JPH0878010A - Negative electrode for nonaqueous electrolyte secondary battery and its manufacture - Google Patents
Negative electrode for nonaqueous electrolyte secondary battery and its manufactureInfo
- Publication number
- JPH0878010A JPH0878010A JP6211512A JP21151294A JPH0878010A JP H0878010 A JPH0878010 A JP H0878010A JP 6211512 A JP6211512 A JP 6211512A JP 21151294 A JP21151294 A JP 21151294A JP H0878010 A JPH0878010 A JP H0878010A
- Authority
- JP
- Japan
- Prior art keywords
- angstroms
- negative electrode
- carbon material
- angle diffraction
- ray wide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭素材料を用いた非水
電解質二次電池用負極およびその製造方法の改良に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery using a carbon material and an improvement in its manufacturing method.
【0002】[0002]
【従来の技術】リチウムを負極とする非水電解質二次電
池は、起電力が高く、従来のニッケルーカドミウム蓄電
池や鉛蓄電池に較べ高エネルギー密度になると期待さ
れ、多くの研究がなされている。しかし、金属状のリチ
ウムを負極に用いると、充電時にデンドライトが発生
し、短絡を起こしやすく信頼性の低い電池となる。この
問題を解決するために、Liとアルミニウム、鉛との合
金負極を用いることが検討された。これら合金負極を用
いると、充電によりLiは負極合金中に吸蔵され、デン
ドライトの発生がなく、信頼性の高い電池となる。しか
し、合金負極の放電電位は金属Liに比べ約0.5V貴
であるため、電池の電圧も0.5V低下し、これにより
電池のエネルギー密度も低下する。2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium as a negative electrode have high electromotive force and are expected to have higher energy density than conventional nickel-cadmium storage batteries and lead storage batteries, and many studies have been conducted. However, when metallic lithium is used for the negative electrode, a dendrite is generated during charging, a short circuit is likely to occur, and the battery has low reliability. In order to solve this problem, the use of an alloy negative electrode of Li, aluminum, and lead was studied. When these alloy negative electrodes are used, Li is occluded in the negative electrode alloy by charging, and dendrite is not generated, so that the battery has high reliability. However, since the discharge potential of the alloy negative electrode is about 0.5 V more noble than that of metallic Li, the voltage of the battery also drops by 0.5 V, which also reduces the energy density of the battery.
【0003】一方、黒鉛などの炭素材料とLiの層間化
合物を負極活物質とする研究も活発になされている。こ
の化合物負極においても、充電によりLiは炭素材料の
層間に入りデンドライトは発生しない。放電電位は金属
Liに較べ約0.1〜0.3V貴であるにすぎないか
ら、電池電圧の低下も小さい。これにより、より好まし
い負極と言える。通常、炭素質材料は有機物を不活性雰
囲中でおよそ400〜3000℃の加熱により分解し、
炭素化、さらには黒鉛化を行うことにより得られる。炭
素質材料の出発原料はほとんどの場合に有機物であり、
炭素化工程である1500℃付近までの加熱により、ほ
とんど炭素原子のみが残り、3000℃近い高温までの
加熱により黒鉛構造を発達させる。この有機物原料とし
ては、液相ではピッチ、コ−ルタ−ルあるいはコ−クス
とピッチの混合物などが用いられ、固相では木質原料、
フラン樹脂、セルロ−ス、ポリアクリロニトリル、レ−
ヨンなどが用いられる。また、気相では、メタン、プロ
パンなどの炭化水素ガスが用いられている。[0003] On the other hand, researches using an intercalation compound of a carbon material such as graphite and Li as a negative electrode active material have been actively conducted. Also in this compound negative electrode, Li enters the interlayer of the carbon material due to charging, and dendrite is not generated. The discharge potential is only about 0.1 to 0.3 V more noble than that of metallic Li, so the decrease in battery voltage is small. This can be said to be a more preferable negative electrode. Usually, carbonaceous materials decompose organic matter by heating at about 400 to 3000 ° C. in an inert atmosphere,
It can be obtained by carbonization and then graphitization. The starting material for carbonaceous materials is almost always organic,
By heating up to around 1500 ° C. which is a carbonization step, almost only carbon atoms remain and heating up to a high temperature near 3000 ° C. develops a graphite structure. As the organic raw material, in the liquid phase, pitch, coulter or a mixture of coke and pitch is used, and in the solid phase, a wood raw material,
Furan resin, Cellulose, Polyacrylonitrile, Ray
Yeon is used. In the gas phase, hydrocarbon gas such as methane and propane is used.
【0004】これまでに、石油ピッチなどを出発原料と
し、一般的には2000℃以上の高温で焼成し、発達し
たグラファイト構造を有する、いわゆる易黒鉛化炭素材
料や、フラン樹脂を始めとする熱硬化性樹脂を出発原料
として、2000℃以下の比較的低温で焼成し、乱層構
造を有する、いわゆる難黒鉛化炭素材料を、リチウムを
吸蔵、放出させる非水電解質二次電池用負極材料として
用いる試みがなされている。本発明者らは、リチウム二
次電池用負極としてより優れた炭素材料を見いだすべく
詳細に検討した結果、X線広角回折法による(002)
面の面間隔が3.40オングストローム以下で、c軸方
向の結晶子の大きさ(Lc)が100オングストローム
以上の結晶性を有する炭素材料が、充放電容量が大き
く、密度が高く、サイクル特性にも優れたものであるこ
とを見いだした。すなわち、比較的、黒鉛結晶に近い炭
素材料あるいは黒鉛材料がリチウム二次電池用負極とし
てより望ましいことが明らかになった。[0004] So far, a so-called easily graphitizable carbon material having a developed graphite structure, which is generally burned at a high temperature of 2000 ° C or more, using petroleum pitch as a starting material, or a heat such as a furan resin is used. Using a curable resin as a starting material, a so-called non-graphitizable carbon material having a turbostratic structure that is fired at a relatively low temperature of 2000 ° C. or less is used as a negative electrode material for a non-aqueous electrolyte secondary battery that occludes and releases lithium. Attempts are being made. The inventors of the present invention have studied in detail to find out a better carbon material as a negative electrode for a lithium secondary battery, and as a result, (002)
A carbon material having crystallinity in which the interplanar spacing is 3.40 angstroms or less and the crystallite size (Lc) in the c-axis direction is 100 angstroms or more has high charge / discharge capacity, high density, and excellent cycle characteristics. Also found it to be excellent. That is, it has been clarified that a carbon material or a graphite material that is relatively close to a graphite crystal is more desirable as a negative electrode for a lithium secondary battery.
【0005】[0005]
【発明が解決しようとする課題】しかし、この黒鉛など
の炭素材料とLiの層間化合物を負極活物質とした場合
にも大きい問題があった。充電でLiが層間に入れるの
は、理論上、最高でC6Liであり、その場合の電気容
量は372Ah/kgであるにもかかわらず、通常の電
池の充放電では負極の電気容量は230Ah/kg程度
と小さい値にとどまっているのが現状である。However, there has been a serious problem when the carbon material such as graphite and the intercalation compound of Li are used as the negative electrode active material. Theoretically, the maximum amount of Li that can enter between layers during charging is C 6 Li, and although the electric capacity in that case is 372 Ah / kg, the electric capacity of the negative electrode is 230 Ah during normal battery charging / discharging. At present, the value is only as small as about / kg.
【0006】上記の結晶構造を示す炭素材料は、その高
い結晶性のため炭素六角網平面積層が比較的に規則正し
いものであり、負極成型時に六角網平面が選択的に配向
しやすい状態となる。この場合、充放電時のリチウムの
侵入や脱離に際しての特異な方向性が存在し、充放電容
量が大きい結晶構造を持っているにもかかわらず、その
高い配向性が原因となって、充放電しにくい負極とな
る。すなわち、例えば充電でLiが対極側から接近し、
炭素の六角網平面層間に侵入する際、炭素結晶のa軸が
Liの進行方向と垂直に近い状態で配向しているので、
Liが層間へ侵入しにくく、その結果、充放電容量が小
さく、急速充放電性能が低く、充放電サイクルによる容
量低下の大きな電池となる。The carbon material having the above crystal structure has a relatively regular carbon hexagonal net plane lamination due to its high crystallinity, and the hexagonal net plane is easily orientated selectively at the time of molding the negative electrode. In this case, there is a peculiar directionality in the invasion and desorption of lithium during charging / discharging, and even though it has a crystal structure with a large charging / discharging capacity, its high orientation causes the charging / discharging. It becomes a negative electrode that is difficult to discharge. That is, for example, Li approaches from the opposite side by charging,
When penetrating between the hexagonal plane layers of carbon, the a-axis of the carbon crystal is oriented so as to be nearly perpendicular to the traveling direction of Li.
Li hardly penetrates into the layers, and as a result, the battery has a small charge / discharge capacity, low rapid charge / discharge performance, and a large capacity reduction due to charge / discharge cycles.
【0007】[0007]
【課題を解決するための手段】本発明の非水電解質二次
電池用負極は、Cu−Kα線源によるX線広角回折法に
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料を含む成型体からなり、
その成型体のCu−Kα線源によるX線広角回折図形に
おける(100)面ピ−ク強度の(002)面ピ−ク強
度に対する比が0.5/100から2.5/100の範
囲にある。The negative electrode for a non-aqueous electrolyte secondary battery of the present invention has a (002) plane spacing of 3.40 angstroms or less in the X-ray wide-angle diffraction method using a Cu-Kα radiation source and a c-axis. The crystallite size in the direction (Lc) is 100 angstroms or more
The ratio of the (100) plane peak intensity to the (002) plane peak intensity in the X-ray wide-angle diffraction pattern by the Cu-Kα radiation source of the molded body was in the range of 0.5 / 100 to 2.5 / 100. is there.
【0008】また、本発明の非水電解質二次電池用負極
は、Cu−Kα線源によるX線広角回折法における(0
02)面の面間隔が3.40オングストローム以下でc
軸方向の結晶子の大きさ(Lc)が100オングストロ
ーム以上の炭素材料と、Cu−Kα線源によるX線広角
回折法における(002)面の面間隔が3.43〜3.
90オングストロームでc軸方向の結晶子の大きさ(L
c)が1〜50オングストロームの炭素材料とを含有す
る。The negative electrode for a non-aqueous electrolyte secondary battery of the present invention is (0) in the X-ray wide-angle diffraction method using a Cu-Kα radiation source.
02) surface spacing is 3.40 angstroms or less c
A carbon material having a crystallite size (Lc) in the axial direction of 100 angstroms or more and a (002) plane spacing of 3.43 to 3.
The size of the crystallite in the c-axis direction at 90 Å (L
c) contains a carbon material having a thickness of 1 to 50 angstroms.
【0009】さらに、本発明の非水電解質二次電池用負
極は、Cu−Kα線源によるX線広角回折法における
(002)面の面間隔が3.40オングストローム以下
でc軸方向の結晶子の大きさ(Lc)が100オングス
トローム以上の炭素材料と、Cu−Kα線源によるX線
広角回折法における(002)面の面間隔が3.43〜
3.90オングストロームでc軸方向の結晶子の大きさ
(Lc)が1〜50オングストロームの炭素材料とを含
有する成型体からなり、その成型体のCu−Kα線源に
よるX線広角回折図形における(100)面ピ−ク強度
の(002)面ピ−ク強度に対する比が0.5/100
から2.5/100の範囲にある。ここで、Cu−Kα
線源によるX線広角回折法における(002)面の面間
隔が3.40オングストローム以下でc軸方向の結晶子
の大きさ(Lc)が100オングストローム以上の炭素
材料の含有量をWA、Cu−Kα線源によるX線広角回
折法における(002)面の面間隔が3.43〜3.9
0オングストロームでc軸方向の結晶子の大きさ(L
c)が1〜50オングストロームの炭素材料の含有量を
WBとしたとき、WB/(WA+WB)が20/100〜5
0/100であることが好ましい。Furthermore, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention has a (002) plane spacing of 3.40 angstroms or less in the X-ray wide-angle diffraction method using a Cu-Kα radiation source and a crystallite in the c-axis direction. Of a carbon material having a size (Lc) of 100 angstroms or more and a (002) plane in an X-ray wide-angle diffraction method using a Cu-Kα radiation source has a surface spacing of 3.43 to
A molded body containing a carbon material having a crystallite size (Lc) in the c-axis direction of 3.90 angstroms of 1 to 50 angstroms, and the molded body in an X-ray wide-angle diffraction pattern by a Cu-Kα radiation source. The ratio of the (100) plane peak strength to the (002) plane peak strength is 0.5 / 100.
To 2.5 / 100. Here, Cu-Kα
In the X-ray wide-angle diffraction method using a radiation source, the content of the carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more is W A , Cu. -The (002) plane spacing in the X-ray wide-angle diffraction method using a Kα radiation source is 3.43 to 3.9.
The crystallite size in the c-axis direction at 0 angstrom (L
c) is 1 to 50 Å, and W B is the content of the carbon material, W B / (W A + W B ) is 20/100 to 5
It is preferably 0/100.
【0010】本発明の非水電解質二次電池用負極の製造
方法は、Cu−Kα線源によるX線広角回折法における
(002)面の面間隔が3.40オングストローム以下
でc軸方向の結晶子の大きさ(Lc)が100オングス
トローム以上の炭素材料と炭素材料の10〜50重量%
の水を含むペ−スト状混合物を負極集電体表面に形成す
る工程と、これを加熱する工程とを有する。また、本発
明の非水電解質二次電池用負極の製造方法は、Cu−K
α線源によるX線広角回折法における(002)面の面
間隔が3.40オングストローム以下でc軸方向の結晶
子の大きさ(Lc)が100オングストローム以上の炭
素材料と炭素材料の10〜30重量%の有機溶媒を含む
ペ−スト状混合物を負極集電体表面に形成する工程と、
これを加熱する工程とを有する。The method for producing a negative electrode for a non-aqueous electrolyte secondary battery of the present invention is a crystal in the c-axis direction when the (002) plane spacing in the X-ray wide-angle diffraction method using a Cu-Kα radiation source is 3.40 angstroms or less. Carbon material having a child size (Lc) of 100 angstroms or more and 10 to 50% by weight of the carbon material
Forming a paste-like mixture containing water on the surface of the negative electrode current collector, and heating the mixture. The method for producing the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is Cu-K.
10 to 30 of the carbon material and the carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using an α-ray source. Forming a paste-like mixture containing a weight% of an organic solvent on the negative electrode current collector surface;
And heating this.
【0011】[0011]
【作用】本発明による負極は、大きな放電容量を有し、
充放電サイクルによる容量低下が抑制される。その機構
は次のように考えられる。炭素の六角網平面の選択的配
向性の指標となるのが成型体のX線広角回折図形におけ
る(002)面ピ−ク強度に対する(100)面ピ−ク
強度の比である。すなわち、炭素材料のa軸配向に対す
るc軸配向の強さの程度を表すものと考えることができ
る。(100)面ピ−ク強度の(002)面ピ−ク強度
に対する比が0.5/100から2.5/100の範囲
である場合に、充放電時のリチウムの侵入や脱離に際し
ての実質的な弊害となるような特異な配向性でないこと
を見いだした。その結果、一層、理論電気容量に近い高
容量の負極となる。The negative electrode according to the present invention has a large discharge capacity,
The capacity decrease due to charge / discharge cycles is suppressed. The mechanism is considered as follows. The ratio of the (100) plane peak intensity to the (002) plane peak intensity in the X-ray wide-angle diffraction pattern of the molded product is an index of the selective orientation of the carbon hexagonal net plane. That is, it can be considered to represent the degree of strength of the c-axis orientation with respect to the a-axis orientation of the carbon material. When the ratio of the (100) plane peak strength to the (002) plane peak strength is in the range of 0.5 / 100 to 2.5 / 100, when lithium invades or desorbs during charge / discharge, It has been found that the orientation is not a peculiar orientation that causes a substantial adverse effect. As a result, the negative electrode has a high capacity that is closer to the theoretical electric capacity.
【0012】[0012]
【実施例】以下、本発明の実施例を説明する。 [実施例1]まず、用いた負極材料の結晶構造について
説明する。炭素質材料は、X線広角回折法による(00
2)面の面間隔が3.40オングストローム、c軸方向
の結晶子の大きさ(Lc)が100オングストロームの
人造黒鉛である。Embodiments of the present invention will be described below. Example 1 First, the crystal structure of the negative electrode material used will be described. The carbonaceous material is (00
2) Artificial graphite having a surface spacing of 3.40 angstroms and a crystallite size (Lc) in the c-axis direction of 100 angstroms.
【0013】この炭素質材料の電極としての特性を検討
するため、図1に示す試験セルを作った。炭素質材料1
0gに対して結着剤としてポリエチレン粉末1gを混合
し、さらに種々の配向性を持つ成型体を得る手段とし
て、石油コ−クスを表1に示す各所定量を添加し、合剤
とした。なお、電極中の石油コ−クス重量と人造黒鉛重
量の和に対する石油コ−クス重量を百分率で表したもの
を石油コークス添加量(wt%)とした。各合剤0.1
gを直径17.5mmの円盤状に加圧成型して炭素電極
とした。これらの成型体のX線広角回折図形における
(100)面ピ−ク強度の(002)面ピ−ク強度に対
する比は、表1に示すとおり、0.1/100から3.
0/100の範囲であった。In order to study the characteristics of this carbonaceous material as an electrode, a test cell shown in FIG. 1 was made. Carbonaceous material 1
1 g of polyethylene powder as a binder was mixed with 0 g, and as a means for obtaining molded products having various orientations, petroleum coke was added to each predetermined amount shown in Table 1 to obtain a mixture. The amount of petroleum coke added to the sum of the weight of petroleum coke in the electrode and the weight of artificial graphite was expressed as a percentage, and the amount of petroleum coke added (wt%) was used. Each mixture 0.1
g was pressure-molded into a disk shape having a diameter of 17.5 mm to obtain a carbon electrode. As shown in Table 1, the ratio of the (100) plane peak intensity to the (002) plane peak intensity in the X-ray wide-angle diffraction pattern of these molded products was from 0.1 / 100 to 3.
The range was 0/100.
【0014】図1の試験セルの構成は次のとおりであ
る。上記の炭素電極1を電池ケース2の中央に配し、そ
の上に微孔性ポリプロピレンからなるセパレータ3を配
してある。非水電解質として、エチレンカーボネートと
ジメトキシエタンとの体積比1:1の混合溶媒に1モル
/lの過塩素酸リチウム(LiClO4)を溶解した溶
液を用い、セパレータ上に注液した後、内側に直径1
7.5mmの円盤状金属リチウム4を張り付け、外周部
にポリプロピレンガスケット5を付けた封口板6で封口
したものである。上記の試験セルについて、まず0.5
mAの定電流で、炭素電極がLi対極に対して0Vにな
るまでカソード分極(炭素電極を負極として見る場合に
は充電に相当)し、次に電極が1.0Vになるまでアノ
ード分極(放電に相当)した。このカソード分極、アノ
ード分極を10回繰り返し、10サイクル目の容量を初
期容量とした。なお、容量は炭素重量当たりで評価し
た。さらに、次のような急速充放電試験を行った。急速
充放電試験条件は4.0mAの定電流とし、上記と同様
に炭素電極がLi対極に対して0Vになるまでのカソー
ド分極と、1.0Vになるまでのアノード分極を行い、
容量を測定した。この時の容量を急速充放電容量とし
た。なお、容量は炭素重量当たりで評価した。さらに、
充放電サイクル試験を行った。条件は、0.5mAの定
電流で、炭素電極がLi対極に対して0Vになるまでカ
ソード分極し、次に電極が1.0Vになるまでアノード
分極(放電に相当)し、これを100サイクル繰り返し
た。これらの結果を表1および図3に示した。The structure of the test cell shown in FIG. 1 is as follows. The carbon electrode 1 is arranged in the center of the battery case 2, and the separator 3 made of microporous polypropylene is arranged on the carbon electrode 1. As a non-aqueous electrolyte, a solution prepared by dissolving 1 mol / l of lithium perchlorate (LiClO 4 ) in a mixed solvent of ethylene carbonate and dimethoxyethane in a volume ratio of 1: 1 was used. To diameter 1
A disk-shaped metallic lithium 4 of 7.5 mm is attached and sealed with a sealing plate 6 having a polypropylene gasket 5 on the outer peripheral portion. For the above test cell, first 0.5
At a constant current of mA, cathode polarization (corresponding to charging when the carbon electrode is viewed as a negative electrode) is performed until the carbon electrode becomes 0 V with respect to the Li counter electrode, and then anodic polarization (discharge is performed until the electrode becomes 1.0 V). Equivalent to). This cathodic polarization and anodic polarization were repeated 10 times, and the capacity at the 10th cycle was taken as the initial capacity. The capacity was evaluated based on the weight of carbon. Further, the following rapid charge / discharge test was conducted. The rapid charge / discharge test conditions were a constant current of 4.0 mA, and similarly to the above, the cathode polarization until the carbon electrode became 0 V against the Li counter electrode and the anode polarization until it became 1.0 V,
The capacity was measured. The capacity at this time was defined as the rapid charge / discharge capacity. The capacity was evaluated based on the weight of carbon. further,
A charge / discharge cycle test was conducted. The condition is a constant current of 0.5 mA, and the carbon electrode is cathode-polarized until it becomes 0 V against the Li counter electrode, and then the electrode is anode-polarized (corresponding to discharge) until it becomes 1.0 V, which is 100 cycles. I repeated. The results are shown in Table 1 and FIG.
【0015】[0015]
【表1】 [Table 1]
【0016】(100)面ピ−ク強度の(002)面ピ
−ク強度に対する比が0.5/100以上で初期容量が
大きく、かつ、急速充放電特性にも優れた負極成型体が
得られることがわかる。なお、従来例や前記ピ−ク強度
比が0.1/100のものは、初期容量は大きいが、急
速充放電特性が非常に悪いものであった。これは、炭素
の六角網平面の選択的配向性が相当に強い負極成型体で
あるので、充放電しにくい状態であり、特に、急速充放
電試験においてその傾向が顕著に現われたと考えられ
る。また、100サイクル後の放電容量は、(100)
面ピ−ク強度の(002)面ピ−ク強度に対する比が
0.5/100から2.5/100の範囲で高い値を示
した。前記ピ−ク強度比が2.5/100を越えた場合
には100サイクル後の放電容量が急激に低下した。こ
の理由は次のように考えられる。すなわち、前記ピーク
比が大きくなると、炭素の六角網平面の選択的配向性が
ほとんど無い状態もしくは六角網平面が集電体に対して
垂直方向に向いた状態により近づく。そのために、充放
電を繰り返すと、充放電にともなう炭素の膨張収縮が集
電体表面と水平に近い方向に発生する。その結果、充放
電サイクルの進行とともに電極合剤と集電体の接触界面
で集電不良が起こると考えられる。したがって、初期容
量と急速充放電性能および充放電サイクル性を総合的に
考慮すると、(100)面ピ−ク強度の(002)面ピ
−ク強度に対する比が0.5/100から2.5/10
0の範囲が望ましい。なかでも、前記ピ−ク強度比が
1.0/100から2.0/100の範囲で特に優れた
性能を示し、より好ましい。A negative electrode molded body having a ratio of (100) plane peak strength to (002) plane peak strength of 0.5 / 100 or more and a large initial capacity and excellent rapid charge / discharge characteristics was obtained. You can see that In the conventional example and the peak intensity ratio of 0.1 / 100, the initial capacity was large, but the rapid charge / discharge characteristics were very poor. This is a negative electrode molded body having a considerably strong selective orientation on the hexagonal mesh plane of carbon, and thus is in a state in which charging / discharging is difficult, and it is considered that this tendency is particularly remarkable in the rapid charging / discharging test. The discharge capacity after 100 cycles is (100)
The ratio of the surface peak strength to the (002) surface peak strength was high in the range of 0.5 / 100 to 2.5 / 100. When the peak intensity ratio exceeded 2.5 / 100, the discharge capacity after 100 cycles drastically decreased. The reason for this is considered as follows. That is, when the peak ratio increases, the state becomes closer to the state where there is almost no selective orientation of the carbon hexagonal net plane or the state where the hexagonal net plane is oriented in the direction perpendicular to the current collector. Therefore, when charging / discharging is repeated, carbon expansion / contraction with charging / discharging occurs in a direction nearly horizontal to the current collector surface. As a result, it is considered that current collection failure occurs at the contact interface between the electrode mixture and the current collector as the charge / discharge cycle progresses. Therefore, when the initial capacity, the rapid charge / discharge performance, and the charge / discharge cycle property are comprehensively considered, the ratio of the (100) plane peak strength to the (002) plane peak strength is 0.5 / 100 to 2.5. / 10
The range of 0 is desirable. Above all, the peak strength ratio is more preferably in the range of 1.0 / 100 to 2.0 / 100 because it exhibits particularly excellent performance.
【0017】[実施例2]種々の配向性を持つ成型体を
得る手段として、各種の割合で酸化カルシウムを添加し
た例を説明する。炭素質材料は、X線広角回折法による
(002)面の面間隔が3.40オングストローム、c
軸方向の結晶子の大きさ(Lc)が100オングストロ
ームの人造黒鉛である。この炭素質材料10gに対して
結着剤としてポリエチレン粉末1gを混合し、さらに種
々の配向性を持つ成型体を得る手段として、表2に示す
ように酸化カルシウムを各種の割合で添加して合剤とし
た。なお、電極中の酸化カルシウム重量と人造黒鉛重量
の和に対する酸化カルシウム重量を百分率で表したもの
を酸化カルシウム添加量(wt%)とした。これらの合
剤0.1gを直径17.5mmの円盤状に加圧成型して
炭素電極とし、実施例1と同様にして図1に示す構成の
試験セルを組み立てた。これら炭素電極成型体のX線広
角回折図形における(100)面ピ−ク強度の(00
2)面ピ−ク強度に対する比は表2に示すとおり、0.
1/100から3.0/100の範囲であった。実施例
1と全く同じ条件で試験した結果を表2および図4に示
した。[Example 2] As a means for obtaining molded products having various orientations, an example in which calcium oxide is added at various ratios will be described. The carbonaceous material has a (002) plane spacing of 3.40 angstroms by the X-ray wide-angle diffraction method, and c
Artificial graphite having a crystallite size (Lc) in the axial direction of 100 angstrom. As a means of mixing 10 g of this carbonaceous material with 1 g of polyethylene powder as a binder, and further adding calcium oxide at various ratios as shown in Table 2 to obtain molded bodies having various orientations. I used it as an agent. The amount of calcium oxide added (wt%) was expressed as a percentage of the weight of calcium oxide with respect to the sum of the weight of calcium oxide in the electrode and the weight of artificial graphite. 0.1 g of these mixture materials was pressure-molded into a disk shape having a diameter of 17.5 mm to form a carbon electrode, and a test cell having the configuration shown in FIG. 1 was assembled in the same manner as in Example 1. In the X-ray wide-angle diffraction pattern of these carbon electrode molded bodies, the (100) plane peak intensity of (00
2) As shown in Table 2, the ratio to the surface peak strength is 0.
The range was 1/100 to 3.0 / 100. The results of the tests conducted under exactly the same conditions as in Example 1 are shown in Table 2 and FIG.
【0018】[0018]
【表2】 [Table 2]
【0019】実施例1と同様に(100)面ピ−ク強度
の(002)面ピ−ク強度に対する比が0.5/100
以上で初期容量が大きく、かつ、急速充放電特性にも優
れた負極成型体が得られることがわかった。なお、従来
例や前記ピ−ク強度が0.1/100のものは、初期容
量は大きいが、急速充放電特性が非常に悪いものであっ
た。これは、炭素の六角網平面の選択的配向性が相当に
強い負極成型体であるので、充放電しにくい状態であ
り、特に、急速充放電試験においてその傾向が顕著に現
われたと考えられる。また、100サイクル後の放電容
量は(100)面ピ−ク強度の(002)面ピ−ク強度
に対する比が0.5/100から2.5/100の範囲
で高い値を示した。前記ピ−ク強度比が2.5/100
を越えた場合には、100サイクル後の放電容量が急激
に低下した。これは、実施例1で説明したように、炭素
の六角網平面の選択的配向性がほとんど無い状態もしく
は六角網平面が集電体に対して垂直方向に向いた状態に
より近づくためと考えられる。したがって、初期容量と
急速充放電性能および充放電サイクル性を総合的に考慮
すると、(100)面ピ−ク強度の(002)面ピ−ク
強度に対する比が0.5/100から2.5/100の
範囲が望ましい。なかでも、前記ピ−ク強度比が1.0
/100から2.0/100の範囲で特に優れた性能を
示し、より好ましい。As in Example 1, the ratio of the (100) plane peak strength to the (002) plane peak strength was 0.5 / 100.
As described above, it was found that a molded negative electrode having a large initial capacity and excellent rapid charge / discharge characteristics can be obtained. Incidentally, the conventional example and the peak strength of 0.1 / 100 had a large initial capacity, but had very poor rapid charge / discharge characteristics. This is a negative electrode molded body having a considerably strong selective orientation on the hexagonal mesh plane of carbon, and thus is in a state in which charging / discharging is difficult, and it is considered that this tendency is particularly remarkable in the rapid charging / discharging test. The discharge capacity after 100 cycles showed a high value in the range of 0.5 / 100 to 2.5 / 100 in the ratio of the (100) plane peak intensity to the (002) plane peak intensity. The peak intensity ratio is 2.5 / 100
When it exceeded, the discharge capacity after 100 cycles dropped sharply. It is considered that this is because, as described in Example 1, the hexagonal mesh plane of carbon has almost no selective orientation or the hexagonal mesh plane is oriented in the direction perpendicular to the current collector. Therefore, when the initial capacity, the rapid charge / discharge performance, and the charge / discharge cycle property are comprehensively considered, the ratio of the (100) plane peak strength to the (002) plane peak strength is 0.5 / 100 to 2.5. A range of / 100 is desirable. Above all, the peak intensity ratio is 1.0
In the range of / 100 to 2.0 / 100, particularly excellent performance is exhibited, which is more preferable.
【0020】[実施例3]ここでは、X線広角回折法に
よる(002)面の面間隔が3.40オングストローム
以下で、c軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料と種々の結晶構造パラメ
−タを持つ炭素材料とを含有する負極成型体について詳
しく検討した。まず、X線広角回折法による(002)
面の面間隔が3.40オングストローム、c軸方向の結
晶子の大きさ(Lc)が100オングストロームである
人造黒鉛を用いた。これに、表3に示す種々の結晶構造
パラメ−タを持つ炭素材料を30重量%加えた負極成型
体を作製した。これらの各負極成型体を用いて実施例1
と同様にして試験セルを作製し、実施例1と同じ条件で
評価した。その結果を表3に示す。[Embodiment 3] Here, carbon having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more according to the X-ray wide angle diffraction method. The negative electrode molded body containing the material and the carbon material having various crystal structure parameters was examined in detail. First, by X-ray wide angle diffraction method (002)
An artificial graphite having a surface spacing of 3.40 angstroms and a crystallite size (Lc) in the c-axis direction of 100 angstroms was used. To this, 30% by weight of carbon materials having various crystal structure parameters shown in Table 3 were added to prepare a molded negative electrode. Example 1 using each of these negative electrode molded bodies
A test cell was prepared in the same manner as in, and evaluated under the same conditions as in Example 1. Table 3 shows the results.
【0021】[0021]
【表3】 [Table 3]
【0022】この結果から、X線広角回折法による(0
02)面の面間隔が3.40オングストローム以下で、
c軸方向の結晶子の大きさ(Lc)が100オングスト
ローム以上の炭素材料と、(002)面の面間隔が3.
43〜3.90オングストロームでc軸方向の結晶子の
大きさ(Lc)が1〜50オングストロームの炭素材料
とを含有する負極が、大きな初期容量を持ち、急速急速
充放電性能にも優れていることがわかる。From this result, the X-ray wide angle diffraction method (0
02) face spacing is 3.40 angstroms or less,
2. A carbon material having a crystallite size (Lc) in the c-axis direction of 100 angstroms or more and a (002) plane spacing of 3.
A negative electrode containing a carbon material having a crystallite size (Lc) in the c-axis direction of 43 to 3.90 angstroms in the c-axis direction of 1 to 50 angstroms has a large initial capacity and is also excellent in rapid rapid charge / discharge performance. I understand.
【0023】[実施例4]X線広角回折法による(00
2)面の面間隔が3.40オングストローム以下で、c
軸方向の結晶子の大きさ(Lc)が100オングストロ
ーム以上の炭素材料と水を含むペ−スト状混合物を負極
集電体表面に形成する場合のペ−スト状混合物中の水分
重量について詳しく検討した。まず、本実施例において
は炭素材料として、X線広角回折法による(002)面
の面間隔が3.40オングストローム、c軸方向の結晶
子の大きさ(Lc)が300オングストロームの人造黒
鉛を用いた。本実施例では、図2に示した円筒型電池を
構成して特性を調べた。[Embodiment 4] X-ray wide angle diffraction method (00
2) The interplanar spacing is 3.40 angstroms or less, and c
A detailed study on the weight of water in the paste-like mixture when a paste-like mixture containing a carbon material having an axial crystallite size (Lc) of 100 Å or more and water is formed on the surface of the negative electrode current collector. did. First, in this embodiment, as the carbon material, artificial graphite having a (002) plane spacing of 3.40 angstroms and a crystallite size (Lc) in the c-axis direction of 300 angstroms according to the X-ray wide-angle diffraction method is used. I was there. In this example, the cylindrical battery shown in FIG. 2 was constructed and the characteristics were examined.
【0024】電池を以下の手順により作製した。正極活
物質であるLiMn1.8Co0.2O4は、Li2CO3とM
n3O4とCoCO3とを所定のモル比で混合し、900
℃で加熱することによって合成した。さらに、これを1
00メッシュ以下に分級したものを正極活物質とした。
正極活物質100gに対して導電剤として炭素粉末を1
0g、結着剤としてポリ4フッ化エチレンの水性ディス
パージョンを樹脂分で8gと純水を加え、ペースト状に
し、チタンの芯材に塗布し、乾燥、圧延して正極を得
た。極板1枚当たりの正極活物質の重量は5gとした。A battery was manufactured by the following procedure. LiMn 1.8 Co 0.2 O 4 , which is the positive electrode active material, contains Li 2 CO 3 and M
n 3 O 4 and CoCO 3 are mixed at a predetermined molar ratio to obtain 900
It was synthesized by heating at ℃. In addition, 1
The positive electrode active material was classified to a size of 00 mesh or less.
One carbon powder as a conductive agent for 100 g of the positive electrode active material
A positive electrode was obtained by adding 0 g of an aqueous dispersion of polytetrafluoroethylene as a binder, 8 g of a resin component, and pure water to form a paste, coating it on a titanium core material, and drying and rolling it. The weight of the positive electrode active material per one electrode plate was 5 g.
【0025】負極は、カルボキシメチルセルロ−スのナ
トリウム塩の1重量%水溶液と負極活物質である上記の
人造黒鉛粉末とを表4に示したように種々の重量比で混
合し、ペ−スト状としたものを銅の芯材に塗布後、10
0℃で乾燥することにより作製した。なお、結着剤とし
て炭素材料に対してスチレンブタジエンゴムを加えた。
炭素材料と結着剤の混合比は重量比で100:5とし
た。いずれの負極板も1枚当たりの炭素材料の重量は2
gとした。The negative electrode was prepared by mixing a 1% by weight aqueous solution of sodium salt of carboxymethyl cellulose and the above-mentioned artificial graphite powder as the negative electrode active material in various weight ratios as shown in Table 4, and then forming a paste. After applying the shaped material to a copper core material, 10
It was prepared by drying at 0 ° C. In addition, styrene-butadiene rubber was added to the carbon material as a binder.
The mixing ratio of the carbon material and the binder was 100: 5 by weight. The weight of carbon material per sheet is 2 for each negative plate.
It was set to g.
【0026】電極体は、スポット溶接にて取り付けた芯
材と同材質の正極リード14を有する正極板11と、負
極リード15を有する負極板12と、両極板間に介在さ
せた両極板より幅の広い帯状の多孔性ポリプロピレン製
セパレータ13とを渦巻状に捲回して構成した。さら
に、上記電極体の上下それぞれにポリプロピレン製の絶
縁板16、17を配して電槽18に挿入し、電槽18の
上部に段部を形成させた後、非水電解質として、エチレ
ンカーボネートとジメトキシエタンとの体積比1:1の
混合溶媒に過塩素酸リチウムを1モル/lの割合で溶解
した溶液を注入し、正極端子20を設けた封口板19で
密閉して電池とした。このように異なる7種類の負極板
を用いて構成した電池について初期容量、および急速充
放電性能を調べた。充放電電流100mA、充放電電圧
範囲4.3V〜3.0Vで充放電を10サイクル繰り返
した後、充放電電流を500mAとした急速充放電試験
を行った。表4に初期容量、および急速充放電容量を示
す。The electrode body is wider than the positive electrode plate 11 having the positive electrode lead 14 of the same material as the core material attached by spot welding, the negative electrode plate 12 having the negative electrode lead 15, and the both electrode plates interposed between the both electrode plates. And a separator 13 made of porous polypropylene having a wide band shape. Further, polypropylene insulating plates 16 and 17 are arranged on the upper and lower sides of the electrode body, respectively, and inserted into a battery case 18 to form a step on the upper part of the battery case 18. Then, ethylene carbonate is added as a non-aqueous electrolyte. A solution in which lithium perchlorate was dissolved at a ratio of 1 mol / l was injected into a mixed solvent having a volume ratio of 1: 1 with dimethoxyethane, and sealed with a sealing plate 19 provided with a positive electrode terminal 20 to obtain a battery. The initial capacity and the rapid charging / discharging performance of the battery constructed by using seven different kinds of negative electrode plates were examined. After repeating charge and discharge for 10 cycles at a charge and discharge current of 100 mA and a charge and discharge voltage range of 4.3 V to 3.0 V, a rapid charge and discharge test was performed at a charge and discharge current of 500 mA. Table 4 shows the initial capacity and the rapid charge / discharge capacity.
【0027】[0027]
【表4】 [Table 4]
【0028】ペ−スト状混合物中の水分量が炭素材料重
量の10%〜50%である場合に初期容量が大きく、さ
らには急速充放電容量も大きいことがわかった。なお、
水分量が前記の範囲より多くなると、電極成型体の(0
02)面ピーク強度が大きくなる。また、水分量が少な
いと、電極の成型が困難となる。また、本実施例で用い
た炭素材料としては、X線広角回折法による(002)
面の面間隔が3.40オングストローム、c軸方向の結
晶子の大きさ(Lc)が300オングストロームの人造
黒鉛を用いたが、さらに詳細に検討を進めた結果、好ま
しい炭素材料としては、X線広角回折法による(00
2)面の面間隔が3.40オングストローム以下で、c
軸方向の結晶子の大きさ(Lc)が100オングストロ
ーム以上の炭素材料であることが確認された。It was found that the initial capacity was large and the rapid charge / discharge capacity was also large when the water content in the paste-like mixture was 10% to 50% of the weight of the carbon material. In addition,
If the water content exceeds the above range, (0
02) The surface peak intensity is increased. Further, if the water content is small, it becomes difficult to mold the electrode. The carbon material used in this example is (002) according to the X-ray wide angle diffraction method.
Artificial graphite having a surface spacing of 3.40 angstroms and a crystallite size (Lc) in the c-axis direction of 300 angstroms was used. As a result of further detailed study, as a preferable carbon material, X-rays were used. Wide-angle diffraction method (00
2) The interplanar spacing is 3.40 angstroms or less, and c
It was confirmed that the carbon material had a crystallite size (Lc) in the axial direction of 100 angstroms or more.
【0029】[実施例5]X線広角回折法による(00
2)面の面間隔が3.40オングストローム以下で、c
軸方向の結晶子の大きさ(Lc)が100オングストロ
ーム以上の炭素材料と水を含むペ−スト状混合物を負極
集電体表面に形成する場合のペ−スト状混合物中の有機
溶液重量について詳しく検討を行った。まず、本実施例
においては炭素材料として、X線広角回折法による(0
02)面の面間隔が3.40オングストローム、c軸方
向の結晶子の大きさ(Lc)が300オングストローム
の人造黒鉛を用いた。この人造黒鉛と有機溶媒n,n−
ジメチルホルムアミドとを表5に示した種々の重量比で
混合し、さらに、結着剤としてポリフッ化ビニリデンを
加えた。炭素材料と結着剤の混合比は重量比で100:
10とした。このようにして得たペ−スト状混合物を銅
の芯材に塗布後、100℃で乾燥して負極板を得た。負
極板1枚当たりの炭素材料の重量は2gとした。上記の
負極を用いた他は実施例4と同様にして、図2に示した
円筒型電池を構成し、実施例4と同じ条件で特性を調べ
た。表5に初期容量、および急速充放電容量を示す。ペ
−スト状混合物中の有機溶媒量が炭素材料重量の10%
〜30%である場合に初期容量が大きく、さらには急速
充放電容量も大きいことがわかった。なお、有機溶媒量
が前記の範囲より多くなると、電極成型体の(002)
面ピーク強度が大きくなる。また、有機溶媒量が少ない
と、電極の成型が困難となる。[Embodiment 5] X-ray wide angle diffraction method (00
2) The interplanar spacing is 3.40 angstroms or less, and c
Details of the weight of the organic solution in the paste-like mixture when a paste-like mixture containing a carbon material having an axial crystallite size (Lc) of 100 angstroms or more and water is formed on the surface of the negative electrode current collector Study was carried out. First, in the present embodiment, as the carbon material, X-ray wide angle diffraction method (0
Artificial graphite having a 02) plane spacing of 3.40 angstroms and a crystallite size (Lc) in the c-axis direction of 300 angstroms was used. This artificial graphite and organic solvent n, n-
Dimethylformamide was mixed in various weight ratios shown in Table 5, and polyvinylidene fluoride was further added as a binder. The mixing ratio of the carbon material and the binder is 100: by weight.
It was set to 10. The paste-like mixture thus obtained was applied to a copper core material and dried at 100 ° C. to obtain a negative electrode plate. The weight of the carbon material per one negative electrode plate was 2 g. The cylindrical battery shown in FIG. 2 was constructed in the same manner as in Example 4 except that the above negative electrode was used, and the characteristics were examined under the same conditions as in Example 4. Table 5 shows the initial capacity and the rapid charge / discharge capacity. The amount of organic solvent in the paste mixture is 10% of the weight of the carbon material.
It was found that the initial capacity was large and the rapid charge / discharge capacity was also large when the content was ˜30%. When the amount of organic solvent exceeds the above range, the (002)
The surface peak intensity increases. Moreover, when the amount of the organic solvent is small, it becomes difficult to mold the electrode.
【0030】[0030]
【表5】 [Table 5]
【0031】また、本実施例で用いた炭素材料は、X線
広角回折法による(002)面の面間隔が3.40オン
グストローム、c軸方向の結晶子の大きさ(Lc)が3
00オングストロームの人造黒鉛を用いたが、さらに詳
細に検討を進めた結果、好ましい炭素材料としては、X
線広角回折法による(002)面の面間隔が3.40オ
ングストローム以下で、c軸方向の結晶子の大きさ(L
c)が100オングストローム以上の炭素材料であるこ
とが確認された。また、炭素材料の形状については、繊
維状、リン状、リン片状、土状、球状など様々な形状を
有した炭素もしくは黒鉛についても同様の効果が得られ
る。また、本実施例ではコイン型、および円筒型電池つ
いての説明したが、本発明で示した優れた急速充放電性
能などの技術思想は同一のものであることから、この構
造に限定されるものではなく、角形、偏平型などの形状
の二次電池においても全く同様の効果が得られる。さら
に、炭素もしくは黒鉛としては、天然黒鉛、人造黒鉛、
炭素繊維、黒鉛ウィスカ−などをはじめとする充電放電
に対して可逆性を有する負極炭素材を用いた場合にも同
様の効果があることは言うまでもない。The carbon material used in this example has a (002) plane spacing of 3.40 angstroms and a crystallite size (Lc) in the c-axis direction of 3 according to the X-ray wide-angle diffraction method.
Artificial graphite of 00 Å was used, but as a result of further detailed examination, as a preferable carbon material, X
The spacing between (002) planes measured by the wide-angle diffraction method is 3.40 angstroms or less, and the crystallite size (L
It was confirmed that c) is a carbon material having a thickness of 100 Å or more. Regarding the shape of the carbon material, the same effect can be obtained with carbon or graphite having various shapes such as fibrous, phosphorus-like, scaly, earth-like, and spherical. Further, although the coin type and cylindrical type batteries have been described in the present embodiment, the technical ideas such as the excellent rapid charging / discharging performance shown in the present invention are the same, and thus the structure is limited to this structure. Instead, the same effect can be obtained with a secondary battery having a prismatic shape, a flat shape, or the like. Furthermore, as carbon or graphite, natural graphite, artificial graphite,
It goes without saying that the same effect can be obtained when using a negative electrode carbon material having reversibility for charging and discharging, such as carbon fiber and graphite whiskers.
【0032】[0032]
【発明の効果】以上述べたように、本発明によれば、高
エネルギー密度で、急速充放電特性にも優れた、デンド
ライトによる短絡のない信頼性の高い非水電解質二次電
池を与える負極を得ることができる。Industrial Applicability As described above, according to the present invention, a negative electrode providing a highly reliable non-aqueous electrolyte secondary battery which has a high energy density and is also excellent in rapid charge / discharge characteristics and is free from short circuit due to dendrite. Obtainable.
【図1】本発明の実施例に用いた電極評価用試験セルの
縦断面略図である。FIG. 1 is a schematic vertical cross-sectional view of a test cell for electrode evaluation used in an example of the present invention.
【図2】本発明の実施例に用いた円筒型電池の縦断面略
図である。FIG. 2 is a schematic vertical sectional view of a cylindrical battery used in an example of the present invention.
【図3】実施例1の負極に用いた炭素材料の(100)
面ピ−ク強度の(002)面ピ−ク強度に対する比と、
急速充放電容量および100サイクル目の放電容量との
関係を示す図である。FIG. 3 shows the carbon material (100) used for the negative electrode of Example 1.
The ratio of the surface peak strength to the (002) surface peak strength;
It is a figure which shows the relationship with a rapid charge / discharge capacity and the discharge capacity of the 100th cycle.
【図4】実施例2の負極に用いた炭素材料の(100)
面ピ−ク強度の(002)面ピ−ク強度に対する比と、
急速充放電容量および100サイクル目の放電容量との
関係を示す図である。4 is a graph of the carbon material (100) used for the negative electrode of Example 2. FIG.
The ratio of the surface peak strength to the (002) surface peak strength;
It is a figure which shows the relationship with a rapid charge / discharge capacity and the discharge capacity of the 100th cycle.
1 試験電極(負極) 2 ケース 3 セパレータ 4 金属Li 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード板 15 負極リード板 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 1 Test Electrode (Negative Electrode) 2 Case 3 Separator 4 Metal Li 5 Gasket 6 Sealing Plate 11 Positive Electrode 12 Negative Electrode 13 Separator 14 Positive Electrode Lead Plate 15 Negative Electrode Lead Plate 16 Upper Insulating Plate 17 Lower Insulating Plate 18 Battery Case 19 Sealing Plate 20 Positive Electrode Terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Ito 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In the company
Claims (6)
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料を含む成型体からなり、
その成型体のCu−Kα線源によるX線広角回折図形に
おける(100)面ピ−ク強度の(002)面ピ−ク強
度に対する比が0.5/100から2.5/100の範
囲にあることを特徴とする非水電解質二次電池用負極。1. A carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using a Cu-Kα radiation source. Consisting of a molded body containing
The ratio of the (100) plane peak intensity to the (002) plane peak intensity in the X-ray wide-angle diffraction pattern by the Cu-Kα radiation source of the molded body was in the range of 0.5 / 100 to 2.5 / 100. A negative electrode for a non-aqueous electrolyte secondary battery, which is characterized by being present.
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料と、Cu−Kα線源によ
るX線広角回折法における(002)面の面間隔が3.
43〜3.90オングストロームでc軸方向の結晶子の
大きさ(Lc)が1〜50オングストロームの炭素材料
とを含有することを特徴とする非水電解質二次電池用負
極。2. A carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using a Cu-Kα radiation source. And the (002) plane spacing in the X-ray wide-angle diffraction method using a Cu-Kα radiation source is 3.
A negative electrode for a non-aqueous electrolyte secondary battery, comprising a carbon material having a crystallite size (Lc) in the c-axis direction of 43 to 3.90 angstroms and 1 to 50 angstroms.
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料と、Cu−Kα線源によ
るX線広角回折法における(002)面の面間隔が3.
43〜3.90オングストロームでc軸方向の結晶子の
大きさ(Lc)が1〜50オングストロームの炭素材料
とを含有する成型体からなり、その成型体のCu−Kα
線源によるX線広角回折図形における(100)面ピ−
ク強度の(002)面ピ−ク強度に対する比が0.5/
100から2.5/100の範囲にあることを特徴とす
る非水電解質二次電池用負極。3. A carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using a Cu-Kα radiation source. And the (002) plane spacing in the X-ray wide-angle diffraction method using a Cu-Kα radiation source is 3.
A Cu-Kα of a molded body containing a carbon material having a crystallite size (Lc) in the c-axis direction of 43 to 3.90 angstroms in the c-axis direction of 1 to 50 angstroms.
(100) plane peak in the X-ray wide-angle diffraction pattern by the radiation source
The ratio of the peak intensity to the (002) plane peak intensity is 0.5 /
A negative electrode for a non-aqueous electrolyte secondary battery, which is in the range of 100 to 2.5 / 100.
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料の含有量をWA、Cu−
Kα線源によるX線広角回折法における(002)面の
面間隔が3.43〜3.90オングストロームでc軸方
向の結晶子の大きさ(Lc)が1〜50オングストロー
ムの炭素材料の含有量をWBとしたとき、WB/(WA+
WB)が20/100〜50/100である請求項2ま
たは3記載の非水電解質二次電池用負極。4. A carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using a Cu-Kα radiation source. Content of W A , Cu-
Content of carbon material having a (002) plane spacing of 3.43 to 3.90 angstroms and a crystallite size (Lc) in the c-axis direction of 1 to 50 angstroms in the X-ray wide-angle diffraction method using a Kα-ray source when was the W B, W B / (W a +
W B) is 20 / 100-50 / 100 at which claim 2 or 3 negative electrode for a non-aqueous electrolyte secondary battery according.
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料と炭素材料の10〜50
重量%の水を含むペ−スト状混合物を負極集電体表面に
形成する工程と、これを加熱する工程とを有することを
特徴とする非水電解質二次電池用負極の製造方法。5. A carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using a Cu-Kα radiation source. And carbon material 10-50
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising: a step of forming a paste-like mixture containing water by weight on a surface of a negative electrode current collector; and a step of heating the same.
おける(002)面の面間隔が3.40オングストロー
ム以下でc軸方向の結晶子の大きさ(Lc)が100オ
ングストローム以上の炭素材料と炭素材料の10〜30
重量%の有機溶媒を含むペ−スト状混合物を負極集電体
表面に形成する工程と、これを加熱する工程とを有する
ことを特徴とする非水電解質二次電池用負極の製造方
法。6. A carbon material having a (002) plane spacing of 3.40 angstroms or less and a crystallite size (Lc) in the c-axis direction of 100 angstroms or more in an X-ray wide-angle diffraction method using a Cu-Kα radiation source. And carbon material 10-30
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising the steps of forming a paste-like mixture containing a weight% of an organic solvent on the surface of a negative electrode current collector and heating the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21151294A JP3236170B2 (en) | 1994-09-05 | 1994-09-05 | Negative electrode for non-aqueous electrolyte secondary batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21151294A JP3236170B2 (en) | 1994-09-05 | 1994-09-05 | Negative electrode for non-aqueous electrolyte secondary batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0878010A true JPH0878010A (en) | 1996-03-22 |
JP3236170B2 JP3236170B2 (en) | 2001-12-10 |
Family
ID=16607152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21151294A Expired - Fee Related JP3236170B2 (en) | 1994-09-05 | 1994-09-05 | Negative electrode for non-aqueous electrolyte secondary batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3236170B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006273615A (en) * | 2005-03-28 | 2006-10-12 | Sanyo Electric Co Ltd | Method for manufacturing graphite-based carbon material |
CN100350653C (en) * | 1996-08-08 | 2007-11-21 | 日立化成工业株式会社 | Graphite particles |
EP2210968A4 (en) * | 2007-09-20 | 2011-02-23 | Toyo Tanso Co | Carbonaceous substrate and electrode for electrolytic production of fluorine |
WO2011102054A1 (en) * | 2010-02-18 | 2011-08-25 | 株式会社 村田製作所 | Electrode active material for all-solid state rechargeable battery and all-solid state rechargeable battery |
CN114730860A (en) * | 2020-06-23 | 2022-07-08 | 宁德时代新能源科技股份有限公司 | Secondary battery and device including the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100309774B1 (en) | 1999-09-16 | 2001-11-07 | 김순택 | A electrolyte for a lithium secondary battery with enhanced life characteristics |
-
1994
- 1994-09-05 JP JP21151294A patent/JP3236170B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100350653C (en) * | 1996-08-08 | 2007-11-21 | 日立化成工业株式会社 | Graphite particles |
JP2006273615A (en) * | 2005-03-28 | 2006-10-12 | Sanyo Electric Co Ltd | Method for manufacturing graphite-based carbon material |
JP4738039B2 (en) * | 2005-03-28 | 2011-08-03 | 三洋電機株式会社 | Method for producing graphite-based carbon material |
EP2210968A4 (en) * | 2007-09-20 | 2011-02-23 | Toyo Tanso Co | Carbonaceous substrate and electrode for electrolytic production of fluorine |
US8282796B2 (en) | 2007-09-20 | 2012-10-09 | Toyo Tanso Co., Ltd. | Carbonaceous substrate and electrode for fluorine-producing electrolysis |
WO2011102054A1 (en) * | 2010-02-18 | 2011-08-25 | 株式会社 村田製作所 | Electrode active material for all-solid state rechargeable battery and all-solid state rechargeable battery |
US9484572B2 (en) | 2010-02-18 | 2016-11-01 | Murata Manufacturing Co., Ltd. | Electrode active material for all solid state secondary battery and all solid state secondary battery |
CN114730860A (en) * | 2020-06-23 | 2022-07-08 | 宁德时代新能源科技股份有限公司 | Secondary battery and device including the same |
CN114730860B (en) * | 2020-06-23 | 2024-02-23 | 宁德时代新能源科技股份有限公司 | Secondary battery and device comprising same |
Also Published As
Publication number | Publication date |
---|---|
JP3236170B2 (en) | 2001-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0803926B1 (en) | A secondary battery or cell with a non-aqueous electrolyte | |
EP3117474B1 (en) | Cathode for lithium batteries | |
JPH05190209A (en) | Liquid electrolyte and rechargeable chemical cell with lithium/carbon anode | |
KR19980080096A (en) | Lithium secondary battery and negative electrode manufacturing method | |
JPH08124559A (en) | Manufacture of lithium secondary battery and of negative electrode active material | |
JP4354723B2 (en) | Method for producing graphite particles | |
JP3061337B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3140880B2 (en) | Lithium secondary battery | |
JP3236400B2 (en) | Non-aqueous secondary battery | |
JP3253185B2 (en) | Non-aqueous electrolyte secondary battery and method for producing negative electrode thereof | |
JP3440705B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP3236170B2 (en) | Negative electrode for non-aqueous electrolyte secondary batteries | |
JPH07105938A (en) | Manufacture of negetive electrode for non-aqueous electrolyte secondary battery | |
JPH0737618A (en) | Nonaqueous electrolyte secondary battery | |
JPH11279785A (en) | Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that | |
JPH10312807A (en) | Lithium secondary battery and manufacture of negative electrode | |
JP3444616B2 (en) | Negative electrode for non-aqueous secondary batteries | |
JP3178730B2 (en) | Non-aqueous secondary battery | |
KR102320977B1 (en) | Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same | |
JP2023528519A (en) | Negative electrode for lithium ion secondary battery | |
JP3350114B2 (en) | Non-aqueous electrolyte secondary battery | |
EP4340064B1 (en) | Anode active material for lithium secondary battery and lithium secondary battery including the same | |
JPH09106818A (en) | Manufacture of negative electrode for non-aqueous electrolyte secondary battery | |
JPH09213372A (en) | Non-aqueous electrolyte secondary battery | |
JP3521512B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |