JP3841779B2 - Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery - Google Patents

Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Download PDF

Info

Publication number
JP3841779B2
JP3841779B2 JP2003299281A JP2003299281A JP3841779B2 JP 3841779 B2 JP3841779 B2 JP 3841779B2 JP 2003299281 A JP2003299281 A JP 2003299281A JP 2003299281 A JP2003299281 A JP 2003299281A JP 3841779 B2 JP3841779 B2 JP 3841779B2
Authority
JP
Japan
Prior art keywords
phase
negative electrode
active material
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003299281A
Other languages
Japanese (ja)
Other versions
JP2005071771A (en
Inventor
恵子 松原
利章 津野
輝 高椋
性洙 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003299281A priority Critical patent/JP3841779B2/en
Priority to KR1020040015451A priority patent/KR100589367B1/en
Publication of JP2005071771A publication Critical patent/JP2005071771A/en
Application granted granted Critical
Publication of JP3841779B2 publication Critical patent/JP3841779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池に関するものである。   The present invention relates to a negative electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery.

リチウム二次電池の負極活物質の高容量化の研究は、現在の負極活物質を炭素とする電池システムが実用化される以前から行われ、現在もSiやSn、Al等の金属材料を中心に活発に行われているものの、未だ実用化には至っていない。これは主として、充放電する際にSiやSn、Al等の金属がリチウムと合金化して体積の膨張収縮が生じ、これが金属の微粉化を招き、サイクル特性が低下するといった不具合を解決できないためである。そこで、この問題を解決すべく、下記特許文献1に示されているような非晶質合金や、下記非特許文献1または下記非特許文献2に示されているNi-Si系合金のように、リチウムと合金化が可能な金属及びリチウムと合金化しない金属からなる結晶質合金が検討されている。
特開2002−216746号公報 「第42回電池討論会予稿集」、社団法人電気化学会電池技術委員会、平成13年11月21日、p.296−297 「第43回電池討論会予稿集」、社団法人電気化学会電池技術委員会、平成14年10月12日、p.326−327
Research on increasing the capacity of the negative electrode active material of lithium secondary batteries has been conducted before the battery system using the current negative electrode active material as carbon has been put into practical use, and still focuses on metal materials such as Si, Sn, and Al. However, it has not been put into practical use yet. This is mainly because metals such as Si, Sn, and Al are alloyed with lithium during charge and discharge, resulting in volume expansion and contraction, which leads to pulverization of the metal, and the cycle characteristics are not solved. is there. Therefore, in order to solve this problem, an amorphous alloy as shown in Patent Document 1 below, or a Ni—Si based alloy shown in Non-Patent Document 1 or Non-Patent Document 2 shown below is used. A crystalline alloy made of a metal that can be alloyed with lithium and a metal that cannot be alloyed with lithium has been studied.
JP 2002-216746 A “Proceedings of the 42nd Battery Discussion Meeting”, Battery Technical Committee of the Electrochemical Society of Japan, November 21, 2001, p. 296-297 “Preliminary Collection of the 43rd Battery Discussion Meeting”, Battery Technical Committee of the Electrochemical Society of Japan, October 12, 2004, p. 326-327

ところで、Si粉末を負極活物質とした場合には、サイクル特性の劣化の要因として、粉末自体の膨張収縮の他に、Si粉末表面での電解液の分解反応による特性劣化の可能性が指摘されている。   By the way, when Si powder is used as the negative electrode active material, the possibility of characteristic deterioration due to the decomposition reaction of the electrolytic solution on the surface of the Si powder is pointed out as a cause of deterioration of the cycle characteristics, in addition to the expansion and contraction of the powder itself. ing.

本発明は、上記事情に鑑みてなされたものであって、粉末自体の膨張収縮を抑制するとともに、粉末表面での電解液の分解反応の発生を防止可能な負極活物質及びその製造方法並びにこの負極活物質を用いたリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to suppress the expansion and contraction of the powder itself, and to prevent the occurrence of the decomposition reaction of the electrolytic solution on the powder surface, the production method thereof, and the An object is to provide a lithium secondary battery using a negative electrode active material.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池用負極活物質は、Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む多相合金粉末からなり、前記多相合金粉末の粒子表面におけるSi相の量が粒子内部におけるSi相の量より少な電子顕微鏡の面分析より得られる前記多相合金粉末の粒子表面上のSi含有量aと、粒子断面のSiの含有量bの比が、0.5≦a/b ≦0.95であり、比表面積が0.2m /g以上5m /g以下の範囲であることを特徴とする。ただし、前記MはNi、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素であり、元素XはAg、Cu、Auのうちの少なくとも1種以上の元素であり、Cuは元素Mと元素Xに同時に選択されないものとする。
In order to achieve the above object, the present invention employs the following configuration.
The negative electrode active material for a lithium secondary battery of the present invention comprises a multiphase alloy powder that necessarily contains an Si phase and an SiM phase, and contains either one or both of an X phase and an SiX phase. the amount of Si phase in the surface rather less than the amount of Si phase in the grain interior, and the Si content a on the particle surface of the multi-phase alloy powder obtained from surface analysis of the electron microscope, the content of the particle cross sections Si b The ratio is 0.5 ≦ a / b ≦ 0.95, and the specific surface area is in the range of 0.2 m 2 / g to 5 m 2 / g . Where M is at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, and element X is at least one element selected from Ag, Cu, and Au. In the above elements, Cu is not selected as the element M and the element X at the same time.

上記の負極活物質によれば、粒子表面におけるSi相の量が粒子内部におけるSi相の量よりも少ないか、もしくはほとんどSi相が存在しないため、主たる活物質相であるSi相による電解液の分解反応が抑制され、サイクル特性を向上することができる。
また、元素MはSiと合金化し、Liとは合金化しない元素であるため、粒子中にSi相の他にSiM相が含まれることにより、Si層単独の場合と比べて粒子自体の膨張収縮量を少なくすることができ、粒子自体の微粉化を防いでサイクル特性を向上することができる。
また、Si相より低抵抗であるX相またはSiX相のいずれか一方または両方が含まれるので、負極活物質の比抵抗を低減することができる。
なお、CuはSiと合金化するとともに、Siよりも低抵抗であるため、元素Mと元素Xの両方の性質を有する元素である。従って、本発明においては、元素Mと元素Xの双方にCuを加えることにするが、Cuは元素Mと元素Xに同時に選択されないものとした。
更に、上記のSi含有量a及び含有量bについては、合金相SiM相と単相であるSi相を面分析で定量的に区別することがむずかしいことから、この場合のSi量にはSiM相のSiも含まれるとする。
According to the above negative electrode active material, the amount of Si phase on the particle surface is less than the amount of Si phase inside the particle, or there is almost no Si phase, so the electrolyte solution by the Si phase that is the main active material phase The decomposition reaction is suppressed, and the cycle characteristics can be improved.
Further, since the element M is an element that is alloyed with Si and not alloyed with Li, the inclusion of the SiM phase in addition to the Si phase in the particle results in the expansion and contraction of the particle itself as compared with the case of the Si layer alone. The amount can be reduced, and the cycle characteristics can be improved by preventing the particles themselves from being pulverized.
In addition, since one or both of the X phase and the SiX phase, which have a lower resistance than the Si phase, are included, the specific resistance of the negative electrode active material can be reduced.
Note that Cu is an element having both properties of element M and element X because it is alloyed with Si and has a lower resistance than Si. Therefore, in the present invention, Cu is added to both the element M and the element X, but Cu is not selected for the element M and the element X at the same time.
Furthermore, with respect to the Si content a and the content b, it is difficult to quantitatively distinguish the alloy phase SiM phase from the single Si phase by surface analysis. Suppose that Si of this is also included.

また、本発明のリチウム二次電池用負極活物質は、先に記載のリチウム二次電池用負極活物質であり、前記多相合金粉末の粒子表面に微細孔が形成されていることを特徴とする。   Moreover, the negative electrode active material for a lithium secondary battery according to the present invention is the negative electrode active material for a lithium secondary battery described above, wherein micropores are formed on the particle surface of the multiphase alloy powder. To do.

上記の負極活物質によれば、粒子表面に微細孔が形成されているため、粒子の比表面積が高くなり、リチウムイオンを速やかに吸蔵・放出させることが可能になり、高率の充放電特性を向上することができる。
尚、微細孔の平均孔径は10nm以上5μm以下の範囲が好ましい。
According to the negative electrode active material described above, since fine pores are formed on the particle surface, the specific surface area of the particle is increased, and lithium ions can be absorbed and released quickly, and high charge / discharge characteristics are achieved. Can be improved.
The average pore diameter of the fine pores is preferably in the range of 10 nm to 5 μm.

また、本発明のリチウム二次電池用負極活物質は、先に記載のリチウム二次電池用負極活物質であり、前記多相合金粉末は、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素Mと、Ag、Cu、Auのうちの少なくとも1種以上の元素Xと、Siとを含む合金溶湯が急冷されて急冷合金粉末とされ、該急冷合金粉末がアルカリ性溶液に含侵されて粒子表面のSi相の一部または全部が除去されて形成されたものであることを特徴とする。ただし、Cuは元素Mと元素Xに同時に選択されないものとする。   Moreover, the negative electrode active material for a lithium secondary battery of the present invention is the negative electrode active material for a lithium secondary battery described above, and the multiphase alloy powder includes Ni, Co, As, B, Cr, Cu, and Fe. A molten alloy containing at least one element M of Mg, Mn, Y, at least one element X of Ag, Cu, Au, and Si is quenched to form a quenched alloy powder. The quenched alloy powder is formed by impregnating with an alkaline solution to remove a part or all of the Si phase on the particle surface. However, Cu is not selected as the element M and the element X at the same time.

かかる負極活物質によれば、粒子表面におけるSi相の量を粒子内部におけるSi相の量よりも少なくすることができ、Si相による電解液の分解反応が抑制され、サイクル特性を向上することができる。また、合金粒子を形成する相の中で最も抵抗の高いSi相が減少することにより、粒子の表面抵抗を低下させることができ、高率特性を向上させることができる。   According to such a negative electrode active material, the amount of the Si phase on the particle surface can be made smaller than the amount of the Si phase inside the particle, the decomposition reaction of the electrolyte solution by the Si phase is suppressed, and the cycle characteristics can be improved. it can. In addition, since the Si phase having the highest resistance among the phases forming the alloy particles is reduced, the surface resistance of the particles can be reduced, and the high rate characteristics can be improved.

また、本発明のリチウム二次電池用負極活物質は、先に記載のリチウム二次電池用負極活物質であり、ガスアトマイズ法、水アトマイズ法、ロール急冷法のいずれかにより前記合金溶湯が急冷されたことを特徴とする。   Further, the negative electrode active material for a lithium secondary battery of the present invention is the negative electrode active material for a lithium secondary battery described above, and the molten alloy is rapidly cooled by any of a gas atomizing method, a water atomizing method, and a roll quenching method. It is characterized by that.

かかる負極活物質によれば、Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む多相合金粉末を容易に得ることができる。特にガスアトマイズ法または水アトマイズ法によれば、球状粉末が得られるので、負極活物質の充填密度を高めることができ、負極活物質のエネルギー密度を高めることができる。   According to such a negative electrode active material, it is possible to easily obtain a multiphase alloy powder that always contains a Si phase and a SiM phase, and contains either one or both of an X phase and a SiX phase. In particular, according to the gas atomization method or the water atomization method, since the spherical powder is obtained, the packing density of the negative electrode active material can be increased, and the energy density of the negative electrode active material can be increased.

次に、本発明のリチウム二次電池は、先のいずれかに記載のリチウム二次電池用負極活物質を備えたことを特徴とする。
このリチウム二次電池によれば、上記の負極活物質を備えているので、電解液の分解反応が抑制され、かつ粒子自体の膨張収縮量を少なくすることができ、これによりサイクル特性を向上することができる。
Next, a lithium secondary battery of the present invention is characterized by including the negative electrode active material for a lithium secondary battery described above.
According to this lithium secondary battery, since the negative electrode active material is provided, the decomposition reaction of the electrolytic solution is suppressed, and the amount of expansion and contraction of the particles themselves can be reduced, thereby improving the cycle characteristics. be able to.

次に、本発明のリチウム二次電池用負極活物質の製造方法は、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素Mと、Ag、Cu、Auのうちの少なくとも1種以上の元素Xと、Siとを含む合金溶湯を急冷して急冷合金粉末とし、該急冷合金粉末をアルカリ性溶液に含侵させて粒子表面のSi相の一部又は全部を除去する際に、Si相除去後の粉末の比表面積が、Si相除去前の急冷合金粉末の比表面積の1.2倍以上50倍以下になるまでアルカリ性溶液による含侵処理を行うことを特徴とする。ただし、Cuは元素Mと元素Xに同時に選択されないものとする。 Next, the method for producing a negative electrode active material for a lithium secondary battery according to the present invention includes at least one element M of Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, A molten alloy containing at least one element X of Ag, Cu, and Au and Si is quenched to form a quenched alloy powder, and the quenched alloy powder is impregnated with an alkaline solution to form a Si phase on the particle surface. Impregnation treatment with alkaline solution until the specific surface area of the powder after removal of the Si phase becomes 1.2 to 50 times the specific surface area of the quenched alloy powder before the removal of the Si phase when removing part or all of it It is characterized by performing . However, Cu is not selected as the element M and the element X at the same time.

上記の負極活物質の製造方法によれば、元素Mと元素XとSiを含有する合金溶湯を急冷することによって、Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む急冷合金粉末を容易に形成することができる。そして、得られた急冷合金粉末をアルカリ性溶液に含侵させて粒子表面のSi相の一部または全てを除去することで、粒子表面におけるSi相の量を粒子内部におけるSi相の量よりも少なくすることができる。こうして得られた負極活物質は、電解液の分解反応が抑制されるとともに、粒子の表面抵抗を低下させることができ、かつ粒子自体の膨張収縮量を少なくすることができ、サイクル特性を向上することができる。
また、Si相より低抵抗であるX相またはSiX相のいずれか一方または両方が含まれるので、負極活物質の比抵抗を低減することができる。
なお、CuはSiと合金化するとともに、Siよりも低抵抗であるため、元素Mと元素Xの両方の性質を有する元素である。従って、本発明においては、元素Mと元素Xの双方にCuを加えることにするが、Cuは元素Mと元素Xに同時に選択されないものとした。
また、比表面積が当初の1.2倍以上になるまで含侵処理を行うことで、粒子表面のSiが溶出し、Siと電解液との反応が抑制され、サイクル特性を向上させることができる。また、比表面積が当初の50倍を超えると活物質となるSiの量が減少し容量が大幅に低下するとともに、粒子が構造的に脆くなり、充放電による膨張・収縮により崩壊し、サイクル劣化を招くので好ましくない。
According to the above method for producing a negative electrode active material, by rapidly cooling the molten alloy containing the element M, the element X and the Si, the Si phase and the SiM phase are necessarily included, and either the X phase or the SiX phase or A quenched alloy powder containing both can be easily formed. The obtained quenched alloy powder is impregnated with an alkaline solution to remove a part or all of the Si phase on the particle surface, so that the amount of Si phase on the particle surface is less than the amount of Si phase inside the particle. can do. The negative electrode active material thus obtained suppresses the decomposition reaction of the electrolytic solution, can reduce the surface resistance of the particles, can reduce the amount of expansion and contraction of the particles themselves, and improves cycle characteristics. be able to.
In addition, since one or both of the X phase and the SiX phase, which have a lower resistance than the Si phase, are included, the specific resistance of the negative electrode active material can be reduced.
Note that Cu is an element having both properties of element M and element X because it is alloyed with Si and has a lower resistance than Si. Therefore, in the present invention, Cu is added to both the element M and the element X, but Cu is not selected for the element M and the element X at the same time.
Further, by performing the impregnation treatment until the specific surface area becomes 1.2 times or more of the original, Si on the particle surface is eluted, the reaction between Si and the electrolytic solution is suppressed, and the cycle characteristics can be improved. . In addition, when the specific surface area exceeds 50 times the initial value, the amount of Si as an active material is reduced, the capacity is greatly reduced, the particles are structurally brittle, and collapse due to expansion / contraction due to charge / discharge, resulting in cycle deterioration. This is not preferable.

また、本発明のリチウム二次電池用負極活物質の製造方法は、先に記載の製造方法であり、ガスアトマイズ法、水アトマイズ法、ロール急冷法のいずれかにより前記合金溶湯を急冷することを特徴とする。   Further, the method for producing a negative electrode active material for a lithium secondary battery according to the present invention is the production method described above, wherein the molten alloy is rapidly cooled by any of a gas atomizing method, a water atomizing method, and a roll quenching method. And

かかる製造方法によれば、Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む多相合金粉末を容易に得ることができる。特にガスアトマイズ法または水アトマイズ法によれば、球状粉末が得られるので、負極活物質の充填密度を高めることができ、負極活物質のエネルギー密度を高めることができる。なかでも、ガスアトマイズの場合は、冷却ガスにヘリウムガスを使用することにより、合金粒子中の各組織を微細にすることができるので、サイクル特性をより向上させることができる。   According to such a production method, it is possible to easily obtain a multiphase alloy powder that always contains the Si phase and the SiM phase, and that contains either one or both of the X phase and the SiX phase. In particular, according to the gas atomization method or the water atomization method, since the spherical powder is obtained, the packing density of the negative electrode active material can be increased, and the energy density of the negative electrode active material can be increased. In particular, in the case of gas atomization, by using helium gas as the cooling gas, each structure in the alloy particles can be made finer, so that the cycle characteristics can be further improved.

以上説明したように、本発明のリチウム二次電池用負極活物質によれば、Si相による電解液の分解反応が抑制され、また粒子の表面抵抗を低下させることができ、かつ粒子自体の膨張収縮量を少なくすることができ、粒子自体の微粉化を防いでサイクル特性を向上することができる。   As described above, according to the negative electrode active material for a lithium secondary battery of the present invention, the decomposition reaction of the electrolyte solution by the Si phase is suppressed, the surface resistance of the particles can be reduced, and the expansion of the particles themselves The amount of shrinkage can be reduced, the pulverization of the particles themselves can be prevented, and the cycle characteristics can be improved.

以下、本発明の実施の形態を図面を参照して説明する。
本実施形態のリチウム二次電池用の負極活物質は、Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む多相合金粉末からなり、多相合金粉末の粒子表面におけるSi相の量が粒子内部におけるSi相の量より少なくされて構成されている。図1には、多相合金粉末を構成する一粒子の外観模式図の一例を示し、図2には図1に示した一粒子の断面模式図の一例を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The negative electrode active material for the lithium secondary battery of this embodiment is composed of a multiphase alloy powder that necessarily contains an Si phase and an SiM phase, and contains either one or both of an X phase and an SiX phase. The amount of the Si phase on the particle surface is configured to be smaller than the amount of the Si phase inside the particle. FIG. 1 shows an example of a schematic external view of one particle constituting the multiphase alloy powder, and FIG. 2 shows an example of a schematic cross-sectional view of the single particle shown in FIG.

図1及び図2に示すように、負極活物質を構成する多相合金粉末粒子1の組織にはSi相2とSiM相3とX相もしくはSiX相4とが含有されている。   As shown in FIGS. 1 and 2, the structure of the multiphase alloy powder particles 1 constituting the negative electrode active material contains Si phase 2, SiM phase 3, and X phase or SiX phase 4.

Si相2は、粒子表面よりも粒子内部に多く存在している。このSi相2は、充電時にリチウムと合金化してLiSi相を形成し、放電時にはリチウムを放出してSi単相に戻る。また、粒子表面でのSi相は、存在しないかもしくは少なくなっているため、Si相が電解液に直接触れることが少なく、Si相による電解液の分解反応が抑制される。 The Si phase 2 is present more in the interior of the particle than in the particle surface. This Si phase 2 is alloyed with lithium during charging to form a LiSi x phase, and during discharging, lithium is released to return to the Si single phase. In addition, since the Si phase on the particle surface does not exist or is small, the Si phase hardly touches the electrolytic solution, and the decomposition reaction of the electrolytic solution by the Si phase is suppressed.

また、SiM相3は、充放電時にリチウムと反応することなく、当該一粒子1の形状を維持して粒子1自体の膨張収縮を抑制する。SiM相3を構成する元素Mは、リチウムと合金化しない金属元素であり、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yの中から選択される少なくとも1種以上の元素である。特に元素MとしてはNiを用いることが好ましく、この場合のSiM相の組成はSiNi相となる。 Further, the SiM phase 3 does not react with lithium during charge and discharge, and maintains the shape of the one particle 1 to suppress the expansion and contraction of the particle 1 itself. The element M constituting the SiM phase 3 is a metal element that does not alloy with lithium, and is at least one selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y. It is an element. In particular, Ni is preferably used as the element M, and the composition of the SiM phase in this case is the Si 2 Ni phase.

またX相4は、多相合金粉末に導電性を付与して負極活物質自体の比抵抗を低減させる。X相4を構成する元素Xは、比抵抗が3Ω・m以下の金属元素であり、Ag、Cu、Auの中から選択される少なくとも1種以上の元素である。特にCuはリチウムと合金化しないので、膨張抑制効果があり好ましい。また、AgはSiとほとんど合金化しないため、元素MにAgと合金化しない金属を選択することにより、Agが単独相として存在し、粒子の伝導度を向上させることができるので好ましい。
なお、CuはSiと合金化するとともに、Siよりも低抵抗であるため、元素Mと元素Xの両方の性質を有する元素である。従って、本発明においては、元素Mと元素Xの双方にCuを加えることにするが、Cuは元素Mと元素Xに同時に選択されないものとした。
Further, the X phase 4 imparts conductivity to the multiphase alloy powder to reduce the specific resistance of the negative electrode active material itself. The element X constituting the X phase 4 is a metal element having a specific resistance of 3 Ω · m or less, and is at least one element selected from Ag, Cu, and Au. In particular, Cu is preferable because it does not alloy with lithium and has an effect of suppressing expansion. Further, since Ag hardly alloys with Si, it is preferable to select a metal that does not alloy with Ag as element M because Ag exists as a single phase and the conductivity of the particles can be improved.
Note that Cu is an element having both properties of element M and element X because it is alloyed with Si and has a lower resistance than Si. Therefore, in the present invention, Cu is added to both the element M and the element X, but Cu is not selected for the element M and the element X at the same time.

また、X相4に代えて、あるいはX相4とともに、SiX相が析出していても良い。SiX相は、X相4と同様に多相合金粉末に導電性を付与して負極活物質自体の比抵抗を低減させる。   Further, instead of the X phase 4 or together with the X phase 4, a SiX phase may be precipitated. Similar to the X phase 4, the SiX phase imparts conductivity to the multiphase alloy powder and reduces the specific resistance of the negative electrode active material itself.

Si相2、SiM相3、X相4、SiX相の結晶形態は、急冷速度、合金組成、急冷後の熱処理の有無により定まる。本実施形態の負極活物質においては、各相の全てが結晶質相であってもよく、非晶質相であっても良く、結晶質相と非晶質相とが混在したものであってもよい。また、Si相、SiM相、X相、SiX相の他に他の合金相を含んでいても良い。   The crystal forms of the Si phase 2, the SiM phase 3, the X phase 4, and the SiX phase are determined by the rapid cooling rate, the alloy composition, and the presence or absence of heat treatment after the rapid cooling. In the negative electrode active material of the present embodiment, all of the phases may be a crystalline phase, an amorphous phase, or a mixture of a crystalline phase and an amorphous phase. Also good. In addition to the Si phase, SiM phase, X phase, and SiX phase, other alloy phases may be included.

次に合金組成について言及すると、Siは、Si単相とSiM相さらにはSiX相を形成する元素であるため、合金の状態図より判断して、SiM相、SiX相を形成してもなおSi単相が生成されるように組成比を選ぶことにより、Siの容量を得ることができる。しかし、Si量が過剰に増えると、Si相が多く析出して充放電時の負極活物質全体の膨張収縮量が大きくなり、負極活物質が微粉化してサイクル特性が低下するので好ましくない。具体的には、負極活物質におけるSiの組成比が30質量%以上70質量%以下の範囲であることが好ましい。   Next, referring to the alloy composition, since Si is an element that forms a Si single phase, a SiM phase, and further a SiX phase, judging from the state diagram of the alloy, even if the SiM phase and the SiX phase are formed, Si is still Si. By selecting the composition ratio so that a single phase is generated, the capacity of Si can be obtained. However, an excessive increase in the amount of Si is not preferable because a large amount of Si phase precipitates and the amount of expansion and contraction of the entire negative electrode active material during charge / discharge increases, and the negative electrode active material is pulverized to deteriorate cycle characteristics. Specifically, the composition ratio of Si in the negative electrode active material is preferably in the range of 30% by mass to 70% by mass.

元素Mは、SiとともにSiM相を形成する元素であるため、合金の状態図より判断してその全量がSiと合金化するように添加することが好ましい。M量がSiと合金化できる量を上回ると、Siがすべて合金化され、容量の大幅な低下を招くので好ましくない。また、M量が少ないと、SiM相が少なくなり、Si相の膨張抑制効果が減少し、サイクル劣特性が低下してしまうので好ましくない。また、M相は異なる元素、M1相、M2相、M3相というように複数存在してもかまわない。Mの組成比はSiとの固溶限界が元素により異なるため具体的に限定することはできないが、SiとMが固溶限界まで合金化したとしてもなおSi相が存在するように考慮した組成比であることが好ましい。また、元素Mはリチウムと合金化しないので、不可逆容量を持つことがない。更に元素Mはアルカリ溶液に対して不溶であることが好ましい。   Since the element M is an element that forms a SiM phase together with Si, it is preferable to add the element M so that the entire amount thereof is alloyed with Si as judged from the phase diagram of the alloy. If the amount of M exceeds the amount that can be alloyed with Si, all of Si is alloyed, which causes a significant decrease in capacity, which is not preferable. On the other hand, when the amount of M is small, the SiM phase is decreased, the effect of suppressing the expansion of the Si phase is decreased, and the cycle inferior characteristics are deteriorated, which is not preferable. A plurality of M phases may exist such as different elements, such as M1, M2, M3, and so on. The composition ratio of M cannot be specifically limited because the solid solution limit with Si differs depending on the element, but the composition is considered so that the Si phase still exists even if Si and M are alloyed to the solid solution limit. The ratio is preferable. Further, since the element M is not alloyed with lithium, it does not have an irreversible capacity. Further, the element M is preferably insoluble in the alkaline solution.

またXの組成比が多くなると、比抵抗が低減するものの、Si相が相対的に減少して充放電容量が低下してしまう。一方、Xの組成比が少ないと、負極活物質の比抵抗が高くなって充放電効率が低下する。このため、負極活物質におけるXの組成比は1質量%以上30質量%以下の範囲であることが好ましい。更に元素Xはアルカリ溶液に対して不溶であることが好ましい。   Further, when the composition ratio of X increases, although the specific resistance is reduced, the Si phase is relatively reduced and the charge / discharge capacity is reduced. On the other hand, when the composition ratio of X is small, the specific resistance of the negative electrode active material increases and the charge / discharge efficiency decreases. For this reason, it is preferable that the composition ratio of X in a negative electrode active material is the range of 1 mass% or more and 30 mass% or less. Further, the element X is preferably insoluble in the alkaline solution.

多相合金粉末の平均粒径は5μm以上30μm以下の範囲が好ましい。一般にSiが含まれる合金粉末はリチウムイオン電池の既存負極材料として用いられている黒鉛粉末より抵抗が高いため、導電助材を使用することが好ましいが、平均粒径5μm以下になると、導電助材の粒径より多相合金粉末の平均粒径が小さくなる場合が生じ、導電助材の効果が得にくくなり、容量やサイクル特性などの電池特性が低下するので好ましくない。平均粒径が30μmを越えると、リチウム二次電池における負極活物質の充填密度が低下するので好ましくない。   The average particle size of the multiphase alloy powder is preferably in the range of 5 μm to 30 μm. In general, an alloy powder containing Si has a higher resistance than graphite powder used as an existing negative electrode material of a lithium ion battery. Therefore, it is preferable to use a conductive additive, but when the average particle size is 5 μm or less, the conductive additive is used. In some cases, the average particle size of the multiphase alloy powder becomes smaller than the particle size of the material, and it is difficult to obtain the effect of the conductive additive, and battery characteristics such as capacity and cycle characteristics are deteriorated. When the average particle size exceeds 30 μm, the packing density of the negative electrode active material in the lithium secondary battery is lowered, which is not preferable.

また図1及び図2示すように、多相合金粉末の粒子表面には、多数の微細孔5が形成されている。この微細孔5は、合金溶湯を急冷した後にアルカリ性溶液に含侵処理したことによって形成されたものであり、急冷直後において粒子表面に露出していたSi相が溶出した後の痕跡である。このようにSiが粒子表面に露出しないことで充電時の電解液との反応が抑制されるとともに、この微細孔5が形成されることによって多相合金粉末の比表面積が増大し、電解液との接触面積が大きくなって充放電効率が向上する。   As shown in FIGS. 1 and 2, a large number of fine holes 5 are formed on the particle surface of the multiphase alloy powder. The fine holes 5 are formed by quenching the molten alloy and then impregnating it with an alkaline solution, and are traces after elution of the Si phase exposed on the particle surface immediately after quenching. Thus, since Si is not exposed to the particle surface, the reaction with the electrolytic solution during charging is suppressed, and the formation of the micropores 5 increases the specific surface area of the multiphase alloy powder. The contact area becomes larger and the charge / discharge efficiency is improved.

微細孔5の平均孔径は10nm以上5μm以下の範囲が好ましい。また、微細孔5の深さは10nm以上1μm以下の範囲が好ましい。更に、多相合金粉末の比表面積は0.2m/g以上5m/g以下の範囲が好ましい。 The average pore diameter of the micropores 5 is preferably in the range of 10 nm to 5 μm. Further, the depth of the fine holes 5 is preferably in the range of 10 nm to 1 μm. Furthermore, the specific surface area of the multiphase alloy powder is preferably in the range of 0.2 m 2 / g to 5 m 2 / g.

上記の負極活物質によれば、粒子表面におけるSi相の量が粒子内部におけるSi相の量よりも少なくなっているので、Si相による電解液の分解反応が抑制され、サイクル特性を向上することができる。また、粒子中にSi相の他にSiM相とX相とが含まれるため、Si相単独の場合と比べて粒子自体の膨張収縮量を少なくすることができ、粒子自体の微粉化を防ぐとともに、導電性を向上させ、サイクル特性を向上することができる。   According to the above negative electrode active material, since the amount of Si phase on the particle surface is smaller than the amount of Si phase inside the particle, the decomposition reaction of the electrolyte solution by the Si phase is suppressed, and the cycle characteristics are improved. Can do. In addition, since the SiM phase and the X phase are included in addition to the Si phase in the particle, the amount of expansion and contraction of the particle itself can be reduced compared to the case of the Si phase alone, and the particle itself can be prevented from being pulverized. , Conductivity can be improved and cycle characteristics can be improved.

更に、粒子表面に微細孔が形成されているため、粒子の比表面積が高くなり、リチウムイオンを速やかに吸蔵・放出させることが可能になり、高率の充放電特性を向上することができる。   Furthermore, since the micropores are formed on the particle surface, the specific surface area of the particle is increased, and lithium ions can be quickly occluded / released, so that high rate charge / discharge characteristics can be improved.

次に、上記の負極活物質を用いたリチウム二次電池について説明する。このリチウム二次電池は、上記の負極活物質を備えた負極と、正極と、電解質を少なくとも具備してなるものである。
リチウム二次電池の負極は、例えば、負極活物質を構成する多相合金粉末が結着材によってシート状に固化成形されたものを例示できる。また、負極はシート状に固化成形されたものに限らず、円柱状、円盤状、板状若しくは柱状に固化成形されたペレットであっても良い。
Next, a lithium secondary battery using the above negative electrode active material will be described. The lithium secondary battery includes at least a negative electrode including the negative electrode active material, a positive electrode, and an electrolyte.
Examples of the negative electrode of the lithium secondary battery include a material in which a multiphase alloy powder constituting the negative electrode active material is solidified and formed into a sheet by a binder. The negative electrode is not limited to a solidified sheet, but may be a pellet solidified into a columnar shape, a disk shape, a plate shape, or a column shape.

結着材は、有機質または無機質のいずれでも良いが、多相合金粉末と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより多相合金粉末同士を結着させるものであればどのようなものでもよい。また、多相合金粉末と共に混合し、加圧成形等の固化成形を行うことにより多相合金粉末同士を結着させるものでもよい。このような結着材として例えば、ビニル系樹脂、セルロース系樹脂、フェノール樹脂、熱可塑性樹脂、熱硬化性樹脂などが使用でき、例えばポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、スチレンブタジエンラバー、等の樹脂を例示できる。   The binder may be either organic or inorganic, but any binder can be used as long as it is dispersed or dissolved in a solvent together with the multiphase alloy powder and then the multiphase alloy powder is bound to each other by removing the solvent. But you can. Moreover, it may mix with multiphase alloy powder, and may bind multiphase alloy powders by performing solidification molding such as pressure molding. As such a binder, for example, vinyl resin, cellulose resin, phenol resin, thermoplastic resin, thermosetting resin and the like can be used, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, etc. Resins can be exemplified.

また、本発明に係る負極においては、負極活物質及び結着材の他に、導電助材としてカーボンブラック、黒鉛粉末、炭素繊維、金属粉末、金属繊維等を添加しても良い。   In addition, in the negative electrode according to the present invention, carbon black, graphite powder, carbon fiber, metal powder, metal fiber, or the like may be added as a conductive additive in addition to the negative electrode active material and the binder.

次に正極としては例えば、LiMn、LiCoO、LiNiO、LiFeO、V、TiS、MoS等、及び有機ジスルフィド化合物や有機ポリスルフィド化合物等のリチウムを吸蔵、放出が可能な正極活物質を含むものや、Ni、Mn、Co系等の複合酸化物を例示できる。また正極には、上記正極活物質の他に、ポリフッ化ビニリデン等の結着材や、カーボンブラック等の導電助材を添加しても良い。 Next, as the positive electrode, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, MoS, etc., and positive electrode capable of inserting and extracting lithium such as organic disulfide compounds and organic polysulfide compounds Examples include those containing an active material, and composite oxides such as Ni, Mn, and Co. In addition to the positive electrode active material, a binder such as polyvinylidene fluoride or a conductive aid such as carbon black may be added to the positive electrode.

正極及び負極の具体例として、上記の正極または負極を金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。   Specific examples of the positive electrode and the negative electrode include those obtained by applying the positive electrode or the negative electrode to a current collector made of a metal foil or a metal net and forming the sheet.

更に電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒を例示でき、特にプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)のいずれか1つを必ず含むとともにジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)のいずれか1つを必ず含むものが好ましい。
Further, examples of the electrolyte include an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent.
As aprotic solvents, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl An aprotic solvent such as ether, or a mixed solvent obtained by mixing two or more of these solvents can be exemplified, and in particular, any one of propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC) In addition, it is preferable to always contain any one of dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).

また、リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものを例示でき、特にLiPF、LiBF4、LiN(CF3SO2、LiN(C25SOのいずれか1つを含むものが好ましい。 As the lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y is a natural number), LiCl, by mixing one or more lithium salts of such LiI In particular, one containing any one of LiPF 6 , LiBF 4, LiN (CF 3 SO 2 ) 2, and LiN (C 2 F 5 SO 2 ) 2 is preferable.

また電解質の別の例として、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに有機電解液を含浸させたもの等、いわゆるポリマー電解質を用いても良い。
更に、本発明のリチウム二次電池は、正極、負極、電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。
As another example of the electrolyte, a so-called polymer electrolyte such as a polymer obtained by mixing any of the above lithium salts with a polymer such as PEO or PVA, or a polymer having a high swellability impregnated with an organic electrolytic solution is used. It may be used.
Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the electrolyte, and may include other members as necessary. For example, the lithium secondary battery may include a separator that separates the positive electrode and the negative electrode. .

かかるリチウム二次電池によれば、上記の負極活物質を具備しており、充放電にともなう膨張収縮が少ないので、負極活物質が微粉化したり、集電体から脱落するおそれがなく、また導電材との接触も維持され、充放電容量を向上できるとともにサイクル特性を向上できる。
また、多相合金粉末の粒子表面におけるSi相の析出量が少なくなっているので、非水電解液の分解反応が抑制され、充放電容量を向上できるとともにサイクル特性を向上できる。
更に、多相合金粉末の粒子表面に多数の微細孔が形成されているので、リチウム二次電池の負極活物質として用いた場合に当該微細孔に非水電解液が含侵するとともに、導電性の高いX相があるので、リチウムイオンの拡散を効率よく行うことができ、高率充放電が可能になる。
According to such a lithium secondary battery, since the negative electrode active material is provided and there is little expansion / contraction due to charging / discharging, there is no possibility that the negative electrode active material is pulverized or dropped from the current collector, and also conductive. Contact with the material is also maintained, the charge / discharge capacity can be improved, and the cycle characteristics can be improved.
Moreover, since the precipitation amount of the Si phase on the particle surface of the multiphase alloy powder is reduced, the decomposition reaction of the non-aqueous electrolyte is suppressed, the charge / discharge capacity can be improved and the cycle characteristics can be improved.
In addition, since a large number of micropores are formed on the particle surface of the multiphase alloy powder, when used as a negative electrode active material for a lithium secondary battery, the micropores are impregnated with the non-aqueous electrolyte and are electrically conductive. Since there is a high X phase, lithium ions can be diffused efficiently and high rate charge / discharge is possible.

次に、本実施形態のリチウム二次電池用負極活物質の製造方法を説明する。本実施形態のリチウム二次電池用負極活物質の製造方法は、Siと元素Mと元素Xを含有する急冷合金粉末を得る工程と、得られた急冷合金粉末をアルカリ性溶液に含侵処理する工程とから概略構成されている。以下、各工程を順に説明する。   Next, the manufacturing method of the negative electrode active material for lithium secondary batteries of this embodiment is demonstrated. The method for producing a negative electrode active material for a lithium secondary battery according to the present embodiment includes a step of obtaining a quenched alloy powder containing Si, element M, and element X, and a step of impregnating the obtained quenched alloy powder with an alkaline solution. It is roughly composed of Hereinafter, each process is demonstrated in order.

まず、急冷合金粉末を製造する工程では、Siと元素Mと元素Xを含む合金溶湯を急冷して急冷合金粉末とする。合金溶湯は、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素Mと、Ag、Cu、Auのうちの少なくとも1種以上の元素Xと、Siとを含むものであり、これらの単体あるいは合金を例えば高周波誘導加熱法により同時に溶解することによって得られる。   First, in the process of manufacturing a rapidly cooled alloy powder, a molten alloy containing Si, element M, and element X is rapidly cooled to obtain a rapidly cooled alloy powder. The molten alloy includes at least one element M of Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y and at least one element X of Ag, Cu, and Au. And Si, and can be obtained by simultaneously dissolving these simple substances or alloys by, for example, a high frequency induction heating method.

合金溶湯におけるまたSiの含有率は30質量%以上70質量%以下の範囲であることが好ましい。合金溶湯におけるSiの含有率が前記の範囲を外れると、Siが少なすぎてSi相が析出されなかったり、Si量が多すぎて膨張収縮しやすい負極活物質が得られてしまうので好ましくない。   The Si content in the molten alloy is preferably in the range of 30% by mass to 70% by mass. If the Si content in the molten alloy is out of the above range, it is not preferable because there is too little Si and no Si phase is precipitated, or a negative electrode active material that is easily expanded and contracted due to too much Si.

合金溶湯を急冷する方法としては、例えば、ガスアトマイズ法、水アトマイズ法、ロール急冷法等を用いることができる。ガスアトマイズ法及び水アトマイズ法では粉末状の急冷合金が得られ、ロール急冷法では薄帯状の急冷合金が得られる。薄帯状の急冷合金は更に粉砕して粉末にする。こうして得られた急冷合金粉末の平均粒径が、最終的に得ようとする多相合金粉末の平均粒径となる。従って、急冷合金粉末を得る際には、その平均粒径を5μm以上30μm以下の範囲に調整することが必要である。   As a method for rapidly cooling the molten alloy, for example, a gas atomizing method, a water atomizing method, a roll quenching method, or the like can be used. In the gas atomization method and the water atomization method, a powdery quenching alloy is obtained, and in the roll quenching method, a ribbon-like quenching alloy is obtained. The ribbon-like quenched alloy is further pulverized into a powder. The average particle size of the quenched alloy powder thus obtained is the average particle size of the multiphase alloy powder to be finally obtained. Therefore, when obtaining a rapidly cooled alloy powder, it is necessary to adjust the average particle size in the range of 5 μm to 30 μm.

合金溶湯から得られた急冷合金粉末は、組織全体が非晶質相である急冷合金、若しくは一部が非晶質相であるとともに残部が結晶質相粒からなる急冷合金、若しくは組織全体が結晶質相である急冷合金となる。また急冷合金粉末には、SiX相及びSiM相が必ず含まれ、かつX相とSiX相のいずれか一方または両方が含まれる。また、これらSi相、SiM相、X相、SiX相の各相は合金組織中で均一に混在した状態にある。   The quenched alloy powder obtained from the molten alloy is a quenched alloy whose entire structure is an amorphous phase, or a quenched alloy whose part is an amorphous phase and the remainder is composed of crystalline phase grains, or the entire structure is crystalline. It becomes a quenched alloy that is a temperate phase. The quenched alloy powder always includes a SiX phase and a SiM phase, and includes one or both of an X phase and a SiX phase. Further, these Si phase, SiM phase, X phase, and SiX phase are uniformly mixed in the alloy structure.

尚、急冷の際の急冷速度は、100K/秒以上であることが好ましい。急冷速度が100K/秒未満では、Si相、SiM相、X相、SiX相の各相が合金組織中で均一に析出しないおそれがあり、また各相の結晶の大きさが大きくなりすぎ、均一な膨張抑制効果、導電性付与効果が得にくくなるので好ましくない。   In addition, it is preferable that the rapid cooling rate at the time of rapid cooling is 100 K / second or more. If the quenching rate is less than 100 K / sec, the Si phase, SiM phase, X phase, and SiX phase may not precipitate uniformly in the alloy structure, and the crystal size of each phase becomes too large. It is not preferable because it is difficult to obtain a sufficient expansion suppressing effect and conductivity imparting effect.

次に、急冷合金をアルカリ性溶液に含侵処理する工程では、急冷合金粉末の粒子表面に析出しているSi相を溶出除去する。具体的には、急冷合金粉末を、アルカリ性溶液に含浸させた後、洗浄及び乾燥を行う。含侵条件は室温で30分〜5時間程度ゆっくり攪拌しながら行う条件とするのがよい。またアルカリ性溶液としては、例えば水酸化ナトリウムや水酸化カリウムの水溶液を用いるのがよく、濃度は1〜5Nの範囲がよい。   Next, in the step of impregnating the quenched alloy with an alkaline solution, the Si phase precipitated on the particle surface of the quenched alloy powder is eluted and removed. Specifically, the quenched alloy powder is impregnated with an alkaline solution, and then washed and dried. The impregnation condition is preferably a condition that is slowly stirred at room temperature for about 30 minutes to 5 hours. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or potassium hydroxide is preferably used, and the concentration is preferably in the range of 1 to 5N.

尚、ここで述べた含侵条件はあくまで目安であり、実際には粒子表面に析出していたSi相のみが溶出除去されるのを確認することで含侵条件を定めることができる。含侵処理を過度に行うと、表面のみならず粒子内部のSi相まで溶出除去させてしまい、負極活物質の充放電容量が低下してしまうので好ましくない。また粒子内部のSi相まで溶出されてしまうと、粒子自体の強度が低下するので好ましくない。更に、含侵条件が不十分だと、粒子表面にSi相が残存し、電解液の分解反応を起こしてしまうので好ましくない。   The impregnation conditions described here are only a guideline. In practice, it is possible to determine the impregnation conditions by confirming that only the Si phase precipitated on the particle surface is eluted and removed. Excessive impregnation treatment is not preferable because not only the surface but also the Si phase inside the particles are eluted and removed, and the charge / discharge capacity of the negative electrode active material is reduced. If the Si phase inside the particle is eluted, the strength of the particle itself is lowered, which is not preferable. Furthermore, if the impregnation conditions are insufficient, the Si phase remains on the particle surface, causing a decomposition reaction of the electrolytic solution, which is not preferable.

具体的には、Si相除去後の粉末の比表面積が、Si相除去前の急冷合金粉末の比表面積の1.2倍以上になるまでアルカリ性溶液による含侵処理を行うことが好ましい。比表面積が当初の1.2倍以上になるまで含侵処理を行うことで、表面のSiの一部またはすべてを除去することができ、電解液との反応を抑制することができる。   Specifically, it is preferable to perform the impregnation treatment with the alkaline solution until the specific surface area of the powder after the Si phase removal becomes 1.2 times or more the specific surface area of the quenched alloy powder before the Si phase removal. By performing the impregnation treatment until the specific surface area becomes 1.2 times or more of the initial surface, part or all of Si on the surface can be removed, and the reaction with the electrolytic solution can be suppressed.

また、Si相除去後の粉末の比表面積が少なくとも、Si相除去前の急冷合金粉末の比表面積の50倍以下となるようにアルカリ性溶液による含侵処理を行うことが好ましい。これにより、必要以上のSiの溶解を阻止し、電池容量の減少を防止することができる。   Moreover, it is preferable to perform the impregnation treatment with an alkaline solution so that the specific surface area of the powder after the Si phase removal is at least 50 times the specific surface area of the quenched alloy powder before the Si phase removal. Thereby, dissolution of Si more than necessary can be prevented, and a decrease in battery capacity can be prevented.

上記の含侵処理を行うことにより、急冷合金粉末の粒子表面に析出しているSi相が溶出除去され、粒子表面にはSiM相とX相もしくはSiX相が残存する。また、Si相が除去された部分には微細孔が形成される。更に、粒子表面のSi相が除去されることで、粒子表面におけるSi相の量が粒子内部におけるSi相の量よりも少なくなる。
尚、元素M及び元素Xはアルカリ溶液に対して不溶であり、更にSiM相、SiX相もアルカリ溶液に溶けにくいのでSi相が優先して溶出することになる。
By performing the above impregnation treatment, the Si phase precipitated on the surface of the quenched alloy powder particles is eluted and removed, and the SiM phase and the X phase or SiX phase remain on the particle surface. Micropores are formed in the portion where the Si phase has been removed. Furthermore, by removing the Si phase on the particle surface, the amount of Si phase on the particle surface becomes smaller than the amount of Si phase inside the particle.
The element M and the element X are insoluble in the alkaline solution, and the SiM phase and the SiX phase are also hardly soluble in the alkaline solution, so that the Si phase is eluted with priority.

上記の負極活物質の製造方法によれば、元素Mと元素XとSiを含有する合金溶湯を急冷することによって、SiX相及びSiM相が必ず含まれ、かつX相とSiX相のいずれか一方または両方を有する急冷合金粉末を容易に形成することができる。そして、得られた急冷合金粉末をアルカリ性溶液に含侵させて粒子表面のSi相を除去することで、粒子表面におけるSi相の量を粒子内部におけるSi相の量よりも少なくすることができる。こうして得られた負極活物質は、電解液の分解反応を抑制させ、かつ粒子自体の膨張収縮量を少なくすることができ、サイクル特性を向上することができる。   According to the above method for producing a negative electrode active material, the alloy melt containing the element M, the element X, and Si is quenched, so that the SiX phase and the SiM phase are always included, and either the X phase or the SiX phase is included. Alternatively, a quenched alloy powder having both can be easily formed. Then, by impregnating the obtained quenched alloy powder with an alkaline solution to remove the Si phase on the particle surface, the amount of Si phase on the particle surface can be made smaller than the amount of Si phase inside the particle. The negative electrode active material thus obtained can suppress the decomposition reaction of the electrolytic solution, reduce the amount of expansion and contraction of the particles themselves, and improve cycle characteristics.

また、SiX相及びSiM相が必ず含まれ、かつX相とSiX相のいずれか一方または両方を含む多相合金粉末を容易に得ることができる。特にガスアトマイズ法または水アトマイズ法によれば、球状粉末が得られるので、負極活物質の充填密度を高めることができ、負極活物質のエネルギー密度を高めることができる。   In addition, it is possible to easily obtain a multiphase alloy powder that always includes a SiX phase and a SiM phase, and includes one or both of the X phase and the SiX phase. In particular, according to the gas atomization method or the water atomization method, since the spherical powder is obtained, the packing density of the negative electrode active material can be increased, and the energy density of the negative electrode active material can be increased.

5mm角程度の大きさの塊状のSiを55重量部と、Ni粉末を35重量部と、Ag粉末10重量部をそれぞれ用意し、これらを混合してからアルゴン雰囲気中において高周波加熱法により溶解して合金溶湯とした。この合金溶湯を80kg/cmの圧力のヘリウムガスを用いたガスアトマイズ法によって急冷することにより、平均粒径10μmの急冷合金粉末を得た。このときの急冷速度は1×10K/秒であった。
次に、得られた急冷合金粉末を5Nの水酸化ナトリウム水溶液中に入れ、室温でゆっくり攪拌しながら4時間かけて含侵処理した。その後、ナトリウムの残留がないように純水で十分に洗浄してから乾燥した後、粒度の調整を行って平均粒径10μmとした。このようにして、実験例1の負極活物質を製造した。
Prepare 55 parts by weight of massive Si with a size of about 5 mm square, 35 parts by weight of Ni powder, and 10 parts by weight of Ag powder, mix them, and dissolve them in a high-frequency heating method in an argon atmosphere. The alloy was melted. The molten alloy was quenched by a gas atomization method using helium gas at a pressure of 80 kg / cm 2 to obtain a quenched alloy powder having an average particle size of 10 μm. The rapid cooling rate at this time was 1 × 10 5 K / sec.
Next, the obtained quenched alloy powder was placed in a 5N aqueous sodium hydroxide solution and impregnated over 4 hours with slow stirring at room temperature. Then, after thoroughly washing with pure water so that no sodium remains, drying was performed, and the particle size was adjusted to an average particle size of 10 μm. Thus, the negative electrode active material of Experimental Example 1 was produced.

得られた粉末に対してX線回折を行ったところ、Si結晶質相と、NiSi2なる組成の結晶質相とAg結晶質相が混在した組織が確認された。
また、含侵処理前の急冷合金粒子(比較例)と、含侵処理後の急冷合金粒子(実施例)について、電子顕微鏡によって形態観察を行った。結果を図3及び図4に示す。図3に示すように、含侵処理前の急冷合金粉末粒子(比較例)は球状であり、表面は比較的なめらかであることがわかる。尚、図3及び図4に示した写真は2次電子像であり、図3ではSi相が比較的濃いグレーで映っている。図3に示すようにSi相は外観上細長い形状を示している。また、図3ではNiSi相が比較的薄いグレーで映っている。図3に示すように、NiSi相はSi相の周りに位置している。
When X-ray diffraction was performed on the obtained powder, a structure in which a Si crystalline phase, a crystalline phase having a composition of NiSi2, and an Ag crystalline phase were mixed was confirmed.
Further, the morphology of the quenched alloy particles before the impregnation treatment (Comparative Example) and the quenched alloy particles after the impregnation treatment (Example) were observed with an electron microscope. The results are shown in FIGS. As shown in FIG. 3, it can be seen that the quenched alloy powder particles (comparative example) before the impregnation treatment are spherical and the surface is relatively smooth. The photographs shown in FIGS. 3 and 4 are secondary electron images. In FIG. 3, the Si phase is reflected in a relatively dark gray. As shown in FIG. 3, the Si phase has an elongated shape in appearance. Further, in FIG. 3, the NiSi 2 phase is reflected in a relatively light gray. As shown in FIG. 3, the NiSi 2 phase is located around the Si phase.

一方、含侵処理後の急冷合金粉末粒子(実施例)は、図4に示すように、表面に微細孔が多数形成されていることがわかる。また、粒子表面の色が比較的均一であることがわかる。表面の微細孔は、表面に露出していたSi相が溶出して形成されたものと思われる。また、粒子表面の色が比較的均一なのは、Si相が溶出された結果、表面がNiSi相で占められ、表面の組成が均一になっているためである。 On the other hand, the quenched alloy powder particles (Example) after the impregnation treatment are found to have a large number of fine pores formed on the surface as shown in FIG. It can also be seen that the color of the particle surface is relatively uniform. It seems that the surface micropores were formed by elution of the Si phase exposed on the surface. Moreover, the reason why the color of the particle surface is relatively uniform is that, as a result of the elution of the Si phase, the surface is occupied by the NiSi 2 phase, and the composition of the surface is uniform.

このように、NiとAgとSiを含有する合金溶湯を急冷することによって、Si相、NiSi相(SiM相)及びAg相(X相)を有する急冷合金粉末を容易に形成することができる。そして、得られた急冷合金粉末をアルカリ性溶液に含侵させて粒子表面のSi相を除去することで、粒子表面におけるSi相を少なくすることができる。 Thus, by rapidly cooling the molten alloy containing Ni, Ag and Si, a rapidly cooled alloy powder having a Si phase, a NiSi 2 phase (SiM phase) and an Ag phase (X phase) can be easily formed. . Then, by impregnating the obtained quenched alloy powder with an alkaline solution and removing the Si phase on the particle surface, the Si phase on the particle surface can be reduced.

Ag粉末に代えてCu粉末を用いたこと以外は上記実験例1と同様にして実験例2(実施例)の負極活物質を製造した。
また、含侵処理の処理時間を1時間としたこと以外は上記実験例1と同様にして実験例3(実施例)の負極活物質を製造した。
更に、含侵処理の処理温度を40℃とし、処理時間を1時間としたこと以外は上記実験例1と同様にして実験例4(実施例)の負極活物質を製造した。
更に、含侵処理の処理温度を60℃とし、処理時間を1時間としたこと以外は上記実験例1と同様にして実験例5(比較例)の負極活物質を製造した。
更に、含侵処理を行わなかったこと以外は上記実験例1と同様にして実験例6(比較例)の負極活物質を製造した。
A negative electrode active material of Experimental Example 2 (Example) was manufactured in the same manner as Experimental Example 1 except that Cu powder was used instead of Ag powder.
Further, the negative electrode active material of Experimental Example 3 (Example) was manufactured in the same manner as Experimental Example 1 except that the treatment time for the impregnation treatment was 1 hour.
Furthermore, the negative electrode active material of Experimental Example 4 (Example) was manufactured in the same manner as in Experimental Example 1 except that the treatment temperature of the impregnation treatment was 40 ° C. and the treatment time was 1 hour.
Further, a negative electrode active material of Experimental Example 5 (Comparative Example) was manufactured in the same manner as Experimental Example 1 except that the treatment temperature of the impregnation treatment was 60 ° C. and the treatment time was 1 hour.
Further, a negative electrode active material of Experimental Example 6 (Comparative Example) was manufactured in the same manner as Experimental Example 1 except that the impregnation treatment was not performed.

上記の実験例2〜6並びに実施例1で製造した実験例1の負極活物質を用いてリチウム二次電池を製造した。実験例1〜6の各々の負極活物質70重量部と、導電材として平均粒径3μmの黒鉛粉末20重量部と、ポリフッ化ビニリデン10重量部とを混合し、N−メチルピロリドンを加えてから攪拌してスラリーを作成した。次にこのスラリーを厚さ14μmの銅箔上に塗布してから乾燥し、これを圧延して厚さ40μmの負極電極を作成した。作成した負極電極を直径13mmの円形に打ち抜き、この負極電極に多孔質ポリプロピレン製のセパレータを挟んで対極として金属リチウムを重ね、更に容積比でEC:DEC=3:7の混合溶媒にLiPFを1.3モル/Lの濃度で添加してなる電解液を注液することにより、コイン型のリチウム二次電池を製造した。 A lithium secondary battery was manufactured using the negative electrode active material of Experimental Examples 2 to 6 and Experimental Example 1 manufactured in Example 1. After mixing 70 parts by weight of each of the negative electrode active materials of Experimental Examples 1 to 6, 20 parts by weight of graphite powder having an average particle diameter of 3 μm as a conductive material, and 10 parts by weight of polyvinylidene fluoride, N-methylpyrrolidone was added. A slurry was prepared by stirring. Next, this slurry was applied onto a copper foil having a thickness of 14 μm, dried, and rolled to prepare a negative electrode having a thickness of 40 μm. The prepared negative electrode was punched into a circle having a diameter of 13 mm, and a metallic polypropylene was stacked on the negative electrode with a porous polypropylene separator interposed therebetween. Further, LiPF 6 was added to a mixed solvent having a volume ratio of EC: DEC = 3: 7. A coin-type lithium secondary battery was manufactured by injecting an electrolytic solution added at a concentration of 1.3 mol / L.

得られたリチウム二次電池に対して、電池電圧0V〜1.5Vの範囲で0.2Cの電流密度による充放電を50サイクル繰り返し行った。このときの初期放電容量と、初回の充放電効率と、50サイクル後の容量維持率を求めた。結果を表1に示す。また表1には負実験例1〜6の極活物質の比表面積、電子顕微鏡の面分析より得られる前記多相合金粉末の粒子表面上のSi含有量aと、粒子断面のSiの含有量bの比(a/b)を合わせて示す。なお、Si量はSiの特性X線の強度に基づいて測定した。   The obtained lithium secondary battery was repeatedly charged and discharged with a current density of 0.2 C for 50 cycles in the battery voltage range of 0 V to 1.5 V. The initial discharge capacity at this time, the initial charge / discharge efficiency, and the capacity retention after 50 cycles were determined. The results are shown in Table 1. Table 1 also shows the specific surface area of the polar active materials of negative experimental examples 1 to 6, the Si content a on the particle surface of the multiphase alloy powder obtained by surface analysis with an electron microscope, and the Si content in the particle cross section. The ratio of b (a / b) is also shown. The amount of Si was measured based on the intensity of the characteristic X-ray of Si.

Figure 0003841779
Figure 0003841779

表1に示すように、負極活物質の含侵処理を行った実験例1〜4(実施例)のリチウム二次電池の容量維持率が、含侵処理を行わなかった実験例6(比較例)のリチウム二次電池の容量維持率よりも高くなっていることがわかる。これは、実験例1〜4(実施例)では負極活物質の粒子表面のSi相が含侵処理によって除去されたために、Si相による電解液の分解反応が抑制されたためと考えられる。また、含侵処理によって高比抵抗のSi相が除去されて粒子表面の表面抵抗が低下することも容量維持率の向上に寄与しているものと思われる。ただし、実施例5(比較例)のように含浸処理を過剰に行うと、粒子内部のSiも溶出するため、粒子の強度が低下し、膨張に耐えられなくなるためにサイクル特性が低下する。 As shown in Table 1, the capacity retention rate of the lithium secondary batteries of Experimental Examples 1 to 4 (Examples) in which the negative electrode active material was impregnated was Experimental Example 6 in which the impregnation treatment was not performed (Comparative Example) It can be seen that it is higher than the capacity retention rate of the lithium secondary battery. This is considered to be because, in Experimental Examples 1 to 4 (Examples) , the Si phase on the surface of the negative electrode active material particles was removed by the impregnation treatment, so that the decomposition reaction of the electrolyte solution by the Si phase was suppressed. Moreover, it is considered that the fact that the Si phase having a high specific resistance is removed by the impregnation treatment and the surface resistance of the particle surface is lowered contributes to the improvement of the capacity retention rate. However, if the impregnation treatment is performed excessively as in Example 5 (comparative example) , Si inside the particles is also eluted, so that the strength of the particles is reduced and the expansion becomes impossible to withstand expansion, so that the cycle characteristics are deteriorated.

また、実験例1と2(いずれも実施例)とを比較すると、実験例2の容量維持率が高くなっていることが分かる。これは、実験例1で元素Xとして用いたAgがLiと合金化したために実験例1の容量維持率が低下し、一方実験例2で元素Xとして用いたCuはLiと合金化しないために容量維持率が向上したものと考えられる。 Further, comparing Experimental Examples 1 and 2 (both Examples) , it can be seen that the capacity retention rate of Experimental Example 2 is high. This is because Ag used as element X in Experimental Example 1 was alloyed with Li, so that the capacity retention rate of Experimental Example 1 was reduced, while Cu used as Element X in Experimental Example 2 was not alloyed with Li. It is thought that the capacity maintenance rate has improved.

また、実験例3(実施例)は含侵時間が実験例1(実施例)よりも短く、このためSi相が粒子表面に若干残存していた。従って、実験例1(実施例)よりは容量維持率が低下するものの、実験例6(比較例)よりは容量維持率が優れていることがわかる。
更に、実験例4(実施例)は含侵温度が実験例1(実施例)よりも高く、このため粒子内部のSi相まで溶出してしまった。従って、容量維持率については実験例1(実施例)と同等だが、初期容量が実験例1よりも若干低下した。
更に、実験例5(比較例)は含侵温度が実験例4(実施例)よりも更に高く、このため粒子内部のSi相まで溶出してしまった。従って、容量維持率及び初期容量について実験例1(実施例)よりも大幅に低下した。
Further, in Experimental Example 3 (Example), the impregnation time was shorter than in Experimental Example 1 (Example) , and therefore, the Si phase remained slightly on the particle surface. Therefore, it can be seen that the capacity retention ratio is lower than that of Experimental Example 1 ( Example), but the capacity retention ratio is superior to that of Experimental Example 6 (Comparative Example) .
Furthermore, in Experimental Example 4 (Example), the impregnation temperature was higher than in Experimental Example 1 (Example) , and thus the Si phase inside the particles was eluted. Therefore, the capacity retention rate is equivalent to that of Experimental Example 1 (Example) , but the initial capacity is slightly lower than that of Experimental Example 1.
Furthermore, in Experimental Example 5 (Comparative Example), the impregnation temperature was even higher than in Experimental Example 4 (Example) , and thus the Si phase inside the particles was eluted. Therefore, the capacity retention rate and the initial capacity were significantly lower than those of Experimental Example 1 (Example) .

以上のように、含侵処理を適度に行うことによって、粒子表面のSi相を溶出除去することができ、これによりリチウム二次電池のサイクル寿命と充放電容量を同時に改善できることが分かる。   As described above, it can be seen that by appropriately performing the impregnation treatment, the Si phase on the particle surface can be eluted and removed, thereby improving the cycle life and charge / discharge capacity of the lithium secondary battery at the same time.

本発明の実施形態のリチウム二次電池用負極活物質を示す模式図。The schematic diagram which shows the negative electrode active material for lithium secondary batteries of embodiment of this invention. 本発明の実施形態のリチウム二次電池用負極活物質を示す断面模式図。The cross-sectional schematic diagram which shows the negative electrode active material for lithium secondary batteries of embodiment of this invention. 含侵処理前の実験例1の負極活物質の電子顕微鏡写真(2次電子像)Electron micrograph (secondary electron image) of the negative electrode active material of Experimental Example 1 before the impregnation treatment 含侵処理後の実験例1の負極活物質の電子顕微鏡写真(2次電子像)Electron micrograph (secondary electron image) of the negative electrode active material of Experimental Example 1 after the impregnation treatment

符号の説明Explanation of symbols

1…多相合金粉末の粒子、2…Si相、3…SiM相、4…X相、5…微細孔
DESCRIPTION OF SYMBOLS 1 ... Particle | grains of multiphase alloy powder, 2 ... Si phase, 3 ... SiM phase, 4 ... X phase, 5 ... Micropore

Claims (8)

Si相及びSiM相を必ず含み、かつX相またはSiX相のいずれか一方または両方を含む多相合金粉末からなり、前記多相合金粉末の粒子表面におけるSi相の量が粒子内部におけるSi相の量より少な
電子顕微鏡の面分析より得られる前記多相合金粉末の粒子表面上のSi含有量aと、粒子断面のSiの含有量bの比が、0.5≦a/b ≦0.95であり、比表面積が0.2m /g以上5m /g以下の範囲であることを特徴とするリチウム二次電池用負極活物質。
ただし、前記MはNi、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素であり、元素XはAg、Cu、Auのうちの少なくとも1種以上の元素であり、Cuは元素Mと元素Xに同時に選択されないものとする。
It consists of a multiphase alloy powder that necessarily contains an Si phase and an SiM phase, and contains either one or both of an X phase and an SiX phase, and the amount of Si phase on the particle surface of the multiphase alloy powder is the amount of Si phase inside the particle. less than the amount rather than,
The ratio of the Si content a on the particle surface of the multiphase alloy powder obtained by surface analysis with an electron microscope and the Si content b in the particle cross section is 0.5 ≦ a / b ≦ 0.95, A negative electrode active material for a lithium secondary battery, having a specific surface area of 0.2 m 2 / g or more and 5 m 2 / g or less .
Where M is at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, and element X is at least one element selected from Ag, Cu, and Au. In the above elements, Cu is not selected as the element M and the element X at the same time.
前記多相合金粉末の粒子表面に微細孔が形成されていることを特徴とする請求項1に記載のリチウム二次電池用負極活物質。   2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein micropores are formed on the particle surfaces of the multiphase alloy powder. 前記微細孔の平均孔径が10nm以上5μm以下の範囲であることを特徴とする請求項2に記載のリチウム二次電池用負極活物質。   3. The negative electrode active material for a lithium secondary battery according to claim 2, wherein an average pore diameter of the micropores is in a range of 10 nm to 5 μm. 前記多相合金粉末は、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素Mと、Ag、Cu、Auのうちの少なくとも1種以上の元素Xと、Siとを含む合金溶湯が急冷されて急冷合金粉末とされ、該急冷合金粉末がアルカリ性溶液に含侵されて粒子表面のSi相の一部または全部が除去されて形成されたものであることを特徴とする請求項1ないし請求項3のいずれかに記載のリチウム二次電池用負極活物質。
ただし、Cuは元素Mと元素Xに同時に選択されないものとする。
The multiphase alloy powder includes at least one element M selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, and at least one selected from Ag, Cu, and Au. The alloy melt containing the element X and Si was quenched to form a quenched alloy powder, and the quenched alloy powder was impregnated with an alkaline solution to remove part or all of the Si phase on the particle surface. The negative electrode active material for a lithium secondary battery according to any one of claims 1 to 3, wherein the negative electrode active material is a lithium secondary battery.
However, Cu is not selected as the element M and the element X at the same time.
ガスアトマイズ法、水アトマイズ法、ロール急冷法のいずれかにより前記合金溶湯が急冷されたことを特徴とする請求項4に記載のリチウム二次電池用負極活物質。   The negative electrode active material for a lithium secondary battery according to claim 4, wherein the molten alloy is rapidly cooled by any one of a gas atomizing method, a water atomizing method, and a roll quenching method. 請求項1ないし請求項のいずれかに記載のリチウム二次電池用負極活物質を備えたことを特徴とするリチウム二次電池。 A lithium secondary battery comprising the negative electrode active material for a lithium secondary battery according to any one of claims 1 to 5 . Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素Mと、Ag、Cu、Auのうちの少なくとも1種以上の元素Xと、Siとを含む合金溶湯を急冷して急冷合金粉末とし、該急冷合金粉末をアルカリ性溶液に含侵させて粒子表面のSi相の一部又は全部を除去する際に、Si相除去後の粉末の比表面積が、Si相除去前の急冷合金粉末の比表面積の1.2倍以上50倍以下になるまでアルカリ性溶液による含侵処理を行うことを特徴とするリチウム二次電池負極活物質の製造方法。
ただし、Cuは元素Mと元素Xに同時に選択されないものとする。
At least one element M of Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, Y, at least one element X of Ag, Cu, Au, and Si When the molten alloy containing is quenched to form a quenched alloy powder, and the quenched alloy powder is impregnated with an alkaline solution to remove part or all of the Si phase on the particle surface, the specific surface area of the powder after removal of the Si phase However, the impregnation process by an alkaline solution is performed until it becomes 1.2 times or more and 50 times or less the specific surface area of the quenched alloy powder before Si phase removal , The manufacturing method of the negative electrode active material of a lithium secondary battery characterized by the above-mentioned.
However, Cu is not selected as the element M and the element X at the same time.
ガスアトマイズ法、水アトマイズ法、ロール急冷法のいずれかにより前記合金溶湯を急冷することを特徴とする請求項に記載のリチウム二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a lithium secondary battery according to claim 7 , wherein the molten alloy is rapidly cooled by any one of a gas atomizing method, a water atomizing method, and a roll rapid cooling method.
JP2003299281A 2003-08-22 2003-08-22 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Lifetime JP3841779B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003299281A JP3841779B2 (en) 2003-08-22 2003-08-22 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR1020040015451A KR100589367B1 (en) 2003-08-22 2004-03-08 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299281A JP3841779B2 (en) 2003-08-22 2003-08-22 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005071771A JP2005071771A (en) 2005-03-17
JP3841779B2 true JP3841779B2 (en) 2006-11-01

Family

ID=34404545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299281A Expired - Lifetime JP3841779B2 (en) 2003-08-22 2003-08-22 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP3841779B2 (en)
KR (1) KR100589367B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271967B2 (en) 2010-05-28 2013-08-21 株式会社日立製作所 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP5790282B2 (en) * 2010-09-30 2015-10-07 大同特殊鋼株式会社 Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP5766445B2 (en) * 2011-01-17 2015-08-19 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium ion secondary battery and manufacturing method thereof
WO2013002163A1 (en) * 2011-06-27 2013-01-03 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6322362B2 (en) * 2012-02-01 2018-05-09 山陽特殊製鋼株式会社 Si alloy negative electrode material
WO2013146658A1 (en) * 2012-03-26 2013-10-03 古河電気工業株式会社 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
US9123955B2 (en) 2012-04-06 2015-09-01 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
JP5831407B2 (en) * 2012-09-06 2015-12-09 信越化学工業株式会社 Anode material for lithium ion battery
KR101825920B1 (en) 2013-07-16 2018-03-22 삼성에스디아이 주식회사 Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
KR102234287B1 (en) 2014-08-08 2021-03-31 삼성에스디아이 주식회사 Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
JP6735060B2 (en) * 2014-09-16 2020-08-05 山陽特殊製鋼株式会社 Si-based alloy negative electrode material for power storage device and electrode using the same
KR101762773B1 (en) * 2015-05-06 2017-07-28 공문규 Negative Active Material For Rechargeable Lithium Battery
KR102537224B1 (en) 2015-10-12 2023-05-26 삼성에스디아이 주식회사 Composite electrode active material, lithium battery including the same, and method for preparing the composite electrode active material
JP6363647B2 (en) * 2016-03-25 2018-07-25 株式会社半導体エネルギー研究所 Positive electrode active material for secondary battery

Also Published As

Publication number Publication date
JP2005071771A (en) 2005-03-17
KR100589367B1 (en) 2006-06-14
KR20050020571A (en) 2005-03-04

Similar Documents

Publication Publication Date Title
JP3827642B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US7658871B2 (en) Method of preparing a negative active material for rechargeable lithium battery
US7479351B2 (en) Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
JP3954001B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
US20040214085A1 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
JP2007035434A (en) Nonaqueous electrolyte battery
JP3841779B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR100814842B1 (en) Lithium secondary battery and method for preparing the same
JP4375042B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP3746501B2 (en) ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY
KR100749496B1 (en) Rechargeable lithium battery
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
US20050042128A1 (en) Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
KR100766961B1 (en) Rechargeable lithium battery
JP3773514B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
JP3929429B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2004214055A (en) Negative electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3841779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term