JP5652366B2 - Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same - Google Patents

Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same Download PDF

Info

Publication number
JP5652366B2
JP5652366B2 JP2011217254A JP2011217254A JP5652366B2 JP 5652366 B2 JP5652366 B2 JP 5652366B2 JP 2011217254 A JP2011217254 A JP 2011217254A JP 2011217254 A JP2011217254 A JP 2011217254A JP 5652366 B2 JP5652366 B2 JP 5652366B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
cobalt
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011217254A
Other languages
Japanese (ja)
Other versions
JP2012164631A (en
Inventor
幸俊 上原
幸俊 上原
久芳 完治
完治 久芳
樋上 晃裕
晃裕 樋上
宇野 貴博
貴博 宇野
広太郎 岩田
広太郎 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011217254A priority Critical patent/JP5652366B2/en
Publication of JP2012164631A publication Critical patent/JP2012164631A/en
Application granted granted Critical
Publication of JP5652366B2 publication Critical patent/JP5652366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高容量かつサイクル特性に優れた負極用組成物と、この負極用組成物を用いたリチウムイオン二次電池の負極に関するものである。   The present invention relates to a negative electrode composition having high capacity and excellent cycle characteristics, and a negative electrode of a lithium ion secondary battery using the negative electrode composition.

近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池として、正極材料にLiCoO2等の含リチウム複合酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン電池が商品化されている。この炭素系材料を負極に使用した場合、その理論容量は372mAh/gと金属リチウムの約1/10の容量しかなく、また理論密度が2.2g/ccと低く、実際に負極シートとした場合には、更に密度が低下する。そのため、体積当たりでより高容量な材料を負極として利用することが電池の高容量化の面から望まれている。 In recent years, along with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size and light weight and high capacity have been required. Currently, lithium ion batteries using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and a carbon-based material as a negative electrode active material are commercialized as high-capacity secondary batteries that meet this requirement. When this carbon material is used for the negative electrode, its theoretical capacity is 372 mAh / g, which is only about 1/10 the capacity of metallic lithium, and its theoretical density is as low as 2.2 g / cc. In addition, the density further decreases. For this reason, it is desired to use a material having a higher capacity per volume as the negative electrode from the viewpoint of increasing the capacity of the battery.

一方、Al、Ge、Si、Sn、Zn、Pb等の金属又は半金属は、リチウムと合金化することが知られており、これらの金属又は半金属を負極活物質に用いた二次電池が検討されている。これらの材料は、高容量かつ高エネルギー密度であり、炭素系材料を用いた負極よりも多くのリチウムイオンを吸蔵、脱離できるため、これらの材料を使用することで高容量、高エネルギー密度な電池を作製することができると考えられている。例えば、純粋なスズは993mAh/gの高い理論容量を示すことが知られている。   On the other hand, metals or metalloids such as Al, Ge, Si, Sn, Zn, and Pb are known to be alloyed with lithium, and secondary batteries using these metals or metalloids as negative electrode active materials are known. It is being considered. These materials have a high capacity and a high energy density, and can absorb and desorb more lithium ions than a negative electrode using a carbon-based material. Therefore, by using these materials, a high capacity and a high energy density can be obtained. It is believed that a battery can be made. For example, pure tin is known to exhibit a high theoretical capacity of 993 mAh / g.

しかし、炭素系材料に比べてサイクル特性に劣るため未だ実用化には至っていない。その理由としては、スズをそのままリチウムイオン二次電池の負極活物質に用いると、充放電に伴う大きな体積変化により微粉化し、集電板から剥離したり、導電助剤との接触が失われたりするため、十分なサイクル特性を得ることができないという問題が生じる。   However, since the cycle characteristics are inferior to those of carbon-based materials, it has not yet been put into practical use. The reason for this is that if tin is used as a negative electrode active material for a lithium ion secondary battery as it is, it will be pulverized due to a large volume change associated with charge and discharge, and may be peeled off from the current collector plate or lost contact with the conductive auxiliary agent. Therefore, there arises a problem that sufficient cycle characteristics cannot be obtained.

このような上記問題点を解決する技術として、シリコンやスズ等の無機質の粒子に他の物質を添加させることで、体積変化の少ない負極材料が研究、開発されている。具体的には、リチウムと合金化する金属としてスズを、リチウムと合金化しない金属としてコバルトを使用し、これらの合金薄膜を負極活物質層とした技術が研究、開発されている(例えば、特許文献1,2参照。)。特許文献1では、湿式メッキにより集電体上にSn−Co合金層を設け、このSn−Co合金層を非晶質にすることで、サイクル特性の改善を目指している。また、特許文献2では、電解メッキや無電解メッキ等の電気化学的な方法を用いて、Sn−Co合金薄膜を集電板上に生成させることで、サイクル特性の向上を図っている。   As a technique for solving such a problem, a negative electrode material having a small volume change has been researched and developed by adding other substances to inorganic particles such as silicon and tin. Specifically, a technique in which tin is used as a metal alloying with lithium and cobalt is used as a metal not alloying with lithium and these alloy thin films are used as a negative electrode active material layer has been researched and developed (for example, patents). References 1 and 2). In Patent Document 1, an Sn—Co alloy layer is provided on a current collector by wet plating, and the Sn—Co alloy layer is made amorphous so as to improve cycle characteristics. In Patent Document 2, cycle characteristics are improved by generating an Sn—Co alloy thin film on a current collector plate using an electrochemical method such as electrolytic plating or electroless plating.

特開2009−245794号公報(段落[0042]、段落[0043])JP 2009-245794 A (paragraph [0042], paragraph [0043]) 特開2002−373647号公報(請求項1、請求項15、段落[0006]、段落[0011])JP 2002-373647 A (Claim 1, claim 15, paragraph [0006], paragraph [0011])

しかし、上記従来の特許文献1及び2に示される負極では、リチウムと合金化しないコバルトをスズと合金化することで、サイクル特性の劣化を抑制してきたけれども、これらはほぼ均一組成であり、容量及びサイクル特性ともに十分とはいえなかった。   However, in the negative electrodes shown in the above-mentioned conventional patent documents 1 and 2, although deterioration of cycle characteristics has been suppressed by alloying cobalt, which is not alloyed with lithium, with tin, they have a substantially uniform composition and a capacity. In addition, the cycle characteristics were not sufficient.

本発明の目的は、コバルトが負極活物質を構成する複合粒子の外面及びポアの内面に偏在することで充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保でき、また複合粒子内に複数のポアが存在することで充電時の体積膨張を緩和でき、高容量でサイクル特性及び出力特性に優れた長寿命のリチウムイオン二次電池を製造できる負極用組成物及びこれを用いた負極を提供することにある。本発明の別の目的は、導電助剤としてカーボンナノファイバやアセチレンブラック等を添加することにより、サイクル特性や出力特性を更に向上できるリチウムイオン二次電池を製造できる負極用組成物及びこれを用いた負極を提供することにある。   It is an object of the present invention to be able to relieve stress due to volume expansion / contraction during charge / discharge and ensure conductivity, because cobalt is unevenly distributed on the outer surface of the composite particle constituting the negative electrode active material and the inner surface of the pore, and the composite particle The composition for negative electrode which can relieve the volume expansion at the time of charging due to the presence of a plurality of pores, can produce a long-life lithium ion secondary battery with high capacity and excellent cycle characteristics and output characteristics, and the same The object is to provide a negative electrode. Another object of the present invention is to provide a composition for a negative electrode capable of producing a lithium ion secondary battery that can further improve cycle characteristics and output characteristics by adding carbon nanofibers, acetylene black, or the like as a conductive additive, and the use thereof. It is to provide a negative electrode.

本発明の第1の観点は、負極活物質と導電助剤と結着剤とを含むリチウムイオン二次電池の負極用組成物であって、負極活物質が、スズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%である複合粒子からなり、上記複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し、コバルト(Co)が複合粒子の外面及びポアの内面に偏在し、かつ複合粒子内部の空間率が20〜80%であり、導電助剤がカーボンナノファイバ、アセチレンブラック及びケッチェンブラックからなる群より選ばれた1種又は2種以上の炭素材料でありかつ複合粒子の外面又は複合粒子の外面及びポアの内面に網目状に付着するように構成されたことを特徴とする。   A first aspect of the present invention is a composition for a negative electrode of a lithium ion secondary battery comprising a negative electrode active material, a conductive additive and a binder, wherein the negative electrode active material comprises tin (Sn) and cobalt (Co ) Is a composite particle having a ratio of cobalt (Co) to the total amount of 5 to 40 atomic%, and the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface. One type selected from the group consisting of carbon nanofibers, acetylene black and ketjen black, wherein the composite particles are unevenly distributed on the outer surface of the composite particles and the inner surface of the pores, and the space ratio inside the composite particles is 20 to 80%. Or it is 2 or more types of carbon materials, and it was comprised so that it might adhere to the outer surface of a composite particle, or the outer surface of a composite particle, and the inner surface of a pore at mesh shape.

本発明の第2の観点は、第1の観点に基づく発明であって、更に負極活物質の含有割合が70〜95質量%であり、導電助剤の含有割合が2〜20質量%であり、結着剤の含有割合が3〜15質量%であって、導電助剤の含有割合をX質量%としかつ結着剤の含有割合をY質量%とするとき、X/Yが0.4〜3の範囲内に設定され、導電助剤がカーボンナノファイバを含むとき、カーボンナノファイバの含有割合が2〜15質量%であることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the content ratio of the negative electrode active material is 70 to 95% by mass, and the content ratio of the conductive assistant is 2 to 20% by mass. When the content of the binder is 3 to 15% by mass, the content of the conductive auxiliary agent is X% by mass, and the content of the binder is Y% by mass, X / Y is 0.4. It is set in the range of -3, When a conductive support agent contains carbon nanofiber, the content rate of carbon nanofiber is 2-15 mass%, It is characterized by the above-mentioned.

本発明の第3の観点は、第1又は第2の観点に記載の負極用組成物が負極集電体に塗工されたリチウムイオン二次電池の負極である。   A third aspect of the present invention is a negative electrode of a lithium ion secondary battery in which the negative electrode composition described in the first or second aspect is coated on a negative electrode current collector.

本発明の第1の観点の負極用組成物では、スズとコバルトの合計量に対するコバルトの割合が5〜40原子%である負極活物質を構成する複合粒子が切断面において複合粒子の表面に連通する複数のポアを有するので、この負極活物質を用いたリチウムイオン二次電池が充放電を繰り返したときに、複合粒子内のポアが充電時の複合粒子の体積膨張を吸収して緩和できる。またコバルトが複合粒子の外面及びポアの内面に偏在するので、即ち複数のポアを有する母材でありかつ硬度及び導電率の比較的低いスズの外面又はポア内面に、硬度及び導電率の比較的高いコバルトの偏在したスズ層が形成されるので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。更に複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつ複合粒子内部の空間率が20〜80%と比較的大きいので、スズのリチウムとの反応面積が比較的広くなる。この結果、スズがリチウムと効率良く反応するというスズ本来の性能を引き出すことができる。従って、リチウムと合金化しないコバルトをスズとほぼ均一組成で合金化して負極を作製したため、十分な容量及びサイクル特性が得られなかった従来のリチウムイオン二次電池と比較して、本発明の負極用組成物を用いたリチウムイオン二次電池は、サイクル特性及び出力特性に優れ、寿命が長くなり、かつ容量が高くなる。また導電助剤としてカーボンナノファイバを添加することにより、リチウムイオン二次電池のサイクル特性を更に向上でき、導電助剤としてアセチレンブラックを添加することにより、リチウムイオン二次電池の出力特性を更に向上できる。   In the negative electrode composition according to the first aspect of the present invention, the composite particles constituting the negative electrode active material in which the ratio of cobalt to the total amount of tin and cobalt is 5 to 40 atomic% communicate with the surface of the composite particles at the cut surface. Therefore, when the lithium ion secondary battery using this negative electrode active material is repeatedly charged and discharged, the pores in the composite particles can absorb and relax the volume expansion of the composite particles during charging. In addition, since cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, that is, a base material having a plurality of pores and a relatively low hardness and conductivity of tin or the inner surface of the pore, Since a high cobalt unevenly distributed tin layer is formed, stress due to volume expansion / contraction during charge / discharge can be relieved and conductivity can be ensured. Furthermore, since the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and the space ratio inside the composite particle is relatively large as 20 to 80%, the reaction area of tin with lithium is relatively wide. . As a result, the original performance of tin that tin reacts efficiently with lithium can be brought out. Therefore, the negative electrode of the present invention is compared with a conventional lithium ion secondary battery in which sufficient capacity and cycle characteristics are not obtained because cobalt which is not alloyed with lithium is alloyed with tin with a substantially uniform composition to produce a negative electrode. The lithium ion secondary battery using the composition for use is excellent in cycle characteristics and output characteristics, has a long life, and has a high capacity. In addition, by adding carbon nanofibers as a conductive aid, the cycle characteristics of lithium ion secondary batteries can be further improved, and by adding acetylene black as a conductive aid, the output characteristics of lithium ion secondary batteries are further improved. it can.

本発明実施形態の複合粒子の表面からの深さの変化に対するスズ濃度及びコバルト濃度の変化をそれぞれ示す図である。It is a figure which shows the change of the tin concentration with respect to the change of the depth from the surface of the composite particle of this invention embodiment, and a cobalt concentration, respectively. 実施例1〜4のスズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度の相対的な相違を示した図である。It is the figure which showed the relative difference of the acid concentration of the liquid mixture which mixed the aqueous solution containing the tin ion and cobalt ion of Examples 1-4 and the reducing agent aqueous solution in a predetermined ratio. 実施例1の複合粒子を切断した面の電子顕微鏡写真図である。FIG. 3 is an electron micrograph of a surface obtained by cutting composite particles of Example 1. 本発明実施形態の負極用組成物(固形分)の配合割合の範囲を示す図である。It is a figure which shows the range of the mixture ratio of the composition for negative electrodes (solid content) of this invention embodiment.

次に本発明を実施するための形態を説明する。本発明のリチウムイオン二次電池の負極用組成物は負極活物質と導電助剤と結着剤とを含む。上記負極活物質は、スズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%、好ましくは10〜30原子%である複合粒子からなる。ここで、複合粒子中のコバルトの割合を上記範囲に限定したのは、コバルトの割合が5原子%を下回ると、硬度の比較的低いスズの外面又はポア内面に形成された硬度の比較的高いコバルトの偏在したスズ層が薄くなって、この負極活物質を用いた二次電池の充放電時の体積膨張・収縮による応力を緩和できず、二次電池のサイクル特性が低下する不具合が生じるためであり、コバルトの割合が40原子%を上回っても、この負極活物質を用いた二次電池のサイクル特性は良好であるけれども、コバルト量が増大し、相対的にリチウムと反応するスズ量が減少してしまい、初回放電容量が小さくなる不具合が生じるためである。   Next, the form for implementing this invention is demonstrated. The composition for a negative electrode of a lithium ion secondary battery of the present invention includes a negative electrode active material, a conductive additive and a binder. The negative electrode active material is composed of composite particles in which the ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) is 5 to 40 atomic%, preferably 10 to 30 atomic%. Here, the proportion of cobalt in the composite particles is limited to the above range because when the proportion of cobalt is less than 5 atomic%, the hardness formed on the outer surface of the tin or the inner surface of the pore having a relatively low hardness is relatively high. Because the tin layer with uneven distribution of cobalt becomes thin, stress due to volume expansion / contraction during charging / discharging of the secondary battery using this negative electrode active material cannot be relieved, resulting in a problem that the cycle characteristics of the secondary battery deteriorate. Even if the proportion of cobalt exceeds 40 atomic%, the cycle characteristics of the secondary battery using this negative electrode active material are good, but the amount of cobalt increases and the amount of tin that reacts relatively with lithium increases. This is because the first discharge capacity decreases due to the decrease.

上記複合粒子は切断面において複合粒子の表面に連通する複数のポアを有する。またコバルト(Co)は複合粒子の外面及びポアの内面に偏在し、かつ複合粒子内部の空間率が20〜80%、好ましくは30〜70%である。これにより本発明の負極活物質は、従来より知られているような、粒子の中心部と外周部とでスズ−コバルトの組成の偏りがない、略均一に合金化した形態はとらない。ここで、複合粒子内部の空間率を上記範囲に限定したのは、空間率が20%を下回ると、本発明の負極活物質を用いたリチウムイオン二次電池のサイクル特性が低下してしまい、空間率が80%を上回ると、サイクル特性は良好であるけれども、スズの量が少なくなって初回放電容量が小さくなる不具合が生じるためである。ここで、複合粒子内部の空間率が上記範囲であり、かつ複合粒子の表面に連通するポアの数の多い方が二次電池のサイクル特性を向上できる。なお、複合粒子内部の空間率の測定方法としては、 C.P.Auger による粒子の断面写真において、全体の断面写真の質量に対する空隙面積の写真の質量を測定する方法を用いることが好ましい。   The composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface. Cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, and the space ratio inside the composite particle is 20 to 80%, preferably 30 to 70%. As a result, the negative electrode active material of the present invention does not take an almost uniform alloyed form in which there is no bias in the composition of tin-cobalt between the central part and the outer peripheral part of the particles as conventionally known. Here, the space ratio inside the composite particles is limited to the above range, and when the space ratio is less than 20%, the cycle characteristics of the lithium ion secondary battery using the negative electrode active material of the present invention are deteriorated. This is because when the space ratio exceeds 80%, the cycle characteristics are good, but the amount of tin decreases and the initial discharge capacity decreases. Here, the cycle characteristics of the secondary battery can be improved when the space ratio inside the composite particles is within the above range and the number of pores communicating with the surface of the composite particles is larger. As a method for measuring the space ratio inside the composite particles, it is preferable to use a method of measuring the mass of the void area photograph relative to the mass of the entire sectional photograph in the cross-sectional photograph of the particles by C.P.Auger.

このように構成された負極活物質では、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有するので、この負極活物質を用いたリチウムイオン二次電池が充放電を繰り返したときに、複合粒子内のポアが充電時の複合粒子の体積膨張を吸収して緩和できる。またコバルトが複合粒子の外面及びポアの内面に偏在するので、即ち複数のポアを有する母材でありかつ硬度及び導電率の比較的低いスズの外面又はポア内面に、硬度及び導電率の比較的高いコバルトの偏在したスズ層が形成されるので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。更に複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつ複合粒子内部の空間率が比較的大きいので、スズのリチウムとの反応面積が比較的広くなる。この結果、スズがリチウムと効率良く反応するというスズ本来の性能を引き出すことができる。従って、上記負極活物質を用いたリチウムイオン二次電池は、サイクル特性及び出力特性に優れ、寿命が長くなり、かつ容量が高くなる。   In the negative electrode active material configured in this manner, the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface, and therefore when a lithium ion secondary battery using this negative electrode active material is repeatedly charged and discharged Further, the pores in the composite particles can absorb and relax the volume expansion of the composite particles during charging. In addition, since cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, that is, a base material having a plurality of pores and a relatively low hardness and conductivity of tin or the inner surface of the pore, Since a high cobalt unevenly distributed tin layer is formed, stress due to volume expansion / contraction during charge / discharge can be relieved and conductivity can be ensured. Furthermore, since the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and the space ratio inside the composite particle is relatively large, the reaction area of tin with lithium is relatively wide. As a result, the original performance of tin that tin reacts efficiently with lithium can be brought out. Therefore, the lithium ion secondary battery using the negative electrode active material has excellent cycle characteristics and output characteristics, has a long life, and has a high capacity.

また、負極活物質を構成する複合粒子は、平均粒径が0.1〜20μm、好ましくは0.5〜10μmの範囲に粒径制御されることがその取り扱い易さから好ましい。このように粒径制御された複数の複合粒子からなる粉末は、スラリー化して負極集電体に塗工することができ、従来からのリチウムイオン二次電池製造プロセスを適用できる。ここで、複合粒子の平均粒径を上記範囲に限定したのは、平均粒径が0.1μm未満ではスラリー化が困難となり、既存のリチウムイオン二次電池製造プロセスに適用できない不具合があり、20μmを越えるとコバルトの偏在したスズ層による膨張抑制効果が不十分となり、サイクル特性が低下する不具合があるからである。なお、複合粒子の平均粒径は、粒度分布測定装置(堀場製作所製LA−950)を用いて測定し、体積基準平均粒径を平均粒径とした。   In addition, the composite particles constituting the negative electrode active material preferably have an average particle diameter of 0.1 to 20 μm, preferably 0.5 to 10 μm in view of ease of handling. The powder composed of a plurality of composite particles whose particle diameters are controlled in this way can be slurried and applied to the negative electrode current collector, and a conventional lithium ion secondary battery manufacturing process can be applied. Here, the average particle size of the composite particles is limited to the above range because when the average particle size is less than 0.1 μm, it becomes difficult to form a slurry, and there is a problem that it cannot be applied to an existing lithium ion secondary battery manufacturing process. This is because the expansion suppression effect by the tin layer in which cobalt is unevenly distributed becomes insufficient and the cycle characteristics deteriorate. The average particle size of the composite particles was measured using a particle size distribution measuring device (LA-950 manufactured by Horiba, Ltd.), and the volume-based average particle size was defined as the average particle size.

更に、負極活物質は、構成元素として、クロム(Cr)及び亜鉛(Zn)のうち少なくとも1種を更に含むことが好適である。クロムや亜鉛を含ませることで、初回放電容量を増大させることができる。この理由の詳細は不明であるが、クロムや亜鉛を含有することで、粒子中心部まで速やかにリチウムが拡散することができるのではないかと推察される。クロムの含有量は質量比で0.005〜1%、好ましくは0.1〜0.9%であり、亜鉛の含有量は質量比で5〜50ppm、好ましくは10〜30ppmの範囲である。ここで、クロム及び亜鉛の含有量を上記範囲に限定したのは、クロムの含有量が0.005%以上又は亜鉛の含有量が5ppm以上でないと初回放電容量の増大効果が発現せず、クロムの含有量が1%又は亜鉛の含有量が50ppmを上回ると、コバルトの偏在したスズ層の強度が低下し保護効果が低下し、サイクル特性が低下してしまう不具合を生じるからである。なお、本発明の負極活物質を構成する複合粒子中のスズ、コバルト、クロム、亜鉛の各含有量はICP(誘導結合プラズマ)を用いた定量分析により求めることができる。   Furthermore, it is preferable that the negative electrode active material further includes at least one of chromium (Cr) and zinc (Zn) as a constituent element. By including chromium or zinc, the initial discharge capacity can be increased. Although the details of this reason are unknown, it is presumed that lithium can be rapidly diffused to the particle center by containing chromium or zinc. The chromium content is 0.005 to 1% by mass, preferably 0.1 to 0.9%, and the zinc content is 5 to 50 ppm, preferably 10 to 30 ppm by mass. Here, the chromium and zinc contents are limited to the above range because the effect of increasing the initial discharge capacity is not exhibited unless the chromium content is 0.005% or more or the zinc content is 5 ppm or more. If the content of 1% or the content of zinc exceeds 50 ppm, the strength of the tin layer in which cobalt is unevenly distributed is lowered, the protective effect is lowered, and the cycle characteristics are deteriorated. In addition, each content of tin, cobalt, chromium, and zinc in the composite particles constituting the negative electrode active material of the present invention can be obtained by quantitative analysis using ICP (inductively coupled plasma).

一方、導電助剤は、カーボンナノファイバ、アセチレンブラック及びケッチェンブラックからなる群より選ばれた1種又は2種以上の炭素材料である。そして導電助剤は、複合粒子の外面、又は複合粒子の外面及びポアの内面に網目状に付着するように構成される。また結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)などが挙げられる。なお、負極活物質の含有割合は好ましくは70〜95質量%、更に好ましくは80〜93質量%であり、導電助剤の含有割合は好ましくは2〜20質量%、更に好ましくは3〜10質量%であり、結着剤の含有割合は好ましくは3〜15質量%、更に好ましくは4〜10質量%である(図2の破線で囲まれる部分)。また導電助剤の含有割合をX質量%としかつ結着剤の含有割合をY質量%とするとき、X/Yは好ましくは0.4〜3、更に好ましくは0.5〜2の範囲内に設定される(図2の一点鎖線で示す直線A及びBの間の部分)。これにより図2のハッチングを施した部分が負極活物質、導電助剤及び結着剤のそれぞれの含有割合を示す範囲となる。更に導電助剤がカーボンナノファイバを含むとき、カーボンナノファイバの含有割合は好ましくは2〜15質量%、更に好ましくは3〜11質量%である。   On the other hand, the conductive additive is one or more carbon materials selected from the group consisting of carbon nanofibers, acetylene black, and ketjen black. The conductive additive is configured to adhere to the outer surface of the composite particle, or the outer surface of the composite particle and the inner surface of the pore in a mesh shape. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). In addition, the content ratio of the negative electrode active material is preferably 70 to 95 mass%, more preferably 80 to 93 mass%, and the content ratio of the conductive auxiliary agent is preferably 2 to 20 mass%, more preferably 3 to 10 mass%. The content ratio of the binder is preferably 3 to 15% by mass, and more preferably 4 to 10% by mass (portion surrounded by a broken line in FIG. 2). Further, when the content ratio of the conductive auxiliary agent is X mass% and the content ratio of the binder is Y mass%, X / Y is preferably in the range of 0.4 to 3, more preferably 0.5 to 2. (The portion between the straight lines A and B indicated by the one-dot chain line in FIG. 2). Thereby, the hatched portion of FIG. 2 is in a range indicating the respective content ratios of the negative electrode active material, the conductive additive and the binder. Furthermore, when a conductive support agent contains carbon nanofiber, the content rate of carbon nanofiber becomes like this. Preferably it is 2-15 mass%, More preferably, it is 3-11 mass%.

ここで、負極活物質の含有割合を70〜95質量%の範囲内に限定したのは、70質量%未満ではリチウムと充放電反応する負極活物質の割合が低下し、電池のエネルギー密度が小さくなるという不具合があり、95質量%を越えると電池性能を発現するための結着剤及び導電助剤が相対的に不足し、放電容量、サイクル特性及び出力特性が低下するという不具合があるからである。導電助剤の含有割合を2〜20質量%の範囲内に限定したのは、2質量%未満では負極活物質から集電体への電子伝導の経路の構築が不十分で放電容量及び出力特性が低下するという不具合があり、20質量%を越えると相対的に負極活物質の割合が低下し電池のエネルギー密度が小さくなるという不具合があるからである。結着剤の含有割合を3〜15質量%の範囲内に限定したのは、3質量%未満では負極活物質及び導電助剤をシート上に十分に保持できず、サイクル特性が悪くなるという不具合があり、15質量%を越えると相対的に負極活物質の割合が低下し電池のエネルギー密度が小さくなったり、負極活物質と導電助剤の接触を妨げ放電容量や出力特性が低下するという不具合があるからである。またX/Yを0.4〜3の範囲内に限定したのは、0.4未満では結着剤が導電助剤と負極活物質の接触を妨げる効果が顕著となり放電容量及び出力特性が低下するという不具合があり、3を越えると結着剤の導電助剤及び負極活物質の保持力低下が顕著となりサイクル特性が悪くなるという不具合があるからである。更にカーボンナノファイバの含有割合を2〜15質量%の範囲内に限定したのは、2質量%未満ではカーボンナノファイバが微細な負極活物質表面を十分に覆う量が確保できず充放電反応に寄与できない負極活物質が発生し放電容量が低下するという不具合があり、15質量%のカーボンナノファイバで負極活物質表面を十分に覆うことができるため、これを越えて含有させてもそれ以上の効果は得られず、相対的に負極活物質の割合が低下するため電池のエネルギー密度が低下するという不具合があるからである。   Here, the content ratio of the negative electrode active material is limited to the range of 70 to 95% by mass. When the content is less than 70% by mass, the ratio of the negative electrode active material that undergoes charge / discharge reaction with lithium decreases, and the energy density of the battery is small. If the amount exceeds 95% by mass, the binder and the conductive aid for expressing battery performance are relatively insufficient, and the discharge capacity, cycle characteristics, and output characteristics are degraded. is there. The content of the conductive auxiliary agent is limited to the range of 2 to 20% by mass. If the content is less than 2% by mass, the construction of the electron conduction path from the negative electrode active material to the current collector is insufficient, and the discharge capacity and output characteristics. This is because when the amount exceeds 20% by mass, the proportion of the negative electrode active material is relatively reduced, and the energy density of the battery is reduced. The content ratio of the binder is limited to the range of 3 to 15% by mass. When the content is less than 3% by mass, the negative electrode active material and the conductive additive cannot be sufficiently retained on the sheet, and the cycle characteristics are deteriorated. If the amount exceeds 15% by mass, the proportion of the negative electrode active material is relatively reduced, the battery energy density is reduced, and the contact between the negative electrode active material and the conductive additive is hindered, resulting in a decrease in discharge capacity and output characteristics. Because there is. Moreover, the X / Y was limited to the range of 0.4 to 3. If the ratio is less than 0.4, the effect of the binder hindering the contact between the conductive auxiliary agent and the negative electrode active material becomes remarkable, and the discharge capacity and output characteristics are lowered. This is because when the ratio exceeds 3, there is a problem in that the holding power of the binder conductive auxiliary agent and the negative electrode active material is significantly reduced and the cycle characteristics are deteriorated. Furthermore, the content ratio of the carbon nanofibers is limited to the range of 2 to 15% by mass. If the amount is less than 2% by mass, the carbon nanofibers cannot sufficiently cover the surface of the fine negative electrode active material, and charge / discharge reactions are prevented. There is a problem in that the negative electrode active material that cannot contribute and the discharge capacity decreases, and the surface of the negative electrode active material can be sufficiently covered with 15% by mass of carbon nanofibers. This is because the effect is not obtained, and the ratio of the negative electrode active material relatively decreases, so that the energy density of the battery decreases.

また、上記負極用組成物は、n−メチルピロリジノン、水等の溶媒を含む。これにより負極用組成物がスラリー化し、負極集電体への塗工(塗布)が可能になる。この溶媒はスラリー状の負極用組成物を負極集電体に塗工した後の乾燥工程で蒸発する。更に、上記負極用組成物は、ポリアクリル酸、水溶性セルロース及びポリビニルピロリドンからなる群より選ばれた少なくとも1種の分散剤を更に含むことが好適である。上記種類の分散剤を含ませることで、分散剤が粒子を覆うことになり、コバルトの偏在したスズ層による膨張収縮抑制効果を増強し、サイクル特性を向上させることができる。   Moreover, the said composition for negative electrodes contains solvents, such as n-methylpyrrolidinone and water. As a result, the negative electrode composition is slurried and can be applied (applied) to the negative electrode current collector. This solvent evaporates in the drying step after the slurry-like negative electrode composition is applied to the negative electrode current collector. Furthermore, it is preferable that the negative electrode composition further includes at least one dispersant selected from the group consisting of polyacrylic acid, water-soluble cellulose, and polyvinylpyrrolidone. By including the above type of dispersant, the dispersant covers the particles, thereby enhancing the expansion and contraction suppressing effect by the tin layer in which cobalt is unevenly distributed, and improving the cycle characteristics.

次に、上記負極用組成物の製造方法を説明する。先ず負極活物質を製造する。負極活物質は、スズイオン及びコバルトイオンを含む水溶液と2価クロムイオンを含む還元剤水溶液とを混合し、この混合液の温度、酸濃度、処理時間又は撹拌速度の少なくとも1つの条件を調整することにより製造される。具体的には、上記スズイオン及びコバルトイオンを含む水溶液と2価クロムイオンを含む還元剤水溶液とを混合することにより、この混合液中でスズイオン及びコバルトイオンを還元させて複合粒子を合成し、上記混合液の温度、酸濃度、処理時間又は撹拌速度の少なくとも1つの条件を調整することにより、複合粒子内部のスズ(Sn)を溶出させて複合粒子内部の空間率を制御する。これにより、スズとコバルトの合計量に対するコバルトの割合が5〜40原子%である複合粒子からなり、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し、コバルトが複合粒子の外面及びポアの内面に偏在し、かつ複合粒子内部の空間率が1.0〜6.0m2/gである負極活物質が製造される。 Next, the manufacturing method of the said composition for negative electrodes is demonstrated. First, a negative electrode active material is manufactured. The negative electrode active material is prepared by mixing an aqueous solution containing tin ions and cobalt ions with an aqueous reducing agent solution containing divalent chromium ions, and adjusting at least one of the temperature, acid concentration, treatment time or stirring speed of the mixed solution. Manufactured by. Specifically, by mixing the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution containing divalent chromium ions, the composite particles are synthesized by reducing tin ions and cobalt ions in the mixed solution, By adjusting at least one condition of the temperature of the mixed solution, the acid concentration, the treatment time, or the stirring speed, tin (Sn) inside the composite particles is eluted to control the space ratio inside the composite particles. Accordingly, the composite particles are composed of composite particles in which the ratio of cobalt to the total amount of tin and cobalt is 5 to 40 atomic%, the composite particles have a plurality of pores communicating with the surface of the composite particles at the cut surface, and the cobalt is composite particles. Negative electrode active material that is unevenly distributed on the outer surface and the inner surface of the pores and that has a porosity of 1.0 to 6.0 m 2 / g inside the composite particles.

上記混合液中で還元反応させると、先ず、スズイオンが還元して均一なスズ粒子が生じ、このスズ粒子が一定の粒径まで成長する。続いて、コバルトイオンが還元し、一定の粒径にまで成長したスズ粒子を母材として、この母材の周囲に上記コバルトが進入し、スズ粒子の外面にコバルトが偏在した複合粒子となる。上記混合液の温度、酸濃度、処理時間又は撹拌速度の少なくとも1つの条件を調整すると、上記複合粒子にこの粒子の表面に連通する複数のポアが形成されるとともに、コバルトが複合粒子の外面及びポアの内面に偏在して、複合粒子の外面及びポアの内面にコバルトの偏在したスズ層が形成される。このコバルトの偏在したスズ層におけるコバルト濃度は複合粒子の外面及びポアの内面からスズ母材内方に向うに従って次第に低くなり、スズ濃度は複合粒子の外面及びポアの内面からスズ母材内方に向うに従って次第に高くなるように形成される(図1)。なお、上記複合粒子に複数のポアが形成されるのは次の理由によると推察される。スズの水素過電圧は高いため、スズの溶解反応は起こり難い。一方、コバルトの水素過電圧はスズの水素過電圧より低いため、スズとコバルトが接することによってコバルト側から水素が発生する。この結果、複合粒子内部のスズが非常に溶け易くなるので、複合粒子に複数のポアが形成される。   When the reduction reaction is performed in the mixed solution, first, tin ions are reduced to produce uniform tin particles, and the tin particles grow to a certain particle size. Subsequently, cobalt ions are reduced and tin particles grown to a certain particle size are used as a base material, and the cobalt enters the periphery of the base material, resulting in composite particles in which cobalt is unevenly distributed on the outer surface of the tin particles. When adjusting at least one condition of the temperature, acid concentration, treatment time or stirring speed of the mixed liquid, a plurality of pores communicating with the surface of the composite particle are formed in the composite particle, and cobalt is formed on the outer surface of the composite particle and A tin layer in which cobalt is unevenly distributed is formed on the outer surface of the composite particle and the inner surface of the pore, unevenly distributed on the inner surface of the pore. The cobalt concentration in this unevenly distributed tin layer gradually decreases from the outer surface of the composite particle and the inner surface of the pore toward the inner side of the tin base material, and the tin concentration decreases from the outer surface of the composite particle and the inner surface of the pore to the inner side of the tin base material. It is formed so as to gradually become higher as it goes (FIG. 1). In addition, it is guessed that a several pore is formed in the said composite particle for the following reason. Since the hydrogen overvoltage of tin is high, the dissolution reaction of tin hardly occurs. On the other hand, since the hydrogen overvoltage of cobalt is lower than that of tin, hydrogen is generated from the cobalt side when tin and cobalt come into contact with each other. As a result, tin inside the composite particle is very easily dissolved, and a plurality of pores are formed in the composite particle.

スズイオン及びコバルトイオンを含む水溶液には、得られる複合粒子の凝集を抑制する分散剤を含ませることが好ましい。分散剤としては、ポリアクリル酸、水溶性セルロース及びポリビニルピロリドンから選ばれた少なくとも1種が挙げられる。   The aqueous solution containing tin ions and cobalt ions preferably contains a dispersant that suppresses aggregation of the resulting composite particles. Examples of the dispersant include at least one selected from polyacrylic acid, water-soluble cellulose, and polyvinyl pyrrolidone.

還元剤水溶液に含まれる2価クロムイオンは、還元剤としての機能を有する。この2価クロムイオンは不安定であるため、還元剤水溶液はスズイオン及びコバルトイオンを含む水溶液と混合する際にその都度調製することが好ましい。具体的には、例えば、塩化第2クロム溶液を非酸化性雰囲気下、好ましくは窒素ガス雰囲気下で金属亜鉛に接触させるか、或いは電気化学的にクロムを還元し、塩化第1クロム溶液としたものを用いるとよい。塩化第2クロム溶液は酸濃度0.0079〜1.26[a.u.](arbitrary units:任意単位;以下、[a.u.]という。)に調整することが好ましい。それは酸濃度が下限値を下回ると、3価クロムイオンが水酸化物として沈殿するという不具合が生じ易いからである。   The divalent chromium ion contained in the reducing agent aqueous solution has a function as a reducing agent. Since the divalent chromium ions are unstable, the reducing agent aqueous solution is preferably prepared each time when it is mixed with an aqueous solution containing tin ions and cobalt ions. Specifically, for example, the second chromium chloride solution is brought into contact with metallic zinc in a non-oxidizing atmosphere, preferably a nitrogen gas atmosphere, or the chromium is electrochemically reduced to obtain a first chromium chloride solution. Use a good one. The second chromium chloride solution is preferably adjusted to an acid concentration of 0.0079 to 1.26 [a.u.] (arbitrary units: arbitrary units; hereinafter referred to as [a.u.]). This is because when the acid concentration is below the lower limit, a problem that trivalent chromium ions are precipitated as a hydroxide tends to occur.

スズイオン及びコバルトイオンを含む水溶液と2価クロムイオンを含む還元剤水溶液とを混合した混合液の温度は15〜50℃、好ましくは25〜40℃に設定され、混合液の酸濃度は0.0035〜0.50[a.u.]、好ましくは0.06〜0.3[a.u.]に設定される。また上記混合液の処理時間は1〜40時間、好ましくは3〜30時間に設定され、混合液の撹拌速度は0.2〜1.5m/秒、好ましくは0.4〜1.0m/秒に設定される。上記混合液の処理時間は、混合液の撹拌保持時間をいう。また上記混合液の撹拌速度は、撹拌羽根の回転により混合液が流動したときの混合液の平均流速をいう。ここで、混合液の温度を上記範囲に限定したのは、15℃未満では、スズが溶け難くなり、複合粒子に複数のポアが形成され難くなるため、充電時の複合粒子の体積膨張を吸収して緩和する効果が低下してしまい、50℃を越えると、スズの溶出が促進され、サイクル特性は良好であるけれども、スズの量が少なくなって初回放電容量が小さくなってしまうからである。また、混合液の酸濃度を上記範囲に限定したのは、酸濃度が0.50[a.u.]を越えると、スズの溶出が促進されて、サイクル特性が良好であるけれども、スズの量が少なくなって初回放電容量が小さくなってしまい、酸濃度が0.0035[a.u.]未満では、スズとコバルトが接することによるコバルト側からの水素発生が生じ難くなって、複合粒子内部のスズが溶け難くなるので、複合粒子に複数のポアが形成され難くなり、これにより充電時の複合粒子の体積膨張を吸収して緩和する効果が低下してしまうからである。また、混合液の処理時間を上記範囲に限定したのは、1時間未満では、複合粒子に形成されるポアの数が少なくなるため、充電時の複合粒子の体積膨張を吸収して緩和する効果が低下してしまい、40時間を越えると、目的の負極活物質を得るための時間が掛かり過ぎ、これにより製造コストが増大し、生産効率が低下してしまうからである。更に混合液の撹拌速度を上記範囲に限定したのは、0.2m/秒未満では、混合液の組成を均一に保つことができなくなって、所望の負極活物質を得ることができず、1.5m/秒を越えると、所望の負極活物質を得るために過剰のエネルギーを投入することになり、エネルギーコストの無駄が発生してしまうからである。なお、混合液の温度は高くなるに従って複合粒子の比表面積が大きくなり、混合液の酸濃度は小さくなるに従って複合粒子の比表面積が大きくなる傾向にある。また、混合液の処理時間は長くなるに従って複合粒子の比表面積が大きくなり、混合液の撹拌速度は速くなるに従って複合粒子の比表面積が大きくなる傾向にある。   The temperature of the mixed solution obtained by mixing the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution containing divalent chromium ions is set to 15 to 50 ° C, preferably 25 to 40 ° C, and the acid concentration of the mixed solution is 0.0035. It is set to ˜0.50 [au], preferably 0.06 to 0.3 [au]. The processing time of the above mixed solution is set to 1 to 40 hours, preferably 3 to 30 hours, and the stirring speed of the mixed solution is 0.2 to 1.5 m / second, preferably 0.4 to 1.0 m / second. Set to The processing time of the mixed solution refers to the stirring and holding time of the mixed solution. Moreover, the stirring speed of the said liquid mixture says the average flow velocity of a liquid mixture when a liquid mixture flows by rotation of a stirring blade. Here, the temperature of the mixed solution is limited to the above range. If the temperature is lower than 15 ° C., tin hardly dissolves and a plurality of pores are hardly formed in the composite particle, so that the volume expansion of the composite particle during charging is absorbed. When the temperature exceeds 50 ° C., elution of tin is promoted and the cycle characteristics are good, but the amount of tin is reduced and the initial discharge capacity is reduced. . Moreover, the acid concentration of the mixed solution is limited to the above range because when the acid concentration exceeds 0.50 [au], elution of tin is promoted and the cycle characteristics are good, but the amount of tin is small. Thus, the initial discharge capacity is reduced, and when the acid concentration is less than 0.0035 [au], hydrogen generation from the cobalt side due to contact between tin and cobalt is difficult to occur, and tin inside the composite particles is difficult to dissolve. Therefore, it becomes difficult for a plurality of pores to be formed in the composite particle, thereby reducing the effect of absorbing and relaxing the volume expansion of the composite particle during charging. In addition, the treatment time of the mixed solution is limited to the above range because the number of pores formed in the composite particle is reduced if it is less than 1 hour, and therefore the effect of absorbing and relaxing the volume expansion of the composite particle during charging. This is because, if it exceeds 40 hours, it takes too much time to obtain the target negative electrode active material, which increases the manufacturing cost and decreases the production efficiency. Furthermore, the stirring speed of the mixed solution is limited to the above range because if it is less than 0.2 m / second, the composition of the mixed solution cannot be kept uniform, and a desired negative electrode active material cannot be obtained. If it exceeds 0.5 m / sec, excessive energy will be input to obtain the desired negative electrode active material, resulting in wasted energy costs. Note that the specific surface area of the composite particles increases as the temperature of the mixed solution increases, and the specific surface area of the composite particles tends to increase as the acid concentration of the mixed solution decreases. In addition, the specific surface area of the composite particles increases as the treatment time of the mixed solution increases, and the specific surface area of the composite particles tends to increase as the stirring speed of the mixed solution increases.

このように負極活物質の製造方法は湿式法であり、水溶液調製や還元反応がともに室温程度の温度で実施可能であるため、イニシャルコストが多大にかかる特殊な装置類も不要となり、製造コストを抑制できる。   Thus, the negative electrode active material manufacturing method is a wet method, and both the aqueous solution preparation and the reduction reaction can be performed at a temperature of about room temperature. Therefore, special equipment that requires a large initial cost is unnecessary, and the manufacturing cost is reduced. Can be suppressed.

なお、製造する負極活物質の構成元素として、クロム(Cr)及び亜鉛(Zn)のうち少なくとも1種を更に含ませる場合には、スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液との混合割合を増減させる、還元剤水溶液を調製する際に使用する金属亜鉛量を増減させる、塩化亜鉛をスズイオン及びコバルトイオンを含む水溶液や還元剤水溶液に加えるなどの手法により、クロムや亜鉛の含有量を制御することができる。   In addition, when further including at least one of chromium (Cr) and zinc (Zn) as a constituent element of the negative electrode active material to be manufactured, the mixing ratio of the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution is Control chromium and zinc contents by increasing or decreasing, increasing or decreasing the amount of metallic zinc used in preparing the reducing agent aqueous solution, adding zinc chloride to an aqueous solution containing tin ions and cobalt ions, or an aqueous reducing agent solution. be able to.

次に上記負極活物質と導電助剤と結着剤とを所定の割合で混合した後、この混合物に所定の割合(例えば、負極活物質、導電助剤及び結着剤の合計量100質量%に対して35〜60質量%)で溶媒を混合することにより、負極用組成物のスラリーを調製する。次に上記負極用組成物のスラリーを負極集電体に塗工(塗布)した後に乾燥して負極を製造する。   Next, after mixing the negative electrode active material, the conductive additive, and the binder in a predetermined ratio, the mixture is mixed with a predetermined ratio (for example, the total amount of the negative electrode active material, the conductive auxiliary, and the binder is 100% by mass). The slurry of the composition for negative electrodes is prepared by mixing a solvent in 35-60 mass%). Next, the slurry of the negative electrode composition is applied (applied) to the negative electrode current collector and then dried to produce a negative electrode.

なお、負極の作製に使用した負極集電体は、特に限定されるものではなく、従来より一般的に用いられるものを使用することができる。例えば、負極集電体としては、銅箔、ステンレス箔、ニッケル箔などが挙げられる。   In addition, the negative electrode collector used for preparation of a negative electrode is not specifically limited, The thing generally used conventionally can be used. For example, examples of the negative electrode current collector include copper foil, stainless steel foil, and nickel foil.

このようにして得られた負極を用いてリチウムイオン二次電池を作製する。正極活物質をバインダ及び導電助剤と所定の割合で混合して正極スラリーを調製する。次に、調製した正極スラリーを正極集電体上に、ドクターブレード法などの手法により塗布し乾燥することにより正極を作製する。なお、正極の作製に使用した正極活物質、バインダ、導電助剤及び正極集電体は、特に限定されるものではなく、従来より一般的に用いられるものを使用することができる。例えば、正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiFePO4などが挙げられる。導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、VGCF、黒鉛等が挙げられる。また、バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等が挙げられる。正極集電体としては、アルミニウム箔、ステンレス鋼箔、ニッケル箔等が挙げられる。 A lithium ion secondary battery is produced using the negative electrode thus obtained. A positive electrode slurry is prepared by mixing the positive electrode active material with a binder and a conductive additive at a predetermined ratio. Next, the prepared positive electrode slurry is applied onto a positive electrode current collector by a technique such as a doctor blade method and dried to prepare a positive electrode. In addition, the positive electrode active material, the binder, the conductive auxiliary agent, and the positive electrode current collector used for the production of the positive electrode are not particularly limited, and those conventionally used can be used. For example, examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , and LiFePO 4 . Examples of the conductive assistant include carbon black such as acetylene black and ketjen black, VGCF, graphite and the like. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). Examples of the positive electrode current collector include aluminum foil, stainless steel foil, and nickel foil.

次に、負極とセパレータと正極を、正極と負極の活物質面をそれぞれ対向させた状態で積層し、積層体を形成する。セパレータは合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等から形成される。そして、上記積層体の正極側裏面及び負極側裏面にそれぞれメッシュ材の一端を接続し、袋状に作製したアルミラミネート材にメッシュ材の他端がはみ出るように積層体を装填する。次に、ラミネート材の開口部から非水電解液を加え、真空引きしながら、ラミネート材の開口部を熱融着させることより、リチウムイオン二次電池が得られる。正極側裏面に接続したメッシュ材としてはアルミメッシュ材が、負極側裏面に接続したメッシュ材としてはニッケルメッシュ材が使用される。   Next, the negative electrode, the separator, and the positive electrode are stacked with the active material surfaces of the positive electrode and the negative electrode facing each other to form a stacked body. The separator is formed from a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or the like. Then, one end of the mesh material is connected to each of the positive electrode-side back surface and the negative electrode-side back surface of the laminate, and the laminate is loaded so that the other end of the mesh material protrudes into the bag-shaped aluminum laminate material. Next, a lithium ion secondary battery is obtained by adding a non-aqueous electrolyte from the opening of the laminate and heat-sealing the opening of the laminate while evacuating. An aluminum mesh material is used as the mesh material connected to the back surface on the positive electrode side, and a nickel mesh material is used as the mesh material connected to the back surface on the negative electrode side.

また、非水電解液には、非水溶媒に電解質を溶解させた溶媒が使用される。非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の鎖状カーボネート、ジメトキシエタン、ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテルや、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル、クラウンエーテル、γ−ブチロラクトン等の脂肪酸エステル、アセトニトリル等の窒素化合物、スルホラン、ジメチルスルホキシド等の硫化物等が例示される。上記非水電解液は単独で使用しても、2種以上混合した混合溶媒として使用してもよい。電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ほうフッ化リチウム(LiBF4)、六フッ化ヒ素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルフォニルイミドリチウム[LiN(CF3SO22]等のリチウム塩が例示される。 For the non-aqueous electrolyte, a solvent in which an electrolyte is dissolved in a non-aqueous solvent is used. Non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), dimethoxyethane, Chain ethers such as ethoxyethane and ethoxymethoxyethane, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, fatty acid esters such as crown ether and γ-butyrolactone, nitrogen compounds such as acetonitrile, sulfides such as sulfolane and dimethyl sulfoxide, etc. Is exemplified. The non-aqueous electrolyte may be used alone or as a mixed solvent in which two or more kinds are mixed. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluorometasulfonate ( Examples thereof include lithium salts such as LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ].

このように製造されたリチウムイオン二次電池では、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有するので、リチウムイオン二次電池が充放電を繰り返したときに、複合粒子内のポアが充電時の複合粒子の体積膨張を吸収して緩和でき、またコバルトが複合粒子の外面及びポアの内面に偏在するので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保でき、更に複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつ複合粒子内部の空間率が比較的大きいので、スズのリチウムとの反応面積が比較的広くなる。この結果、スズがリチウムと効率良く反応するというスズ本来の性能を引き出すことができるので、リチウムイオン二次電池は、サイクル特性及び出力特性に優れ、寿命が長くなり、かつ容量が高くなる。また、負極活物質にカーボンナノファイバからなる導電助剤を添加すると、この導電助剤が粒子を覆うことになり、負極全体に網目状に導電性パスを形成することができるので、活物質あたりの初回放電容量及びサイクル特性を更に向上させることができる。負極活物質にアセチレンブラックからなる導電助剤を添加すると、アセチレンブラックがカーボンナノファイバより大きいため、大電流を取出すことができ、これにより出力特性を更に向上させることができる。従って、負極活物質にカーボンナノファイバ及びアセチレンブラックを質量比で(10:90)〜(80:20)の範囲内で混合した導電助剤を添加すると、サイクル特性及び出力特性を更に向上できる。   In the lithium ion secondary battery manufactured in this way, since the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface, when the lithium ion secondary battery is repeatedly charged and discharged, The pores can absorb and relax the volume expansion of the composite particles during charging, and cobalt is unevenly distributed on the outer surface of the composite particles and the inner surface of the pores. In addition, since the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and the space ratio inside the composite particle is relatively large, the reaction area of tin with lithium is relatively wide. As a result, the original performance of tin that tin reacts efficiently with lithium can be brought out, so that the lithium ion secondary battery has excellent cycle characteristics and output characteristics, has a long life, and has a high capacity. In addition, when a conductive additive made of carbon nanofibers is added to the negative electrode active material, the conductive auxiliary agent covers the particles, and a conductive path can be formed in a net shape throughout the negative electrode. The initial discharge capacity and cycle characteristics can be further improved. When a conductive additive made of acetylene black is added to the negative electrode active material, since acetylene black is larger than carbon nanofibers, a large current can be taken out, thereby further improving output characteristics. Therefore, when a conductive additive in which carbon nanofibers and acetylene black are mixed in a mass ratio within the range of (10:90) to (80:20) is added to the negative electrode active material, cycle characteristics and output characteristics can be further improved.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、イオン交換水に分散剤、塩化スズ(II)及び塩化コバルト(II)を、合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が20原子%となるような割合で加え、撹拌溶解し、塩酸を更に加えて酸濃度を0.050[a.u.]に調整した。分散剤にはポリアクリル酸を用いた。
<Example 1>
First, a dispersant, tin (II) chloride and cobalt (II) chloride are added to ion-exchanged water at a ratio such that the cobalt ratio with respect to the total of tin and cobalt in the composite particles obtained by synthesis is 20 atomic%. The mixture was dissolved by stirring, and hydrochloric acid was further added to adjust the acid concentration to 0.050 [au]. Polyacrylic acid was used as the dispersant.

一方、イオン交換水に塩化クロム(III)を加えて撹拌溶解し、これに金属亜鉛(Zn)を投入することでクロムイオンを3価から2価に還元し、全クロムイオン中の2価のクロム比が70%以上となるように調製した。これを還元剤水溶液とした。   On the other hand, chromium (III) chloride is added to ion-exchanged water and dissolved by stirring. By adding metal zinc (Zn) to this, chromium ions are reduced from trivalent to divalent, and divalent in all chromium ions. The chromium ratio was adjusted to 70% or more. This was designated as a reducing agent aqueous solution.

次に、スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合し、撹拌保持時間を24時間としてスズイオンとコバルトイオンを還元反応させた。この混合液の温度は25℃であり、酸濃度は0.050[a.u.](図2)であり、撹拌速度は0.5m/秒であった。   Next, an aqueous solution containing tin ions and cobalt ions and a reducing agent aqueous solution were mixed at a predetermined ratio, and the stirring and holding time was 24 hours to cause the tin ions and cobalt ions to undergo a reduction reaction. The temperature of this mixed solution was 25 ° C., the acid concentration was 0.050 [a.u.] (FIG. 2), and the stirring speed was 0.5 m / sec.

その後、撹拌混合した液を静置し、合成した粒子を沈降させ、上澄み液を除去した。続いて、沈降物にイオン交換水を加えて撹拌洗浄、静置沈降及び上澄み液除去の操作を数回繰り返し、最後にエタノールで撹拌洗浄、静置沈降及び上澄み液除去を行った。得られた沈降物を真空乾燥することで、スズとコバルトの合計量に対するコバルトの割合が20原子%である複合粒子からなり、この複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し(図3)、コバルトが複合粒子の外面及びポアの内面に偏在し、更に複合粒子内部の空間率が20%である負極活物質を得た。   Then, the liquid which was stirred and mixed was left still, the synthesized particle | grains were settled, and the supernatant liquid was removed. Subsequently, ion-exchanged water was added to the precipitate, and the operations of stirring and washing, standing sedimentation and supernatant removal were repeated several times, and finally stirring and washing with ethanol, standing sedimentation and supernatant removal were performed. The obtained precipitate is vacuum-dried to form composite particles in which the ratio of cobalt to the total amount of tin and cobalt is 20 atomic%, and the composite particles communicate with the surface of the composite particles at the cut surface. (FIG. 3), cobalt was unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, and a negative electrode active material having a space ratio of 20% inside the composite particle was obtained.

<実施例2>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.100[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は30%であった。
<Example 2>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixed solution in which the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution were mixed at a predetermined ratio was 0.100 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 30%.

<実施例3>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.195[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は40%であった。
<Example 3>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixed solution in which the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution were mixed at a predetermined ratio was 0.195 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 40%.

<実施例4>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.269[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は50%であった。
<Example 4>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixed solution in which the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution were mixed at a predetermined ratio was 0.269 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 50%.

<実施例5>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.372[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は70%であった。
<Example 5>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixed solution in which the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution were mixed at a predetermined ratio was 0.372 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 70%.

<実施例6>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.457[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は80%であった。
<Example 6>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixture obtained by mixing an aqueous solution containing tin ions and cobalt ions and an aqueous reducing agent solution at a predetermined ratio was 0.457 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 80%.

<比較例1>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.032[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は10%であった。
<Comparative Example 1>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixed solution in which the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution were mixed at a predetermined ratio was 0.032 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 10%.

<比較例2>
スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液とを所定の割合で混合した混合液の酸濃度を0.562[a.u.](図2)としたこと以外は実施例1と同様にして負極活物質を得た。この負極活物質の複合粒子内部の空間率は90%であった。
<Comparative example 2>
A negative electrode active material in the same manner as in Example 1 except that the acid concentration of the mixed solution in which the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution were mixed at a predetermined ratio was 0.562 [au] (FIG. 2). Got. The space ratio inside the composite particles of this negative electrode active material was 90%.

<比較試験1及び評価>
実施例1〜6と比較例1及び2の負極活物質について、ICP定量分析を行い、複合粒子中のスズ、コバルト、クロム、亜鉛の各含有量を求めた。得られた結果を次の表1に示す。なお、表1中の「<0.001」及び「<2」は、ICPの検出限界以下の測定値であったことを示す。また、表1の「負極活物質の構造」の「ポア」において、「有」は負極活物質の複合粒子が複数のポアを有することを示し、「負極活物質の構造」の「Co位置」において、「偏在」はコバルトが複合粒子の外面及びポアの内面に偏在することを示す。上記複数のポアの存在やコバルトの偏在は、負極活物質の電子顕微鏡写真や、この負極活物質の断面における電子顕微鏡写真により確認した。
<Comparative test 1 and evaluation>
ICP quantitative analysis was performed about the negative electrode active material of Examples 1-6 and Comparative Examples 1 and 2, and each content of tin, cobalt, chromium, and zinc in a composite particle was calculated | required. The obtained results are shown in Table 1 below. In Table 1, “<0.001” and “<2” indicate that the measured values were below the ICP detection limit. Further, in “pore” of “structure of negative electrode active material” in Table 1, “present” indicates that the composite particles of the negative electrode active material have a plurality of pores, and “Co position” of “structure of negative electrode active material”. In the graph, “uneven distribution” indicates that cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. The presence of the plurality of pores and the uneven distribution of cobalt were confirmed by an electron micrograph of the negative electrode active material and an electron micrograph of a cross section of the negative electrode active material.

また実施例1〜6と比較例1及び2の負極活物質を用い、負極活物質粉末を導電助剤、結着剤、溶媒と混合しスラリーをそれぞれ調製した。即ち、合成した負極活物質粉末、アセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)、カーボンナノファイバ(CNF)、ポリフッ化ビニリデン(PVdF:結着剤)及びn−メチルピロリジノン(NMP)を質量比で80:5:5:10:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。   Moreover, using the negative electrode active materials of Examples 1 to 6 and Comparative Examples 1 and 2, the negative electrode active material powder was mixed with a conductive additive, a binder, and a solvent to prepare slurries. That is, the synthesized negative electrode active material powder, acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black), carbon nanofiber (CNF), polyvinylidene fluoride (PVdF: binder), and n-methylpyrrolidinone ( NMP) was weighed in a mass ratio of 80: 5: 5: 10: 100 and kneaded using a kneader to prepare a slurry.

次に、得られたスラリーをアプリケータを用いて銅箔上に活物質密度が5mg/cm2となるように塗布し、乾燥、圧延し、幅3cm長さ3cmに切断することで負極を作製した。 Next, the obtained slurry was applied on a copper foil using an applicator so that the active material density was 5 mg / cm 2 , dried, rolled, and cut into a width of 3 cm and a length of 3 cm to produce a negative electrode. did.

上記作製した負極を用いて半電池を組み、充放電サイクル試験を行った。対極及び参照極にはリチウム金属を用い、電解液には1M濃度で六フッ化リン酸リチウム(LiPF6)を溶解した炭酸エチレン(EC)と炭酸ジエチル(DEC)の等体積溶媒を用いた。充電は電圧が5mVとなるまで0.5mA/cm2の定電流条件で実施し、その後、電流が0.01mA/cm2になるまで5mVの定電圧条件で実施した。 A half battery was assembled using the produced negative electrode, and a charge / discharge cycle test was conducted. Lithium metal was used for the counter electrode and the reference electrode, and equal volume solvents of ethylene carbonate (EC) and diethyl carbonate (DEC) in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 M were used for the electrolyte. Charging was performed under a constant current condition of 0.5 mA / cm 2 until the voltage reached 5 mV, and then under a constant voltage condition of 5 mV until the current reached 0.01 mA / cm 2 .

放電は電圧が1Vになるまで0.5mA/cm2の定電流条件で実施した。充電と放電を各1回実施した状態を1サイクルとし、100サイクルまでの充放電試験を行い、初回の活物質重量あたりの放電容量と、100サイクル目の放電容量の初回放電容量に対する割合を寿命特性として性能評価した。得られた評価結果を次の表1に示す。 The discharge was carried out under a constant current condition of 0.5 mA / cm 2 until the voltage reached 1V. The state in which charging and discharging are performed once is regarded as one cycle, a charge / discharge test up to 100 cycles is performed, and the discharge capacity per active material weight for the first time and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity are lifetimes. Performance was evaluated as a characteristic. The obtained evaluation results are shown in Table 1 below.

表1から明らかなように、複合粒子内部の空間率が10%である比較例1では、初回放電容量が555mAh/gと低くなり、また複合粒子内部の空間率が90%である比較例2では、初回放電容量が490mAh/gと低くなったのに対し、複合粒子内部の空間率が20〜80%の範囲内である実施例1〜6では、初回放電容量が573〜803mAh/gと大きくなった。これらの結果から、複合粒子内部の空間率には初回放電容量を高めるのに最適な範囲が存在することが確認された。なお、比較例1では、スズのリチウムとの反応面積が狭過ぎたため、初回放電容量が低くなり、比較例2では、リチウムと反応するスズの量が少な過ぎたため、初回放電容量が低くなったのに対し、実施例1〜6では、リチウムとの反応面積が広く、かつリチウムと反応するスズの量が比較的多かったため、初回放電容量が高くなったものと推察される。 As can be seen from Table 1, in Comparative Example 1 in which the space ratio inside the composite particles is 10%, the initial discharge capacity is as low as 555 mAh / g, and in Comparative Example 2 where the space ratio inside the composite particles is 90%. In Examples 1-6, in which the initial discharge capacity was as low as 490 mAh / g, but the porosity inside the composite particles was in the range of 20 to 80%, the initial discharge capacity was 573 to 803 mAh / g. It became bigger. From these results, it was confirmed that there was an optimum range for increasing the initial discharge capacity in the space ratio inside the composite particles. In Comparative Example 1, the initial discharge capacity was low because the reaction area of tin with lithium was too small. In Comparative Example 2, the initial discharge capacity was low because the amount of tin that reacted with lithium was too small. On the other hand, in Examples 1-6, since the reaction area with lithium was wide and the amount of tin reacting with lithium was relatively large, it is presumed that the initial discharge capacity was increased.

また、複合粒子内部の空間率が10%である比較例1では、寿命特性が89.0%と低かったのに対し、複合粒子内部の空間率が20〜90%の範囲内である実施例1〜6及び比較例2では、寿命特性が94.0〜98.5%と高くなった。これは、比較例1では、複合粒子がこの粒子表面に連通するポアを有せず、電池充電時の複合粒子の体積膨張を吸収できなかったため、寿命特性が低くなったのに対し、実施例1〜6及び比較例2では、複合粒子がこの粒子表面に連通する複数のポアを有し、電池充電時の複合粒子の体積膨張を複数のポアが吸収して緩和できたため、寿命特性が高くなったものと推察される。   Further, in Comparative Example 1 in which the space ratio inside the composite particles was 10%, the lifetime characteristics were as low as 89.0%, whereas the space ratio inside the composite particles was in the range of 20 to 90%. In 1 to 6 and Comparative Example 2, the life characteristics were as high as 94.0 to 98.5%. In Comparative Example 1, the composite particles did not have pores communicating with the particle surface, and the volume expansion of the composite particles during battery charging could not be absorbed. In 1 to 6 and Comparative Example 2, the composite particles have a plurality of pores communicating with the particle surface, and the volume expansion of the composite particles at the time of battery charging was absorbed by the plurality of pores so that the life characteristics were high. It is presumed that

<実施例7>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が5原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例4と同様にして負極活物質を得た。
<Example 7>
An aqueous solution containing tin ions and cobalt ions was prepared by adding tin (II) chloride and cobalt (II) chloride in such a ratio that the cobalt ratio of the composite particles obtained by synthesis was 5 atomic% with respect to the total of tin and cobalt. A negative electrode active material was obtained in the same manner as in Example 4 except that.

<実施例8>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が10原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例4と同様にして負極活物質を得た。
<Example 8>
An aqueous solution containing tin ions and cobalt ions was prepared by adding tin (II) chloride and cobalt (II) chloride in such a ratio that the cobalt ratio in the composite particles obtained by synthesis was 10 atomic% with respect to the total of tin and cobalt. A negative electrode active material was obtained in the same manner as in Example 4 except that.

<実施例9>
実施例4と同様に、合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が20原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製して負極活物質を得た。
<Example 9>
In the same manner as in Example 4, tin ions and cobalt were added by adding tin (II) chloride and cobalt (II) chloride in such a ratio that the ratio of cobalt to the total of tin and cobalt in the composite particles obtained by synthesis was 20 atomic%. An aqueous solution containing ions was prepared to obtain a negative electrode active material.

<実施例10>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が30原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例4と同様にして負極活物質を得た。
<Example 10>
An aqueous solution containing tin ions and cobalt ions was prepared by adding tin (II) chloride and cobalt (II) chloride at a ratio such that the cobalt ratio in the composite particles obtained by synthesis was 30 atomic% with respect to the total of tin and cobalt. A negative electrode active material was obtained in the same manner as in Example 4 except that.

<実施例11>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が40原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例4と同様にして負極活物質を得た。
<Example 11>
An aqueous solution containing tin ions and cobalt ions was prepared by adding tin (II) chloride and cobalt (II) chloride in such a ratio that the cobalt ratio in the composite particles obtained by synthesis was 40 atomic% with respect to the total of tin and cobalt. A negative electrode active material was obtained in the same manner as in Example 4 except that.

<比較例3>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が3原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例4と同様にして負極活物質を得た。
<Comparative Example 3>
An aqueous solution containing tin ions and cobalt ions was prepared by adding tin (II) chloride and cobalt (II) chloride in such a ratio that the cobalt ratio in the composite particles obtained by synthesis was 3 atomic% with respect to the total of tin and cobalt. A negative electrode active material was obtained in the same manner as in Example 4 except that.

<比較例4>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が45原子%となるような割合で塩化スズ(II)及び塩化コバルト(II)を加えてスズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例4と同様にして負極活物質を得た。
<Comparative example 4>
An aqueous solution containing tin ions and cobalt ions was prepared by adding tin (II) chloride and cobalt (II) chloride in such a ratio that the cobalt ratio in the composite particles obtained by synthesis was 45 atomic% with respect to the total of tin and cobalt. A negative electrode active material was obtained in the same manner as in Example 4 except that.

<比較例5>
スズとコバルトの合計に対するコバルト割合が20原子%であり、中心部と外周部での組成の偏りがなく粒子が略均一組成物となっているスズ−コバルト粉を負極活物質とした。
<Comparative Example 5>
The negative electrode active material was a tin-cobalt powder having a cobalt ratio of 20 atomic% with respect to the total of tin and cobalt, having no compositional deviation in the center portion and the outer peripheral portion, and having a substantially uniform composition.

<比較試験2及び評価>
実施例7〜11及び比較例3〜5の負極活物質について、上記比較試験1と同様に、ICP定量分析を行い、複合粒子中のスズ、コバルト、クロム、亜鉛の各含有量を求めた。得られた結果を次の表2に示す。なお、表2中の「<0.001」及び「<2」は、ICPの検出限界以下の測定値であったことを示す。また、表2の「負極活物質の構造」の「ポア」において、「有」は負極活物質の複合粒子が複数のポアを有することを示し、「負極活物質の構造」の「Co位置」において、「偏在」はコバルトが複合粒子の外面及びポアの内面に偏在することを示す。上記複数のポアの存在やコバルトの偏在は、負極活物質の電子顕微鏡写真や、この負極活物質の断面における電子顕微鏡写真により確認した。
<Comparative test 2 and evaluation>
About the negative electrode active material of Examples 7-11 and Comparative Examples 3-5, similarly to the said comparative test 1, ICP quantitative analysis was performed and each content of tin in the composite particle, cobalt, chromium, and zinc was calculated | required. The obtained results are shown in Table 2 below. In Table 2, “<0.001” and “<2” indicate that the measured values were below the ICP detection limit. In addition, in the “pore” of “Negative electrode active material structure” in Table 2, “Yes” indicates that the composite particles of the negative electrode active material have a plurality of pores, and “Co position” of “Negative electrode active material structure”. In the graph, “uneven distribution” indicates that cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. The presence of the plurality of pores and the uneven distribution of cobalt were confirmed by an electron micrograph of the negative electrode active material and an electron micrograph of a cross section of the negative electrode active material.

実施例7〜11及び比較例3〜5の負極活物質を用い、上記比較試験1と同様に、負極電極を作製した。またこの負極電極を用い、上記比較試験1と同様に、半電池を組み、充放電サイクル試験を行い、初回の活物質重量あたりの放電容量と、100サイクル目の放電容量の初回放電容量に対する割合を寿命特性として性能評価した。得られた評価結果を次の表2に示す。   Using the negative electrode active materials of Examples 7 to 11 and Comparative Examples 3 to 5, negative electrodes were produced in the same manner as in Comparative Test 1 above. In addition, using this negative electrode, as in Comparative Test 1 above, a half-cell was assembled, a charge / discharge cycle test was performed, and the discharge capacity per active material weight for the first time and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity Was evaluated as a life characteristic. The obtained evaluation results are shown in Table 2 below.

表2から明らかなように、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し、コバルトが複合粒子の外面及びポアの内面に偏在する構造である実施例7〜11と比較例3及び4では、いずれも高い寿命特性を示したのに対し、粒子中のコバルトとスズとを略均一とした比較例5では、寿命特性が40.0%と非常に低い結果であった。この結果から、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し、コバルトが複合粒子の外面及びポアの内面に偏在した構造をとる複合粒子は非常に高いサイクル特性が得られることが確認された。 As apparent from Table 2, the composite particles have a plurality of pores communicating with the surface of the composite particles at the cut surface, and cobalt is unevenly distributed on the outer surface of the composite particles and the inner surface of the pores. In Comparative Examples 3 and 4, both showed high life characteristics, whereas in Comparative Example 5 in which cobalt and tin in the particles were substantially uniform, the life characteristics were very low at 40.0%. It was. From this result, composite particles having a structure in which the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore have very high cycle characteristics. It was confirmed that

また、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し、コバルトが複合粒子の外面及びポアの内面に偏在した構造とし、コバルト割合を変動させた実施例7〜11と比較例3及び4を比較すると、実施例7〜11のコバルト割合が5〜40原子%の範囲では、高い初回放電容量が得られ、かつ寿命特性も高い結果になったのに対し、比較例3の3原子%のようにコバルト割合が低くなると、寿命特性が低下し、比較例4の45原子%のようにコバルト割合が高くなると、初回放電容量が低くなる傾向が見られた。これらの結果から、粒子中のコバルト割合には適切な範囲が存在することが確認された。   In addition, the composite particles had a plurality of pores communicating with the surface of the composite particles at the cut surface, and the cobalt was unevenly distributed on the outer surface of the composite particles and the inner surface of the pores, and Examples 7 to 11 in which the cobalt ratio was varied Comparing Comparative Examples 3 and 4, when the cobalt ratio of Examples 7 to 11 was in the range of 5 to 40 atomic%, a high initial discharge capacity was obtained, and the life characteristics were also high. When the cobalt ratio was low as in 3 atom% of 3, the life characteristics were lowered, and when the cobalt ratio was high as in 45 atom% of Comparative Example 4, the initial discharge capacity tended to be low. From these results, it was confirmed that an appropriate range exists for the cobalt ratio in the particles.

<実施例12>
合成して得られる複合粒子に質量比で0.005%のクロムが更に含まれるように、スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液との混合割合を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 12>
The same as in Example 4 except that the mixing ratio of the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 0.005% chromium by mass. Thus, a negative electrode active material was obtained.

<実施例13>
合成して得られる複合粒子に質量比で0.1%のクロムが更に含まれるように、スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液との混合割合を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 13>
The same as in Example 4 except that the mixing ratio of the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 0.1% chromium by mass. Thus, a negative electrode active material was obtained.

<実施例14>
合成して得られる複合粒子に質量比で1%のクロムが更に含まれるように、スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液との混合割合を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 14>
Except that the mixing ratio of the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 1% chromium by mass ratio, the same as in Example 4. A negative electrode active material was obtained.

<実施例15>
合成して得られる複合粒子に質量比で5ppmの亜鉛が更に含まれるように、還元剤水溶液を調製する際の金属亜鉛投入量を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 15>
The negative electrode active material was prepared in the same manner as in Example 4 except that the amount of zinc metal in preparing the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 5 ppm of zinc by mass ratio. Obtained.

<実施例16>
合成して得られる複合粒子に質量比で25ppmの亜鉛が更に含まれるように、還元剤水溶液を調製する際の金属亜鉛投入量を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 16>
The negative electrode active material was prepared in the same manner as in Example 4 except that the amount of metal zinc input when preparing the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 25 ppm of zinc by mass. Obtained.

<実施例17>
合成して得られる複合粒子に質量比で50ppmの亜鉛が更に含まれるように、還元剤水溶液を調製する際の金属亜鉛投入量を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 17>
The negative electrode active material was prepared in the same manner as in Example 4 except that the amount of metal zinc input in preparing the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 50 ppm of zinc by mass. Obtained.

<実施例18>
合成して得られる複合粒子に質量比で1.5%のクロムが更に含まれるように、スズイオン及びコバルトイオンを含む水溶液と還元剤水溶液との混合割合を調節したこと以外は実施例4と同様にして負極活物質を得た。
<Example 18>
The same as in Example 4 except that the mixing ratio of the aqueous solution containing tin ions and cobalt ions and the reducing agent aqueous solution was adjusted so that 1.5% by mass of chromium was further contained in the composite particles obtained by synthesis. Thus, a negative electrode active material was obtained.

<実施例19>
合成して得られる複合粒子に質量比で75ppmの亜鉛が更に含まれるように、還元剤水溶液を調節する際の金属亜鉛投入量を調整したこと以外は実施例4と同様にして負極活物質を得た。
<Example 19>
The negative electrode active material was prepared in the same manner as in Example 4 except that the amount of metal zinc added when adjusting the reducing agent aqueous solution was adjusted so that the composite particles obtained by synthesis further contained 75 ppm of zinc by mass. Obtained.

<比較試験3及び評価>
実施例12〜19の負極活物質について、上記比較試験1と同様に、ICP定量分析を行い、複合粒子中のスズ、コバルト、クロム、亜鉛の各含有量を求めた。得られた結果を次の表3に示す。なお、表3中の「<0.001」及び「<2」は、ICPの検出限界以下の測定値であったことを示す。また、表3の「負極活物質の構造」の「ポア」において、「有」は負極活物質の複合粒子が複数のポアを有することを示し、「負極活物質の構造」の「Co位置」において、「偏在」はコバルトが複合粒子の外面及びポアの内面に偏在することを示す。上記複数のポアの存在やコバルトの偏在は、負極活物質の電子顕微鏡写真や、この負極活物質の断面における電子顕微鏡写真により確認した。
<Comparative test 3 and evaluation>
About the negative electrode active material of Examples 12-19, similarly to the said comparative test 1, ICP quantitative analysis was performed and each content of tin, cobalt, chromium, and zinc in a composite particle was calculated | required. The results obtained are shown in Table 3 below. In Table 3, “<0.001” and “<2” indicate that the measured values were below the detection limit of ICP. In “Pore” of “Structure of negative electrode active material” in Table 3, “Yes” indicates that the composite particle of the negative electrode active material has a plurality of pores, and “Co position” of “Structure of negative electrode active material”. In the graph, “uneven distribution” indicates that cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. The presence of the plurality of pores and the uneven distribution of cobalt were confirmed by an electron micrograph of the negative electrode active material and an electron micrograph of a cross section of the negative electrode active material.

実施例12〜19の負極活物質を用い、上記比較試験1と同様に、負極電極を作製した。またこの負極電極を用い、上記比較試験1と同様に、半電池を組み、充放電サイクル試験を行い、初回の活物質重量あたりの放電容量と、100サイクル目の放電容量の初回放電容量に対する割合を寿命特性として性能評価した。得られた評価結果を次の表3に示す。   Using the negative electrode active materials of Examples 12 to 19, negative electrodes were produced in the same manner as in Comparative Test 1 above. In addition, using this negative electrode, as in Comparative Test 1 above, a half-cell was assembled, a charge / discharge cycle test was performed, and the discharge capacity per active material weight for the first time and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity Was evaluated as a life characteristic. The obtained evaluation results are shown in Table 3 below.

表3から明らかなように、クロムを0.005〜1%又は亜鉛を5〜50ppm更に含有させた実施例12〜17では、クロムの含有量が0.001%未満及び亜鉛の含有量が2ppm未満と低い実施例4の結果に比べ、高い初回放電容量が得られた。一方、クロムの含有量が1.5%と高い実施例18及び亜鉛の含有量が75ppmと高い実施例19では、実施例4の結果と同程度の高い初回放電容量が得られているが、寿命特性が低い結果となった。これらの結果から、クロムや亜鉛を所定量含有することで初回放電容量値を高めることができる一方、クロムや亜鉛を含有し過ぎると、その特性が低下してしまうことから、クロムと亜鉛の含有量には適切な範囲が存在することが確認された。 As is apparent from Table 3, in Examples 12 to 17 in which chromium was further contained in 0.005 to 1% or zinc in 5 to 50 ppm, the chromium content was less than 0.001% and the zinc content was 2 ppm. A high initial discharge capacity was obtained as compared with the result of Example 4 which is less than the lower value. On the other hand, in Example 18 with a high chromium content of 1.5% and Example 19 with a high zinc content of 75 ppm, a high initial discharge capacity similar to the result of Example 4 was obtained. The life characteristics were low. From these results, it is possible to increase the initial discharge capacity value by containing a predetermined amount of chromium and zinc. On the other hand, if too much chromium and zinc are contained, the characteristics will deteriorate, so the inclusion of chromium and zinc. It was confirmed that there was an appropriate range for the amount.

<実施例20>
実施例3の負極活物質を用い、負極活物質を、結着剤、導電助剤及び溶媒と混合しスラリーを調製した。即ち、負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で80:10:10:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で5:5の割合となるように秤量した。次に、得られたスラリーをアプリケータを用いて銅箔上に活物質密度が5mg/cm2となるように塗布し、乾燥、圧延し、幅3cm長さ3cmに切断することで負極を作製した。この負極を実施例20とした。
<Example 20>
Using the negative electrode active material of Example 3, the negative electrode active material was mixed with a binder, a conductive additive and a solvent to prepare a slurry. That is, a negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive assistant and n-methylpyrrolidinone (NMP) were weighed so as to have a mass ratio of 80: 10: 10: 100, and kneader The slurry was produced by kneading using Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 5: 5. Next, the obtained slurry was applied on a copper foil using an applicator so that the active material density was 5 mg / cm 2 , dried, rolled, and cut into a width of 3 cm and a length of 3 cm to produce a negative electrode. did. This negative electrode was designated as Example 20.

<実施例21>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で95:3:2:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)のみを用いた。上記以外は実施例20と同様にして負極を作製した。この負極を実施例21とした。
<Example 21>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 95: 3: 2: 100, and a kneader is used. And kneading to prepare a slurry. Here, only the carbon nanofiber (CNF) was used for the conductive support agent. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 21.

<実施例22>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で88:3:9:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で4:5となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例22とした。
<Example 22>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) were weighed to a mass ratio of 88: 3: 9: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 4: 5. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 22.

<実施例23>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で80:5:15:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で7:8となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例23とした。
<Example 23>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) are weighed so that the mass ratio is 80: 5: 15: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive auxiliary was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 7: 8. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 23.

<実施例24>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で75:5:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で2:18となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例24とした。
<Example 24>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed so that the mass ratio was 75: 5: 20: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 2:18. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 24.

<実施例25>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で75:5:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で5:15となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例25とした。
<Example 25>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed so that the mass ratio was 75: 5: 20: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 5:15. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 25.

<実施例26>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で75:5:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で10:10となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例26とした。
<Example 26>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed so that the mass ratio was 75: 5: 20: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 10:10. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 26.

<実施例27>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で75:5:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で15:5となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例27とした。
<Example 27>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed so that the mass ratio was 75: 5: 20: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 15: 5. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 27.

<実施例28>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で70:10:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で10:10となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例28とした。
<Example 28>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive assistant and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 70: 10: 20: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 10:10. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 28.

<実施例29>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で70:15:15:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で7:8となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例29とした。
<Example 29>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive assistant and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 70: 15: 15: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive auxiliary was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 7: 8. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 29.

<実施例30>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で79:15:6:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で3:3となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例30とした。
<Example 30>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed to a mass ratio of 79: 15: 6: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 3: 3. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 30.

<実施例31>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で86:10:4:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で2:2となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例31とした。
<Example 31>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive assistant and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 86: 10: 4: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 2: 2. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 31.

<実施例32>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で88:7:5:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で2:3となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例32とした。
<Example 32>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) are weighed so that the mass ratio is 88: 7: 5: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black) were in a mass ratio of 2: 3. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 32.

<実施例33>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で73:12:15:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で7:8となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例33とした。
<Example 33>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) are weighed so that the mass ratio is 73: 12: 15: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive auxiliary was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 7: 8. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 33.

<実施例34>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で80:10:10:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とケッチェンブラック(KB、ケッチェンブラックインターナショナル社製、商品名:ケッチェンブラックEC300J)とが質量比で2:8となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例34とした。
<Example 34>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) are weighed to a mass ratio of 80: 10: 10: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and Ketjen Black (KB, manufactured by Ketjen Black International Co., Ltd., trade name: Ketjen Black EC300J) had a mass ratio of 2: 8. . A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 34.

<実施例35>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で95:3:2:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で1:1となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例35とした。
<Example 35>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 95: 3: 2: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were 1: 1 by mass ratio. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 35.

<実施例36>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で75:5:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で1:19となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例36とした。
<Example 36>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed so that the mass ratio was 75: 5: 20: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 1:19. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 36.

<実施例37>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で75:5:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で18:2となるように秤量した。カーボンナノファイバ(CNF)のみを用いた。上記以外は実施例20と同様にして負極を作製した。この負極を実施例37とした。
<Example 37>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) were weighed so that the mass ratio was 75: 5: 20: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 18: 2. Only carbon nanofiber (CNF) was used. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 37.

<実施例38>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で78:4:18:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で9:9となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例38とした。
<Example 38>
The negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) are weighed so that the mass ratio is 78: 4: 18: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 9: 9. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was referred to as Example 38.

<実施例39>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で70:7:23:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で11:12となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例39とした。
<Example 39>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 70: 7: 23: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 11:12. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 39.

<実施例40>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で65:15:20:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で10:10となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例40とした。
<Example 40>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) are weighed to a mass ratio of 65: 15: 20: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 10:10. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 40.

<実施例41>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で70:20:10:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で5:5となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例41とした。
<Example 41>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), conductive additive and n-methylpyrrolidinone (NMP) are weighed so as to have a mass ratio of 70: 20: 10: 100, and a kneader is used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black) were in a mass ratio of 5: 5. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was referred to as Example 41.

<実施例42>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で88:10:2:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)のみを用いた。上記以外は実施例20と同様にして負極を作製した。この負極を実施例42とした。
<Example 42>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) are weighed to a mass ratio of 88: 10: 2: 100, and a kneader is used. And kneading to prepare a slurry. Here, only the carbon nanofiber (CNF) was used for the conductive support agent. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was referred to as Example 42.

<実施例43>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で95:4:1:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で0.5:0.5となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例43とした。
<Example 43>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) were weighed so as to have a mass ratio of 95: 4: 1: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive auxiliary was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 0.5: 0.5. . A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was made Example 43.

<実施例44>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で97:2:1:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で0.5:0.5となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例44とした。
<Example 44>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) were weighed so as to have a mass ratio of 97: 2: 1: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive auxiliary was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 0.5: 0.5. . A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 44.

<実施例45>
負極活物質、ポリフッ化ビニリデン(PVdF:結着剤)、導電助剤及びn−メチルピロリジノン(NMP)を質量比で95:1:4:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。ここで、導電助剤は、カーボンナノファイバ(CNF)とアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)とが質量比で2:2となるように秤量した。上記以外は実施例20と同様にして負極を作製した。この負極を実施例45とした。
<Example 45>
A negative electrode active material, polyvinylidene fluoride (PVdF: binder), a conductive additive and n-methylpyrrolidinone (NMP) were weighed so as to have a mass ratio of 95: 1: 4: 100, and a kneader was used. And kneading to prepare a slurry. Here, the conductive assistant was weighed so that the carbon nanofiber (CNF) and acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA BLACK) were in a mass ratio of 2: 2. A negative electrode was produced in the same manner as in Example 20 except for the above. This negative electrode was designated as Example 45.

<比較試験4及び評価>
実施例20〜45の負極を用いて半電池を組み、充放電サイクル試験を行った。対極及び参照極にはリチウム金属を用い、電解液には1M濃度で六フッ化リン酸リチウム(LiPF6)を溶解した炭酸エチレン(EC)と炭酸ジエチル(DEC)の等体積溶媒を用いた。充電は電圧が5mVとなるまで0.5mA/cm2の定電流条件で実施し、その後、電流が0.01mA/cm2になるまで5mVの定電圧条件で実施した。
<Comparative test 4 and evaluation>
A half battery was assembled using the negative electrodes of Examples 20 to 45, and a charge / discharge cycle test was conducted. Lithium metal was used for the counter electrode and the reference electrode, and equal volume solvents of ethylene carbonate (EC) and diethyl carbonate (DEC) in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 M were used for the electrolyte. Charging was performed under a constant current condition of 0.5 mA / cm 2 until the voltage reached 5 mV, and then under a constant voltage condition of 5 mV until the current reached 0.01 mA / cm 2 .

放電は電圧が1Vになるまで0.5mA/cm2の定電流条件で実施した。充電と放電を各1回実施した状態を1サイクルとし、100サイクルまでの充放電試験を行い、初回の活物質重量あたりの放電容量と、100サイクル目の放電容量の初回放電容量に対する割合を寿命特性として性能評価した。また負極合材シート(負極活物質+導電助剤+結着剤)単位重量あたりの放電容量を測定した。更に0.5mA/cm2の電流密度で得られた放電容量に対する、その10倍の5mA/cm2の電流密度で得られた放電容量の割合を出力特性として測定した。得られた評価結果を次の表4及び表5に示す。 The discharge was carried out under a constant current condition of 0.5 mA / cm 2 until the voltage reached 1V. The state in which charging and discharging are performed once is regarded as one cycle, a charge / discharge test up to 100 cycles is performed, and the discharge capacity per active material weight for the first time and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity are lifetimes. Performance was evaluated as a characteristic. Further, the discharge capacity per unit weight of the negative electrode mixture sheet (negative electrode active material + conductive auxiliary agent + binder) was measured. Furthermore, the ratio of the discharge capacity obtained at a current density of 5 mA / cm 2 that was 10 times the discharge capacity obtained at a current density of 0.5 mA / cm 2 was measured as output characteristics. The obtained evaluation results are shown in the following Tables 4 and 5.

表4及び表5から明らかなように、導電助剤のカーボンナノファイバ(CNF)が好ましい範囲(2〜15質量%)を下回る実施例35及び36では活物質あたりの初回放電容量が666mAh/g及び671mAh/gと比較的低く、寿命特性も88.4%及び88.6%と比較的低かったのに対し、導電助剤のカーボンナノファイバ(CNF)が好ましい範囲(2〜15質量%)内にある実施例20〜34では活物質あたりの初回放電容量が727〜770mAh/gと比較的高くなり、寿命特性も89.5〜97.0%と比較的高くなることが分かった。また導電助剤のカーボンナノファイバ(CNF)が好ましい範囲(2〜15質量%)を上回る実施例37では寿命特性及び出力特性がそれぞれ89.4%及び49%と比較的低かったのに対し、導電助剤のカーボンナノファイバ(CNF)が好ましい範囲(2〜15質量%)内にある実施例20〜34では寿命特性及び出力特性がそれぞれ89.5〜97.0%及び56〜77%と比較的高くなることが分かった。更に導電助剤の含有割合Xと結着剤の含有割合Yとの比X/Yが好ましい範囲(0.4〜3)を外れる実施例38では寿命特性が87.0%と比較的低かったのに対し、導電助剤の含有割合Xと結着剤の含有割合Yとの比X/Yが好ましい範囲(0.4〜3)内にある実施例20〜34では寿命特性が89.5〜97.0%と比較的高くなることが分かった。 As is apparent from Tables 4 and 5, in Examples 35 and 36 in which the carbon nanofiber (CNF) of the conductive additive is below the preferred range (2 to 15% by mass), the initial discharge capacity per active material is 666 mAh / g. And 671 mAh / g and relatively low life characteristics of 88.4% and 88.6%, while carbon nanofiber (CNF) as a conductive aid is in a preferable range (2 to 15% by mass). In Examples 20 to 34, the initial discharge capacity per active material was relatively high at 727 to 770 mAh / g, and the life characteristics were also relatively high at 89.5 to 97.0%. In Example 37, in which the carbon nanofiber (CNF) of the conductive additive exceeded the preferred range (2 to 15% by mass), the life characteristics and output characteristics were relatively low, 89.4% and 49%, respectively. In Examples 20 to 34 in which the carbon nanofiber (CNF) of the conductive additive is in the preferable range (2 to 15% by mass), the life characteristics and the output characteristics are 89.5 to 97.0% and 56 to 77%, respectively. It turned out to be relatively high. Furthermore, in Example 38 where the ratio X / Y of the content ratio X of the conductive auxiliary agent and the content ratio Y of the binder deviates from the preferred range (0.4 to 3), the life characteristics were relatively low at 87.0%. On the other hand, in Examples 20 to 34 in which the ratio X / Y of the content ratio X of the conductive auxiliary agent and the content ratio Y of the binder is within the preferable range (0.4 to 3), the life characteristic is 89.5. It was found to be relatively high at ˜97.0%.

一方、導電助剤の含有割合が好ましい範囲(2〜20質量%)を上回る実施例39ではシートあたりの初回放電容量が527mAh/gと比較的低く、寿命特性も88.4%と比較的低かったのに対し、導電助剤の含有割合が好ましい範囲(2〜20質量%)内にある実施例20〜34ではシートあたりの初回放電容量が536〜691mAh/gと比較的高くなり、寿命特性も89.5〜97.0%と比較的高くなることが分かった。また導電助剤の含有割合が好ましい範囲(2〜20質量%)を下回る実施例43では活物質あたりの初回放電容量が614mAh/gと比較的低く、出力特性も32%と低かったのに対し、導電助剤の含有割合が好ましい範囲(2〜20質量%)内にある実施例20〜34では活物質あたりの初回放電容量が727〜770mAh/gと比較的高くなり、出力特性も56〜77%と比較的高くなることが分かった。   On the other hand, in Example 39 in which the content of the conductive auxiliary exceeds the preferable range (2 to 20% by mass), the initial discharge capacity per sheet is relatively low at 527 mAh / g, and the life characteristics are also relatively low at 88.4%. On the other hand, in Examples 20 to 34 in which the content of the conductive auxiliary agent is within a preferable range (2 to 20% by mass), the initial discharge capacity per sheet is relatively high at 536 to 691 mAh / g, and the life characteristics are increased. Was also found to be relatively high at 89.5 to 97.0%. Further, in Example 43 in which the content ratio of the conductive auxiliary agent falls below the preferred range (2 to 20% by mass), the initial discharge capacity per active material was relatively low at 614 mAh / g, whereas the output characteristics were also low at 32%. In Examples 20 to 34 in which the content of the conductive auxiliary agent is within a preferable range (2 to 20% by mass), the initial discharge capacity per active material is relatively high at 727 to 770 mAh / g, and the output characteristics are 56 to It was found to be relatively high at 77%.

負極活物質の含有割合が好ましい範囲(70〜95質量%)を上回る実施例40ではシートあたりの初回放電容量が490mAh/gと比較的低かったのに対し、負極活物質の含有割合が好ましい範囲(70〜95質量%)内にある実施例20〜34ではシートあたりの初回放電容量が536〜691mAh/gと比較的高くなることが分かった。また負極活物質の含有割合が好ましい範囲(70〜95質量%)を下回る実施例44では寿命特性が81.9%と低く、出力特性も37%と低かったのに対し、負極活物質の含有割合が好ましい範囲(70〜95質量%)内にある実施例20〜34では寿命特性が89.5〜97.0%と比較的高くなり、出力特性も56〜77%と比較的高くなることが分かった。   In Example 40 in which the content ratio of the negative electrode active material exceeds the preferable range (70 to 95% by mass), the initial discharge capacity per sheet was relatively low at 490 mAh / g, whereas the content ratio of the negative electrode active material was preferable. In Examples 20 to 34 within (70 to 95% by mass), the initial discharge capacity per sheet was found to be relatively high at 536 to 691 mAh / g. Further, in Example 44 in which the content ratio of the negative electrode active material is lower than the preferred range (70 to 95% by mass), the life characteristics were as low as 81.9% and the output characteristics were as low as 37%. In Examples 20 to 34 in which the ratio is within a preferable range (70 to 95% by mass), the life characteristics are relatively high as 89.5 to 97.0%, and the output characteristics are also relatively high as 56 to 77%. I understood.

更に結着剤の含有割合が好ましい範囲(3〜15質量%)を上回る実施例41ではシートあたりの初回放電容量が517mAh/gと比較的低かったのに対し、結着剤の含有割合が好ましい範囲(3〜15質量%)内にある実施例20〜34ではシートあたりの初回放電容量が536〜691mAh/gと比較的高くなることが分かった。また結着剤の含有割合が好ましい範囲(3〜15質量%)を下回る実施例45では寿命特性が80.0%と低く、出力特性も42%と低かったのに対し、結着剤の含有割合が好ましい範囲(3〜15質量%)内にある実施例20〜34では寿命特性が89.5〜97.0%と比較的高くなり、出力特性も56〜77%と比較的高くなることが分かった。   Furthermore, in Example 41 in which the binder content exceeds the preferred range (3 to 15% by mass), the initial discharge capacity per sheet was relatively low at 517 mAh / g, whereas the binder content was preferred. In Examples 20 to 34 within the range (3 to 15% by mass), the initial discharge capacity per sheet was found to be relatively high at 536 to 691 mAh / g. Further, in Example 45 in which the content ratio of the binder is less than the preferred range (3 to 15% by mass), the life characteristics are as low as 80.0% and the output characteristics are as low as 42%, whereas the content of the binder is included. In Examples 20 to 34 in which the ratio is within a preferable range (3 to 15% by mass), the life characteristics are relatively high as 89.5 to 97.0%, and the output characteristics are also relatively high as 56 to 77%. I understood.

一方、導電助剤の含有割合Xと結着剤の含有割合Yとの比X/Yが好ましい範囲(0.4〜3)を外れる実施例42では活物質あたりの初回放電容量及び出力特性がそれぞれ676mAh/g及び37%と比較的低かったのに対し、導電助剤の含有割合Xと結着剤の含有割合Yとの比X/Yが好ましい範囲(0.4〜3)内にある実施例20〜34では活物質あたりの初回放電容量及び出力特性がそれぞれ727〜770mAh/g及び56〜77%と比較的高くなることが分かった。また実施例24〜29からアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)をカーボンナノファイバ(CNF)より多くすると、出力特性が向上し、カーボンナノファイバ(CNF)をアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)と同量或いはアセチレンブラック(AB、電気化学工業社製、商品名:デンカブラック)より多くすると、寿命特性が向上することが分かった。   On the other hand, in Example 42 where the ratio X / Y of the content ratio X of the conductive auxiliary agent and the content ratio Y of the binder deviates from the preferred range (0.4 to 3), the initial discharge capacity and output characteristics per active material are The ratio X / Y of the content ratio X of the conductive auxiliary agent and the content ratio Y of the binder is within a preferable range (0.4 to 3), while they were relatively low at 676 mAh / g and 37%, respectively. In Examples 20 to 34, it was found that the initial discharge capacity and output characteristics per active material were relatively high at 727 to 770 mAh / g and 56 to 77%, respectively. Further, when acetylene black (AB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black) is increased from carbon nanofiber (CNF) from Examples 24-29, the output characteristics are improved, and carbon nanofiber (CNF) is converted to acetylene black. It was found that when the amount was the same as (AB, manufactured by Denki Black, trade name: Denka Black) or more than acetylene black (AB, trade name: Denka Black), the life characteristics were improved.

Claims (3)

負極活物質と導電助剤と結着剤とを含むリチウムイオン二次電池の負極用組成物であって、
前記負極活物質が、スズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%である複合粒子からなり、前記複合粒子が切断面において前記複合粒子の表面に連通する複数のポアを有し、前記コバルト(Co)が前記複合粒子の外面及び前記ポアの内面に偏在し、かつ前記複合粒子内部の空間率が20〜80%であり、
前記導電助剤がカーボンナノファイバ、アセチレンブラック及びケッチェンブラックからなる群より選ばれた1種又は2種以上の炭素材料でありかつ前記複合粒子の外面又は前記複合粒子の外面及び前記ポアの内面に網目状に付着するように構成された
ことを特徴とするリチウムイオン二次電池の負極用組成物。
A composition for a negative electrode of a lithium ion secondary battery comprising a negative electrode active material, a conductive additive and a binder,
The negative electrode active material is composed of composite particles in which the ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) is 5 to 40 atomic%, and the composite particles are cut at the surface of the composite particles. The cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, and the space ratio inside the composite particle is 20 to 80%,
The conductive additive is one or more carbon materials selected from the group consisting of carbon nanofibers, acetylene black, and ketjen black, and the outer surface of the composite particle or the outer surface of the composite particle and the inner surface of the pore A composition for a negative electrode of a lithium ion secondary battery, characterized in that it is configured to adhere to a network.
前記負極活物質の含有割合が70〜95質量%であり、前記導電助剤の含有割合が2〜20質量%であり、前記結着剤の含有割合が3〜15質量%であって、前記導電助剤の含有割合をXとしかつ前記結着剤の含有割合をYとするとき、X/Yが0.4〜3の範囲内に設定され、更に前記導電助剤がカーボンナノファイバを含むとき、前記カーボンナノファイバの含有割合が2〜15質量%である請求項1記載のリチウムイオン二次電池の負極用組成物。   The content ratio of the negative electrode active material is 70 to 95 mass%, the content ratio of the conductive auxiliary agent is 2 to 20 mass%, the content ratio of the binder is 3 to 15 mass%, When the content ratio of the conductive auxiliary agent is X and the content ratio of the binder is Y, X / Y is set within a range of 0.4 to 3, and the conductive auxiliary agent includes carbon nanofibers. 2. The composition for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the content of the carbon nanofiber is 2 to 15% by mass. 請求項1又は2記載の負極用組成物が負極集電体に塗工されたリチウムイオン二次電池の負極。   A negative electrode of a lithium ion secondary battery, wherein the negative electrode composition according to claim 1 or 2 is coated on a negative electrode current collector.
JP2011217254A 2011-01-20 2011-09-30 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same Expired - Fee Related JP5652366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217254A JP5652366B2 (en) 2011-01-20 2011-09-30 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011009674 2011-01-20
JP2011009674 2011-01-20
JP2011217254A JP5652366B2 (en) 2011-01-20 2011-09-30 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2012164631A JP2012164631A (en) 2012-08-30
JP5652366B2 true JP5652366B2 (en) 2015-01-14

Family

ID=46843807

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011217254A Expired - Fee Related JP5652366B2 (en) 2011-01-20 2011-09-30 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same
JP2012005740A Expired - Fee Related JP5754382B2 (en) 2011-01-20 2012-01-16 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012005740A Expired - Fee Related JP5754382B2 (en) 2011-01-20 2012-01-16 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (2) JP5652366B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164632A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
JP5652366B2 (en) * 2011-01-20 2015-01-14 三菱マテリアル株式会社 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same
JP5994688B2 (en) * 2013-03-14 2016-09-21 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6201843B2 (en) * 2014-03-19 2017-09-27 三菱マテリアル株式会社 Method for producing negative electrode active material for lithium ion secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4114386B2 (en) * 2002-04-16 2008-07-09 三菱マテリアル株式会社 Method and apparatus for producing ultrafine metal tin
JP4422417B2 (en) * 2003-02-07 2010-02-24 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP3773514B2 (en) * 2003-12-22 2006-05-10 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
JP5031193B2 (en) * 2005-03-16 2012-09-19 独立行政法人科学技術振興機構 Metal porous negative electrode and lithium secondary battery using the same
JP5045977B2 (en) * 2006-01-18 2012-10-10 ソニー株式会社 battery
JP5192710B2 (en) * 2006-06-30 2013-05-08 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
JP5382413B2 (en) * 2008-11-05 2014-01-08 ソニー株式会社 Negative electrode for secondary battery and secondary battery
JP2010242158A (en) * 2009-04-06 2010-10-28 Mitsubishi Materials Corp Method for producing metal powder, and solder paste using the metal powder obtained by the method
JP5495887B2 (en) * 2009-04-28 2014-05-21 株式会社デンソー Negative electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP5652366B2 (en) * 2011-01-20 2015-01-14 三菱マテリアル株式会社 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same

Also Published As

Publication number Publication date
JP2012164631A (en) 2012-08-30
JP2012164640A (en) 2012-08-30
JP5754382B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6196329B2 (en) Secondary battery with improved cathode active material, electrode and lithium ion mobility and battery capacity
US8673490B2 (en) High energy lithium ion batteries with particular negative electrode compositions
CN1086515C (en) Lithium secondary battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
JP2011146158A (en) Lithium secondary battery
JP5652366B2 (en) Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP5682411B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing the negative electrode active material
JP6369970B2 (en) Composite positive electrode active material, electrode for lithium secondary battery including the same, and lithium secondary battery
WO2013024739A1 (en) Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
WO2013129376A1 (en) Active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for producing active material for non-aqueous electrolyte secondary cell
JP5811857B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP6201843B2 (en) Method for producing negative electrode active material for lithium ion secondary battery
JP2012164642A (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery comprising the negative electrode active material, and method for manufacturing negative electrode active material for lithium ion secondary battery
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP5861464B2 (en) Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same
JP2000113877A (en) Lithium secondary battery
JP2012164650A (en) Negative electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery comprising the negative electrode active material
WO2023210232A1 (en) Lithium sulfur battery positive electrode, lithium sulfur battery, and charging/discharging method for same
JP5994688B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP2011192505A (en) Nonaqueous electrolyte secondary battery
JP2013206581A (en) Negative electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same
JP2012089418A (en) Negative active material for lithium ion secondary battery, lithium ion secondary battery using the same, and manufacturing method of negative active material for lithium ion secondary battery
JP2012089366A (en) Negative active material for lithium ion secondary battery, lithium ion secondary battery using the same, and manufacturing method of negative active material for lithium ion secondary battery
JP2016207557A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5652366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees