JP2010218855A - Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010218855A
JP2010218855A JP2009063697A JP2009063697A JP2010218855A JP 2010218855 A JP2010218855 A JP 2010218855A JP 2009063697 A JP2009063697 A JP 2009063697A JP 2009063697 A JP2009063697 A JP 2009063697A JP 2010218855 A JP2010218855 A JP 2010218855A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
active material
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009063697A
Other languages
Japanese (ja)
Inventor
Katsuichiro Sawa
勝一郎 澤
Maruo Jinno
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009063697A priority Critical patent/JP2010218855A/en
Publication of JP2010218855A publication Critical patent/JP2010218855A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve a negative electrode, sufficiently improve the volume capacity of the negative electrode to enhance the capacity and suppress decline in negative electrode characteristics, in a nonaqueous electrolyte secondary battery using an alloy having the La<SB>3</SB>Co<SB>2</SB>Sn<SB>7</SB>type crystal structure for a negative-electrode active material in the negative electrode. <P>SOLUTION: The nonaqueous electrolyte secondary battery includes a positive electrode 12, the negative electrode 11 and nonaqueous electrolytic solution 14. For the negative electrode, the negative-electrode active material including alloy powder having the La<SB>3</SB>Co<SB>2</SB>Sn<SB>7</SB>type crystal structure and graphite powder is used. In application of a negative electrode material including the negative-electrode active material on a negative electrode current collector, a filling factor of the negative electrode material is set to be ≥59% and ≤73%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池用負極及びこのような非水電解質二次電池用負極を用いた非水電解質二次電池に関するものである。特に、非水電解質二次電池における負極を改良し、負極における体積容量を十分に向上させて、高容量の非水電解質二次電池が得られるようにすると共に、非水電解質二次電池における負荷特性が低下するのを抑制するようにした点に特徴を有するものである。   The present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery using such a negative electrode for a nonaqueous electrolyte secondary battery. In particular, the negative electrode in the non-aqueous electrolyte secondary battery is improved, and the volume capacity in the negative electrode is sufficiently improved to obtain a high-capacity non-aqueous electrolyte secondary battery, and the load in the non-aqueous electrolyte secondary battery It is characterized in that the characteristic is prevented from deteriorating.

近年、携帯電子機器や電力貯蔵用等の電源として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて、充放電を行うようにした非水電解質二次電池が利用されている。   In recent years, non-aqueous electrolyte secondary batteries that use non-aqueous electrolyte and charge and discharge by moving lithium ions between the positive and negative electrodes have been used as power sources for portable electronic devices and power storage. Has been.

そして、このような非水電解質二次電池においては、その負極における負極活物質として黒鉛材料が広く利用されている。   In such a nonaqueous electrolyte secondary battery, a graphite material is widely used as a negative electrode active material in the negative electrode.

ここで、黒鉛材料の場合、放電電位が平坦であると共に、リチウムイオンがこの黒鉛結晶層間に挿入・脱離されて充放電されるため、針状の金属リチウムの発生が抑制され、充放電による体積変化も少ないという利点がある。   Here, in the case of a graphite material, the discharge potential is flat and the lithium ions are inserted and desorbed between the graphite crystal layers to be charged / discharged. There is an advantage that the volume change is small.

一方、近年においては、携帯電話、ノートパソコン、PDA等のモバイル機器の小型化・軽量化が著しく進行しており、また多機能化に伴って消費電力も増加しており、これらの電源として使用される非水電解質二次電池においても、軽量化及び高容量化の要望が高まっている。   On the other hand, in recent years, mobile devices such as mobile phones, notebook computers, and PDAs have been remarkably reduced in size and weight, and power consumption has increased with the increase in functionality. In non-aqueous electrolyte secondary batteries, demands for weight reduction and capacity increase are increasing.

しかし、負極活物質に黒鉛材料を用いた場合、黒鉛材料における容量が必ずしも十分であるとはいえず、上記のような要望に十分に対応することができないという問題があった。   However, when a graphite material is used for the negative electrode active material, the capacity of the graphite material is not necessarily sufficient, and there is a problem that it is not possible to sufficiently meet the above demands.

このため、近年においては、高容量の負極活物質として、シリコン、ゲルマニウム、スズ等のリチウムと合金を形成する材料を用いることが検討されている。   Therefore, in recent years, it has been studied to use a material that forms an alloy with lithium, such as silicon, germanium, and tin, as a high-capacity negative electrode active material.

しかし、リチウムと合金を形成するこれらの材料を負極活物質に使用した場合、リチウムの挿入・離脱に伴う体積変化が大きく、充放電を繰り返して行うと、粒子構造が破壊され粒子が微細化し、これにより電極内部への集電性が低下して、電池容量が著しく劣化し、充放電サイクル特性が黒鉛を用いたものに比べて大きく低下するという問題があった。   However, when these materials that form an alloy with lithium are used as the negative electrode active material, the volume change accompanying the insertion and removal of lithium is large, and repeated charge and discharge repeatedly destroys the particle structure and makes the particles finer. As a result, the current collecting property inside the electrode is lowered, the battery capacity is remarkably deteriorated, and the charge / discharge cycle characteristics are greatly reduced as compared with those using graphite.

このため、近年においては、特許文献1に示されるように、リチウムの挿入・脱離反応に伴う膨張が少なく、高容量化が可能な負極活物質として、LaCoSn型の結晶構造を有する合金を用いることが提案されている。 Therefore, in recent years, as disclosed in Patent Document 1, less expansion due to insertion and elimination reactions of lithium, as a negative electrode active material capable of high capacity, La 3 Co 2 Sn 7 type crystal structure It has been proposed to use an alloy having

しかし、負極活物質にLaCoSn型の結晶構造を有する合金を用いた場合、この合金の粉末を含む負極材料をプレスして負極を作製する際に、負極材料の充填密度を高くすることが困難であり、体積容量を高めて、高容量化させることが困難になるという問題があった。 However, when an alloy having a La 3 Co 2 Sn 7 type crystal structure is used as the negative electrode active material, when the negative electrode material containing the alloy powder is pressed to produce the negative electrode, the packing density of the negative electrode material is increased. There is a problem that it is difficult to increase the volume capacity and to increase the capacity.

また、LaCoSn型の結晶構造を有する合金を負極活物質に用いた非水電解質二次電池においては、初回の充放電効率が悪く、放電容量が低下して体積容量を十分に高めることができず、高容量化させることが困難になるという問題もあった。 Further, in a non-aqueous electrolyte secondary battery using an alloy having a La 3 Co 2 Sn 7 type crystal structure as a negative electrode active material, the initial charge / discharge efficiency is poor, the discharge capacity is lowered, and the volume capacity is sufficiently increased. There is also a problem that it is difficult to increase the capacity and it is difficult to increase the capacity.

特開2005−310739号公報JP-A-2005-310739

本発明は、非水電解質二次電池における上記のような問題を解決することを課題とするものであり、特に、負極活物質にLaCoSn型の結晶構造を有する合金を用いた非水電解質二次電池における負極を改良し、負極における体積容量を十分に向上させて、高容量の非水電解質二次電池が得られるようにすると共に、非水電解質二次電池における負荷特性が低下するのを抑制することを課題とするものである。 An object of the present invention is to solve the above-mentioned problems in a non-aqueous electrolyte secondary battery, and in particular, an alloy having a La 3 Co 2 Sn 7 type crystal structure is used as a negative electrode active material. The negative electrode in the non-aqueous electrolyte secondary battery is improved, and the volume capacity in the negative electrode is sufficiently improved to obtain a high-capacity non-aqueous electrolyte secondary battery, and the load characteristics in the non-aqueous electrolyte secondary battery are It is an object to suppress the decrease.

本発明においては、上記のような課題を解決するため、負極集電体上に負極活物質を含む負極材料が付与されてなる非水電解質二次電池用負極において、上記の負極活物質として、LaCoSn型の結晶構造を有する合金の粉末と黒鉛系粉末とを含むと共に、上記の負極材料の充填率が59%以上73%以下になるようにしたのである。 In the present invention, in order to solve the above problems, in the negative electrode for a nonaqueous electrolyte secondary battery in which a negative electrode material containing a negative electrode active material is provided on a negative electrode current collector, In addition to including an alloy powder having a La 3 Co 2 Sn 7 type crystal structure and a graphite-based powder, the filling rate of the negative electrode material is set to 59% or more and 73% or less.

そして、この非水電解質二次電池用負極において、前記のLaCoSn型の結晶構造を有する合金としては、体積容量の高いLaNiSn合金を用いることが好ましい。 Then, in the non-aqueous electrolyte secondary battery negative electrode, the alloy having the above La 3 Co 2 Sn 7 type crystal structure, it is preferable to use a high volume capacity La 3 Ni 2 Sn 7 alloy.

また、この非水電解質二次電池用負極において、上記の負極活物質として、LaCoSn型の結晶構造を有する合金の粉末と黒鉛系粉末とを用いるにあたり、このような負極活物質を用いた負極材料の充填密度を高くすると共に、初回の充放電効率を向上させるため、負極活物質中における黒鉛系粉末の割合を50質量%以上90質量%以下にすることが好ましく、より好ましくは70質量%以上90質量%以下になるようにする。 In addition, in the negative electrode for a non-aqueous electrolyte secondary battery, when using an alloy powder having a La 3 Co 2 Sn 7 type crystal structure and a graphite-based powder as the negative electrode active material, such a negative electrode active material is used. In order to increase the packing density of the negative electrode material using and improve the initial charge and discharge efficiency, the proportion of the graphite-based powder in the negative electrode active material is preferably 50% by mass to 90% by mass, and more preferably Is 70 mass% or more and 90 mass% or less.

そして、上記の黒鉛系粉末としては、天然黒鉛、人造黒鉛、黒鉛粒子の表面を非晶質炭素で被覆したもの等、各種の黒鉛系材料を用いることができるが、特にメソカーボンマイクロビーズを用いることが好ましい。なお、メソカーボンマイクロビーズとは、コールタールの加熱処理により生成するメソフューズ小球体を分離、精製した球状炭素微粒子を黒鉛化処理したものである。   As the graphite powder, various graphite-based materials such as natural graphite, artificial graphite, and graphite particles whose surfaces are coated with amorphous carbon can be used. In particular, mesocarbon microbeads are used. It is preferable. The mesocarbon microbeads are obtained by graphitizing spherical carbon fine particles obtained by separating and purifying mesofuse microspheres generated by heat treatment of coal tar.

ここで、メソカーボンマイクロビーズは、上記のLaCoSn型の結晶構造を有する合金の粉末より充填性が高く、黒鉛系粉末の中ではその硬度が高く、充填時におけるプレスによる粒子の割れが防止される。このため、負極集電体上に上記の負極材料を充填させて付与した場合に、この負極材料中に空隙が残るようになり、この負極材料の充填密度を高くしても、非水電解液がこの負極材料中に適切に含浸されるようになり、Liイオンの受け渡しの速度が低下せず、高い体積容量と負荷特性とが得られるようになる。 Here, the mesocarbon microbead has a higher filling property than the powder of the alloy having the La 3 Co 2 Sn 7 type crystal structure, and has a higher hardness in the graphite-based powder. Cracking is prevented. For this reason, when the negative electrode material is filled and applied on the negative electrode current collector, voids remain in the negative electrode material, and the nonaqueous electrolyte solution can be used even if the packing density of the negative electrode material is increased. Is appropriately impregnated in the negative electrode material, and the rate of Li ion delivery is not reduced, and high volume capacity and load characteristics can be obtained.

また、この非水電解質二次電池用負極において、上記の負極材料の充填率が59%以上73%以下になるようにしたのは、充填率が59%未満であると、体積容量が低下して、高い電池容量が得られなくなる一方、充填率が73%より高くなると、この負極材料に非水電解液が適切に浸透されなくなって、初回の充放電効率が低下すると共に負荷特性も低下するためである。   In addition, in this negative electrode for non-aqueous electrolyte secondary battery, the negative electrode material has a filling rate of not less than 59% and not more than 73%. If the filling rate is less than 59%, the volume capacity decreases. As a result, when the filling rate is higher than 73%, the non-aqueous electrolyte is not properly penetrated into the negative electrode material, and the initial charge / discharge efficiency is lowered and the load characteristic is also lowered. Because.

また、上記のLaCoSn型の結晶構造を有する合金の粉末における粒子の粒径が小さくなりすぎると、圧縮性が低下して充填性が悪くなる一方、この粒子の粒径が大きくなりすぎると、上記の合金粒子相互の接触点が減少して電子伝導性が低下し、負荷特性が低下する。このため、上記のLaCoSn型の結晶構造を有する合金の粉末としては、そのメディアン径(D50)が1μm〜20μmの範囲のものを用いることが好ましく、より好ましくは5μm程度のものを用いるようにする。 Further, if the particle size of the alloy powder having the La 3 Co 2 Sn 7 type crystal structure is too small, the compressibility is lowered and the filling property is deteriorated, whereas the particle size of the particle is large. When it becomes too much, the contact points between the alloy particles described above are reduced, the electron conductivity is lowered, and the load characteristics are lowered. Therefore, it is preferable to use a powder of an alloy having the La 3 Co 2 Sn 7 type crystal structure having a median diameter (D50) in the range of 1 μm to 20 μm, more preferably about 5 μm. To use.

また、上記の黒鉛系粉末における粒子の粒径が小さくなりすぎると、非水電解液との反応性が高くなりすぎて、初回の充放電時に副反応が生じて、初回の充放電効率が低下する一方、この粒子の粒径が大きくなりすぎると、粒子が割れやすくなったり、粒子相互の接触点が減少して電子伝導性が低下したりする。このため、黒鉛系粉末としては、メディアン径(D50)が5〜30μmの範囲のものを用いることが好ましい。   In addition, if the particle size of the graphite powder becomes too small, the reactivity with the non-aqueous electrolyte becomes too high, and side reactions occur during the first charge / discharge, and the first charge / discharge efficiency decreases. On the other hand, if the particle size of the particles becomes too large, the particles are easily broken, or the contact points between the particles are reduced, leading to a decrease in electron conductivity. For this reason, it is preferable to use a graphite powder having a median diameter (D50) in the range of 5 to 30 μm.

また、本発明の非水電解質二次電池においては、正極と負極と非水電解液とを備えた非水電解質二次電池における負極に、上記のような非水電解質二次電池用負極を用いるようにした。   In the nonaqueous electrolyte secondary battery of the present invention, the negative electrode for a nonaqueous electrolyte secondary battery as described above is used as the negative electrode in a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte. I did it.

なお、本発明の非水電解質二次電池は、その負極に、上記のような非水電解質二次電池用負極を用いることを特徴とするものであり、その正極や非水電解液については、特に限定されない。   In addition, the nonaqueous electrolyte secondary battery of the present invention is characterized in that the negative electrode for a nonaqueous electrolyte secondary battery as described above is used for the negative electrode, and for the positive electrode and the nonaqueous electrolyte, There is no particular limitation.

そして、本発明の非水電解質二次電池において、その正極に用いる正極活物質としては、一般に使用されている公知の正極活物質を用いることができる。例えば、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMn24,LiMnO2等のリチウム・マンガン複合酸化物、LiNi1-xCox2(0<x<1)等のリチウム・ニッケル・コバルト複合酸化物、LiMn1-xCox2(0<x<1)等のリチウム・マンガン・コバルト複合酸化物、LiNixCoyMnz2(x+y+z=1)等のリチウム・ニッケル・コバルト・マンガン複合酸化物、LiNixCoyAlz2(x+y+z=1)等のリチウム・ニッケル・コバルト・アルミニウム複合酸化物等のリチウム含有遷移金属酸化物などを用いることができる。 And in the nonaqueous electrolyte secondary battery of this invention, the well-known positive electrode active material generally used can be used as a positive electrode active material used for the positive electrode. For example, lithium cobalt complex oxides such as LiCoO 2, lithium-nickel composite oxides such as LiNiO 2, LiMn 2 O 4, LiMnO lithium-manganese composite oxides such as 2, LiNi 1-x Co x O 2 (0 <X <1) and other lithium / nickel / cobalt composite oxides, LiMn 1-x Co x O 2 (0 <x <1) and other lithium / manganese / cobalt composite oxides, LiN x Co y Mn z O 2 (x + y + z = 1 ) lithium-nickel-cobalt-manganese composite oxides such as, LiNi x Co y Al z O 2 (x + y + z = 1) containing lithium transition metal oxide of the lithium-nickel-cobalt-aluminum composite oxides such as Things can be used.

また、非水電解液としては、一般に使用されている公知の非水系溶媒に公知のリチウム塩からなる電解質を溶解させたものを用いることができる。   Moreover, as a non-aqueous electrolyte, what melt | dissolved the electrolyte which consists of a well-known lithium salt in the well-known well-known non-aqueous solvent can be used.

ここで、上記の非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートなどを用いることができ、特に、上記の環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。   Here, examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. In particular, it is preferable to use a mixed solvent of the above cyclic carbonate and chain carbonate.

また、上記の電解質としては、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。また、これらのリチウム塩に加えて、オキサラト錯体をアニオンとするリチウム塩を含ませることが好ましい。そして、このようなオキサラト錯体をアニオンとするリチウム塩としては、リチウム−ビス(オキサラト)ボレートなどを用いることができる。 Examples of the electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and, of these A mixture or the like can be used. In addition to these lithium salts, it is preferable to include a lithium salt having an oxalato complex as an anion. And lithium-bis (oxalato) borate etc. can be used as a lithium salt which uses such an oxalato complex as an anion.

本発明においては、負極集電体上に負極活物質を含む負極材料が付与されてなる非水電解質二次電池用負極において、LaCoSn型の結晶構造を有する合金の粉末と黒鉛系粉末とを含む負極活物質を用いると共に、負極材料の充填率が59%以上73%以下になるようにしたため、LaCoSn型の結晶構造を有する合金の粉末を単独で用いる場合に比べて、負極材料の充填性が向上されると共に、非水電解液がこの負極材料中に適切に含浸されるようになる。 In the present invention, in a negative electrode for a non-aqueous electrolyte secondary battery in which a negative electrode material containing a negative electrode active material is provided on a negative electrode current collector, an alloy powder having an La 3 Co 2 Sn 7 type crystal structure and graphite When using a negative electrode active material containing a base powder and the filling rate of the negative electrode material is not less than 59% and not more than 73%, so that an alloy powder having a La 3 Co 2 Sn 7 type crystal structure is used alone In comparison with the above, the filling property of the negative electrode material is improved, and the negative electrode material is appropriately impregnated with the non-aqueous electrolyte.

この結果、非水電解質二次電池における負極に、上記の水電解質二次電池用負極を用いると、初回の充放電効率が低下するのが防止されて、負極における体積容量を十分に向上させることができ、高容量の非水電解質二次電池が得られるようになると共に、非水電解質二次電池における負荷特性が低下するのも抑制されるようになる。   As a result, when the above negative electrode for a water electrolyte secondary battery is used for the negative electrode in a nonaqueous electrolyte secondary battery, the initial charge / discharge efficiency is prevented from being lowered, and the volume capacity in the negative electrode is sufficiently improved. As a result, a high-capacity non-aqueous electrolyte secondary battery can be obtained, and a decrease in load characteristics in the non-aqueous electrolyte secondary battery can be suppressed.

本発明の実施例及び比較例の各負極を作用極に用いた三電極式試験セルの概略説明図である。It is a schematic explanatory drawing of the three-electrode-type test cell which used each negative electrode of the Example and comparative example of this invention for the working electrode. 本発明の実施例及び比較例の各負極を作用極に用いた三電極式試験セルにおいて、負極材料の充填率と体積放電容量との関係を、負極における黒鉛系粉末に、人造黒鉛粉末を用いたものと、メソカーボンマイクロビーズを用いたものとにおいて比較した結果を示した図である。In the three-electrode test cell using each negative electrode of the example of the present invention and the comparative example as a working electrode, the relationship between the filling rate of the negative electrode material and the volume discharge capacity is used for the graphite powder in the negative electrode and artificial graphite powder is used. It is the figure which showed the result compared with what was and what used the mesocarbon micro bead. 本発明の実施例及び比較例の各負極を作用極に用いた三電極式試験セルにおいて、負極材料の充填率と初回充放電効率との関係を、負極における黒鉛系粉末に、人造黒鉛粉末を用いたものと、メソカーボンマイクロビーズを用いたものとにおいて比較した結果を示した図である。In the three-electrode test cell using each negative electrode of the example of the present invention and the comparative example as a working electrode, the relationship between the filling rate of the negative electrode material and the initial charge / discharge efficiency is shown in FIG. It is the figure which showed the result compared with what used and the thing using a mesocarbon micro bead. 本発明の実施例及び比較例の各負極を作用極に用いた三電極式試験セルにおいて、負極材料の充填率と負荷特性との関係を、負極における黒鉛系粉末に、人造黒鉛粉末を用いたものと、メソカーボンマイクロビーズを用いたものとにおいて比較した結果を示した図である。In the three-electrode test cell using each negative electrode of the example of the present invention and the comparative example as a working electrode, the relationship between the filling rate of the negative electrode material and the load characteristics was determined using artificial graphite powder as the graphite powder in the negative electrode. It is the figure which showed the result compared with a thing and the thing using a mesocarbon micro bead.

以下、この発明に係る非水電解質二次電池用負極について、実施例を挙げて具体的に説明すると共に、実施例の非水電解質二次電池用負極を用いた非水電解質二次電池においては、負極における体積容量が向上されると共に、負荷特性が低下するのが抑制されることを比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池用負極及び非水電解質二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the non-aqueous electrolyte secondary battery negative electrode according to the present invention will be specifically described with reference to examples, and in the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery negative electrode of the examples, It will be clarified by giving a comparative example that the volume capacity in the negative electrode is improved and the load characteristic is suppressed from being lowered. The negative electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery of the present invention are not limited to those shown in the following examples, and can be implemented with appropriate modifications within the scope not changing the gist thereof. Is.

(実施例A1)
実施例A1においては、負極を作製するにあたり、黒鉛系粉末として、X線回折により測定された格子面間隔(d002)が0.336nm、メディアン径(D50)が20μmで真密度が2.26g/cmである非配向性の人造黒鉛粉末を用いると共に、LaCoSn型の結晶構造を有する合金の粉末として、メディアン径(D50)が5μm、真密度が7.68g/cmであるLaNiSn合金粉末とを用いるようにした。
(Example A1)
In Example A1, in preparing the negative electrode, as the graphite powder, the lattice spacing (d002) measured by X-ray diffraction was 0.336 nm, the median diameter (D50) was 20 μm, and the true density was 2.26 g / A non-oriented artificial graphite powder of cm 3 is used, and an alloy powder having a crystal structure of La 3 Co 2 Sn 7 type has a median diameter (D50) of 5 μm and a true density of 7.68 g / cm 3 . A certain La 3 Ni 2 Sn 7 alloy powder was used.

そして、上記のLaNiSn合金粉末と人造黒鉛粉末とを5:5の質量比で混合させた負極活物質を用い、真密度が1.35g/cmである増粘剤のカルボキシメチルセルロースを水に溶かした水溶液中に、上記の負極活物質と、真密度が0.91g/cmであるバインダーのスチレン−ブタジエンゴムとを、負極活物質とバインダーと増粘剤とが97.5:1.5:1.0の質量比になるように加えて混練し、負極合剤スラリーを作製した。 Then, using a negative electrode active material in which the above La 3 Ni 2 Sn 7 alloy powder and artificial graphite powder are mixed at a mass ratio of 5: 5, a carboxy as a thickener having a true density of 1.35 g / cm 3 is used. In an aqueous solution in which methylcellulose is dissolved in water, the negative electrode active material described above and a styrene-butadiene rubber as a binder having a true density of 0.91 g / cm 3 , and a negative electrode active material, a binder, and a thickener are combined in 97. It added and knead | mixed so that it might become mass ratio of 5: 1.5: 1.0, and the negative mix slurry was produced.

次いで、この負極合剤スラリーを銅箔からなる負極集電体の両面に塗布し、これを乾燥させた後、ローラープレスを用いて圧延させ、これを2cm×2cmの大きさに切り出して、負極を作製した。   Next, the negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of copper foil, dried, and then rolled using a roller press, cut into a size of 2 cm × 2 cm, and the negative electrode Was made.

そして、このように作製した負極において、負極集電体の上に付与された負極材料の充填密度を求めると共に、上記のLaNiSn合金粉末と人造黒鉛粉末とバインダーとの真密度から算出される負極材料の真密度を求め、下記の式により負極材料の充填率を求めた。 Then, the negative electrode thus produced, along with determining the packing density of the negative electrode material has been applied onto the negative electrode current collector, the true density of the above La 3 Ni 2 Sn 7 alloy powder and artificial graphite powder and a binder The true density of the calculated negative electrode material was determined, and the filling rate of the negative electrode material was determined by the following formula.

充填率(%)=(充填密度÷負極材料の真密度)×100
この結果、負極材料の真密度は4.87g/cmであり、負極材料の充填率は65.1%であった。
Filling rate (%) = (filling density ÷ true density of negative electrode material) × 100
As a result, the true density of the negative electrode material was 4.87 g / cm 3 , and the filling rate of the negative electrode material was 65.1%.

(実施例A2)
実施例A2においては、上記の実施例A1における負極の作製において、上記のLaNiSn合金粉末と人造黒鉛粉末とを2:8の質量比で混合させた負極活物質を用い、それ以外は、実施例A1の場合と同様にして負極を作製した。
(Example A2)
In Example A2, the negative electrode active material obtained by mixing the La 3 Ni 2 Sn 7 alloy powder and the artificial graphite powder in a mass ratio of 2: 8 in the production of the negative electrode in Example A1 was used. Except for the above, a negative electrode was produced in the same manner as in Example A1.

そして、このように作製した負極についても、上記の実施例A1と同様にして、負極材料の真密度及び充填率を求めた。   And about the negative electrode produced in this way, it carried out similarly to said Example A1, and calculated | required the true density and filling rate of negative electrode material.

この結果、負極材料の真密度は3.29g/cmであり、負極材料の充填率は67.5%であった。 As a result, the true density of the negative electrode material was 3.29 g / cm 3 , and the filling rate of the negative electrode material was 67.5%.

(実施例A3)
実施例A3においては、上記の実施例A1における負極の作製において、上記のLaNiSn合金粉末と人造黒鉛粉末とを1:9の質量比で混合させた負極活物質を用い、それ以外は、実施例A1の場合と同様にして負極を作製した。
(Example A3)
In Example A3, the negative electrode active material obtained by mixing the La 3 Ni 2 Sn 7 alloy powder and the artificial graphite powder at a mass ratio of 1: 9 in the preparation of the negative electrode in Example A1 was used. Except for the above, a negative electrode was produced in the same manner as in Example A1.

そして、このように作製した負極についても、上記の実施例A1と同様にして、負極材料の真密度及び充填率を求めた。   And about the negative electrode produced in this way, it carried out similarly to said Example A1, and calculated | required the true density and filling rate of negative electrode material.

この結果、負極材料の真密度は2.76g/cmであり、負極材料の充填率は68.3%であった。 As a result, the true density of the negative electrode material was 2.76 g / cm 3 , and the filling rate of the negative electrode material was 68.3%.

(比較例a1)
比較例a1においては、上記の実施例A1における負極の作製において、負極活物質として、上記のLaNiSn合金粉末だけを用い、それ以外は、実施例A1の場合と同様にして負極を作製した。
(Comparative Example a1)
In Comparative Example a1, in the production of the negative electrode in Example A1 above, only the above La 3 Ni 2 Sn 7 alloy powder was used as the negative electrode active material, and the negative electrode was otherwise processed in the same manner as in Example A1. Was made.

そして、このように作製した負極についても、上記の実施例A1と同様にして、負極材料の真密度及び充填率を求めた。   And about the negative electrode produced in this way, it carried out similarly to said Example A1, and calculated | required the true density and filling rate of negative electrode material.

この結果、負極材料の真密度は7.52g/cmであり、負極材料の充填率は63.2%であった。 As a result, the true density of the negative electrode material was 7.52 g / cm 3 and the filling rate of the negative electrode material was 63.2%.

(比較例a2)
比較例a2においては、上記の実施例A1における負極の作製において、負極活物質として、上記の人造黒鉛粉末だけを用い、それ以外は、実施例A1の場合と同様にして負極を作製した。
(Comparative Example a2)
In Comparative Example a2, a negative electrode was produced in the same manner as in Example A1, except that only the artificial graphite powder was used as the negative electrode active material in the production of the negative electrode in Example A1.

そして、このように作製した負極についても、上記の実施例A1と同様にして、負極材料の真密度及び充填率を求めた。   And about the negative electrode produced in this way, it carried out similarly to said Example A1, and calculated | required the true density and filling rate of negative electrode material.

この結果、負極材料の真密度は2.23g/cmであり、負極材料の充填率は70.1%であった。 As a result, the true density of the negative electrode material was 2.23 g / cm 3 and the filling factor of the negative electrode material was 70.1%.

そして、上記のようにして作製した実施例A1〜A3及び比較例a1,a2の各負極を用いて、図1に示す三電極式試験セル10を作製した。   And the three-electrode type test cell 10 shown in FIG. 1 was produced using each negative electrode of Examples A1 to A3 and Comparative Examples a1 and a2 produced as described above.

ここで、上記の三電極式試験セル10においては、上記の各負極を作用極11に用い、正極となる対極12及び参照極13にそれぞれ金属リチウムを使用し、また非水電解液14としては、エチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合させた混合溶媒に、6フッ化リン酸リチウムLiPF6を1mol/lの割合で溶解したものを用い、この非水電解液14中に上記の作用極11と対極12と参照極13とを浸漬させた。 Here, in the above-described three-electrode test cell 10, each of the above negative electrodes is used as the working electrode 11, metallic lithium is used for each of the counter electrode 12 and the reference electrode 13 that are positive electrodes, and the non-aqueous electrolyte solution 14 is In this non-aqueous electrolyte solution 14, a solution obtained by dissolving lithium hexafluorophosphate LiPF 6 at a ratio of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7 is used. The working electrode 11, the counter electrode 12, and the reference electrode 13 were immersed in the above.

このように実施例A1〜A3及び比較例a1,a2の各負極を作用極11に用いて作製した各三電極式試験セル10を、1.0mA/cm2の定電流で参照極13に対する作用極11の電位が0Vになるまで充電し、さらに0.1mA/cm2の定電流で参照極13に対する作用極11の電位が0Vになるまで充電した後、1.0mA/cm2の定電流で参照極13に対する作用極11の電位が1Vになるまで放電させて、初回の充放電を行った。 Thus, each three-electrode type test cell 10 produced using each negative electrode of Examples A1 to A3 and Comparative Examples a1 and a2 as the working electrode 11 acts on the reference electrode 13 with a constant current of 1.0 mA / cm 2. After charging until the potential of the electrode 11 becomes 0 V, and further charging until the potential of the working electrode 11 with respect to the reference electrode 13 becomes 0 V with a constant current of 0.1 mA / cm 2, a constant current of 1.0 mA / cm 2 Then, discharging was performed until the potential of the working electrode 11 with respect to the reference electrode 13 became 1 V, and the first charge / discharge was performed.

そして、上記のように2段階で充電した初回の総充電容量Qaと、初回の放電容量Qbとを測定し、初回充放電効率(%)として、下記の式(1)に示すように、初回の総充電容量Qaに対する初回の放電容量Qbの比率を求めると共に、体積放電容量(mAh/cm)として、各負極における負極材料の単位体積当たりの放電容量を求め、その結果を下記の表1に示した。 Then, the initial total charge capacity Qa charged in two stages as described above and the initial discharge capacity Qb are measured, and as the initial charge and discharge efficiency (%), as shown in the following formula (1), the first time The ratio of the initial discharge capacity Qb to the total charge capacity Qa was determined, and the discharge capacity per unit volume of the negative electrode material in each negative electrode was determined as the volume discharge capacity (mAh / cm 3 ). The results are shown in Table 1 below. It was shown to.

初回充放電効率(%)=(Qb/Qa)×100 (1)   Initial charge / discharge efficiency (%) = (Qb / Qa) × 100 (1)

Figure 2010218855
Figure 2010218855

この結果、負極活物質にLaNiSn合金粉末と人造黒鉛粉末とを用いた実施例A1〜A3の各負極を使用した場合、負極活物質にLaNiSn合金粉末だけを用いた比較例a1の負極を使用した場合に比べて、初回充放電効率及び体積放電容量が大きく向上していた。 As a result, when each negative electrode of Examples A1 to A3 using La 3 Ni 2 Sn 7 alloy powder and artificial graphite powder as the negative electrode active material was used, only La 3 Ni 2 Sn 7 alloy powder was used as the negative electrode active material. Compared with the case where the negative electrode of Comparative Example a1 used was used, the initial charge / discharge efficiency and the volume discharge capacity were greatly improved.

また、負極活物質にLaNiSn合金粉末と人造黒鉛粉末とを用いた実施例A1〜A3の各負極を使用した場合、負極活物質に人造黒鉛粉末だけを用いた比較例a2の負極を使用した場合に比べて、初回充放電効率が低下しているにも拘らず、体積放電容量が高くなっていた。特に、負極活物質中における人造黒鉛粉末の割合を80重量%以上にした実施例A2,A3の各負極を使用した場合には、初回充放電効率の低下が少なくなると共に、体積放電容量が大きく向上していた。 Also, when using the negative electrode of Example A1~A3 with and La 3 Ni 2 Sn 7 alloy powder and artificial graphite powder in the negative electrode active material of Comparative Example a2 using only artificial graphite powder as the negative electrode active material Compared to the case where the negative electrode was used, the volume discharge capacity was high although the initial charge / discharge efficiency was lowered. In particular, when the negative electrodes of Examples A2 and A3 in which the proportion of the artificial graphite powder in the negative electrode active material is 80% by weight or more are used, the decrease in the initial charge / discharge efficiency is reduced and the volume discharge capacity is increased. It was improving.

(実施例A4及び比較例a3〜a8)
実施例A4及び比較例a3〜a8においては、負極活物質として、上記の実施例A2と同様に、上記のLaNiSn合金粉末と人造黒鉛粉末とを2:8の質量比で混合させたものを用い、このような負極活物質を用いた負極材料の充填率を変更させるようにし、それ以外は、上記の実施例A1の場合と同様にして、実施例A4及び比較例a3〜a8の各負極を作製した。
(Example A4 and Comparative Examples a3 to a8)
In Example A4 and Comparative Examples a3 to a8, as the negative electrode active material, the La 3 Ni 2 Sn 7 alloy powder and the artificial graphite powder were mixed at a mass ratio of 2: 8 as in Example A2 above. In the same manner as in Example A1, Example A4 and Comparative Examples a3 to A3 were used except that the filling rate of the negative electrode material using such a negative electrode active material was changed. Each negative electrode of a8 was produced.

ここで、実施例A4及び比較例a3〜a8の各負極における負極材料の充填率は、下記の表2に示すように、実施例A4では63.1%に、比較例a3では30.2%に、比較例a4では41.7%に、比較例a5では42.2%に、比較例a6では47.0%に、比較例a7では51.1%に、比較例a8では74.5%になっていた。   Here, as shown in the following Table 2, the filling rate of the negative electrode material in each negative electrode of Example A4 and Comparative Examples a3 to a8 is 63.1% in Example A4 and 30.2% in Comparative Example a3. In Comparative Example a4, it is 41.7%, in Comparative Example a5 is 42.2%, in Comparative Example a6 is 47.0%, in Comparative Example a7 is 51.1%, and in Comparative Example a8 is 74.5%. It was.

そして、実施例A4及び比較例a3〜a8の各負極を作用極11に用い、前記のようにして各三電極式試験セル10を作製した。   Then, each of the negative electrodes of Example A4 and Comparative Examples a3 to a8 was used as the working electrode 11 to produce each three-electrode test cell 10 as described above.

また、このように作製した各三電極式試験セル10を使用し、前記の場合と同様にして、初回充放電効率(%)と、体積放電容量(mAh/cm)とを求め、その結果を、前記の実施例A2の結果と合わせて下記の表2に示した。 Further, using each of the three-electrode test cells 10 thus produced, the initial charge / discharge efficiency (%) and the volume discharge capacity (mAh / cm 3 ) were determined in the same manner as described above. Are shown in Table 2 below together with the results of Example A2.

さらに、実施例A2,A4及び比較例a3〜a8の各負極を用いた各三電極式試験セル10について、それぞれ初回の充電時における1.0mA/cm2の定電流で充電させた際の充電容量Qa1を測定し、負荷特性(%)として、下記の式(2)に示すように、前記の初回の総充電容量Qaに対する1.0mA/cm2の定電流で充電させた際の充電容量Qa1の比率を求め、その結果を下記の表2に合わせて示した。 Furthermore, for each of the three-electrode test cells 10 using the negative electrodes of Examples A2 and A4 and Comparative Examples a3 to a8, charging at the time of charging at a constant current of 1.0 mA / cm 2 at the time of initial charging, respectively. The capacity Qa1 is measured, and as the load characteristic (%), as shown in the following formula (2), the charge capacity when charging at a constant current of 1.0 mA / cm 2 with respect to the initial total charge capacity Qa The ratio of Qa1 was determined, and the results are shown in Table 2 below.

負荷特性(%)=(Qa1/Qa)×100 (2)   Load characteristics (%) = (Qa1 / Qa) × 100 (2)

Figure 2010218855
Figure 2010218855

この結果、LaNiSn合金粉末と人造黒鉛粉末とを2:8質量の比で混合させた負極活物質に用いた実施例A2,A4及び比較例a3〜a8の各負極において、負極材料の充填率が59%以上73%以下である実施例A2,A4の各負極を使用した場合、負極材料の充填率が59%未満になった比較例a3〜a7の各負極を使用した場合に比べると、初回充放電効率や負荷特性が低下しているにも拘らず、体積放電容量が大きく増加していた。また、負極材料の充填率が73%を超えた比較例a8の負極を使用した場合に比べると、初回充放電効率や負荷特性が向上すると共に、体積放電容量が大きくなっていた。特に、負極材料の充填率が63%程度になった実施例A4の負極を使用した場合には、体積放電容量が大きくなると共に、初回充放電効率や負荷特性の低下も少なくなっていた。 As a result, in each of the negative electrodes of Examples A2 and A4 and Comparative Examples a3 to a8 used for the negative electrode active material in which La 3 Ni 2 Sn 7 alloy powder and artificial graphite powder were mixed at a ratio of 2: 8 mass, When each negative electrode of Examples A2 and A4 in which the filling rate of the material is 59% or more and 73% or less is used, and each negative electrode of Comparative Examples a3 to a7 in which the filling rate of the negative electrode material is less than 59% is used Compared to the above, the volume discharge capacity was greatly increased in spite of the decrease in the initial charge / discharge efficiency and load characteristics. Moreover, compared with the case where the negative electrode of the comparative example a8 in which the filling rate of the negative electrode material exceeded 73% was used, the initial charge / discharge efficiency and load characteristics were improved, and the volume discharge capacity was increased. In particular, when the negative electrode of Example A4 in which the filling ratio of the negative electrode material was about 63% was used, the volume discharge capacity was increased, and the initial charge / discharge efficiency and load characteristics were not decreased.

(実施例B1)
実施例B1においては、負極を作製するにあたり、黒鉛系粉末として、X線回折により測定された格子面間隔(d002)が0.336nm、メディアン径(D50)が20μmで真密度が2.26g/cmであるメソカーボンマイクロビーズ(MCMB)を用いると共に、LaCoSn型の結晶構造を有する合金の粉末としては、実施例A1と同じメディアン径(D50)が5μm、真密度が7.68g/cmであるLaNiSn合金粉末とを用いるようにした。
(Example B1)
In Example B1, in preparing the negative electrode, as the graphite powder, the lattice spacing (d002) measured by X-ray diffraction was 0.336 nm, the median diameter (D50) was 20 μm, and the true density was 2.26 g / The mesocarbon microbeads (MCMB) of cm 3 and the alloy powder having the La 3 Co 2 Sn 7 type crystal structure have a median diameter (D50) of 5 μm and a true density of 7 μm as in Example A1. A La 3 Ni 2 Sn 7 alloy powder of .68 g / cm 3 was used.

そして、上記のLaNiSn合金粉末とメソカーボンマイクロビーズ(MCMB)とを2:8の質量比で混合させた負極活物質を用いる以外は、上記の実施例A1の場合と同様にして負極を作製した。 Then, in the same manner as in Example A1, except that a negative electrode active material obtained by mixing the La 3 Ni 2 Sn 7 alloy powder and mesocarbon microbeads (MCMB) at a mass ratio of 2: 8 is used. Thus, a negative electrode was produced.

そして、このように作製した負極において、負極集電体の上に付与された負極材料の充填密度を求めると共に、上記のLaNiSn合金粉末とメソカーボンマイクロビーズ(MCMB)とバインダーとの真密度から算出される負極材料の真密度を求め、負極材料の充填率を求めた。 Then, the negative electrode thus produced, along with determining the packing density of the negative electrode material has been applied onto the negative electrode current collector, said La 3 Ni 2 Sn 7 alloy powder and mesocarbon microbeads (MCMB) and a binder The true density of the negative electrode material calculated from the true density was obtained, and the filling rate of the negative electrode material was obtained.

この結果、負極材料の真密度は3.29g/cmであり、負極材料の充填率は59.0%であった。 As a result, the true density of the negative electrode material was 3.29 g / cm 3 , and the filling factor of the negative electrode material was 59.0%.

(実施例B2〜B5及び比較例b1〜b4)
実施例B2〜B5及び比較例b1〜b4においては、負極活物質として、上記の実施例B1と同様に、上記のLaNiSn合金粉末とメソカーボンマイクロビーズ(MCMB)とを2:8の質量比で混合させたものを用い、このような負極活物質を用いた負極材料の充填率を変更させるようにし、それ以外は、上記の実施例B1の場合と同様にして、実施例B2〜B5及び比較例b1〜b4の各負極を作製した。
(Examples B2 to B5 and Comparative Examples b1 to b4)
In Examples B2 to B5 and Comparative Examples b1 to b4, the same La 3 Ni 2 Sn 7 alloy powder and mesocarbon microbeads (MCMB) were used as the negative electrode active material, as in Example B1. In the same manner as in the case of Example B1 above, the mixture ratio of the negative electrode material using such a negative electrode active material was changed. Each negative electrode of B2-B5 and comparative examples b1-b4 was produced.

ここで、実施例B2〜B5及び比較例b1〜b4の各負極における負極材料の充填率は、下記の表3に示すように、実施例B2では59.3%に、実施例B3では62.9%に、実施例B4では64.3%に、実施例B5では73.0%に、比較例b1では53.0%に、比較例b2では54.2%に、比較例b3では56.3%に、比較例b4では56.9%になっていた。   Here, as shown in Table 3 below, the filling rate of the negative electrode material in each of the negative electrodes of Examples B2 to B5 and Comparative Examples b1 to b4 was 59.3% in Example B2, and 62.3% in Example B3. 9%, 64.3% in Example B4, 73.0% in Example B5, 53.0% in Comparative Example b1, 54.2% in Comparative Example b2, and 56.3% in Comparative Example b3. 3% and 56.9% in Comparative Example b4.

そして、上記のように作製した実施例B1〜B5及び比較例b1〜b4の各負極を作用極11に用い、前記のようにして各三電極式試験セル10を作製し、このように作製した各三電極式試験セル10を使用し、前記の場合と同様にして、初回充放電効率(%)と、体積放電容量(mAh/cm)と、負荷特性(%)とを求め、その結果を、下記の表3に示した。 Then, each of the negative electrodes of Examples B1 to B5 and Comparative Examples b1 to b4 prepared as described above was used as the working electrode 11 to prepare each three-electrode test cell 10 as described above. using each three-electrode test cell 10, in the same manner as in the above, the initial charge and discharge efficiency (%), calculated as volume discharge capacity (mAh / cm 3), and load characteristics (%), as a result Is shown in Table 3 below.

Figure 2010218855
Figure 2010218855

この結果、LaNiSn合金粉末とメソカーボンマイクロビーズ(MCMB)とを2:8質量の比で混合させた負極活物質に用いた実施例B2〜B5及び比較例b1〜b4の各負極において、負極材料の充填率が59%以上73%以下である実施例B2〜B5の各負極を使用した場合、負極材料の充填率が59%未満になった比較例b1〜b4の各負極を使用した場合に比べると、初回充放電効率や負荷特性が少し低下していたが、体積放電容量が大きく増加していた。特に、負極材料の充填率が62〜65%程度になった実施例B4,B5の負極を使用した場合には、体積放電容量が大きくなると共に、初回充放電効率や負荷特性の低下も少なくなっていた。 As a result, each of Examples B2 to B5 and Comparative Examples b1 to b4 used for the negative electrode active material in which La 3 Ni 2 Sn 7 alloy powder and mesocarbon microbeads (MCMB) were mixed at a ratio of 2: 8 mass. In the negative electrode, when each negative electrode of Examples B2 to B5 in which the filling rate of the negative electrode material is 59% or more and 73% or less is used, each negative electrode of Comparative Examples b1 to b4 in which the filling rate of the negative electrode material is less than 59% Compared with the case of using, the initial charge / discharge efficiency and load characteristics were slightly reduced, but the volume discharge capacity was greatly increased. In particular, when the negative electrodes of Examples B4 and B5 in which the filling rate of the negative electrode material is about 62 to 65% are used, the volume discharge capacity is increased, and the initial charge / discharge efficiency and the load characteristics are not decreased. It was.

また、黒鉛系粉末として、前記の人造黒鉛粉末を用いたものと、メソカーボンマイクロビーズ(MCMB)を用いたものとにおいて、負極材料の充填率と体積放電容量との関係を比較したものを図2に、負極材料の充填率と初回充放電効率との関係を比較したものを図3に、負極材料の充填率と負荷特性との関係を比較したものを図4に示した。   In addition, a graph comparing the relationship between the filling rate of the negative electrode material and the volume discharge capacity between the graphite-based powder using the artificial graphite powder and the mesocarbon microbead (MCMB). FIG. 3 shows a comparison between the negative electrode material filling rate and the initial charge / discharge efficiency, and FIG. 4 shows a comparison between the negative electrode material filling rate and load characteristics.

この結果、黒鉛系粉末として、人造黒鉛粉末を用いたものと、メソカーボンマイクロビーズ(MCMB)を用いたものとを比較すると、メソカーボンマイクロビーズ(MCMB)を用いたものは、人造黒鉛粉末を用いたものに比べて、負極材料の充填率を高くした場合における初回充放電効率や負荷特性の低下が少なくなっていた。   As a result, when the graphite powder used artificial graphite powder and mesocarbon microbeads (MCMB) were compared, those using mesocarbon microbeads (MCMB) Compared to the one used, the decrease in the initial charge / discharge efficiency and load characteristics when the filling rate of the negative electrode material was increased was small.

10 三電極式試験セル
11 作用極(負極)
12 対極(正極)
13 参照極
14 非水電解液
10 Three-electrode test cell 11 Working electrode (negative electrode)
12 Counter electrode (positive electrode)
13 Reference electrode 14 Non-aqueous electrolyte

Claims (5)

負極集電体上に負極活物質を含む負極材料が付与されてなる非水電解質二次電池用負極において、上記の負極活物質として、LaCoSn型の結晶構造を有する合金の粉末と黒鉛系粉末とを含むと共に、上記の負極材料の充填率が59%以上73%以下であることを特徴とする非水電解質二次電池用負極。 In a negative electrode for a non-aqueous electrolyte secondary battery in which a negative electrode material containing a negative electrode active material is provided on a negative electrode current collector, an alloy powder having a La 3 Co 2 Sn 7 type crystal structure as the negative electrode active material And a negative electrode for a non-aqueous electrolyte secondary battery, wherein the negative electrode material has a filling rate of 59% or more and 73% or less. 請求項1に記載の非水電解質二次電池用負極において、前記のLaCoSn型の結晶構造を有する合金がLaNiSn合金であることを特徴とする非水電解質二次電池用負極。 2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the alloy having a La 3 Co 2 Sn 7 type crystal structure is a La 3 Ni 2 Sn 7 alloy. Negative electrode for secondary battery. 請求項1又は請求項2に記載の非水電解質二次電池用負極において、前記の負極活物質中における黒鉛系粉末の割合が50質量%以上90質量%以下であることを特徴とする非水電解質二次電池用負極。   The non-aqueous electrolyte secondary battery negative electrode according to claim 1 or 2, wherein a ratio of the graphite-based powder in the negative electrode active material is 50% by mass or more and 90% by mass or less. Negative electrode for electrolyte secondary battery. 請求項1〜請求項3の何れか1項に記載の非水電解質二次電池用負極において、前記の黒鉛系粉末がメソカーボンマイクロビーズであることを特徴とする非水電解質二次電池用負極。   4. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder is mesocarbon microbeads. 5. . 正極と負極と非水電解液とを備えた非水電解質二次電池において、その負極に請求項1〜請求項4の何れか1項に記載の非水電解質二次電池用負極を用いたことを特徴とする非水電解質二次電池。   In the nonaqueous electrolyte secondary battery provided with the positive electrode, the negative electrode, and the nonaqueous electrolyte, the negative electrode for nonaqueous electrolyte secondary batteries of any one of Claims 1-4 was used for the negative electrode. A non-aqueous electrolyte secondary battery.
JP2009063697A 2009-03-17 2009-03-17 Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery Withdrawn JP2010218855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063697A JP2010218855A (en) 2009-03-17 2009-03-17 Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063697A JP2010218855A (en) 2009-03-17 2009-03-17 Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010218855A true JP2010218855A (en) 2010-09-30

Family

ID=42977461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063697A Withdrawn JP2010218855A (en) 2009-03-17 2009-03-17 Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010218855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153401A1 (en) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Lithium ion battery
WO2021200924A1 (en) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 Lithium ion battery
WO2023026635A1 (en) * 2021-08-27 2023-03-02 パナソニックIpマネジメント株式会社 Negative electrode active substance and lithium-ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153401A1 (en) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Lithium ion battery
WO2021200924A1 (en) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 Lithium ion battery
WO2023026635A1 (en) * 2021-08-27 2023-03-02 パナソニックIpマネジメント株式会社 Negative electrode active substance and lithium-ion battery

Similar Documents

Publication Publication Date Title
JP4853608B2 (en) Lithium secondary battery
JP5159134B2 (en) Nonaqueous electrolyte secondary battery
JP2011034943A (en) Nonaqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2007200862A (en) Nonaqueous electrolyte secondary battery
JP2010232038A (en) Lithium ion secondary battery
KR20100106242A (en) Nonaqueous secondary battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP2011071100A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2014157653A (en) Nonaqueous electrolytic secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR20110108301A (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP5754382B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
WO2012029401A1 (en) Non-aqueous electrolyte rechargeable battery
JP4738039B2 (en) Method for producing graphite-based carbon material
JP5811857B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP2008235148A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130128