JP3773514B2 - Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery - Google Patents

Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP3773514B2
JP3773514B2 JP2003424423A JP2003424423A JP3773514B2 JP 3773514 B2 JP3773514 B2 JP 3773514B2 JP 2003424423 A JP2003424423 A JP 2003424423A JP 2003424423 A JP2003424423 A JP 2003424423A JP 3773514 B2 JP3773514 B2 JP 3773514B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003424423A
Other languages
Japanese (ja)
Other versions
JP2005183253A (en
Inventor
輝 高椋
恵子 松原
利章 津野
性洙 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003424423A priority Critical patent/JP3773514B2/en
Priority to KR1020040039005A priority patent/KR100589374B1/en
Publication of JP2005183253A publication Critical patent/JP2005183253A/en
Application granted granted Critical
Publication of JP3773514B2 publication Critical patent/JP3773514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用負極活物質及びリチウム二次電池並びにリチウム二次電池用負極活物質の製造方法に関するものであり、特に、サイクル特性を向上することが可能なリチウム二次電池用負極活物質に関するものである。   The present invention relates to a negative electrode active material for a lithium secondary battery, a lithium secondary battery, and a method for producing a negative electrode active material for a lithium secondary battery, and in particular, for a lithium secondary battery capable of improving cycle characteristics. The present invention relates to a negative electrode active material.

リチウム二次電池の負極活物質の高容量化の研究は、負極活物質を炭素とする電池システムが実用化される以前から行われ、現在もSiやSn、Al等の金属材料を中心に活発に行われているものの、未だ実用化には至っていない。これは主として、充放電する際にSiやSn、Al等の金属がリチウムと合金化して体積の膨張収縮が生じ、これが金属の微粉化を招き、サイクル特性が低下するといった不具合を解決できないためである。
また、Si、Sn、Al等の金属材料の表面の状態も重要であり、充放電時にこれら金属材料に表面で電解液の分解反応が生じ、サイクル特性が劣化する場合がある。
Research on increasing the capacity of the negative electrode active material for lithium secondary batteries has been conducted before the battery system using the negative electrode active material as carbon has been put into practical use, and is still actively focused on metal materials such as Si, Sn, and Al. However, it has not yet been put to practical use. This is mainly because metals such as Si, Sn, and Al are alloyed with lithium during charge and discharge, resulting in volume expansion and contraction, which leads to pulverization of the metal, and the cycle characteristics are not solved. is there.
In addition, the state of the surface of a metal material such as Si, Sn, or Al is also important, and a decomposition reaction of the electrolytic solution may occur on the surface of the metal material during charge / discharge, and cycle characteristics may deteriorate.

そこで、これらの問題を解決すべく、下記特許文献1に示されているような非晶質合金や、下記非特許文献1または下記非特許文献2に示されているNi-Si系合金のように、リチウムと合金化が可能な金属及びリチウムと合金化しない金属からなる結晶質合金が検討されている。
特開2002−216746号公報 「第42回電池討論会予稿集」、社団法人電気化学会電池技術委員会、平成13年11月21日、p.296−297 「第43回電池討論会予稿集」、社団法人電気化学会電池技術委員会、平成14年10月12日、p.326−327
Therefore, in order to solve these problems, an amorphous alloy as shown in Patent Document 1 below, or a Ni—Si alloy shown in Non-Patent Document 1 or Non-Patent Document 2 shown below is used. In addition, crystalline alloys made of a metal that can be alloyed with lithium and a metal that is not alloyed with lithium have been studied.
JP 2002-216746 A “Proceedings of the 42nd Battery Discussion Meeting”, Battery Technical Committee of the Electrochemical Society of Japan, November 21, 2001, p. 296-297 “Preliminary Collection of the 43rd Battery Discussion Meeting”, Battery Technical Committee of the Electrochemical Society of Japan, October 12, 2004, p. 326-327

しかし、特許文献1及び非特許文献1、2に記載された材料であっても、充放電時の合金体積の膨張収縮による微粉化、集電体からの剥離、導電材との接触不良、といった従来からの問題を完全に解決できなかった。   However, even with the materials described in Patent Document 1 and Non-Patent Documents 1 and 2, pulverization due to expansion and contraction of the alloy volume during charging and discharging, peeling from the current collector, poor contact with the conductive material, etc. The conventional problem could not be solved completely.

また、従来から、金属材料を多孔質化することにより充放電時の膨張収縮を低減させる方法も検討されているが、サイクル劣化を改善させるには不十分であった。   Conventionally, a method of reducing expansion and contraction during charging / discharging by making a metal material porous has been studied, but it has been insufficient to improve cycle deterioration.

本発明は、上記事情に鑑みてなされたものであって、充放電時の合金体積の膨張収縮による微粉化、集電体からの剥離、導電材との接触不良、といった従来からの問題を解決できるとともに、負極表面での電解液の分解を抑制することが可能なリチウム二次電池用負極活物質及びリチウム二次電池並びにリチウム二次電池用負極活物質の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and solves conventional problems such as pulverization due to expansion and contraction of the alloy volume during charging and discharging, peeling from the current collector, and poor contact with the conductive material. An object of the present invention is to provide a negative electrode active material for a lithium secondary battery, a lithium secondary battery, and a method for producing a negative electrode active material for a lithium secondary battery capable of suppressing decomposition of the electrolyte solution on the negative electrode surface To do.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池用負極活物質は、リチウムと合金化が可能な少なくとも一種類以上の金属と水素とを含み、かつ内部にポアが形成されてなる粉体であることを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The negative electrode active material for a lithium secondary battery of the present invention is a powder containing at least one metal capable of being alloyed with lithium and hydrogen, and having pores formed therein. .

上記の構成によれば、負極活物質中に水素が含まれているため、材料製造時もしくは電池の組み立て迄におこる負極材料表面における酸化等の反応が抑制されて、その結果、電解液の分解反応が抑制されて分解生成物の堆積を防止することができ、サイクル特性を向上させることができる。
更に、上記金属とリチウムとが合金化した際には体積膨張するが、このとき金属内部のポアが潰れるため、見かけ上の体積膨張が相殺される。これにより負極活物質の微粉化を防止してサイクル特性を向上することができる。また、ポアに電解液が含浸して、負極活物質に対するリチウムイオンの拡散を効率よく行うことができ、これにより充放電反応を円滑に進めることができる。
According to the above configuration, since the negative electrode active material contains hydrogen, reactions such as oxidation on the surface of the negative electrode material that occur during material production or before battery assembly are suppressed, and as a result, decomposition of the electrolyte solution is suppressed. The reaction can be suppressed to prevent the decomposition products from being deposited, and the cycle characteristics can be improved.
Furthermore, when the metal and lithium are alloyed, the volume expands. At this time, the pores inside the metal are crushed, so that the apparent volume expansion is offset. Thereby, pulverization of a negative electrode active material can be prevented and cycling characteristics can be improved. In addition, the pore can be impregnated with the electrolytic solution, and lithium ions can be efficiently diffused into the negative electrode active material, whereby the charge / discharge reaction can be smoothly advanced.

また本発明のリチウム二次電池用負極活物質においては、前記ポアの平均孔径が1nm以上5μm以下の範囲であることが好ましい。平均孔径が1nm未満だと、充電時の体積膨張を緩和できないので好ましくなく、平均孔径が5μmを越えると体積あたりのエネルギー量が少なくなるので好ましくない。   In the negative electrode active material for a lithium secondary battery of the present invention, the pores preferably have an average pore diameter in the range of 1 nm to 5 μm. If the average pore diameter is less than 1 nm, the volume expansion during charging cannot be relaxed, which is not preferable. If the average pore diameter exceeds 5 μm, the amount of energy per volume decreases, which is not preferable.

また本発明のリチウム二次電池用負極活物質は、先に記載の負極活物質であり、前記ポアの内部に水素が含有されていることを特徴とする。   The negative electrode active material for a lithium secondary battery of the present invention is the negative electrode active material described above, wherein hydrogen is contained in the pore.

上記の構成によれば、ポア内の水素が、材料製造時もしくは電池の組み立て迄におこる負極活物質内に含まれるポアの壁面における酸化等の反応が抑制されて、その結果、電解液の分解反応が抑制されて分解生成物の堆積を防止することができる。これにより、サイクル特性を向上させることができる。  According to the above configuration, the reaction in the pores, such as oxidation on the wall surfaces of the pores contained in the negative electrode active material, which occurs during the material production or before the assembly of the battery is suppressed, and as a result, the decomposition of the electrolyte solution The reaction can be suppressed to prevent the deposition of decomposition products. Thereby, cycle characteristics can be improved.

また本発明のリチウム二次電池用負極活物質は、先に記載の負極活物質であり、前記リチウムと合金化が可能な金属が、Si、Al、Snのいずれかであることを特徴とする。この構成によれば、負極活物質の充放電容量を高めることができる。   Moreover, the negative electrode active material for a lithium secondary battery of the present invention is the negative electrode active material described above, wherein the metal that can be alloyed with lithium is Si, Al, or Sn. . According to this configuration, the charge / discharge capacity of the negative electrode active material can be increased.

また本発明のリチウム二次電池用負極活物質は、先に記載の負極活物質であり、前記リチウムと合金化が可能な金属がSiであり、更に前記金属中に、Si相及びSiM相を有するとともに、X相またはSiX相のいずれか一方または両方を含むものであることを特徴とする。ただし、前記MはNi、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素であり、元素XはAg、Cu、Auのうちの少なくとも1種以上の元素であり、Cuは元素Mと元素Xに同時に選択されないものとする。   Moreover, the negative electrode active material for a lithium secondary battery of the present invention is the negative electrode active material described above, wherein the metal that can be alloyed with lithium is Si, and further, the Si phase and the SiM phase are contained in the metal. And having one or both of an X phase and a SiX phase. Where M is at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, and element X is at least one element selected from Ag, Cu, and Au. In the above elements, Cu is not selected as the element M and the element X at the same time.

元素MはSiと合金化し、Liとは合金化しない元素であるため、粒子中にSi相の他にSiM相が含まれることにより、Si層単独の場合と比べて粒子自体の膨張収縮量を少なくすることができ、粒子自体の微粉化を防いでサイクル特性を向上することができる。
また、Si相より低抵抗であるX相またはSiX相のいずれか一方または両方が含まれるので、負極活物質の比抵抗を低減することができる。
なお、CuはSiと合金化するとともに、Siよりも低抵抗であるため、元素Mと元素Xの両方の性質を有する元素である。従って、本発明においては、元素Mと元素Xの双方にCuを加えることにするが、Cuは元素Mと元素Xに同時に選択されないものとした。
Since the element M is an element alloyed with Si and not alloyed with Li, the inclusion of the SiM phase in addition to the Si phase in the particle reduces the expansion / contraction amount of the particle itself as compared with the case of the Si layer alone. It is possible to reduce the number of particles, and it is possible to improve the cycle characteristics by preventing the particles themselves from being pulverized.
In addition, since one or both of the X phase and the SiX phase, which have a lower resistance than the Si phase, are included, the specific resistance of the negative electrode active material can be reduced.
Note that Cu is an element having both properties of element M and element X because it is alloyed with Si and has a lower resistance than Si. Therefore, in the present invention, Cu is added to both the element M and the element X, but Cu is not selected for the element M and the element X at the same time.

また本発明のリチウム二次電池用負極活物質においては、ラマンスペクトルにおけるSiとHとの結合に由来する600〜630cm−1のピークの強度I(620)と、結晶性Siに由来する500〜530cm−1のラマンシフトの強度I(520)との強度比I(620)/I(520)が0.004以上であることが好ましい。 Moreover, in the negative electrode active material for lithium secondary batteries of the present invention, the peak intensity I (620) of 600 to 630 cm −1 derived from the bond between Si and H in the Raman spectrum, and 500 to 500 derived from crystalline Si. The intensity ratio I (620) / I (520) to the Raman shift intensity I (520) of 530 cm −1 is preferably 0.004 or more.

また本発明のリチウム二次電池用負極活物質は、リチウムと合金化が可能な少なくとも一種類以上の金属からなる溶湯に、水素ガスまたは水素ガスと不活性ガスとの混合ガスを溶解させた後に、前記溶湯を凝固させることにより製造されたものであることが好ましい。   The negative electrode active material for a lithium secondary battery of the present invention is obtained by dissolving hydrogen gas or a mixed gas of hydrogen gas and an inert gas in a molten metal composed of at least one metal that can be alloyed with lithium. Preferably, the molten metal is produced by solidifying the molten metal.

また本発明のリチウム二次電池用負極活物質は、前記金属溶湯を鋳型内で一方向凝固させることにより、前記ポアのアスペクト比を1.2以上にしたものであることが好ましい。   Moreover, it is preferable that the negative electrode active material for lithium secondary batteries of the present invention has a pore aspect ratio of 1.2 or more by unidirectionally solidifying the molten metal in a mold.

また、本発明のリチウム二次電池は、先のいずれかに記載のリチウム二次電池用負極活物質を備えたことを特徴とする。   In addition, a lithium secondary battery of the present invention is characterized by including the negative electrode active material for a lithium secondary battery described above.

また、本発明のリチウム二次電池用負極活物質の製造方法は、リチウムと合金化が可能な少なくとも一種類以上の金属と水素とを含み、かつ内部にポアが形成されてなるリチウム二次電池用負極活物質の製造方法であり、少なくとも一種類以上の前記金属からなる溶湯に、水素ガスまたは水素ガスと不活性ガスとの混合ガスを溶解してから、前記溶湯を一方向凝固することにより、凝固した金属内部に水素を含有するポアを形成することを特徴とする。   The method for producing a negative electrode active material for a lithium secondary battery according to the present invention includes a lithium secondary battery comprising at least one metal capable of being alloyed with lithium and hydrogen, and having pores formed therein. A method for producing a negative electrode active material for use by dissolving hydrogen gas or a mixed gas of hydrogen gas and an inert gas in a molten metal composed of at least one kind of metal, and then solidifying the molten metal in one direction. In the solidified metal, pores containing hydrogen are formed.

金属に対する水素の溶解度は一般に、金属が溶融しているとき(液体のとき)に高く、凝固しているとき(固体のとき)に低くなる。このガス溶解度の差を利用して、水素を溶融状態の金属に溶解させてから金属を一方向凝固させることにより、固体に固溶されない水素が気泡となって金属組織中に残存する。
Si、Al、Sn等のリチウムと合金化が可能な金属の溶湯に水素を溶解させてから一方向凝固させることにより、金属内部に水素で満たされたポアが多数形成されてなる負極活物質を得ることができる。
The solubility of hydrogen in a metal is generally high when the metal is molten (liquid) and low when it is solidified (solid). Utilizing this difference in gas solubility, hydrogen is dissolved in a molten metal and then the metal is unidirectionally solidified, whereby hydrogen that is not solid-dissolved in a solid remains in the metal structure as bubbles.
A negative electrode active material in which a large number of pores filled with hydrogen are formed in a metal by dissolving hydrogen in a molten metal that can be alloyed with lithium such as Si, Al, Sn, etc. and then solidifying in one direction. Obtainable.

本発明のリチウム二次電池用負極活物質によれば、充放電時の合金体積の膨張収縮による微粉化、集電体からの剥離、導電材との接触不良、といった問題を解決できるとともに、負極表面での電解液に分解を抑制することにより、リチウム二次電池の充放電容量及びサイクル特性を向上させることができる。
また本発明のリチウム二次電池によれば、充放電容量及びサイクル特性を向上させることができる。
According to the negative electrode active material for a lithium secondary battery of the present invention, it is possible to solve problems such as pulverization due to expansion and contraction of the alloy volume during charge and discharge, separation from the current collector, poor contact with the conductive material, and negative electrode By suppressing the decomposition of the electrolyte solution on the surface, the charge / discharge capacity and cycle characteristics of the lithium secondary battery can be improved.
Further, according to the lithium secondary battery of the present invention, the charge / discharge capacity and the cycle characteristics can be improved.

以下、本発明の実施の形態を図面を参照して説明する。
本実施形態のリチウム二次電池用の負極活物質は、少なくとも一種類以上のリチウムと合金化が可能な金属からなる粉末であり、この金属粉末には水素が含有され、更に金属内部にポアが形成されてなるものである。
また、リチウムと合金化が可能な金属としては、Si、Al、Snを例示できる。これらの金属は、リチウムと合金化が可能である他に、水素の溶解量が溶融状態と凝固状態で大きく異なるという特性がある。この特性により、後述する製造方法によって水素を含有するポアを金属内部に容易に形成させることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The negative electrode active material for a lithium secondary battery of the present embodiment is a powder made of a metal that can be alloyed with at least one kind of lithium, the metal powder contains hydrogen, and further has pores inside the metal. It is formed.
Examples of the metal that can be alloyed with lithium include Si, Al, and Sn. In addition to being capable of being alloyed with lithium, these metals have characteristics that the amount of hydrogen dissolved differs greatly between the molten state and the solidified state. Due to this characteristic, pores containing hydrogen can be easily formed inside the metal by a manufacturing method described later.

負極活物質中に水素が含まれているため、材料製造時もしくは電池の組み立て迄におこる負極活物質の表面もしくは活物質内に含まれるポアの壁面における酸化等の反応が抑制されて、その結果、充電時の電解液の分解反応が抑制されて分解生成物の堆積を防止することができ、サイクル特性を向上させることができる。
また、上記金属とリチウムとが合金化した際に体積膨張するが、このとき金属内部のポアが潰れるため、見かけ上の体積膨張が相殺される。これにより負極活物質の微粉化を防止してサイクル特性を向上することができる。また、ポアに電解液が含浸して、負極活物質に対するリチウムイオンの拡散を効率よく行うことができ、これにより充放電反応を円滑に進めることができる。
As the negative electrode active material contains hydrogen, reactions such as oxidation on the surface of the negative electrode active material or the wall of the pores contained in the active material that occur during material production or before battery assembly are suppressed. The decomposition reaction of the electrolyte during charging is suppressed, so that the decomposition products can be prevented from being deposited, and the cycle characteristics can be improved.
Further, when the metal and lithium are alloyed, the volume expands. At this time, the pore inside the metal is crushed, so that the apparent volume expansion is offset. Thereby, pulverization of a negative electrode active material can be prevented and cycling characteristics can be improved. In addition, the pore can be impregnated with the electrolytic solution, and lithium ions can be efficiently diffused into the negative electrode active material, whereby the charge / discharge reaction can be smoothly advanced.

本発明に係る負極活物質は、平均粒径が5〜30μm程度のものが好ましい。これに対してポアの平均孔径は、1nm以上5μm以下の範囲であることが好ましい。ポアの平均孔径が1nm未満だと、充電時の体積膨張を緩和できないので好ましくなく、平均孔径が5μmを越えると体積あたりのエネルギー量が少なくなるので好ましくない。またポアのアスペクト比は1.2以上であることが好ましい。   The negative electrode active material according to the present invention preferably has an average particle size of about 5 to 30 μm. In contrast, the average pore diameter of the pore is preferably in the range of 1 nm to 5 μm. If the average pore diameter of the pore is less than 1 nm, it is not preferable because the volume expansion during charging cannot be relaxed, and if the average pore diameter exceeds 5 μm, the amount of energy per volume decreases. The aspect ratio of the pore is preferably 1.2 or more.

また、負極活物質の平均粒径については、一般にSiが含まれる金属粉末はリチウムイオン電池の既存負極材料として用いられている黒鉛粉末より抵抗が高いため、導電助材を使用することが好ましいが、平均粒径5μm以下になると、導電助材の粒径より金属粉末の平均粒径が小さくなる場合が生じ、導電助材の効果が得にくくなり、容量やサイクル特性などの電池特性が低下するので好ましくない。平均粒径が30μmを越えると、リチウム二次電池における負極活物質の充填密度が低下するので好ましくない。   In addition, regarding the average particle diameter of the negative electrode active material, it is preferable to use a conductive additive because the metal powder generally containing Si has a higher resistance than the graphite powder used as the existing negative electrode material of the lithium ion battery. When the average particle size is 5 μm or less, the average particle size of the metal powder may be smaller than the particle size of the conductive additive, making it difficult to obtain the effect of the conductive additive and reducing battery characteristics such as capacity and cycle characteristics. Therefore, it is not preferable. When the average particle size exceeds 30 μm, the packing density of the negative electrode active material in the lithium secondary battery is lowered, which is not preferable.

また本発明に係る負極活物質においては、リチウムと合金化が可能な金属がSiであり、更に、負極活物質内部にSi相及びSiM相が含まれるとともに、X相またはSiX相のいずれか一方または両方が含まれるものであることが好ましい。   In the negative electrode active material according to the present invention, the metal that can be alloyed with lithium is Si. Furthermore, the negative electrode active material contains a Si phase and a SiM phase, and either the X phase or the SiX phase. Or it is preferable that both are included.

Si相は、負極活物質の充放電反応に関与する相であり、充電時にリチウムと合金化してLiSi相を形成し、放電時にはリチウムを放出してSi単相に戻る。
また、SiM相は、充放電時にリチウムと反応せず、金属の一粒子の形状を維持して粒子自体の膨張収縮を抑制する。SiM相を構成する元素Mは、リチウムと合金化しない金属元素であり、Ni、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yの中から選択される少なくとも1種以上の元素である。特に元素MとしてはNiを用いることが好ましく、この場合のSiM相の組成はSiNi相となる。
The Si phase is a phase involved in the charge / discharge reaction of the negative electrode active material, and forms an LiSi x phase by alloying with lithium at the time of charge, and releases lithium to return to the Si single phase at the time of discharge.
In addition, the SiM phase does not react with lithium during charge / discharge, and maintains the shape of one metal particle to suppress expansion and contraction of the particle itself. The element M constituting the SiM phase is a metal element that is not alloyed with lithium, and is at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y It is. In particular, Ni is preferably used as the element M, and the composition of the SiM phase in this case is the Si 2 Ni phase.

またX相は、金属粉末に導電性を付与して負極活物質自体の比抵抗を低減させる。X相を構成する元素Xは、比抵抗が3Ω・m以下の金属元素であり、Ag、Cu、Auの中から選択される少なくとも1種以上の元素である。特にCuはリチウムと合金化しないので、膨張抑制効果があり好ましい。また、AgはSiとほとんど合金化しないため、元素MにAgと合金化しない金属を選択することにより、Agが単独相として存在し、粒子の伝導度を向上できるので好ましい。
なお、CuはSiと合金化するとともに、Siよりも低抵抗であるため、元素Mと元素Xの両方の性質を有する元素である。従って、本発明においては、元素Mと元素Xの双方にCuを加えることにするが、Cuは元素Mと元素Xに同時に選択されないものとした。
In addition, the X phase imparts conductivity to the metal powder to reduce the specific resistance of the negative electrode active material itself. The element X constituting the X phase is a metal element having a specific resistance of 3 Ω · m or less, and is at least one element selected from Ag, Cu, and Au. In particular, Cu is preferable because it does not alloy with lithium and has an effect of suppressing expansion. Further, since Ag hardly alloys with Si, it is preferable to select a metal that does not alloy with Ag as element M because Ag exists as a single phase and the conductivity of the particles can be improved.
Note that Cu is an element having both properties of element M and element X because it is alloyed with Si and has a lower resistance than Si. Therefore, in the present invention, Cu is added to both the element M and the element X, but Cu is not selected for the element M and the element X at the same time.

また、X相に代えて、あるいはX相とともに、SiX相が析出していても良い。SiX相は、X相と同様に多相合金粉末に導電性を付与して負極活物質自体の比抵抗を低減させる。   Further, instead of the X phase or together with the X phase, a SiX phase may be precipitated. Similar to the X phase, the SiX phase imparts conductivity to the multiphase alloy powder and reduces the specific resistance of the negative electrode active material itself.

次に合金組成について言及すると、Siは、Si単相とSiM相さらにはSiX相を形成する元素であるため、合金の状態図より判断して、SiM相、SiX相を形成してもなおSi単相が生成されるように組成比を選ぶことにより、Siの容量を得ることができる。しかし、Si量が過剰に増えると、Si相が多く析出して充放電時の負極活物質全体の膨張収縮量が大きくなり、負極活物質が微粉化してサイクル特性が低下するので好ましくない。具体的には、負極活物質におけるSiの組成比が30質量%以上70質量%以下の範囲であることが好ましい。   Next, referring to the alloy composition, since Si is an element that forms a Si single phase, a SiM phase, and further a SiX phase, judging from the state diagram of the alloy, even if the SiM phase and the SiX phase are formed, Si is still Si. By selecting the composition ratio so that a single phase is generated, the capacity of Si can be obtained. However, an excessive increase in the amount of Si is not preferable because a large amount of Si phase precipitates and the amount of expansion and contraction of the entire negative electrode active material during charge / discharge increases, and the negative electrode active material is pulverized to deteriorate cycle characteristics. Specifically, the composition ratio of Si in the negative electrode active material is preferably in the range of 30% by mass to 70% by mass.

元素Mは、SiとともにSiM相を形成する元素であるため、合金の状態図より判断してその全量がSiと合金化するように添加することが好ましい。M量がSiと合金化できる量を上回ると、Siがすべて合金化され、容量の大幅な低下を招くので好ましくない。また、M量が少ないと、SiM相が少なくなり、Si相の膨張抑制効果が減少し、サイクル劣特性が低下してしまうので好ましくない。また、M相は異なる元素、M1相、M2相、M3相というように複数存在してもかまわない。Mの組成比はSiとの固溶限界が元素により異なるため具体的に限定することはできないが、SiとMが固溶限界まで合金化したとしてもなおSi相が存在するように考慮した組成比であることが好ましい。また、元素Mはリチウムと合金化しないので、不可逆容量を持つことがない。   Since the element M is an element that forms a SiM phase together with Si, it is preferable to add the element M so that the entire amount thereof is alloyed with Si as judged from the phase diagram of the alloy. If the amount of M exceeds the amount that can be alloyed with Si, all of Si is alloyed, which causes a significant decrease in capacity, which is not preferable. On the other hand, when the amount of M is small, the SiM phase is decreased, the effect of suppressing the expansion of the Si phase is decreased, and the cycle inferior characteristics are deteriorated, which is not preferable. A plurality of M phases may exist such as different elements, such as M1, M2, M3, and so on. The composition ratio of M cannot be specifically limited because the solid solution limit with Si differs depending on the element, but the composition is considered so that the Si phase still exists even if Si and M are alloyed to the solid solution limit. The ratio is preferable. Further, since the element M is not alloyed with lithium, it does not have an irreversible capacity.

またXの組成比が多くなると、比抵抗が低減するものの、Si相が相対的に減少して充放電容量が低下してしまう。一方、Xの組成比が少ないと、負極活物質の比抵抗が高くなって充放電効率が低下する。このため、負極活物質におけるXの組成比は1質量%以上30質量%以下の範囲であることが好ましい。   Further, when the composition ratio of X increases, although the specific resistance is reduced, the Si phase is relatively reduced and the charge / discharge capacity is reduced. On the other hand, when the composition ratio of X is small, the specific resistance of the negative electrode active material increases and the charge / discharge efficiency decreases. For this reason, it is preferable that the composition ratio of X in a negative electrode active material is the range of 1 mass% or more and 30 mass% or less.

次に、上記の負極活物質を用いたリチウム二次電池について説明する。このリチウム二次電池は、上記の負極活物質を備えた負極と、正極と、電解質を少なくとも具備してなるものである。
リチウム二次電池の負極は、例えば、負極活物質を構成する金属粉末が結着材によってシート状に固化成形されたものを例示できる。また、負極はシート状に固化成形されたものに限らず、円柱状、円盤状、板状若しくは柱状に固化成形されたペレットであっても良い。
Next, a lithium secondary battery using the above negative electrode active material will be described. The lithium secondary battery includes at least a negative electrode including the negative electrode active material, a positive electrode, and an electrolyte.
Examples of the negative electrode of the lithium secondary battery include a material in which a metal powder constituting the negative electrode active material is solidified and formed into a sheet by a binder. The negative electrode is not limited to a solidified sheet, but may be a pellet solidified into a columnar shape, a disk shape, a plate shape, or a column shape.

結着材は、有機質または無機質のいずれでも良いが、負極活物質と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより負極活物質の粉末同士を結着させるものであればどのようなものでもよい。また、負極活物質と共に混合し、加圧成形等の固化成形を行うことにより負極活物質を結着させるものでもよい。このような結着材として例えば、ビニル系樹脂、セルロース系樹脂、フェノール樹脂、熱可塑性樹脂、熱硬化性樹脂などが使用でき、例えばポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、スチレンブタジエンラバー、等の樹脂を例示できる。   The binder may be either organic or inorganic, but any binder can be used as long as it is dispersed or dissolved in a solvent together with the negative electrode active material, and further the negative electrode active material powder is bound by removing the solvent. But you can. Alternatively, the negative electrode active material may be bound by mixing with the negative electrode active material and performing solidification molding such as pressure molding. As such a binder, for example, vinyl resin, cellulose resin, phenol resin, thermoplastic resin, thermosetting resin and the like can be used, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, etc. Resins can be exemplified.

また、本発明に係る負極においては、負極活物質及び結着材の他に、導電助材としてカーボンブラック、黒鉛粉末、炭素繊維、金属粉末、金属繊維等を添加しても良い。   In addition, in the negative electrode according to the present invention, carbon black, graphite powder, carbon fiber, metal powder, metal fiber, or the like may be added as a conductive additive in addition to the negative electrode active material and the binder.

次に正極としては例えば、LiMn、LiCoO、LiNiO、LiFeO、V、TiS、MoS等、及び有機ジスルフィド化合物や有機ポリスルフィド化合物等のリチウムを吸蔵、放出が可能な正極活物質を含むものや、Ni、Mn、Co系等の複合酸化物を例示できる。また正極には、上記正極活物質の他に、ポリフッ化ビニリデン等の結着材や、カーボンブラック等の導電助材を添加しても良い。 Next, as the positive electrode, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, MoS, etc., and positive electrode capable of inserting and extracting lithium such as organic disulfide compounds and organic polysulfide compounds Examples include those containing an active material, and composite oxides such as Ni, Mn, and Co. In addition to the positive electrode active material, a binder such as polyvinylidene fluoride or a conductive aid such as carbon black may be added to the positive electrode.

正極及び負極の具体例として、上記の正極または負極を金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。   Specific examples of the positive electrode and the negative electrode include those obtained by applying the positive electrode or the negative electrode to a current collector made of a metal foil or a metal net and forming the sheet.

更に電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒を例示でき、特にプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)のいずれか1つを必ず含むとともにジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)のいずれか1つを必ず含むものが好ましい。
Further, examples of the electrolyte include an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent.
As aprotic solvents, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl An aprotic solvent such as ether, or a mixed solvent obtained by mixing two or more of these solvents can be exemplified, and in particular, any one of propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC) In addition, it is preferable to always contain any one of dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).

また、リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものを例示でき、特にLiPF、LiBF4、LiN(CFSO2、LiN(CSOのいずれか1つを含むものが好ましい。 As the lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y is a natural number), LiCl, by mixing one or more lithium salts of such LiI In particular, those containing any one of LiPF 6 , LiBF 4, LiN (CF 3 SO 2 ) 2, and LiN (C 2 F 5 SO 2 ) 2 are preferable.

また電解質の別の例として、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに有機電解液を含浸させたもの等、いわゆるポリマー電解質を用いても良い。
更に、本発明のリチウム二次電池は、正極、負極、電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。
As another example of the electrolyte, a so-called polymer electrolyte such as a polymer obtained by mixing any of the above lithium salts with a polymer such as PEO or PVA, or a polymer having a high swellability impregnated with an organic electrolytic solution is used. It may be used.
Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the electrolyte, and may include other members as necessary. For example, the lithium secondary battery may include a separator that separates the positive electrode and the negative electrode. .

かかるリチウム二次電池によれば、上記の負極活物質を具備しており、充放電にともなう膨張収縮が少ないので、負極活物質が微粉化したり、集電体から脱落するおそれがなく、また導電材との接触も維持され、充放電容量を向上できるとともにサイクル特性を向上できる。
また、負極活物質粉末の表面もしくは活物質内に含まれるポアの壁面が、材料製造時もしくは電池の組み立て迄に酸化等の反応が抑制されるので、非水電解液の分解反応が抑制され、充放電容量を向上できるとともにサイクル特性を向上できる。
更に、負極活物質粉末に多数のポアが形成されているので、リチウム二次電池の負極活物質として用いた場合に当該ポアに非水電解液が含侵し、充放電反応を円滑に行うことができる。
また、導電性の高いX相またはSiX相を含む場合には負極活物質内部でのリチウムイオンの拡散を効率よく行うことができ、高率充放電が可能になる。
According to such a lithium secondary battery, since the negative electrode active material is provided and there is little expansion / contraction due to charging / discharging, there is no possibility that the negative electrode active material is pulverized or dropped from the current collector, and also conductive. Contact with the material is also maintained, the charge / discharge capacity can be improved, and the cycle characteristics can be improved.
In addition, since the reaction such as oxidation is suppressed at the surface of the negative electrode active material powder or the pore wall contained in the active material before the material is manufactured or the battery is assembled, the decomposition reaction of the non-aqueous electrolyte is suppressed, The charge / discharge capacity can be improved and the cycle characteristics can be improved.
Furthermore, since a large number of pores are formed in the negative electrode active material powder, when used as a negative electrode active material for a lithium secondary battery, the pores can be impregnated with a non-aqueous electrolyte and the charge / discharge reaction can be carried out smoothly. it can.
In addition, when an X phase or SiX phase with high conductivity is included, lithium ions can be efficiently diffused inside the negative electrode active material, and high rate charge / discharge can be achieved.

次に、本実施形態のリチウム二次電池用負極活物質の製造方法を説明する。本実施形態のリチウム二次電池用負極活物質の製造方法は、金属溶湯に水素ガスを溶解させる工程と、金属溶湯を一方向凝固させる工程と、凝固後の金属体を粉砕する工程とから構成されている。   Next, the manufacturing method of the negative electrode active material for lithium secondary batteries of this embodiment is demonstrated. The method for producing a negative electrode active material for a lithium secondary battery according to this embodiment includes a step of dissolving hydrogen gas in a molten metal, a step of solidifying the molten metal in one direction, and a step of pulverizing the solidified metal body. Has been.

まず、金属溶湯に水素ガスを溶解させる工程では、図1に示すように、リチウムと合金化が可能な少なくとも一種類以上の金属を、例えば高周波誘導加熱炉1で加熱して金属溶湯4とする。高周波誘導加熱炉1は、るつぼ2と、このるつぼ2の周囲に巻回された高周波誘導コイル3とから構成されている。溶解させる金属は、Si、Al、Snのいずれか1種以上でも良く、Siの他に元素Mと元素Xを添加しても良い。また、金属を溶解させる際の雰囲気は、水素ガス雰囲気または水素ガスと不活性ガスとの混合ガス雰囲気とすることが好ましい。なお、高周波誘導加熱炉1は、後述する図2に示すように、あらかじめ水素ガス雰囲気または水素ガスと不活性ガスとの混合ガス雰囲気としたチャンバ内に収納された状態で用いることが望ましい。   First, in the step of dissolving hydrogen gas in the molten metal, as shown in FIG. 1, at least one kind of metal that can be alloyed with lithium is heated in, for example, a high-frequency induction heating furnace 1 to form a molten metal 4. . The high frequency induction heating furnace 1 includes a crucible 2 and a high frequency induction coil 3 wound around the crucible 2. The metal to be dissolved may be one or more of Si, Al, and Sn, and element M and element X may be added in addition to Si. Further, the atmosphere for dissolving the metal is preferably a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and inert gas. The high-frequency induction heating furnace 1 is desirably used in a state where it is housed in a chamber in which a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas is previously provided, as shown in FIG.

溶解時の雰囲気中の水素圧(水素分圧)は0.2〜5MPa程度にすることが好ましい。水素分圧を高くするほど、溶湯4内の水素ガス濃度が上昇するが、溶湯4内の水素濃度が過剰になると、金属の凝固の際に粗大なポアが形成されてしまう虞がある。また、水素分圧が低すぎると溶湯4内の水素ガス濃度が低下し、凝固時に十分なポアが形成されなくなり、また、ポア内に貯蔵される水素量も減少する。このため、水素圧(水素分圧)は上記の範囲が好ましい。
また、水素圧(分圧)は、金属が完全に溶解してから少なくとも3分程度は保持することが好ましい。これにより、金属溶湯4に水素ガスが十分に溶解し、金属溶湯4における水素ガス濃度を高めることができる。
また金属溶湯4の温度は、金属の種類により異なるが、金属の融点以上とすることが好ましい、例えばSiの場合は、1410〜1700℃にすることが好ましい。金属溶湯4の温度を高くするほど、溶湯4における水素ガスの溶解度は高くなるが、あまり温度が高くなると、溶湯4内の水素濃度が過剰になり、金属の凝固の際に粗大なポアが形成されてしまう虞があるので好ましくない。
The hydrogen pressure (hydrogen partial pressure) in the atmosphere at the time of dissolution is preferably about 0.2 to 5 MPa. As the hydrogen partial pressure is increased, the hydrogen gas concentration in the molten metal 4 is increased. However, if the hydrogen concentration in the molten metal 4 is excessive, coarse pores may be formed during the solidification of the metal. On the other hand, if the hydrogen partial pressure is too low, the hydrogen gas concentration in the molten metal 4 is lowered, and sufficient pores are not formed during solidification, and the amount of hydrogen stored in the pores also decreases. Therefore, the hydrogen pressure (hydrogen partial pressure) is preferably in the above range.
The hydrogen pressure (partial pressure) is preferably maintained for at least about 3 minutes after the metal is completely dissolved. Thereby, hydrogen gas fully melt | dissolves in the molten metal 4, and the hydrogen gas concentration in the molten metal 4 can be raised.
Moreover, although the temperature of the molten metal 4 changes with kinds of metal, it is preferable to make it more than melting | fusing point of a metal, for example, in the case of Si, it is preferable to set it as 1410-1700 degreeC. The higher the temperature of the molten metal 4, the higher the solubility of hydrogen gas in the molten metal 4. However, when the temperature becomes too high, the hydrogen concentration in the molten metal 4 becomes excessive and coarse pores are formed during the solidification of the metal. This is not preferable because there is a risk of being lost.

次に、金属溶湯を一方向凝固させる工程では、図2に示すような、ポーラス金属製造装置5を用いる。このポーラス金属製造装置5は、チャンバ6と、チャンバ6内に収納された上述の高周波誘導加熱炉1と、冷却装置7とから構成されている。冷却装置7は、上下端が開口した中空円筒状の鋳型8と、この鋳型8の下端側に装着された冷却ユニット9とから構成されている。また、チャンバ6には、雰囲気制御手段10が接続されており、この雰囲気制御手段10によってチャンバ6内の雰囲気を調整できるようになっている。雰囲気制御手段10は、圧力計11と、圧力計11の先の配管に取り付けられた三方バルブ12と、三方バルブ12から先の分岐配管に接続された真空ポンプ13と、三方バルブ12から先の別の分岐配管に接続されたガスボンベ14とから構成されている。   Next, in the step of solidifying the molten metal in one direction, a porous metal manufacturing apparatus 5 as shown in FIG. 2 is used. The porous metal manufacturing apparatus 5 includes a chamber 6, the above-described high frequency induction heating furnace 1 housed in the chamber 6, and a cooling device 7. The cooling device 7 includes a hollow cylindrical mold 8 whose upper and lower ends are open, and a cooling unit 9 mounted on the lower end side of the mold 8. The atmosphere control means 10 is connected to the chamber 6 so that the atmosphere in the chamber 6 can be adjusted by the atmosphere control means 10. The atmosphere control means 10 includes a pressure gauge 11, a three-way valve 12 attached to a pipe ahead of the pressure gauge 11, a vacuum pump 13 connected to a branch pipe ahead of the three-way valve 12, and a tip of the three-way valve 12. The gas cylinder 14 is connected to another branch pipe.

そして、高周波誘導加熱炉1内の金属溶湯4を、冷却装置7の鋳型8に流し込む。次に、冷却ユニット9を作動させて、鋳型8内の金属溶湯4を鋳型8の下側から冷却させる。そうすると、鋳型8の下側から金属溶湯4の凝固が始まり、金属溶湯4の凝固が徐々に鋳型8の上側に向けて進行する。図2には、鋳型8の下側の金属溶湯4が凝固して金属体15となり、鋳型8の上側では金属溶湯4が凝固されていない状態が示している。このようにして、金属溶湯を一方向凝固させる。   Then, the molten metal 4 in the high frequency induction heating furnace 1 is poured into the mold 8 of the cooling device 7. Next, the cooling unit 9 is operated to cool the molten metal 4 in the mold 8 from below the mold 8. Then, solidification of the molten metal 4 starts from the lower side of the mold 8, and solidification of the molten metal 4 gradually proceeds toward the upper side of the mold 8. FIG. 2 shows a state in which the molten metal 4 on the lower side of the mold 8 is solidified to form a metal body 15 and the molten metal 4 is not solidified on the upper side of the mold 8. In this way, the molten metal is solidified in one direction.

金属に対する水素の溶解度は一般に、金属が溶融しているとき(液体のとき)に高く、凝固しているとき(固体のとき)に低くなる。このガス溶解度の差を利用して、水素を溶融状態の金属に溶解させてから金属を一方向凝固させることにより、固体に固溶されない水素が気泡(ポア)となって金属組織中に残存する。ポアには水素が満たされる。
図3には、一方向凝固された金属体15の斜視図を示す。一方向凝固された金属体15には、水素が満たされた多数のポア16が形成されている。このポア16は、一方向凝固の際に、気泡となった水素が金属溶湯から外に向けて抜けようとしたときに、金属が凝固されて水素が取り残された結果生じたものである。このため、ポアは、一方向凝固の冷却方向に沿って細長い形状になる。即ちポアのアスペクト比が1.2以上になる。
The solubility of hydrogen in a metal is generally high when the metal is molten (liquid) and low when it is solidified (solid). Utilizing this difference in gas solubility, hydrogen is dissolved in a molten metal and then the metal is solidified in one direction, so that hydrogen not dissolved in the solid becomes bubbles (pores) and remains in the metal structure. . The pores are filled with hydrogen.
FIG. 3 shows a perspective view of the metal body 15 solidified in one direction. A number of pores 16 filled with hydrogen are formed in the metal body 15 that has been unidirectionally solidified. The pore 16 is a result of the solidification of the metal and the leaving of hydrogen when hydrogen in the form of bubbles is about to escape from the molten metal during unidirectional solidification. For this reason, the pore has an elongated shape along the cooling direction of unidirectional solidification. That is, the pore aspect ratio is 1.2 or more.

そして、得られた金属体15を平均粒径5〜30μm程度となるように粉砕することにより、本発明に係る負極活物質が得られる。
また、上記活物質に含有される水素量の多寡を表す指標として、ラマン分光法の測定スペクトルにおいて、Si-H結合に由来する620cm−1付近のピークと結晶性Siに由来する500〜520cm−1のラマンシフトのピーク比I(620)/I(520)を用いた。I(620)/I(520)が0.004以上であれば、Si-H結合が合金表面の酸化を抑制し、電解液との副反応がおこりにくくなるため、初期特性、サイクル特性をはじめとする電池特性の向上が期待できる。
And the negative electrode active material which concerns on this invention is obtained by grind | pulverizing the obtained metal body 15 so that it may become about 5-30 micrometers in average particle diameter.
In addition, as an index representing the amount of hydrogen contained in the active material, in the measurement spectrum of Raman spectroscopy, a peak in the vicinity of 620 cm −1 derived from Si—H bond and 500 to 520 cm derived from crystalline Si A peak ratio I (620) / I (520) of 1 Raman shift was used. If I (620) / I (520) is 0.004 or more, the Si-H bond suppresses the oxidation of the alloy surface and the side reaction with the electrolyte does not easily occur. Improvement of battery characteristics can be expected.

以下、実施例により本発明を更に詳細に説明する。
(実施例1)
5mm角程度の大きさの塊状のSiを55重量部と、Ni粉末を35重量部と、Cu粉末10重量部を混合して混合原料とした。そして、この混合原料を、図2に示すチャンバ6内の高周波誘導加熱炉1のるつぼ2に投入した。次に、真空ポンプ13を作動させてチャンバ6内を1×10−3Paになるまで減圧し、減圧後、ガスボンベ14から水素とヘリウムの混合ガスを導入し、水素分圧が2.8MPaになるように調整した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A mixed raw material was prepared by mixing 55 parts by weight of massive Si having a size of about 5 mm square, 35 parts by weight of Ni powder, and 10 parts by weight of Cu powder. And this mixed raw material was thrown into the crucible 2 of the high frequency induction heating furnace 1 in the chamber 6 shown in FIG. Next, the vacuum pump 13 is operated to depressurize the inside of the chamber 6 to 1 × 10 −3 Pa, and after depressurization, a mixed gas of hydrogen and helium is introduced from the gas cylinder 14 so that the hydrogen partial pressure is 2.8 MPa. It adjusted so that it might become.

次に、高周波誘導加熱炉1を作動させて混合原料を溶解して金属溶湯4とした。そして金属溶湯4の温度を1600℃に保った状態で10分間放置することにより、雰囲気中の水素を金属溶湯に十分に溶解させた。   Next, the high frequency induction heating furnace 1 was operated to melt the mixed raw material to obtain a molten metal 4. Then, the metal in the atmosphere was sufficiently dissolved in the molten metal by leaving it for 10 minutes while maintaining the temperature of the molten metal 4 at 1600 ° C.

次に、図2に示すように、高周波誘導加熱炉1から金属溶湯4を冷却装置7の鋳型8に流し込んだ。尚、鋳型8は、カーボン製の中空円筒状の部材であり、その寸法は外径100mm、内径80mm、高さ200mmの大きさである。
次に、冷却ユニット6を作動させて金属溶湯4を一方向凝固させた。このようにして、多数のポアを有する金属体15を製造した。そして、この金属体15を粉砕することにより、平均粒径10μmの実施例1の負極活物質を製造した。
Next, as shown in FIG. 2, the molten metal 4 was poured from the high-frequency induction heating furnace 1 into the mold 8 of the cooling device 7. The mold 8 is a carbon hollow cylindrical member having dimensions of an outer diameter of 100 mm, an inner diameter of 80 mm, and a height of 200 mm.
Next, the cooling unit 6 was operated to solidify the molten metal 4 in one direction. Thus, the metal body 15 having a large number of pores was produced. And this negative electrode active material of Example 1 with an average particle diameter of 10 micrometers was manufactured by grind | pulverizing this metal body 15. FIG.

(実施例2)
チャンバ内の水素分圧を1MPaとしたこと以外は上記実施例1と同様にして実施例2の負極活物質を製造した。
(Example 2)
A negative electrode active material of Example 2 was produced in the same manner as in Example 1 except that the hydrogen partial pressure in the chamber was 1 MPa.

(比較例1)
5mm角程度の大きさの塊状のSiを55重量部と、Ni粉末を35重量部と、Cu粉末10重量部を混合して混合原料とした。そして、この混合原料を、図2に示すチャンバ6内の高周波誘導加熱炉1のるつぼ2に投入した。次に、真空ポンプ13を作動させてチャンバ6内を1×10−3Paになるまで減圧し、減圧後、ガスボンベ14からヘリウムのみを導入し、ヘリウム圧が2.8MPaになるように調整した。
次に、高周波誘導加熱炉1を作動させて混合原料を溶解して金属溶湯とし、この金属溶湯をるつぼ2内でそのまま放冷して凝固させた。凝固後、粉砕することにより、平均粒径10μmの比較例1の負極活物質を製造した。
(Comparative Example 1)
A mixed raw material was prepared by mixing 55 parts by weight of massive Si having a size of about 5 mm square, 35 parts by weight of Ni powder, and 10 parts by weight of Cu powder. And this mixed raw material was thrown into the crucible 2 of the high frequency induction heating furnace 1 in the chamber 6 shown in FIG. Next, the vacuum pump 13 was operated to depressurize the inside of the chamber 6 to 1 × 10 −3 Pa. After depressurization, only helium was introduced from the gas cylinder 14 and the helium pressure was adjusted to 2.8 MPa. .
Next, the high frequency induction heating furnace 1 was operated to melt the mixed raw material to form a molten metal, and the molten metal was left to cool in the crucible 2 to be solidified. After solidification, the negative electrode active material of Comparative Example 1 having an average particle size of 10 μm was produced by pulverization.

(比較例2)
5mm角程度の大きさの塊状のSiを55重量部と、Ni粉末を35重量部と、Cu粉末10重量部を混合して混合原料とした。そして、この混合原料を、図2に示すチャンバ6内の高周波誘導加熱炉1のるつぼ2に投入した。次に、真空ポンプ13を作動させてチャンバ6内を1×10−3Paになるまで減圧し、減圧後、ガスボンベ14からヘリウムのみを導入し、ヘリウム圧が2.8MPaになるように調整した。
(Comparative Example 2)
A mixed raw material was prepared by mixing 55 parts by weight of massive Si having a size of about 5 mm square, 35 parts by weight of Ni powder, and 10 parts by weight of Cu powder. And this mixed raw material was thrown into the crucible 2 of the high frequency induction heating furnace 1 in the chamber 6 shown in FIG. Next, the vacuum pump 13 was operated to depressurize the inside of the chamber 6 to 1 × 10 −3 Pa. After depressurization, only helium was introduced from the gas cylinder 14 and the helium pressure was adjusted to 2.8 MPa. .

次に、高周波誘導加熱炉1を作動させて混合原料を溶解して金属溶湯とし、この金属溶湯をるつぼ2内でそのまま放冷して凝固させた。凝固後、粉砕することにより、合金粉末を得た。この合金粉末を5Nの水酸化ナトリウム水溶液中に入れ、60℃に保ってゆっくり攪拌しながら1時間かけて含侵処理することにより、合金粉末表面のSi相を一部溶解させた。その後、ナトリウムの残留がないように純水で十分に洗浄してから乾燥し、粒度の調整を行って平均粒径10μmとした。このようにして、比較例2の負極活物質を製造した。   Next, the high frequency induction heating furnace 1 was operated to melt the mixed raw material to form a molten metal, and the molten metal was left to cool in the crucible 2 to be solidified. After solidification, the alloy powder was obtained by grinding. This alloy powder was placed in a 5N aqueous sodium hydroxide solution and impregnated for 1 hour with slow stirring at 60 ° C. to partially dissolve the Si phase on the surface of the alloy powder. Thereafter, the product was sufficiently washed with pure water so that no sodium remained, dried, and the particle size was adjusted to an average particle size of 10 μm. Thus, the negative electrode active material of Comparative Example 2 was produced.

(比較例3)
平均粒径1μmの市販のSi粉末を比較例3の負極活物質とした。
(Comparative Example 3)
A commercially available Si powder having an average particle diameter of 1 μm was used as the negative electrode active material of Comparative Example 3.

上記の実施例1及び2並びに比較例1〜3の負極活物質を用いてリチウム二次電池を製造した。各々の負極活物質70重量部と、導電材として平均粒径3μmの黒鉛粉末20重量部と、ポリフッ化ビニリデン10重量部とを混合し、N−メチルピロリドンを加えてから攪拌してスラリーを作成した。次にこのスラリーを厚さ14μmの銅箔上に塗布してから乾燥し、これを圧延して厚さ40μmの負極電極を作成した。作成した負極電極を直径13mmの円形に打ち抜き、この負極電極に多孔質ポリプロピレン製のセパレータを挟んで対極として金属リチウムを重ね、更に容積比でEC:DEC=3:7の混合溶媒にLiPFを1.3モル/Lの濃度で添加してなる電解液を注液することにより、コイン型のリチウム二次電池を製造した。 A lithium secondary battery was manufactured using the negative electrode active materials of Examples 1 and 2 and Comparative Examples 1 to 3 described above. 70 parts by weight of each negative electrode active material, 20 parts by weight of graphite powder having an average particle size of 3 μm as a conductive material, and 10 parts by weight of polyvinylidene fluoride are mixed, and N-methylpyrrolidone is added, followed by stirring to create a slurry. did. Next, this slurry was applied onto a copper foil having a thickness of 14 μm, dried, and rolled to prepare a negative electrode having a thickness of 40 μm. The prepared negative electrode was punched into a circle having a diameter of 13 mm, and a metallic polypropylene was stacked on the negative electrode with a porous polypropylene separator interposed therebetween. Further, LiPF 6 was added to a mixed solvent of EC: DEC = 3: 7 by volume ratio. A coin-type lithium secondary battery was manufactured by injecting an electrolytic solution added at a concentration of 1.3 mol / L.

得られたリチウム二次電池に対して、電池電圧0V〜1.5Vの範囲で0.2Cの電流密度による充放電を30サイクル繰り返し行った。そして30サイクル後の容量維持率を求めた。結果を表1に示す。
また、各々の負極活物質について、Siと水素の結合量を示す指標としてラマンスペクトルにおける600〜620cm−1付近ピーク強度と500〜520cm―1にかけてのピーク強度の比I(620)/I(520)を測定した。その結果を表1に示す。また、図4及び図5にラマンスペクトルの測定結果を示す。
The obtained lithium secondary battery was repeatedly charged and discharged with a current density of 0.2 C for 30 cycles in the battery voltage range of 0 V to 1.5 V. And the capacity | capacitance maintenance factor after 30 cycles was calculated | required. The results are shown in Table 1.
For each negative electrode active material, a ratio of peak intensity around 600 to 620 cm −1 and peak intensity between 500 and 520 cm −1 in Raman spectrum as an index indicating the bonding amount of Si and hydrogen I (620) / I (520 ) Was measured. The results are shown in Table 1. Moreover, the measurement result of a Raman spectrum is shown in FIG.4 and FIG.5.

Figure 0003773514
Figure 0003773514

表1に示すように、実施例1及び2の負極活物質を用いたリチウム二次電池は、容量維持率が良好であることが分かった。一般に、金属溶湯中に溶解する水素のモル数は、Sieverts則により水素圧の平方根に比例することが知られているが、特に実施例1の負極活物質は、水素分圧が高かったため、水素が合金溶湯中によく溶解し、また圧力によってポアの径が小さくなったため、良好な特性が得られたものと考えられる。
また、実施例1及び2のI(620)/I(520)は、比較例1〜3と比べて高い値を示しており、負極活物質表面にSi−H結合が多く存在していることが分かる。
As shown in Table 1, it was found that the lithium secondary batteries using the negative electrode active materials of Examples 1 and 2 had a good capacity retention rate. In general, it is known that the number of moles of hydrogen dissolved in the molten metal is proportional to the square root of the hydrogen pressure according to the Sieverts law. In particular, the negative electrode active material of Example 1 has a high hydrogen partial pressure. Is well dissolved in the molten alloy, and the pore diameter was reduced by the pressure, so it is considered that good characteristics were obtained.
Moreover, I (620) / I (520) of Examples 1 and 2 shows a higher value than Comparative Examples 1 to 3, and there are many Si—H bonds on the surface of the negative electrode active material. I understand.

一方、比較例1の負極活物質は、ヘリウム100%の雰囲気で放冷して凝固させたため、ポアを一切含有しておらず、合金中に水素が含まれていない。このためポアによって電解液を含浸させたり、水素によって電解液の分解反応を抑制させたりする効果が得られず、容量維持率が低下したものと考えられる。
また比較例2の負極活物質は、水酸化ナトリウム水溶液による処理により、表面のSiが溶解して多孔質な粒子になったものの、比較例1と同様に合金中に水素が含まれていないため、電解液の分解反応の抑制効果が得られず、容量維持率が低下したものと考えられる。
更に比較例3の負極活物質は、Siのみを含み、Cu等の導電性金属を含まないため、容量維持率が低下したものと考えられる。
On the other hand, since the negative electrode active material of Comparative Example 1 was allowed to cool and solidify in an atmosphere of 100% helium, it did not contain any pores and contained no hydrogen in the alloy. For this reason, the effect of impregnating the electrolytic solution with the pores or suppressing the decomposition reaction of the electrolytic solution with hydrogen cannot be obtained, and it is considered that the capacity retention rate is reduced.
Moreover, although the negative electrode active material of Comparative Example 2 was treated with a sodium hydroxide aqueous solution and the surface Si was dissolved into porous particles, hydrogen was not contained in the alloy as in Comparative Example 1. It is considered that the effect of suppressing the decomposition reaction of the electrolytic solution was not obtained and the capacity retention rate was lowered.
Furthermore, since the negative electrode active material of Comparative Example 3 contains only Si and does not contain a conductive metal such as Cu, it is considered that the capacity retention rate was lowered.

図1は本発明のリチウム二次電池用負極活物質の製造方法を説明するための工程図。FIG. 1 is a process diagram for explaining a method for producing a negative electrode active material for a lithium secondary battery according to the present invention. 図2は本発明のリチウム二次電池用負極活物質の製造方法を説明するための工程図。FIG. 2 is a process diagram for explaining a method for producing a negative electrode active material for a lithium secondary battery according to the present invention. 図3は本発明のリチウム二次電池用負極活物質の製造方法を説明するための工程図。FIG. 3 is a process diagram for explaining a method for producing a negative electrode active material for a lithium secondary battery according to the present invention. 図4は実施例1、2と比較例1〜3のラマンスペクトルの測定結果を示すグラフ。FIG. 4 is a graph showing the Raman spectrum measurement results of Examples 1 and 2 and Comparative Examples 1 to 3. 図5は図4の部分拡大図。FIG. 5 is a partially enlarged view of FIG.

符号の説明Explanation of symbols

1…高周波誘導加熱炉、4…金属溶湯(溶湯)、5…ポーラス金属製造装置、6…チャンバ、7…冷却装置、8…鋳型、9…冷却ユニット、10…雰囲気制御手段

DESCRIPTION OF SYMBOLS 1 ... High frequency induction heating furnace, 4 ... Molten metal (molten metal), 5 ... Porous metal manufacturing apparatus, 6 ... Chamber, 7 ... Cooling device, 8 ... Mold, 9 ... Cooling unit, 10 ... Atmosphere control means

Claims (10)

リチウムと合金化が可能な少なくとも一種類以上の金属と水素とを含み、かつ内部にポアが形成されてなる粉体であることを特徴とするリチウム二次電池用負極活物質。   A negative electrode active material for a lithium secondary battery, wherein the negative electrode active material is a powder comprising at least one metal capable of being alloyed with lithium and hydrogen and having pores formed therein. 前記ポアの平均孔径が1nm以上5μm以下の範囲であることを特徴とする請求項1に記載のリチウム二次電池用負極活物質。   2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein an average pore diameter of the pore is in a range of 1 nm to 5 μm. 前記ポアの内部に水素が含有されていることを特徴とする請求項1または請求項2に記載のリチウム二次電池用負極活物質。   The negative electrode active material for a lithium secondary battery according to claim 1, wherein hydrogen is contained inside the pore. 前記リチウムと合金化が可能な金属が、Si、Al、Snのいずれかであることを特徴とする請求項1に記載のリチウム二次電池用負極活物質。   2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein the metal that can be alloyed with lithium is Si, Al, or Sn. 前記リチウムと合金化が可能な金属がSiであり、更に前記金属中にSi相及びSiM相を有するとともに、X相またはSiX相のいずれか一方または両方を含むものであることを特徴とする請求項1に記載のリチウム二次電池用負極活物質。
ただし、前記MはNi、Co、As、B、Cr、Cu、Fe、Mg、Mn、Yのうちの少なくとも1種以上の元素であり、元素XはAg、Cu、Auのうちの少なくとも1種以上の元素であり、Cuは元素Mと元素Xに同時に選択されないものとする。
2. The metal capable of being alloyed with lithium is Si, and further has Si phase and SiM phase in the metal, and includes one or both of X phase and SiX phase. The negative electrode active material for lithium secondary batteries as described in 2.
Where M is at least one element selected from Ni, Co, As, B, Cr, Cu, Fe, Mg, Mn, and Y, and element X is at least one element selected from Ag, Cu, and Au. In the above elements, Cu is not selected as the element M and the element X at the same time.
ラマンスペクトルにおけるSiとHとの結合に由来する600〜630cm−1のピークの強度I(620)と、結晶性Siに由来する500〜530cm−1のラマンシフトの強度I(520)との強度比I(620)/I(520)が0.004以上であることを特徴とする請求項1に記載のリチウム二次電池用負極活物質。 Intensities of 600-630 cm −1 peak intensity I (620) derived from the bond of Si and H in the Raman spectrum and 500-530 cm −1 Raman shift intensity I (520) derived from crystalline Si. 2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein the ratio I (620) / I (520) is 0.004 or more. リチウムと合金化が可能な少なくとも一種類以上の金属からなる溶湯に、水素ガスまたは水素ガスと不活性ガスとの混合ガスを溶解させた後に、前記溶湯を一方向凝固させることにより製造されたことを特徴とする請求項1ないし請求項6のいずれかに記載のリチウム二次電池用負極活物質。   Manufactured by dissolving hydrogen gas or a mixed gas of hydrogen gas and inert gas in a molten metal composed of at least one metal that can be alloyed with lithium, and then solidifying the molten metal in one direction. The negative electrode active material for a lithium secondary battery according to claim 1, wherein: 前記金属溶湯を鋳型内で一方向凝固させることにより、前記ポアのアスペクト比を1.2以上にしたことを特徴とする請求項7に記載のリチウム二次電池用負極活物質。   The negative electrode active material for a lithium secondary battery according to claim 7, wherein the aspect ratio of the pore is 1.2 or more by solidifying the molten metal in one direction in a mold. 請求項1ないし請求項8のいずれかに記載のリチウム二次電池用負極活物質を備えたことを特徴とするリチウム二次電池。   A lithium secondary battery comprising the negative electrode active material for a lithium secondary battery according to any one of claims 1 to 8. リチウムと合金化が可能な少なくとも一種類以上の金属と水素とを含み、かつ内部にポアが形成されてなるリチウム二次電池用負極活物質の製造方法であり、
少なくとも一種類以上の前記金属からなる溶湯に、水素ガスまたは水素ガスと不活性ガスとの混合ガスを溶解してから、前記溶湯を一方向凝固することにより、凝固した金属内部に水素を含有するポアを形成することを特徴とするリチウム二次電池用負極活物質の製造方法。

A method for producing a negative electrode active material for a lithium secondary battery comprising at least one kind of metal that can be alloyed with lithium and hydrogen and having pores formed therein,
Hydrogen is contained in the solidified metal by dissolving hydrogen gas or a mixed gas of hydrogen gas and an inert gas in at least one type of molten metal and then solidifying the molten metal in one direction. A method for producing a negative electrode active material for a lithium secondary battery, characterized by forming a pore.

JP2003424423A 2003-12-22 2003-12-22 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery Expired - Lifetime JP3773514B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003424423A JP3773514B2 (en) 2003-12-22 2003-12-22 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
KR1020040039005A KR100589374B1 (en) 2003-12-22 2004-05-31 Negative active material for rechargeable lithium battery, rechargeable lithium battery and method of preparing negative active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424423A JP3773514B2 (en) 2003-12-22 2003-12-22 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005183253A JP2005183253A (en) 2005-07-07
JP3773514B2 true JP3773514B2 (en) 2006-05-10

Family

ID=34784622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424423A Expired - Lifetime JP3773514B2 (en) 2003-12-22 2003-12-22 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery

Country Status (2)

Country Link
JP (1) JP3773514B2 (en)
KR (1) KR100589374B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827642B2 (en) * 2003-01-06 2006-09-27 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR100763891B1 (en) 2005-12-01 2007-10-05 삼성에스디아이 주식회사 Anode active material and lithium battery using the same
JP2007213825A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
JP5652366B2 (en) * 2011-01-20 2015-01-14 三菱マテリアル株式会社 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same
JP2012164632A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
JP5450478B2 (en) * 2011-02-28 2014-03-26 株式会社日立製作所 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP5682411B2 (en) * 2011-03-30 2015-03-11 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing the negative electrode active material
KR101825921B1 (en) 2013-07-05 2018-02-06 삼성에스디아이 주식회사 Electrode for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR100589374B1 (en) 2006-06-14
KR20050063655A (en) 2005-06-28
JP2005183253A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP3827642B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3954001B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
US7479351B2 (en) Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
TWI565127B (en) Anode active material and method of preparing the same
EP2717365B1 (en) Method for manufacturing a carbon-sulfur composite
JP3746499B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20140065339A (en) Cathode materials for electricity storage device, electrode for electricity storage device and electricity storage device, and method for manufacturing them
KR100814842B1 (en) Lithium secondary battery and method for preparing the same
EP3279140B1 (en) Material obtained from sulfur and an organic starting material and method of producing same
JP3746501B2 (en) ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY
KR20160132826A (en) Negative-electrode material for electricity-storage device
JP3841779B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3773514B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
KR100766961B1 (en) Rechargeable lithium battery
JP5073167B2 (en) Lithium secondary battery
JP3971311B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
CN105074030B (en) The alloy approach of negative electrode active material composition metal
JP2004006188A (en) Non-aqueous electrolyte battery
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3929429B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2004047182A (en) Cathode material, manufacturing method for it and battery using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3773514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term