリコーン化合物の電解液に対する添加量を3%、7%、15%、20%としたこと以外は上記実施例1と同様にして実施例6〜のリチウム二次電池を製造した。
(比較例6)
シリコーン化合物の電解液に対する添加量を33%としたこと以外は上記実施例1と同様にして比較例6のリチウム二次電池を製造した。
(実施例11)
負極活物質を製造する際の各原料種類およびその配合比を、Si:48質量部、Ni粉末:40質量部、Cu粉末:12質量部としたこと以外は実施例1と同様にして実施例11のリチウム二次電池を製造した。
(実施例12)
負極活物質を製造する際の各原料種類およびその配合比を、Si:45質量部、Ni粉末:35質量部、Cu粉末:20質量部としたこと以外は実施例1と同様にして実施例12のリチウム二次電池を製造した。
[Experiment 2]
(Examples 6 to 9 )
Lithium secondary batteries of Examples 6 to 9 were produced in the same manner as in Example 1 except that the addition amount of the silicone compound to the electrolytic solution was 3%, 7%, 15%, and 20%.
(Comparative Example 6)
A lithium secondary battery of Comparative Example 6 was produced in the same manner as in Example 1 except that the amount of silicone compound added to the electrolyte solution was 33%.
(Example 11)
An example was prepared in the same manner as in Example 1 except that each raw material type and its blending ratio when producing the negative electrode active material were Si: 48 parts by mass, Ni powder: 40 parts by mass, and Cu powder: 12 parts by mass. 11 lithium secondary batteries were produced.
(Example 12)
An example was prepared in the same manner as in Example 1 except that each raw material type and its blending ratio in producing the negative electrode active material were set to 45 parts by mass of Si, 35 parts by mass of Ni powder, and 20 parts by mass of Cu powder. Twelve lithium secondary batteries were produced.

(比較例4)
負極活物質を製造する際の各原料種類およびその配合比を、Si:70質量部、Ni粉末:20質量部、Cu粉末:10質量部としたこと、シリコーン化合物を添加しなかったこと以外は実施例1と同様にして比較例4のリチウム二次電池を製造した。
(比較例5)
負極活物質を製造する際の各原料種類およびその配合比を、Si:75質量部、Ni粉末:20質量部、Cu粉末:5質量部としたこと、シリコーン化合物を添加しなかったこと以外は実施例1と同様にして比較例5のリチウム二次電池を製造した。
(Comparative Example 4)
Each raw material type and its blending ratio when producing the negative electrode active material were Si: 70 parts by mass, Ni powder: 20 parts by mass, Cu powder: 10 parts by mass, except that no silicone compound was added. A lithium secondary battery of Comparative Example 4 was produced in the same manner as Example 1.
(Comparative Example 5)
Each raw material type and its blending ratio when producing the negative electrode active material were set to Si: 75 parts by mass, Ni powder: 20 parts by mass, Cu powder: 5 parts by mass, except that no silicone compound was added. A lithium secondary battery of Comparative Example 5 was produced in the same manner as Example 1.

得られたリチウム二次電池を15時間エージングし、0.2Cで4.15Vまで定電流充電してから電流値が0.01Cになるまで定電圧充電する定電流定電圧充電を行い、次に、0.2Cで2.75Vまで放電する定電流放電を行って初期充放電を行った。   The obtained lithium secondary battery was aged for 15 hours, charged at a constant current of 0.2C to 4.15V, and then charged at a constant voltage until the current value reached 0.01C. The initial charge / discharge was performed by performing a constant current discharge at 0.2C up to 2.75V.

そして、初期充放電後のリチウム二次電池について、1C(0.8mA)で4.15Vまで定電流充電してから電流値が0.01Cになるまで定電圧充電する定電流定電圧充電を行い、次に、1C(0.8mA)で2.75Vまで放電する定電流放電を1サイクルとし、この充放電サイクルを100サイクルまで行って、リチウム二次電池の100サイクル後の放電容量および容量維持率を測定した。
また、100サイクル後の負極を取り出し、飛行時間型二次イオン質量分析(TOF-SIMS)を行って、二次イオン質量スペクトルにおけるLiイオンとSiFイオンの強度比(SiF/Li)を分析した。更に取り出した電極についてX線光電子分光分析(XPS)を行い、全フッ化物に対するLiF化合物の成分比を分析した。
Then, the lithium secondary battery after the initial charge / discharge is subjected to constant current / constant voltage charge in which constant current charge is performed until the current value becomes 0.01C after constant current charge to 4.15V at 1C (0.8 mA). Next, constant current discharge at 1 C (0.8 mA) to 2.75 V is defined as one cycle, and this charge / discharge cycle is performed up to 100 cycles, and the discharge capacity and capacity maintenance after 100 cycles of the lithium secondary battery are performed. The rate was measured.
Moreover, the negative electrode after 100 cycles was taken out, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was performed, and the intensity ratio (SiF + / Li + ) of Li + ions to SiF + ions in the secondary ion mass spectrum. Was analyzed. Furthermore, the extracted electrode was subjected to X-ray photoelectron spectroscopy (XPS) to analyze the component ratio of the LiF compound to the total fluoride.

表2および図3に、強度比(SiF/Li)と、強度比(SiF/Li)が1.8×10−3となるリチウム二次電池の100サイクル目の放電容量を100にした場合の各リチウム二次電池の容量比砥の関係を示す。
また表3および図4に、LiF化合物の成分量と容量維持率との関係を示す。
Table 2 and FIG. 3 show the discharge capacity at the 100th cycle of the lithium secondary battery in which the intensity ratio (SiF + / Li + ) and the intensity ratio (SiF + / Li + ) are 1.8 × 10 −3. The relationship of the capacity ratio grinding of each lithium secondary battery in the case of the above is shown.
Table 3 and FIG. 4 show the relationship between the component amount of the LiF compound and the capacity retention rate.

Figure 0005073167
Figure 0005073167

Figure 0005073167
Figure 0005073167

表2および図3に示すように、強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲でリチウム二次電池の放電容量が高くなっていることがわかる。
また、表3および図4に示すように、全フッ化物に対するLiF化合物の成分比が50%以下の範囲で容量維持率が高くなっていることがわかる。
As shown in Table 2 and FIG. 3, the discharge capacity of the lithium secondary battery is increased when the intensity ratio (SiF + / Li + ) is in the range of 2.0 × 10 −3 to 1.0 × 10 −1. I understand that.
Moreover, as shown in Table 3 and FIG. 4, it can be seen that the capacity retention ratio is high when the component ratio of the LiF compound to the total fluoride is 50% or less.

本発明の実施形態であるリチウム二次電池の負極活物質を示す模式図。The schematic diagram which shows the negative electrode active material of the lithium secondary battery which is embodiment of this invention. 本発明の実施形態であるリチウム二次電池の負極活物質を示す断面模式図。The cross-sectional schematic diagram which shows the negative electrode active material of the lithium secondary battery which is embodiment of this invention. 強度比(SiF/Li)と、強度比が1.8×10−3となるリチウム二次電池の100サイクル目の放電容量を100にした場合の各リチウム二次電池の容量比との関係を示すグラフ。The intensity ratio (SiF + / Li + ) and the capacity ratio of each lithium secondary battery when the discharge capacity at the 100th cycle of the lithium secondary battery in which the intensity ratio is 1.8 × 10 −3 is 100. A graph showing the relationship. LiF成分量と容量維持率との関係を示すグラフ。The graph which shows the relationship between the amount of LiF components, and a capacity | capacitance maintenance factor.

符号の説明Explanation of symbols

11…多相合金粉末の粒子、12…Si相、13…SiM相、14…X相、15…微細孔

11 ... Particles of multiphase alloy powder, 12 ... Si phase, 13 ... SiM phase, 14 ... X phase, 15 ... Micropore

Claims (3)

Siを含む多相合金粉末からなる負極活物質が含まれてなる負極と正極活物質が含まれてなる正極とLiPF、LiBF、LiSbF、LiAsF、LiCFSO、Li(CFSON、LiSbF、LiN(C2x+1SO)(C2y+1SO)(ただしx、yは自然数)が溶解されてなる非水電解液とから少なくとも構成されるリチウム二次電池において、その電池内にSiF形成化合物が少なくとも備えられ、充放電100サイクル後の充電状態の前記負極に対する二次イオン質量スペクトルにおけるLiイオンとSiFイオンの強度比(SiF/Li)が2.0×10−3以上1.0×10−1以下の範囲にあり、
前記SiF形成化合物が、シリコーン化合物、ハロゲン化ケイ素、二酸化ケイ素、硫化ケイ素、窒化ケイ素、ヘキサフルオロケイ酸、メタケイ酸、シロキサン化合物、シラザン化合物、あるいはSiC基、SiCH基、SiC基を少なくとも一種類以上含む化合物、の内の少なくとも1種以上の化合物であることを特徴とするリチウム二次電池。
A negative electrode including a negative electrode active material composed of a multiphase alloy powder containing Si, a positive electrode including a positive electrode active material, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiSbF 6 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers) and at least lithium composed of a non-aqueous electrolyte solution In the secondary battery, at least a SiF-forming compound is provided in the battery, and the intensity ratio of Li + ions to SiF + ions (SiF + / Li in the secondary ion mass spectrum for the negative electrode in a charged state after 100 cycles of charge and discharge. + ) Is in the range of 2.0 × 10 −3 or more and 1.0 × 10 −1 or less,
The SiF-forming compound is a silicone compound, silicon halide, silicon dioxide, silicon sulfide, silicon nitride, hexafluorosilicic acid, metasilicic acid, siloxane compound, silazane compound, or SiC 6 H 5 group, SiCH 3 group, SiC 2 H A lithium secondary battery comprising at least one compound among compounds containing at least one of five groups.
充放電100サイクル後の充電状態の負極において、全フッ化物に対するLiF化合物の成分比が50%以下であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein a component ratio of the LiF compound to the total fluoride is 50% or less in the negative electrode in a charged state after 100 cycles of charge and discharge. 前記負極活物質は、Siと、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Y、Ag、Auのうちから選択される少なくとも1種以上の元素とから構成される材料であることを特徴とする請求項1又は請求項2に記載のリチウム二次電池。   The negative electrode active material is a material composed of Si and at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, Y, Ag, and Au. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is a lithium secondary battery.
JP2004377813A 2004-12-27 2004-12-27 Lithium secondary battery Active JP5073167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004377813A JP5073167B2 (en) 2004-12-27 2004-12-27 Lithium secondary battery
KR1020050054471A KR100749496B1 (en) 2004-12-27 2005-06-23 Rechargeable lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377813A JP5073167B2 (en) 2004-12-27 2004-12-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006185728A JP2006185728A (en) 2006-07-13
JP5073167B2 true JP5073167B2 (en) 2012-11-14

Family

ID=36738689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377813A Active JP5073167B2 (en) 2004-12-27 2004-12-27 Lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5073167B2 (en)
KR (1) KR100749496B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903502B1 (en) 2006-07-19 2009-06-17 주식회사 엘지화학 Electrode with organic/inorganic composite and battery comprising the same
JP5370630B2 (en) * 2006-10-26 2013-12-18 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
JP5491766B2 (en) * 2009-05-21 2014-05-14 株式会社デンソー Nonaqueous electrolyte and nonaqueous electrolyte secondary battery having the electrolyte
JP5035313B2 (en) * 2009-09-25 2012-09-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and method for producing the same
KR101147243B1 (en) 2010-10-27 2012-05-18 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP5585470B2 (en) * 2011-01-27 2014-09-10 株式会社豊田自動織機 Lithium ion secondary battery
JP5450478B2 (en) * 2011-02-28 2014-03-26 株式会社日立製作所 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery
KR20140080579A (en) * 2012-12-12 2014-07-01 일진전기 주식회사 Negative active material for secondary batteries
KR101492973B1 (en) * 2012-12-12 2015-02-13 일진전기 주식회사 Negative active material and Secondary batteries prepared the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878053A (en) * 1994-07-07 1996-03-22 Ricoh Co Ltd Lithium nonaqueous secondary battery
KR20020008702A (en) * 2000-07-25 2002-01-31 김순택 Negative active material for lithium secondary battery and method of preparing same
JP2002343364A (en) * 2001-05-17 2002-11-29 Toyota Motor Corp Nonaqueous electrolyte solution secondary battery
JP3827642B2 (en) * 2003-01-06 2006-09-27 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2005011696A (en) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20060074808A (en) 2006-07-03
KR100749496B1 (en) 2007-08-14
JP2006185728A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP3291338B1 (en) Cathode for lithium-sulfur battery, manufacturing method therefor, and lithium-sulfur battery containing same
JP3827642B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
TWI496333B (en) Use of expanded graphite in lithium/sulphur batteries
KR100749496B1 (en) Rechargeable lithium battery
JP5392960B2 (en) Lithium secondary battery
JP3954001B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
JP2022510983A (en) Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it
JP5511128B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
JP2007305569A (en) Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
JP3746499B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN111048768B (en) Method for producing active material, and battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP3746501B2 (en) ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY
JP3841779B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20140118823A (en) Silicon-containing particles, negative electrode material of nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
KR100766961B1 (en) Rechargeable lithium battery
KR101445019B1 (en) Anode active material, method for preparing the same, and secondary battery using the anode active material
KR101072068B1 (en) Secondary battery
JP2020047608A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP3773514B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
JP3929429B2 (en) Electrode for lithium secondary battery and lithium secondary battery
KR100766981B1 (en) Cathode active material for lithium secondary battery, lithium secondary battery comprising the same, and method for preparing lithium secondary battery
JPH11126633A (en) Electrolyte for lithium ion battery and lithium ion battery using it
JP2004214055A (en) Negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2004039509A (en) Carbon material for lithium secondary battery, and lithium secondary battery using it for negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Ref document number: 5073167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250