JP4963806B2 - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP4963806B2 JP4963806B2 JP2005221329A JP2005221329A JP4963806B2 JP 4963806 B2 JP4963806 B2 JP 4963806B2 JP 2005221329 A JP2005221329 A JP 2005221329A JP 2005221329 A JP2005221329 A JP 2005221329A JP 4963806 B2 JP4963806 B2 JP 4963806B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- electrolyte secondary
- nonaqueous electrolyte
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
本発明は、正極、負極および非水電解質からなる非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte.
現在、高エネルギー密度の二次電池として、非水電解質を使用し、例えばリチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が多く利用されている。 Currently, non-aqueous electrolyte secondary batteries that use a non-aqueous electrolyte as a secondary battery with a high energy density, for example, charge and discharge by moving lithium ions between the positive electrode and the negative electrode are widely used. Yes.
このような非水電解質二次電池において、一般に正極としてニッケル酸リチウム(LiNiO2 )、コバルト酸リチウム(LiCoO2 )等の層状構造を有するリチウム遷移金属複合酸化物が用いられ、負極としてリチウムの吸蔵および放出が可能な炭素材料、リチウム金属、リチウム合金等が用いられている(例えば、特許文献1参照)。 In such a non-aqueous electrolyte secondary battery, a lithium transition metal composite oxide having a layered structure such as lithium nickelate (LiNiO 2 ) or lithium cobaltate (LiCoO 2 ) is generally used as a positive electrode, and lithium is occluded as a negative electrode. In addition, carbon materials that can be released, lithium metal, lithium alloys, and the like are used (for example, see Patent Document 1).
上記非水電解質二次電池を用いることにより、150〜180mAh/gの放電容量、約4Vの電位および約260mAh/gの理論容量を得ることができる。 By using the non-aqueous electrolyte secondary battery, a discharge capacity of 150 to 180 mAh / g, a potential of about 4 V, and a theoretical capacity of about 260 mAh / g can be obtained.
また、非水電解質として、エチレンカーボネート、ジエチルカーボネート等の有機溶媒に四フッ化ホウ酸リチウム(LiBF4 )、六フッ化リン酸リチウム(LiPF6 )等の電解質塩を溶解させたものが使用されている。 In addition, a non-aqueous electrolyte in which an electrolyte salt such as lithium tetrafluoroborate (LiBF 4 ) or lithium hexafluorophosphate (LiPF 6 ) is dissolved in an organic solvent such as ethylene carbonate or diethyl carbonate is used. ing.
一方、最近では、リチウムイオンの代わりにナトリウムイオンを利用した非水電解質二次電池の研究が始められている。このナトリウムイオンを利用した非水電解質二次電池の研究例は非常に少なく、正極に亜鉄酸ナトリウム(NaFeO2 )を用い、非水電解質に過酸化物である過塩素酸ナトリウム(NaClO4 )を用いたものが提案されている(例えば、非特許文献1参照)。
しかしながら、上記従来の非水電解質二次電池の充放電反応は、ナトリウムイオンの溶解および析出により行われるため、充放電効率および充放電特性が良好でない。 However, since the charge / discharge reaction of the conventional nonaqueous electrolyte secondary battery is performed by dissolution and precipitation of sodium ions, charge / discharge efficiency and charge / discharge characteristics are not good.
また、充放電を繰り返すと、非水電解質中に樹枝状の析出物(デンドライト)が生成されやすくなる。そのため、上記デンドライトにより内部短絡が発生する場合があり、十分な安全性の確保が困難である。 Moreover, when charging and discharging are repeated, dendritic precipitates (dendrites) are likely to be generated in the nonaqueous electrolyte. Therefore, an internal short circuit may occur due to the dendrite, and it is difficult to ensure sufficient safety.
さらに、一般的に、リチウムイオンを利用した非水電解質二次電池では、リチウムイオンを吸蔵および放出することが可能な実用性の高い炭素または珪素等からなる負極が用いられるが、ナトリウムイオンを利用した非水電解質二次電池において、炭素(黒鉛)からなる負極を用いた場合には、当該負極に注入されるナトリウムイオンは少量となってしまう。その結果、良好な充放電特性が得られない。また、珪素からなる負極を用いた場合には、当該負極はナトリウムイオンを吸蔵しない。その結果、可逆的な充放電を行うことができない。 Furthermore, in general, non-aqueous electrolyte secondary batteries using lithium ions use highly practical negative electrodes made of carbon or silicon that can occlude and release lithium ions, but use sodium ions. In the nonaqueous electrolyte secondary battery, when a negative electrode made of carbon (graphite) is used, a small amount of sodium ions are injected into the negative electrode. As a result, good charge / discharge characteristics cannot be obtained. In addition, when a negative electrode made of silicon is used, the negative electrode does not occlude sodium ions. As a result, reversible charging / discharging cannot be performed.
本発明の目的は、可逆的な充放電を行うことが可能で、良好な充放電特性を得ることが可能な非水電解質二次電池を提供することである。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of performing reversible charge / discharge and capable of obtaining good charge / discharge characteristics.
本発明に係る非水電解質二次電池は、ナトリウムを吸蔵および放出可能な正極と、ナトリウムを吸蔵および放出可能な負極活物質を含む負極と、ナトリウムイオンが溶解した非水電解質とを備え、負極活物質は、X線回折法による層間距離d(002)が0.377nm以上であり、c軸方向の結晶子の大きさLcが1.29nm以下である炭素材料を単一成分または主成分として含むものである。 A nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode capable of inserting and extracting sodium, a negative electrode including a negative electrode active material capable of inserting and extracting sodium, and a nonaqueous electrolyte in which sodium ions are dissolved. The active material is composed of a carbon material having an interlayer distance d (002) of 0.377 nm or more by an X-ray diffraction method and a crystallite size Lc of c axis direction of 1.29 nm or less as a single component or a main component. Is included.
本発明に係る非水電解質二次電池においては、上記炭素材料を含む負極に対してナトリウムイオンが十分に吸蔵および放出される。それにより、可逆的な充放電を行うことができるとともに、高い初期放電容量密度および良好な充放電特性を得ることができる。 In the nonaqueous electrolyte secondary battery according to the present invention, sodium ions are sufficiently occluded and released from the negative electrode including the carbon material. Accordingly, reversible charge / discharge can be performed, and a high initial discharge capacity density and good charge / discharge characteristics can be obtained.
金属箔からなる集電体をさらに備え、負極活物質は、集電体上に形成されてもよい。この場合、負極活物質が集電体上に容易に形成される。 A current collector made of a metal foil may be further provided, and the negative electrode active material may be formed on the current collector. In this case, the negative electrode active material is easily formed on the current collector.
非水電解質は、六フッ化リン酸ナトリウムを含んでもよい。この場合、安全性が向上される。 The non-aqueous electrolyte may include sodium hexafluorophosphate. In this case, safety is improved.
非水電解質は、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類およびアミド類からなる群から選択される1種または2種以上を含んでもよい。この場合、低コスト化が図れるとともに安全性が向上される。 The non-aqueous electrolyte may contain one or more selected from the group consisting of cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles and amides. In this case, the cost can be reduced and the safety is improved.
本発明に係る非水電解質二次電池によれば、炭素材料を含む負極に対してナトリウムイオンが十分に吸蔵および放出される。それにより、可逆的な充放電を行うことが可能となり、高い初期放電容量密度および良好な充放電特性を得ることが可能となる。 According to the nonaqueous electrolyte secondary battery according to the present invention, sodium ions are sufficiently occluded and released from the negative electrode including the carbon material. Thereby, reversible charge / discharge can be performed, and a high initial discharge capacity density and good charge / discharge characteristics can be obtained.
以下、本実施の形態に係る非水電解質二次電池について図面を参照しながら説明する。 Hereinafter, the nonaqueous electrolyte secondary battery according to the present embodiment will be described with reference to the drawings.
本実施の形態に係る非水電解質二次電池は、作用極(以下、負極と称する)、対極(以下、正極と称する)および非水電解質により構成される。 The nonaqueous electrolyte secondary battery according to the present embodiment includes a working electrode (hereinafter referred to as a negative electrode), a counter electrode (hereinafter referred to as a positive electrode), and a nonaqueous electrolyte.
なお、以下に説明する各種材料および当該材料の厚さおよび濃度等は以下の記載に限定されるものではなく、適宜設定することができる。 The various materials described below and the thicknesses and concentrations of the materials are not limited to those described below, and can be set as appropriate.
(第1の実施の形態)
[負極の作製]
本実施の形態では、後述する負極活物質は、当該負極活物質の結晶子の発達度を測定する定量的な尺度として用いられる面間隔d(002)が例えば0.383nmで、c軸方向の結晶子の大きさLcが例えば1.14nmの炭素材料を単一成分または主成分として含む。
(First embodiment)
[Preparation of negative electrode]
In the present embodiment, the negative electrode active material described later has an interplanar spacing d (002) of 0.383 nm, for example, used as a quantitative measure for measuring the degree of crystallite development of the negative electrode active material, and is in the c-axis direction. A carbon material having a crystallite size Lc of, for example, 1.14 nm is included as a single component or a main component.
この炭素材料を含む負極活物質と、結着剤としてのポリアクリロニトリル(PAN)とを例えば重量比97:3で混合することにより負極材料を得る。 A negative electrode material is obtained by mixing the negative electrode active material containing the carbon material and polyacrylonitrile (PAN) as a binder, for example, in a weight ratio of 97: 3.
次いで、上記負極材料にN−メチル−2−ピロリドンを添加し、これを混練することにより負極合剤としてのスラリーを作製する。 Next, N-methyl-2-pyrrolidone is added to the negative electrode material and kneaded to prepare a slurry as a negative electrode mixture.
次に、ドクターブレード法により、上記スラリーを負極集電体である例えば厚さ11μmの銅箔上に塗布した後、乾燥させることにより負極活物質層を形成する。 Next, the slurry is applied to a negative electrode current collector, for example, a 11 μm thick copper foil by a doctor blade method, and then dried to form a negative electrode active material layer.
次いで、負極活物質層が形成された銅箔を2cm×2cmの大きさに切り取り、負極タブを取り付けることにより負極を作製する。 Next, the copper foil on which the negative electrode active material layer is formed is cut into a size of 2 cm × 2 cm, and a negative electrode is attached by attaching a negative electrode tab.
[非水電解質の作製]
非水電解質としては、非水溶媒に電解質塩を溶解させたものを用いることができる。
[Preparation of non-aqueous electrolyte]
As the non-aqueous electrolyte, an electrolyte salt dissolved in a non-aqueous solvent can be used.
非水溶媒としては、通常電池用の非水溶媒として用いられる環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等およびこれらの組合せからなるものが挙げられる。 Examples of non-aqueous solvents include cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides, and the like, which are usually used as non-aqueous solvents for batteries. Is mentioned.
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられ、これらの水素基の一部または全部がフッ素化されているものも用いることが可能で、例えば、トリフルオロプロピレンカーボネート、フルオロエチルカーボネート等が挙げられる。 Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, etc., and those in which some or all of these hydrogen groups are fluorinated can be used. For example, trifluoropropylene carbonate, fluoro Examples include ethyl carbonate.
鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等が挙げられ、これらの水素基の一部または全部がフッ素化されているものも用いることが可能である。 Examples of the chain carbonic acid ester include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, and the like. Some of these hydrogen groups are fluorinated. It is possible to use.
エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等が挙げられる。環状エーテル類としては、1,3−ジオキソラン、4−メチル−1、3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等が挙げられる。 Examples of the esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone. Examples of cyclic ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3,5. -Trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, etc. are mentioned.
鎖状エーテル類としては、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等が挙げられる。 As chain ethers, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl Ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1 -Dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethy Glycol dimethyl and the like.
ニトリル類としては、アセトニトリル等が挙げられ、アミド類としては、ジメチルホルムアミド等が挙げられる。 Nitriles include acetonitrile and the like, and amides include dimethylformamide and the like.
電解質塩としては、例えば六フッ化リン酸ナトリウム(NaPF6 )、四フッ化ホウ酸ナトリウム(NaBF4 )、NaCF3 SO3 、NaBeTi等の非水溶媒に可溶な過酸化物でない安全性の高いものを用いる。なお、上記の電解質塩のうち1種を用いてもよく、あるいは2種以上を組み合わせて用いてもよい。 Examples of electrolyte salts include non-peroxides that are soluble in nonaqueous solvents such as sodium hexafluorophosphate (NaPF 6 ), sodium tetrafluoroborate (NaBF 4 ), NaCF 3 SO 3 , and NaBeTi. Use expensive ones. In addition, 1 type may be used among said electrolyte salt, and may be used in combination of 2 or more type.
本実施の形態では、非水電解質として、エチレンカーボネートとジエチルカーボネートとを体積比50:50の割合で混合した非水溶媒に、電解質塩としての六フッ化リン酸ナトリウムを1mol/lの濃度になるように添加したものを用いる。 In the present embodiment, as a nonaqueous electrolyte, a nonaqueous solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 50:50, and sodium hexafluorophosphate as an electrolyte salt to a concentration of 1 mol / l. The one added so as to be used.
[非水電解質二次電池の作製]
上記のように作製した負極、非水電解質、正極および参照極を用いて、以下に示すような非水電解質二次電池を作製する。
[Preparation of non-aqueous electrolyte secondary battery]
Using the negative electrode, nonaqueous electrolyte, positive electrode and reference electrode prepared as described above, a nonaqueous electrolyte secondary battery as shown below is prepared.
図1は、本実施の形態に係る非水電解質二次電池の試験セルの概略説明図である。 FIG. 1 is a schematic explanatory diagram of a test cell of a nonaqueous electrolyte secondary battery according to the present embodiment.
図1に示すように、不活性雰囲気下において、上記負極(作用極)1にリードを取り付けるとともに、ナトリウム金属からなる正極2にリードを取り付ける。なお、ナトリウム金属からなる正極(対極)2の代わりに、ナトリウムイオンを吸蔵および放出することが可能なNaMnO2 等の材料を含む正極2を用いてもよい。
As shown in FIG. 1, in an inert atmosphere, a lead is attached to the negative electrode (working electrode) 1 and a lead is attached to the
次に、負極1と正極2との間にセパレータ4を挿入し、セル容器10内に負極1、正極2およびナトリウム金属からなる参照極3を配置する。そして、セル容器10内に上記非水電解質5を注入することにより試験セルとしての非水電解質二次電池を作製する。
Next, the
(第2の実施の形態)
本実施の形態では、負極活物質として、面間隔d(002)が例えば0.377nmで、c軸方向の結晶子の大きさLcが例えば1.29nmの炭素材料を用いる点を除いて、上記第1の実施の形態と同様に負極1および非水電解質二次電池を作製する。
(Second Embodiment)
In the present embodiment, as the negative electrode active material, a carbon material having an interplanar spacing d (002) of, for example, 0.377 nm and a c-axis direction crystallite size Lc of, for example, 1.29 nm is used. Similarly to the first embodiment, the
(第1および第2の実施の形態における効果)
第1および第2の実施の形態では、炭素材料を含む負極1に対してナトリウムイオンが十分に吸蔵および放出される。
(Effects of the first and second embodiments)
In the first and second embodiments, sodium ions are sufficiently occluded and released from the
また、負極活物質として、0.377nm以上の面間隔d(002)を有するとともに、1.29nm以下のc軸方向の結晶子の大きさLcを有する炭素材料を用いることにより、可逆的な充放電を行うことができるとともに、高い初期放電容量密度および良好な充放電特性を得ることが可能となる。 Further, as a negative electrode active material, a carbon material having a face spacing d (002) of 0.377 nm or more and a crystallite size Lc in the c-axis direction of 1.29 nm or less is used, so that reversible charging is achieved. Discharge can be performed, and high initial discharge capacity density and good charge / discharge characteristics can be obtained.
(実施例1)
上述の第1の実施の形態に基づいて作製した非水電解質二次電池の充放電特性を調べた。
Example 1
The charge / discharge characteristics of the nonaqueous electrolyte secondary battery produced based on the first embodiment described above were examined.
作製した上記非水電解質二次電池において、0.6mAの定電流で参照極3を基準とする負極1の電位が0Vに達するまで充電を行った。その後、0.6mAの定電流で、参照極3を基準とする負極1の電位が1.0Vに達するまで放電を行うことにより充放電特性を調べた。
In the produced non-aqueous electrolyte secondary battery, charging was performed at a constant current of 0.6 mA until the potential of the
(実施例2)
上述の第2の実施の形態に基づいて作製した非水電解質二次電池の充放電特性を調べた。
(Example 2)
The charge / discharge characteristics of the nonaqueous electrolyte secondary battery produced based on the second embodiment described above were examined.
作製した上記非水電解質二次電池において、0.6mAの定電流で参照極3を基準とする負極1の電位が0Vに達するまで充電を行った。その後、0.6mAの定電流で、参照極3を基準とする負極1の電位が1.0Vに達するまで放電を行うことにより充放電特性を調べた。
In the produced non-aqueous electrolyte secondary battery, charging was performed at a constant current of 0.6 mA until the potential of the
(比較例1)
比較例1では、負極活物質として、面間隔d(002)が0.348nmで、c軸方向の結晶子の大きさLcが1.20nmの炭素材料を用いた点を除いて、上記実施例1と同様に負極1および非水電解質二次電池を作製した。
(Comparative Example 1)
In Comparative Example 1, the above example was used except that a carbon material having an interplanar spacing d (002) of 0.348 nm and a c-axis direction crystallite size Lc of 1.20 nm was used as the negative electrode active material. In the same manner as in Example 1, a
作製した上記非水電解質二次電池において、0.6mAの定電流で参照極3を基準とする負極1の電位が0Vに達するまで充電を行った。その後、0.6mAの定電流で、参照極3を基準とする負極1の電位が1.0Vに達するまで放電を行うことにより充放電特性を調べた。
In the produced non-aqueous electrolyte secondary battery, charging was performed at a constant current of 0.6 mA until the potential of the
(比較例2)
比較例2では、負極活物質として、面間隔d(002)が0.346nmで、c軸方向の結晶子の大きさLcが4.67nmの炭素材料を用いた点を除いて、上記実施例1と同様に負極1および非水電解質二次電池を作製した。
(Comparative Example 2)
In Comparative Example 2, the above example was used except that a carbon material having an interplanar spacing d (002) of 0.346 nm and a crystallite size Lc of 4.67 nm in the c-axis direction was used as the negative electrode active material. In the same manner as in Example 1, a
作製した上記非水電解質二次電池において、0.6mAの定電流で参照極3を基準とする負極1の電位が0Vに達するまで充電を行った。その後、0.6mAの定電流で、参照極3を基準とする負極1の電位が1.0Vに達するまで放電を行うことにより充放電特性を調べた。
In the produced non-aqueous electrolyte secondary battery, charging was performed at a constant current of 0.6 mA until the potential of the
(実施例1,2および比較例1,2の評価)
図2は、実施例1、実施例2および比較例2の非水電解質二次電池の初期放電特性を示したグラフである。なお、実施例1,2および比較例1,2における負極活物質の面間隔d(002)およびc軸方向の結晶子の大きさLc、ならびに各非水電解質二次電池の初期放電容量密度を表1に示す。
(Evaluation of Examples 1 and 2 and Comparative Examples 1 and 2)
FIG. 2 is a graph showing initial discharge characteristics of the nonaqueous electrolyte secondary batteries of Example 1, Example 2, and Comparative Example 2. In addition, the interplanar spacing d (002) of the negative electrode active material in Examples 1 and 2 and Comparative Examples 1 and 2, the crystallite size Lc in the c-axis direction, and the initial discharge capacity density of each nonaqueous electrolyte secondary battery Table 1 shows.
図2および表1に示すように、実施例1および実施例2の非水電解質二次電池では、それぞれ初期放電容量密度が約234mAh/g,約190mAh/gという高い初期放電容量密度を得ることができた。また、2サイクル以降においても可逆的な充放電が可能であり、良好な充放電特性を得ることができた。 As shown in FIG. 2 and Table 1, in the nonaqueous electrolyte secondary batteries of Example 1 and Example 2, high initial discharge capacity densities of about 234 mAh / g and about 190 mAh / g are obtained, respectively. I was able to. Moreover, reversible charging / discharging was possible after 2 cycles, and good charging / discharging characteristics could be obtained.
一方、比較例1の非水電解質二次電池では、全く放電を行うことができなかった。また、比較例2の非水電解質二次電池では、初期放電容量密度が約63mAとなり、低い初期放電容量密度となった。 On the other hand, the nonaqueous electrolyte secondary battery of Comparative Example 1 could not be discharged at all. Moreover, in the nonaqueous electrolyte secondary battery of Comparative Example 2, the initial discharge capacity density was about 63 mA, which was a low initial discharge capacity density.
これらの結果より、負極活物質として、0.377nm以上の面間隔d(002)を有するとともに、1.29nm以下のc軸方向の結晶子の大きさLcを有する炭素材料を用いることにより、可逆的な充放電を行うことができるとともに、高い初期放電容量密度および良好な充放電特性が得られることがわかった。 From these results, it is possible to reversibly use a carbon material having an interplanar spacing d (002) of 0.377 nm or more and a crystallite size Lc in the c-axis direction of 1.29 nm or less as the negative electrode active material. It was found that a high initial discharge capacity density and good charge / discharge characteristics can be obtained.
本発明に係る非水電解質二次電池は、携帯用電源および自動車用電源等の種々の電源として利用することができる。 The nonaqueous electrolyte secondary battery according to the present invention can be used as various power sources such as a portable power source and an automotive power source.
1 負極(作用極)
2 正極(対極)
3 参照極
4 セパレータ
5 非水電解質
10 セル容器
1 Negative electrode (working electrode)
2 Positive electrode (counter electrode)
3
Claims (4)
ナトリウムを吸蔵および放出可能な負極活物質を含む負極と、
ナトリウムイオンが溶解した非水電解質とを備え、
前記負極活物質は、X線回折法による層間距離d(002)が0.377nm以上であり、c軸方向の結晶子の大きさLcが1.29nm以下である炭素材料を単一成分または主成分として含むことを特徴とする非水電解質二次電池。 A positive electrode capable of occluding and releasing sodium;
A negative electrode containing a negative electrode active material capable of occluding and releasing sodium;
A non-aqueous electrolyte in which sodium ions are dissolved,
The negative electrode active material is a single component or a main component of a carbon material having an interlayer distance d (002) by an X-ray diffraction method of 0.377 nm or more and a crystallite size Lc in the c-axis direction of 1.29 nm or less. A non-aqueous electrolyte secondary battery comprising as a component.
前記負極活物質は、前記集電体上に形成されたことを特徴とする請求項1記載の非水電解質二次電池。 A current collector made of metal foil;
The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is formed on the current collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005221329A JP4963806B2 (en) | 2005-07-29 | 2005-07-29 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005221329A JP4963806B2 (en) | 2005-07-29 | 2005-07-29 | Nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007035588A JP2007035588A (en) | 2007-02-08 |
JP4963806B2 true JP4963806B2 (en) | 2012-06-27 |
Family
ID=37794568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005221329A Active JP4963806B2 (en) | 2005-07-29 | 2005-07-29 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4963806B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5174439B2 (en) * | 2007-11-26 | 2013-04-03 | 国立大学法人九州大学 | Sodium ion secondary battery and negative electrode active material for sodium ion secondary battery |
CN101933179B (en) | 2008-02-04 | 2014-05-28 | 住友化学株式会社 | Composite metal oxide and sodium rechargeable battery |
WO2009099068A1 (en) * | 2008-02-04 | 2009-08-13 | Sumitomo Chemical Company, Limited | Sodium rechargeable battery |
US10122014B2 (en) | 2008-02-04 | 2018-11-06 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
JP5309581B2 (en) | 2008-02-04 | 2013-10-09 | 住友化学株式会社 | Powder for positive electrode active material, positive electrode active material and sodium secondary battery |
JP2009224320A (en) * | 2008-02-18 | 2009-10-01 | Sumitomo Chemical Co Ltd | Sodium secondary battery |
JP5463772B2 (en) | 2008-07-30 | 2014-04-09 | 住友化学株式会社 | Sodium secondary battery |
KR101635850B1 (en) | 2009-03-27 | 2016-07-04 | 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 | Sodium ion secondary battery |
JP2013137907A (en) * | 2011-12-28 | 2013-07-11 | Toyota Motor Corp | Negative electrode active material for sodium ion battery and sodium ion battery |
JP2013157221A (en) | 2012-01-30 | 2013-08-15 | Dow Corning Toray Co Ltd | Silicon-containing carbon-based composite material |
WO2014188722A1 (en) | 2013-05-22 | 2014-11-27 | パナソニックIpマネジメント株式会社 | Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery |
US9825297B2 (en) | 2013-05-22 | 2017-11-21 | Panasonic Intellectual Property Management Co., Ltd. | Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery |
CN108140832A (en) | 2015-09-30 | 2018-06-08 | 株式会社可乐丽 | Sodium ion secondary battery carbonaceous anode material and use its sodium ion secondary battery |
JP6986956B2 (en) * | 2017-12-27 | 2021-12-22 | 旭カーボン株式会社 | Negative electrode active material for sodium ion secondary battery and sodium ion secondary battery using this |
KR20210060754A (en) | 2019-11-19 | 2021-05-27 | 경상국립대학교산학협력단 | Carbonaceous materials for lithium ion battery anodes using biomass, method for preparing thereof, and lithium ion battery using thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02227968A (en) * | 1989-02-28 | 1990-09-11 | Showa Denko Kk | Secondary battery |
JP3033840B2 (en) * | 1990-11-07 | 2000-04-17 | 昭和電工株式会社 | Rechargeable battery |
JPH0927317A (en) * | 1994-06-24 | 1997-01-28 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and manufacture of its negative electrode |
JP2000156222A (en) * | 1999-01-01 | 2000-06-06 | Showa Denko Kk | Secondary battery |
CA2442257C (en) * | 2001-04-06 | 2013-01-08 | Valence Technology, Inc. | Sodium ion batteries |
-
2005
- 2005-07-29 JP JP2005221329A patent/JP4963806B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007035588A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4963806B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5142544B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5127706B2 (en) | High voltage rechargeable non-aqueous electrolyte secondary battery | |
JP4739770B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5247196B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4404564B2 (en) | Non-aqueous electrolyte secondary battery, positive electrode active material | |
JP5260850B2 (en) | Non-aqueous electrolyte secondary battery, positive electrode and method for producing positive electrode | |
JP2007234512A (en) | Nonaqueous electrolyte secondary battery | |
WO2006082719A1 (en) | Positive electrode and nonaqueous electrolyte secondary battery | |
JP2007123251A (en) | Nonaqueous electrolyte secondary battery | |
US8852799B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2008091041A (en) | Nonaqueous secondary battery | |
JP5089028B2 (en) | Sodium secondary battery | |
KR100982599B1 (en) | Positive electrode and nonaqueous electrolyte secondary battery | |
JP2008235150A (en) | Non-aqueous electrolyte secondary battery | |
JP2008071702A (en) | Nonaqueous electrolyte secondary battery, and its manufacturing method | |
JP2006216511A (en) | Nonaqueous electrolyte secondary battery | |
JP4573098B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2006032143A (en) | Non-aqueous electrolyte secondary battery | |
JP2006278078A (en) | Positive electrode and non-aqueous electrolyte secondary battery | |
JP2007123236A (en) | Electrode for nonaqueous electrolyte secondary battery and nonaqueous secondary battery | |
JP4738039B2 (en) | Method for producing graphite-based carbon material | |
JP2008084766A (en) | Non-aqueous electrolyte secondary battery | |
JP2014110122A (en) | Nonaqueous electrolytic secondary battery | |
JP2009245866A (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120327 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4963806 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150406 Year of fee payment: 3 |