JP4738039B2 - Method for producing graphite-based carbon material - Google Patents

Method for producing graphite-based carbon material Download PDF

Info

Publication number
JP4738039B2
JP4738039B2 JP2005091932A JP2005091932A JP4738039B2 JP 4738039 B2 JP4738039 B2 JP 4738039B2 JP 2005091932 A JP2005091932 A JP 2005091932A JP 2005091932 A JP2005091932 A JP 2005091932A JP 4738039 B2 JP4738039 B2 JP 4738039B2
Authority
JP
Japan
Prior art keywords
graphite
carbon material
based carbon
graphite layer
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005091932A
Other languages
Japanese (ja)
Other versions
JP2006273615A (en
Inventor
尊夫 井上
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005091932A priority Critical patent/JP4738039B2/en
Publication of JP2006273615A publication Critical patent/JP2006273615A/en
Application granted granted Critical
Publication of JP4738039B2 publication Critical patent/JP4738039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、黒鉛系炭素材料の製造方法に関し、特に菱面晶系黒鉛層の増加を図ることができる黒鉛系炭素材料の製造方法に関する。   The present invention relates to a method for producing a graphite-based carbon material, and more particularly to a method for producing a graphite-based carbon material capable of increasing the number of rhombohedral graphite layers.

近年、小型軽量でかつ高容量で充放電可能な電池として非水電解質二次電池が実用化されるようになり、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられるようになった。この種の非水電解質二次電池は、負極活物質としてリチウムイオンを吸蔵、放出し得る炭素系材料を用い、正極活物質として、LiCoO2、LiNiO2、LiMn24、LiFeO2等のリチウム含有遷移金属酸化物を用い、有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を用いて構成される。 In recent years, non-aqueous electrolyte secondary batteries have come into practical use as compact, lightweight, high-capacity chargeable / dischargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. It came to be able to. This type of non-aqueous electrolyte secondary battery uses a carbon-based material that can occlude and release lithium ions as a negative electrode active material, and lithium such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 as a positive electrode active material. A transition metal oxide is used, and a nonaqueous electrolytic solution in which a solute composed of a lithium salt is dissolved in an organic solvent is used.

ところで、このような非水電解質二次電池の負極に用いられる炭素系材料は、充放電サイクル中の容量劣化が少なく、優れた耐久性を有することで注目されている。これは炭素系材料は卑な電位でリチウムの吸蔵、放出を可逆的に行うことが可能であるためで、リチウムと炭素系材料との層間化合物が可逆的に形成されることを利用したためである。例えば、十分な量のリチウムを含有する正極と、炭素材料を活物質とする負極とをセパレータを介して対向させて電池缶内に挿入し、これに有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を注入することで、この電池は放電状態で組立が完了することになる。   By the way, the carbon-based material used for the negative electrode of such a nonaqueous electrolyte secondary battery has been attracting attention because of its excellent durability with little capacity deterioration during the charge / discharge cycle. This is because the carbon-based material can reversibly store and release lithium at a low potential, and it utilizes the fact that an intercalation compound between lithium and the carbon-based material is reversibly formed. . For example, a positive electrode containing a sufficient amount of lithium and a negative electrode using a carbon material as an active material are opposed to each other through a separator and inserted into a battery can, and a solute composed of a lithium salt is dissolved in the organic solvent. By injecting the non-aqueous electrolyte, the assembly of the battery is completed in a discharged state.

特に、上記炭素材料として黒鉛系炭素材料を用い場合には、高エネルギー密度の非水電解質二次電池を得ることができるため、このような黒鉛系炭素材料が多く利用されるようになってきており、その特性向上を目的とした研究開発も盛んに行われている。   In particular, when a graphite-based carbon material is used as the carbon material, a non-aqueous electrolyte secondary battery having a high energy density can be obtained. Therefore, such a graphite-based carbon material has been widely used. Research and development for the purpose of improving the characteristics is also actively conducted.

ここで、上記黒鉛系炭素材料において、六方晶系黒鉛層のX線回折法(XRD)による(100)面のピーク強度(P1)と六方晶系黒鉛層のX線回折法による(002)面のピーク強度(P2)との強度比(P1/P2)は、炭素材料の配向性の乱雑性を示す指標であり、この乱雑さを向上させることにより、高い電流値を流した場合でも炭素材料にリチウムイオンが入り易くなる。   Here, in the graphite-based carbon material, the peak intensity (P1) of the (100) plane by the X-ray diffraction method (XRD) of the hexagonal graphite layer and the (002) plane by the X-ray diffraction method of the hexagonal graphite layer. The intensity ratio (P1 / P2) with respect to the peak intensity (P2) is an index indicating the disorder of the orientation of the carbon material. By improving this disorder, the carbon material can be used even when a high current value is passed. Lithium ions are easy to enter.

一方、黒鉛系炭素材料の指標には様々であり、X線広角回折法による黒鉛系炭素材料の
回折で菱面晶系黒鉛層が多くなると、乱層構造が増加し、溶媒和されたリチウムの黒鉛層へのインターカレーションが抑制される。そのため、下記非特許文献1に示されるように、炭素材料の初期充放電における不可逆容量は菱面晶系黒鉛層の増加にともなって減少するとの報告がある。更に、当該非特許文献1には、黒鉛を破砕すると菱面晶系黒鉛層が増加する旨記載されている。
On the other hand, there are various indices of graphite-based carbon materials. When the number of rhombohedral graphite layers increases in the diffraction of graphite-based carbon materials by the X-ray wide angle diffraction method, the turbulent layer structure increases and the solvated lithium Intercalation into the graphite layer is suppressed. Therefore, as shown in the following non-patent document 1, there is a report that the irreversible capacity in the initial charge / discharge of the carbon material decreases as the rhombohedral graphite layer increases. Further, Non-Patent Document 1 describes that the rhombohedral graphite layer increases when graphite is crushed.

日立粉末冶金テクニカルレポートNo.1[2002] リチウムイオン電池負極材料としての天然黒鉛の構造解析と負極材料特性の最適化の研究Hitachi Powder Metallurgy Technical Report No. 1 [2002] Structural analysis of natural graphite as a negative electrode material for lithium ion batteries and optimization of negative electrode material properties

しかしながら、黒鉛を破砕することにより菱面晶系黒鉛層を増加させるには、ボールミル等の破砕機を用いて長時間行なわなければならず、黒鉛の製造工程が煩雑になって、製造コストが高くなる。加えて、破砕機を用いた場合には、黒鉛とボール等の破砕機の一部とが擦りあうことにより黒鉛に不純物が混入し、黒鉛を用いた電池の特性に悪影響を与える虞がある。   However, increasing the rhombohedral graphite layer by crushing graphite requires a long time using a crusher such as a ball mill, which complicates the graphite production process and increases the production cost. Become. In addition, when a crusher is used, impurities may be mixed into the graphite due to rubbing between graphite and a part of a crusher such as a ball, which may adversely affect the characteristics of a battery using graphite.

そこで本発明は、上記課題を考慮したものであって、製造コストの高騰と、不純物の混入とを抑制しつつ菱面晶系黒鉛層の割合を容易に増加させて、炭素材料を用いた電池の初期充放電効率を向上させることができる黒鉛系炭素材料の製造方法を提供することを目的とする。   Therefore, the present invention has been made in consideration of the above problems, and a battery using a carbon material by easily increasing the ratio of rhombohedral graphite layers while suppressing an increase in manufacturing cost and mixing of impurities. An object of the present invention is to provide a method for producing a graphite-based carbon material capable of improving the initial charge / discharge efficiency.

上記目的を達成するために、本発明のうち請求項1記載の発明は、少なくとも菱面晶系黒鉛層と六方晶系黒鉛層とを有する黒鉛系炭素材料であって、六方晶系黒鉛層のX線回折法による(100)面のピーク強度(P1)と六方晶系黒鉛層のX線回折法による(002)面のピーク強度(P2)との強度比(P1/P2)が0.01以上である黒鉛系炭素材料に遠心力のみを加えて菱面晶系黒鉛層の割合を増加させることを特徴とする黒鉛系炭素材料の製造方法。
In order to achieve the above object, the invention according to claim 1 of the present invention is a graphite-based carbon material having at least a rhombohedral graphite layer and a hexagonal graphite layer, wherein the hexagonal graphite layer comprises: The intensity ratio (P1 / P2) between the peak intensity (P1) of the (100) plane by the X-ray diffraction method and the peak intensity (P2) of the (002) plane by the X-ray diffraction method of the hexagonal graphite layer is 0.01 A method for producing a graphite-based carbon material, wherein only the centrifugal force is applied to the graphite-based carbon material as described above to increase the ratio of the rhombohedral graphite layer .

上記方法であれば、黒鉛系炭素材料に遠心力を加えるだけで菱面晶系黒鉛層の割合を容易に増加させることができるので、黒鉛の製造工程が煩雑になることに起因する製造コストの高騰を抑制することができる。また、単に遠心力を加えるだけで、装置の一部と擦りあうことがないので、黒鉛に不純物が混入することによる電池特性の劣化を抑えることができる。   With the above method, the ratio of the rhombohedral graphite layer can be easily increased by simply applying a centrifugal force to the graphite-based carbon material, so that the production cost of the graphite is complicated. Soaring can be suppressed. In addition, since only a centrifugal force is applied and there is no friction with a part of the apparatus, it is possible to suppress deterioration of battery characteristics due to impurities mixed into graphite.

ここで、強度比(P1/P2)が0.01以上である黒鉛系炭素材料に限定するのは、以下に示す理由による。
(1)強度比(P1/P2)が0.01未満の黒鉛系炭素材料に遠心力を加えても、菱面晶系黒鉛層の割合が余り増加しない、或いは減少するので、乱層構造が増加せず、溶媒和されたリチウムの黒鉛層へのインターカレーションが抑制されないという理由。
(2)黒鉛系炭素材料に遠心力を加えた場合には強度比(P1/P2)が低下する場合があるが、当初より強度比(P1/P2)が0.01以上の黒鉛系炭素材料を用いているので、遠心力を加えた後の強度比(P1/P2)が低下しても、当該強度比(P1/P2)が小さくなり過ぎることを抑制できる。したがって、高い電流値を流した場合でも炭素材料にリチウムイオンが入り易くなるという効果は維持されるという理由。
Here, the reason why the strength ratio (P1 / P2) is limited to the graphite-based carbon material of 0.01 or more is as follows.
(1) Even if a centrifugal force is applied to a graphite-based carbon material having an intensity ratio (P1 / P2) of less than 0.01, the ratio of the rhombohedral graphite layer does not increase or decrease so much. The reason is that the intercalation of the solvated lithium into the graphite layer is not suppressed.
(2) When a centrifugal force is applied to the graphite-based carbon material, the strength ratio (P1 / P2) may decrease. From the beginning, the graphite-based carbon material having a strength ratio (P1 / P2) of 0.01 or more. Therefore, even if the strength ratio (P1 / P2) after applying centrifugal force is reduced, the strength ratio (P1 / P2) can be suppressed from becoming too small. Therefore, even when a high current value is applied, the effect that lithium ions easily enter the carbon material is maintained.

請求項2記載の発明は請求項1記載の発明において、前記黒鉛系炭素材料に加える遠心力が104G(Gは重力加速度である)以上であることを特徴とする。
このように、104G以上の遠心力を加えると、菱面晶系体黒鉛層の割合が増加した黒鉛系炭素材料を短時間で作製することができるので、上記請求項1記載の作用効果が一層発揮される。
A second aspect of the invention is characterized in that, in the first aspect of the invention, the centrifugal force applied to the graphite-based carbon material is 10 4 G (G is gravitational acceleration) or more.
Thus, when a centrifugal force of 10 4 G or more is applied, a graphite-based carbon material in which the proportion of the rhombohedral graphite layer is increased can be produced in a short time. Is further demonstrated.

ここで、本発明の黒鉛系炭素材料を非水電解質二次電池に用いた場合に、当該電池の電解質としては、通常の電池用非水溶媒として用いられる、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等を使用することができる。   Here, when the graphite-based carbon material of the present invention is used in a non-aqueous electrolyte secondary battery, the electrolyte of the battery is a cyclic carbonate, a chain carbonate, used as a normal non-aqueous solvent for batteries, Esters, cyclic ethers, chain ethers, nitriles, amides and the like can be used.

上記環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられ、また、これらの水酸基の一部又は全部がフッ素化されているものも用いることが可能で、例えば、トリフルオロプロピレンカーボネート、フルオロエチルカーボネート等が挙げられる。   Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and the like, and those in which a part or all of these hydroxyl groups are fluorinated can be used, for example, trifluoropropylene carbonate. And fluoroethyl carbonate.

上記鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、
メチルイソプロピルカーボネート等が挙げられ、また、これらの水素の一部又は全部がフッ素化されているものも用いることが可能である。
上記エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ―ブチロラクトン等が挙げられる。
Examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate,
Examples thereof include methyl isopropyl carbonate, and those in which a part or all of these hydrogens are fluorinated can also be used.
Examples of the esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone.

上記環状エーテルとしては、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等が挙げられる。
上記鎖状エーテルとしては、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、 o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等が挙げられる。
Examples of the cyclic ether include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3,5. -Trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, etc. are mentioned.
Examples of the chain ether include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl. Ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1 -Dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetrae Glycol dimethyl and the like.

上記ニトリル類としては、アセトニトリル等が挙げられ、上記アミド類としては、ジメチルホルムアミド等が挙げられる。
但し、特に電圧安定性の観点からは、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステルや、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状炭酸エステルを用いるのが望ましい。
Examples of the nitriles include acetonitrile, and examples of the amides include dimethylformamide.
However, particularly from the viewpoint of voltage stability, it is desirable to use cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate.

電解質としては、一般に非水電解質二次電池に用いられる電解質を用いることができ、例えば、LiPF6 、LiAsF6、LiBF4 、LiCF3SO3、LiN(Cl2l+1SO2)(Cm2m+1SO2)(但し、l、mは1以上の整数)、LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(但し、p、q、rは1以上の整数)、ジフルオロ(オキサラト)ホウ酸リチウム(下記化1参照)等が挙げられる。これらの電解液は一種で使用してもよく、また、2種以上組み合わせて使用してもよい。尚、この電解質は、前記非水溶媒に0.1〜1.5モル/リットル、好ましくは0.5〜1.5モル/リットルの濃度で溶解させるのが望ましい。 As the electrolyte, an electrolyte generally used for a non-aqueous electrolyte secondary battery can be used. For example, LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C l F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (where l and m are integers of 1 or more), LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (where p, q, and r are integers of 1 or more), lithium difluoro (oxalato) borate (see the following chemical formula 1), and the like. These electrolytic solutions may be used alone or in combination of two or more. The electrolyte is preferably dissolved in the non-aqueous solvent at a concentration of 0.1 to 1.5 mol / liter, preferably 0.5 to 1.5 mol / liter.

また、正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiMn2、LiCo0.5Ni0.52、LiNi0.33Co0.33Mn0.342などのリチウム含有遷移金属複合酸化物が例示される。 Examples of the positive electrode active material include lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMn 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.33 Co 0.33 Mn 0.34 O 2. .

本発明によれば、製造コストの高騰と、不純物の混入とを抑制しつつ菱面晶系黒鉛層の割合を容易に増加させることができるという優れた効果を奏する。   According to the present invention, there is an excellent effect that the ratio of the rhombohedral graphite layer can be easily increased while suppressing an increase in manufacturing cost and mixing of impurities.

以下、この発明に係る黒鉛系炭素材料の製造方法を、以下に説明する。なお、この発明における黒鉛系炭素材料の製造方法は、下記の最良の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the manufacturing method of the graphite-type carbon material which concerns on this invention is demonstrated below. In addition, the manufacturing method of the graphite-type carbon material in this invention is not limited to what was shown to the following best form, In the range which does not change the summary, it can change suitably and can implement.

(最良の形態)
下記の条件でX線広角回折法(XRD)により回折したときに、六方晶系黒鉛層の(100)面のピーク強度(P1)と、六方晶系黒鉛層の(002)面のピーク強度(P2)との強度比(P1/P2)が0.0133の黒鉛系炭素材料を用意し、遠心分離機を用いて当該黒鉛系炭素材料に下記の条件で遠心力を加えた。
このようにして作製した黒鉛系炭素材料を、以下、本発明炭素材料aと称する。
(Best form)
When diffracted by the X-ray wide angle diffraction method (XRD) under the following conditions, the peak intensity (P1) of the (100) plane of the hexagonal graphite layer and the peak intensity of the (002) plane of the hexagonal graphite layer ( A graphite-based carbon material having a strength ratio (P1 / P2) to P2) of 0.0133 was prepared, and centrifugal force was applied to the graphite-based carbon material under the following conditions using a centrifuge.
The graphite-based carbon material thus produced is hereinafter referred to as the present invention carbon material a.

・X線広角回折条件
線源:CuKα
管電流:40mA
管電圧:40kV
・遠心条件
遠心力:1.7×104G(Gは重力加速度である)
時間:3時間
・ X-ray wide angle diffraction condition source: CuKα
Tube current: 40 mA
Tube voltage: 40 kV
Centrifugal centrifugal force: 1.7 × 10 4 G (G is gravitational acceleration)
Time: 3 hours

(比較の形態)
上記最良の形態と同様の条件でX線広角回折法(XRD)により回折したときに、六方晶系黒鉛層の(100)面のピーク強度(P1)と、六方晶系黒鉛層の(002)面のピーク強度(P2)との強度比(P1/P2)が0.0028の黒鉛系炭素材料を用意し、遠心分離機を用いて当該黒鉛系炭素材料に上記最良の形態と同様の条件で遠心力を加えた。
このようにして作製した黒鉛系炭素材料を、以下、比較炭素材料xと称する。
(Comparison form)
When diffracted by the X-ray wide angle diffraction method (XRD) under the same conditions as the best mode, the peak intensity (P1) of the (100) plane of the hexagonal graphite layer and the (002) of the hexagonal graphite layer Prepare a graphite-based carbon material having an intensity ratio (P1 / P2) to the peak intensity (P2) of the surface of 0.0028, and centrifuge the graphite-based carbon material under the same conditions as in the above best mode. Centrifugal force was applied.
The graphite-based carbon material thus produced is hereinafter referred to as a comparative carbon material x.

(実験)
上記本発明炭素材料a、及び比較炭素材料xにおける遠心前後の炭素材料をX線広角回折法(XRD)により回折し(X線広角回折条件は上記最良の形態と同様の条件である)、六方晶系黒鉛層の(100)面のピーク強度(P1)、六方晶系黒鉛層の(002)面のピーク強度(P2)、菱面晶系黒鉛層の(101)面のピーク強度(P3)を調べたので、その結果を図1〜図4及び表1に示す。尚、図1は本発明炭素材料aにおける遠心後のX線広角回折グラフ、図2は本発明炭素材料aにおける遠心前のX線広角回折グラフ、図3は比較炭素材料xにおける遠心後のX線広角回折グラフ、図4は比較炭素材料xにおける遠心前のX線広角回折グラフである。また、表1には各ピーク強度の回折角(2θ)を示し、更に、参考のために、六方晶系黒鉛層の(101)面のピーク強度についても記載している。
(Experiment)
The carbon material a of the present invention and the carbon material before and after comparison carbon material x are diffracted by X-ray wide angle diffraction (XRD) (X-ray wide angle diffraction conditions are the same as those in the best mode), and hexagonal (100) plane peak intensity (P1) of hexagonal graphite layer, (002) plane peak intensity (P2) of hexagonal graphite layer, (101) plane peak intensity (P3) of rhombohedral graphite layer 1 to 4 and Table 1 show the results. 1 is an X-ray wide-angle diffraction graph of the carbon material a of the present invention after centrifugation, FIG. 2 is an X-ray wide-angle diffraction graph of the carbon material of the present invention before centrifugation, and FIG. 3 is an X-ray of the comparative carbon material x after centrifugation. FIG. 4 is an X-ray wide-angle diffraction graph before centrifugation of the comparative carbon material x. Table 1 shows the diffraction angle (2θ) of each peak intensity, and for reference, the peak intensity of the (101) plane of the hexagonal graphite layer is also described.

また、六方晶系黒鉛層の(100)面のピーク強度(P1)と六方晶系黒鉛層の(002)面のピーク強度(P2)との強度比[P1/P2]、及び、菱面晶系黒鉛層の(101)面のピーク強度(P3)と六方晶系黒鉛層の(100)面のピーク強度(P1)との強度比[P3/P1]を算出したので、それらの結果も表1に併せて示す。   Further, the intensity ratio [P1 / P2] of the peak intensity (P1) of the (100) plane of the hexagonal graphite layer and the peak intensity (P2) of the (002) plane of the hexagonal graphite layer, and rhombohedral Since the intensity ratio [P3 / P1] between the peak intensity (P3) of the (101) plane of the graphite layer and the peak intensity (P1) of the (100) plane of the hexagonal graphite layer was calculated, the results are also shown in Table 1. Also shown in FIG.

表1から明らかなように、比較炭素材料xでは強度比[P3/P1]が、遠心前は1.98であり遠心後は1.84であって、遠心後に低下しているのに対して、本発明炭素材料aでは強度比[P3/P1]が、遠心前は1.12であり遠心後は1.42であって、遠心後に増加していることが認められる。これは、比較炭素材料xでは遠心前の強度比[P1/P2]が0.0028であって非常に低いのに対して、本発明炭素材料aでは遠心前の強度比[P1/P2]が0.0133であって非常に高いということに起因するものと考えられる。したがって、強度比[P3/P1]を高めるためには、遠心前の強度比[P1/P2]が0.01以上の黒鉛系炭素材料を使用する必要があることが分かる。
尚、本発明炭素材料aでは、強度比[P1/P2]が遠心後に低下しているが、未だ十分高い値であることが認められる。
As is clear from Table 1, the strength ratio [P3 / P1] of the comparative carbon material x is 1.98 before centrifugation and 1.84 after centrifugation, which is decreased after centrifugation. In the carbon material a of the present invention, the strength ratio [P3 / P1] is 1.12 before centrifugation, 1.42 after centrifugation, and increases after centrifugation. This is because the comparative carbon material x has a strength ratio [P1 / P2] before centrifugation of 0.0028, which is very low, whereas the carbon material a of the present invention has a strength ratio [P1 / P2] before centrifugation. This is considered to be due to the fact that it is 0.0133, which is very high. Therefore, it can be seen that in order to increase the strength ratio [P3 / P1], it is necessary to use a graphite-based carbon material having a strength ratio [P1 / P2] before centrifugation of 0.01 or more.
In the carbon material a of the present invention, the strength ratio [P1 / P2] decreases after centrifugation, but it is still recognized that it is a sufficiently high value.

(その他の事項)
上記最良の形態では、遠心力を加える際、遠心力を1.7×104Gとし、時間を3時間としたが、これらに限定するものではなく、遠心力を大きくして時間を短くしたり、遠心力を小さくして時間を長くしたりすることもできることは勿論である。
(Other matters)
In the above-mentioned best mode, when the centrifugal force is applied, the centrifugal force is set to 1.7 × 10 4 G and the time is set to 3 hours. However, the present invention is not limited thereto, and the time is shortened by increasing the centrifugal force. Of course, the centrifugal force can be reduced to increase the time.

本発明の製造方法により作製された黒鉛系炭素材料を非水電解質二次電池(試験セル)に適用した場合について、以下に説明する。
(実施例)
・作用極の作製
先ず、活物質としての前記最良の形態で示した遠心後の黒鉛系炭素材料aと結着剤としてのポリフッ化ビニリデン(PVdF)とを、質量比95:5の比率で混合して作用極用合剤を得た。次に、この作用極用合剤にN−メチルピロリドン(NMP)溶液を適量加えて混合することによりスラリーを調整した。次いで、このスラリーをドクターブレード法により集電体である銅箔(厚み:20μm)上に塗布した後、2cm×2cmのサイズに切り取り、更に集電タブを取り付けることにより、作用極を作製した。
The case where the graphite-based carbon material produced by the production method of the present invention is applied to a non-aqueous electrolyte secondary battery (test cell) will be described below.
(Example)
Production of working electrode First, graphite carbon material a after centrifugation shown in the above-mentioned best mode as an active material and polyvinylidene fluoride (PVdF) as a binder are mixed at a mass ratio of 95: 5. Thus, a working electrode mixture was obtained. Next, an appropriate amount of N-methylpyrrolidone (NMP) solution was added to this working electrode mixture and mixed to prepare a slurry. Next, this slurry was applied onto a copper foil (thickness: 20 μm) as a current collector by a doctor blade method, then cut into a size of 2 cm × 2 cm, and a current collecting tab was attached to prepare a working electrode.

・対極の作製
リチウム金属板を所定のサイズに切り取り、これに集電タブを取り付けることにより、対極を作製した。
-Production of counter electrode A counter electrode was produced by cutting a lithium metal plate into a predetermined size and attaching a current collecting tab thereto.

・非水電解質の調製
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを1:1の体積比で混合した電解質に、リチウム塩としてのLiPF6を1モル/リットルとなるよう溶解させることにより非水電解質を調製した。
-Preparation of non-aqueous electrolyte In an electrolyte prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1, non-aqueous electrolyte was dissolved by dissolving LiPF 6 as a lithium salt to 1 mol / liter. A water electrolyte was prepared.

・試験セルの作製
図5に示すように、不活性雰囲気下において、作用極1と、対極2とを、ポリエチレン製のセパレータ(旭化成株式会社製のハイポア)5を介して試験セル容器6内に配置し、試験セル容器6内に上記非水電解質4を注液することにより試験セルを作製した。尚、参照極3にはリチウム金属を用いた。
このようにして作製したセルを、以下、本発明セルAと称する。
-Preparation of test cell As shown in FIG. 5, under the inert atmosphere, the working electrode 1 and the counter electrode 2 are put in the test cell container 6 through the polyethylene separator (Hypore made by Asahi Kasei Co., Ltd.) 5. The test cell was produced by arranging and pouring the nonaqueous electrolyte 4 into the test cell container 6. Note that lithium metal was used for the reference electrode 3.
The cell thus produced is hereinafter referred to as the present invention cell A.

(比較例)
作用極の活物質として、遠心前の黒鉛系炭素材料aを用いる他は、上記実施例と同様にして正極を作製した。
このようにして作製したセルを、以下、比較セルYと称する。
(Comparative example)
A positive electrode was produced in the same manner as in the above example except that the graphite-based carbon material a before centrifugation was used as the active material for the working electrode.
The cell thus produced is hereinafter referred to as a comparison cell Y.

(実験)
上記本発明セルA及び比較セルYを、下記の充放電条件で充放電を1サイクル行い、活物質1gあたりの初期充電容量と初期放電容量とを調べ、これら初期充放電容量から下記(1)式にしたがって初期充放電効率を算出したので、それらの結果を表2に示す。尚、本発明セルAの充放電曲線を図6に、比較セルYの充放電曲線を図7に示す。
(Experiment)
The present invention cell A and the comparative cell Y are charged and discharged under the following charge / discharge conditions for one cycle, the initial charge capacity and the initial discharge capacity per 1 g of the active material are examined, and the following (1) Since the initial charge / discharge efficiency was calculated according to the equation, the results are shown in Table 2. In addition, the charging / discharging curve of this invention cell A is shown in FIG. 6, and the charging / discharging curve of the comparison cell Y is shown in FIG.

初期充放電効率=(初期放電容量/初期充電容量)×100(%)・・・(1) Initial charge / discharge efficiency = (initial discharge capacity / initial charge capacity) × 100 (%) (1)

[充放電条件]
・充電条件
充電電流1/5Itで電位0V(Li/Li+)まで充電した後、充電電流1/10Itで電位0V(Li/Li+)まで充電し、更に充電電流1/50Itで電位0V(Li/Li+)まで充電するという条件。
・放電条件
放電電流1/10Itで電位1.5V(Li/Li+)まで放電するという条件。
[Charging / discharging conditions]
-Charging conditions After charging to a potential of 0 V (Li / Li + ) at a charging current of 1/5 It, charging to a potential of 0 V (Li / Li + ) at a charging current of 1/10 It and further to a potential of 0 V at a charging current of 1/50 It ( Li / Li + ).
-Discharge conditions Conditions for discharging to a potential of 1.5 V (Li / Li + ) at a discharge current of 1/10 It.

表2から明らかなように、遠心後の黒鉛系炭素材料を用いた本発明セルAでは、初期充放電効率が91.2%であるのに対して、遠心前の黒鉛系炭素材料を用いた比較セルYでは、初期充放電効率が90.6%であって、本発明セルAは比較セルYより初期充放電効率が向上していることが認められる。   As is clear from Table 2, in the present invention cell A using the graphite-based carbon material after centrifugation, the initial charge / discharge efficiency was 91.2%, whereas the graphite-based carbon material before centrifugation was used. In the comparison cell Y, the initial charge / discharge efficiency is 90.6%, and it can be seen that the cell A of the present invention has an initial charge / discharge efficiency higher than that of the comparison cell Y.

これは、前述したように、遠心前より遠心後の方が、菱面晶系黒鉛層の(101)面のピーク強度(P3)と六方晶系黒鉛層の(100)面のピーク強度(P1)との強度比[P3/P1]が大きいことに起因するものと考えられる。   As described above, this is because the peak intensity (P3) of the (101) plane of the rhombohedral graphite layer and the peak intensity (P1) of the (100) plane of the hexagonal graphite layer are greater after centrifugation than before centrifugation. This is considered to be due to the fact that the intensity ratio [P3 / P1] is large.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源のみならず、電気自動車やハイブリッド自動車の車載用電源等の大型電池の負極に用いることができる。   The present invention can be used not only for driving power sources of mobile information terminals such as mobile phones, notebook personal computers, and PDAs, but also for negative electrodes of large batteries such as in-vehicle power sources for electric vehicles and hybrid vehicles.

本発明炭素材料aにおける遠心後のX線広角回折グラフである。It is a X-ray wide angle diffraction graph after centrifugation in the carbon material a of the present invention. 本発明炭素材料aにおける遠心前のX線広角回折グラフである。It is an X-ray wide angle diffraction graph before centrifugation in the carbon material a of the present invention. 比較炭素材料xにおける遠心後のX線広角回折グラフである。It is a X-ray wide angle diffraction graph after centrifugation in the comparative carbon material x. 比較炭素材料xにおける遠心前のX線広角回折グラフである。3 is an X-ray wide angle diffraction graph of a comparative carbon material x before centrifugation. 本発明の最良の形態に係る試験セルの斜視図である。It is a perspective view of the test cell which concerns on the best form of this invention. 本発明セルAの充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve of this invention cell A. FIG. 比較セルYの充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve of the comparison cell Y.

符号の説明Explanation of symbols

1:正極
2:負極
4:非水電解質

1: Positive electrode 2: Negative electrode 4: Non-aqueous electrolyte

Claims (2)

少なくとも菱面晶系黒鉛層と六方晶系黒鉛層とを有する黒鉛系炭素材料であって、六方晶系黒鉛層のX線回折法による(100)面のピーク強度(P1)と六方晶系黒鉛層のX線回折法による(002)面のピーク強度(P2)との強度比(P1/P2)が0.01以上である黒鉛系炭素材料に遠心力のみを加えて菱面晶系黒鉛層の割合を増加させることを特徴とする黒鉛系炭素材料の製造方法。 A graphite-based carbon material having at least a rhombohedral graphite layer and a hexagonal graphite layer, wherein the (100) plane peak intensity (P1) and hexagonal graphite of the hexagonal graphite layer by X-ray diffraction method A rhombohedral graphite layer obtained by applying only centrifugal force to a graphite-based carbon material having an intensity ratio (P1 / P2) of 0.01 or more with respect to the peak intensity (P2) of the (002) plane by X-ray diffraction of the layer A method for producing a graphite-based carbon material, characterized by increasing the ratio of . 前記黒鉛系炭素材料に加える遠心力が104G以上である、請求項1記載の黒鉛系炭素材料の製造方法。
The method for producing a graphite-based carbon material according to claim 1, wherein a centrifugal force applied to the graphite-based carbon material is 10 4 G or more.
JP2005091932A 2005-03-28 2005-03-28 Method for producing graphite-based carbon material Expired - Fee Related JP4738039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091932A JP4738039B2 (en) 2005-03-28 2005-03-28 Method for producing graphite-based carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091932A JP4738039B2 (en) 2005-03-28 2005-03-28 Method for producing graphite-based carbon material

Publications (2)

Publication Number Publication Date
JP2006273615A JP2006273615A (en) 2006-10-12
JP4738039B2 true JP4738039B2 (en) 2011-08-03

Family

ID=37208717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091932A Expired - Fee Related JP4738039B2 (en) 2005-03-28 2005-03-28 Method for producing graphite-based carbon material

Country Status (1)

Country Link
JP (1) JP4738039B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534000B2 (en) 2010-02-18 2014-06-25 株式会社村田製作所 Electrode active material for all solid state secondary battery and all solid state secondary battery
JP6011787B2 (en) * 2012-08-09 2016-10-19 ソニー株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM-SULFUR SECONDARY BATTERY
WO2016038692A1 (en) * 2014-09-09 2016-03-17 グラフェンプラットフォーム株式会社 Graphite-based carbon material which is used as graphene precursor, graphene dispersion and graphene composite including same, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318459A (en) * 1993-03-10 1994-11-15 Toshiba Corp Lithium secondary battery
JPH0878010A (en) * 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and its manufacture
JPH1097870A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JP2000348727A (en) * 1999-06-01 2000-12-15 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery
JP2002216754A (en) * 2001-01-17 2002-08-02 Nippon Steel Corp Negative electrode active material for lithium secondary battery and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318459A (en) * 1993-03-10 1994-11-15 Toshiba Corp Lithium secondary battery
JPH0878010A (en) * 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and its manufacture
JPH1097870A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JP2000348727A (en) * 1999-06-01 2000-12-15 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery
JP2002216754A (en) * 2001-01-17 2002-08-02 Nippon Steel Corp Negative electrode active material for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP2006273615A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP5425504B2 (en) Non-aqueous electrolyte battery
JP4739770B2 (en) Nonaqueous electrolyte secondary battery
JP4963806B2 (en) Nonaqueous electrolyte secondary battery
CN118472384A (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US20080286657A1 (en) Non-aqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
WO2015087580A1 (en) Production method for secondary battery
KR20040084761A (en) Non-Aqueous Electrolyte Secondary Battery, Positive Electrode Active Material and Method of Manufacturing the Same
KR20100106242A (en) Nonaqueous secondary battery
JP5159133B2 (en) Nonaqueous electrolyte secondary battery
KR100982599B1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
JP2008251526A (en) Nonaqueous electrolyte secondary battery, and positive electrode
JP2006216511A (en) Nonaqueous electrolyte secondary battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP4738039B2 (en) Method for producing graphite-based carbon material
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
CN109983605B (en) Negative electrode active material and method for producing same
JP2005259629A (en) Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using the electrode, and manufacturing method of the battery
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
WO2013125465A1 (en) Positive electrode active material
JP2008235148A (en) Non-aqueous electrolyte secondary battery
JP2010218834A (en) Nonaqueous electrolyte secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees