JPH09106818A - Manufacture of negative electrode for non-aqueous electrolyte secondary battery - Google Patents

Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Info

Publication number
JPH09106818A
JPH09106818A JP7263347A JP26334795A JPH09106818A JP H09106818 A JPH09106818 A JP H09106818A JP 7263347 A JP7263347 A JP 7263347A JP 26334795 A JP26334795 A JP 26334795A JP H09106818 A JPH09106818 A JP H09106818A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
aqueous electrolyte
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7263347A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mifuji
靖彦 美藤
Toshihide Murata
年秀 村田
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7263347A priority Critical patent/JPH09106818A/en
Publication of JPH09106818A publication Critical patent/JPH09106818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a non-aqueous electrolyte secondary battery which high entering dencity and excellent cycle property and is free of dendrites by eliminating capacity decrease due to the difference between a charging capacity and a discharging capacity in the first time charging and dischaging. SOLUTION: The negative electrode manufacturing method of the present invention involves a process to heat a carbon material in reduced pressure or a process to heat a carbon material together with a lithium compound in an inert atmosphere. The method also involves a process to carbonize the carbonizable material by adding a lithium compound to a solid-phase carbonizable material or a liquid-phase carbonizable material and carrying out heating treatment in an inert atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池の負極の改良に関する。さらに、詳しくは、充電放電
に対して可逆性を有する正極と、リチウム塩を含有する
非水電解質、および充電放電に対して可逆性を有する炭
素材料を活物質とする負極を具備する非水電解質二次電
池に用いる負極の製造方法に関する。
The present invention relates to an improvement in a negative electrode of a non-aqueous electrolyte secondary battery. More specifically, a non-aqueous electrolyte comprising a positive electrode having reversibility for charging and discharging, a non-aqueous electrolyte containing a lithium salt, and a negative electrode having a carbon material having reversibility for charging and discharging as an active material. The present invention relates to a method for manufacturing a negative electrode used in a secondary battery.

【0002】[0002]

【従来の技術】リチウムを負極とする非水電解質二次電
池は、起電力が高く、従来のニッケルーカドミウム蓄電
池や鉛蓄電池に較べ高エネルギー密度になると期待さ
れ、盛んに研究がなされている。しかし、金属状のリチ
ウムを負極に用いると、充電時にデンドライトが発生し
やすく、電池内部で短絡を起こすことが心配され、電池
として高い信頼性を確保することが困難である。この問
題を解決するために、リチウムとアルミニウム、鉛との
合金負極を用いることが検討された。これら合金負極を
用いると、充電によりリチウムは負極合金中に吸蔵さ
れ、デンドライトの発生がなく信頼性の高い電池とな
る。しかし、合金負極の放電電位は金属リチウムに比べ
約0.5V貴であるため、電池の電圧も0.5V低く、
これにより電池のエネルギー密度も低いものとなる。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium as a negative electrode have a high electromotive force, and are expected to have a higher energy density than conventional nickel-cadmium storage batteries and lead storage batteries, and are being actively researched. However, when metallic lithium is used for the negative electrode, dendrites are likely to occur during charging, which may cause a short circuit inside the battery, making it difficult to secure high reliability as a battery. In order to solve this problem, the use of an alloy negative electrode of lithium, aluminum and lead has been studied. When these alloy negative electrodes are used, lithium is occluded in the negative electrode alloy by charging, and dendrites are not generated, resulting in a highly reliable battery. However, since the discharge potential of the alloy negative electrode is about 0.5 V noble as compared with metallic lithium, the battery voltage is also 0.5 V lower,
This also reduces the energy density of the battery.

【0003】一方、黒鉛などの炭素材料とリチウムの層
間化合物を負極活物質とする研究も活発になされてい
る。この化合物負極においては、充電によりリチウムは
炭素材料の層間に入り、デンドライトは発生しない。放
電電位は金属リチウムに較べ約0.1V貴であるにすぎ
ないから、電池電圧の低下も小さい。従って、より好ま
しい負極と言える。通常、炭素質材料は、有機物を不活
性雰囲気中においておよそ400〜3000℃の加熱に
より分解して炭素化し、さらには黒鉛化を行うことによ
り得られる。炭素質材料の出発原料は、ほとんどの場合
に有機物であり、炭素化工程である1500℃付近まで
の加熱により、ほとんど炭素原子のみが残り、3000
℃近い高温までの加熱により黒鉛構造が発達する。この
有機物原料としては、液相ではピッチ、コ−ルタ−ル、
あるいはコ−クスとピッチの混合物などが用いられ、固
相では木質原料、フラン樹脂、フェノ−ル樹脂、エポキ
シ樹脂、セルロ−ス、ポリアクリロニトリル、レ−ヨン
などが用いられる。また、気相では、メタン、プロパン
などの炭化水素ガスが用いられている。
On the other hand, researches using an intercalation compound of a carbon material such as graphite and lithium as a negative electrode active material have been actively conducted. In this compound negative electrode, lithium enters between layers of the carbon material by charging, and dendrite is not generated. Since the discharge potential is no more than about 0.1 V as compared with metallic lithium, the decrease in battery voltage is small. Therefore, it can be said that it is a more preferable negative electrode. Usually, a carbonaceous material is obtained by decomposing an organic substance by heating at about 400 to 3000 ° C. in an inert atmosphere to carbonize it, and further performing graphitization. The starting material of the carbonaceous material is almost always an organic substance, and by heating up to around 1500 ° C. which is a carbonization step, almost only carbon atoms remain, and 3000
The graphite structure develops by heating to a high temperature close to ℃. As the organic raw material, in the liquid phase, pitch, cortall,
Alternatively, a mixture of coke and pitch or the like is used, and in the solid phase, wood raw material, furan resin, phenol resin, epoxy resin, cellulose, polyacrylonitrile, rayon or the like is used. In the gas phase, hydrocarbon gas such as methane and propane is used.

【0004】[0004]

【発明が解決しようとする課題】炭素材料は通常、1回
目の充放電において、充電容量が放電容量より大きな値
を持つことが知られている。言い替えると1回目の充放
電において、放電に寄与しない電気量が消費される。こ
の充放電容量差は「容量ロス」や「リテンション」など
と称される。正極にリチウムを含む材料、たとえばLi
CoO2を使用し、負極に炭素材料を用いるリチウムイ
オン二次電池では、この充放電容量差は重大な問題であ
る。この電池の容量は、正極で支配されるため、1回目
の充電時に正極から負極へ与えられたリチウムの一部が
放電に使用されることなく消費されてしまう。その結
果、消費されたリチウム量だけ電池容量が減少すること
となる。本発明は、この課題を解決するため、より高エ
ネルギ−密度で、デンドライトによる短絡のない信頼性
の高い非水電解質二次電池を与える負極を提供すること
を目的とする。
It is known that the carbon material usually has a larger charge capacity than the discharge capacity in the first charge / discharge. In other words, in the first charge / discharge, the amount of electricity that does not contribute to the discharge is consumed. This charge / discharge capacity difference is called “capacity loss” or “retention”. A material containing lithium in the positive electrode, such as Li
This difference in charge and discharge capacity is a serious problem in a lithium ion secondary battery that uses CoO 2 and uses a carbon material for the negative electrode. Since the capacity of this battery is governed by the positive electrode, part of the lithium given from the positive electrode to the negative electrode during the first charging is consumed without being used for discharging. As a result, the battery capacity is reduced by the amount of lithium consumed. In order to solve this problem, it is an object of the present invention to provide a negative electrode that provides a highly reliable non-aqueous electrolyte secondary battery with higher energy density and without short circuit due to dendrite.

【0005】[0005]

【課題を解決するための手段】本発明の非水電解質二次
電池用負極の製造方法は、充電放電に対して可逆性を有
する炭素材料を減圧中で加熱処理する工程を有するもの
である。また、特に、減圧中で加熱する工程は、実際問
題として設備装置や生産性という工業的な見地からは不
利であるので、本発明のさらに発展させたものとして、
炭素材料にリチウム化合物を加え、不活性雰囲気中で加
熱処理する。前記の加熱処理は、炭素材料が粉体の状態
でなく、電極に形成された後に行ってもよい。すなわ
ち、炭素材料の層を集電体表面に塗着などにより形成
し、これを減圧中で加熱するか、リチウム化合物ととも
に不活性雰囲気中において加熱処理する方法である。こ
こに用いる炭素材料は、Cu−Kα線源によるX線広角
回折法での(002)面の面間隔が3.37〜3.90
オングストロームで、c軸方向の結晶子の大きさが5〜
150オングストロームであるものが好ましい。
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery of the present invention comprises a step of subjecting a carbon material having reversibility to charge and discharge to heat treatment under reduced pressure. Further, in particular, the step of heating under reduced pressure is disadvantageous from an industrial viewpoint of equipment and productivity as a practical problem, so that as a further development of the present invention,
A lithium compound is added to the carbon material and heat treatment is performed in an inert atmosphere. The heat treatment may be performed after the carbon material is not in the powder state but formed on the electrode. That is, it is a method in which a layer of a carbon material is formed on the surface of a current collector by coating or the like, and this is heated under reduced pressure or heat-treated in an inert atmosphere together with a lithium compound. The carbon material used here has a (002) plane spacing of 3.37 to 3.90 in the X-ray wide-angle diffraction method using a Cu-Kα radiation source.
Angstrom, the size of the crystallite in the c-axis direction is 5 to
It is preferably 150 Å.

【0006】さらに、本発明は、炭素材料として、固相
炭素化材料または液相炭素化材料を不活性雰囲気中で加
熱して炭素化したものを用いる場合は、以下の方法をと
る。すなわち、固相炭素化材料または液相炭素化材料に
リチウム化合物を加え、不活性雰囲気中で加熱して前記
固相炭素化材料または液相炭素化材料を炭素化する工程
を有する非水電解質二次電池用負極の製造方法である。
また、固相炭素化材料または液相炭素化材料を負極集電
体表面に形成する工程、これにリチウム化合物を加える
工程、およびこれを不活性雰囲気中で加熱して前記固相
炭素化材料または液相炭素化材料を炭素化する工程を有
する非水電解質二次電池用負極の製造方法である。
Further, according to the present invention, when a carbon material obtained by heating a solid phase carbonized material or a liquid phase carbonized material in an inert atmosphere to be carbonized is used, the following method is adopted. That is, a lithium compound is added to a solid-phase carbonized material or a liquid-phase carbonized material and heated in an inert atmosphere to carbonize the solid-phase carbonized material or the liquid-phase carbonized material. It is a method for manufacturing a negative electrode for a secondary battery.
Further, a step of forming a solid-phase carbonized material or a liquid-phase carbonized material on the surface of the negative electrode current collector, a step of adding a lithium compound thereto, and heating the same in an inert atmosphere, It is a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which has a step of carbonizing a liquid phase carbonized material.

【0007】ここで、リチウム化合物としては、水酸化
リチウム、炭酸リチウム、酸化リチウム、塩化リチウ
ム、および硝酸リチウムからなる群より選ばれる少なく
とも一種であることが望ましい。液相炭素化材料として
は、石油ピッチ、石炭ピッチ、樹脂系ピッチから選ばれ
る少なくとも一つであることが望ましい。また、固相炭
素化材料としては、ポリアクリロニトリル、コ−クス、
セルロ−ス、フラン樹脂、フェノ−ル樹脂、エポキシ樹
脂、レ−ヨンから選ばれる少なくとも一つが適してい
る。ここで、炭素材料、固相炭素化材料または液相炭素
化材料とこれに加えるリチウム化合物の重量をそれぞれ
1、W2としたとき比W2/W1は1/100から100
/100の範囲が適当である。
The lithium compound is preferably at least one selected from the group consisting of lithium hydroxide, lithium carbonate, lithium oxide, lithium chloride, and lithium nitrate. The liquid-phase carbonization material is preferably at least one selected from petroleum pitch, coal pitch and resin pitch. Further, as the solid-phase carbonization material, polyacrylonitrile, coke,
At least one selected from cellulose, furan resin, phenol resin, epoxy resin and rayon is suitable. Here, when the weights of the carbon material, the solid-phase carbonized material or the liquid-phase carbonized material and the lithium compound added thereto are W 1 and W 2 , respectively, the ratio W 2 / W 1 is 1/100 to 100.
The range of / 100 is appropriate.

【0008】加熱温度は、炭素材料を減圧中で加熱する
場合には、200℃〜1400℃の範囲が良い。また、
炭素材料をリチウム化合物とともに不活性雰囲気中で加
熱する場合も、200℃〜1400℃の範囲が良い。固
相炭素化材料を用いる場合は400〜2000℃の範
囲、また液相炭素化材料を用いる場合は400〜300
0℃の範囲がそれぞれ適している。
The heating temperature is preferably in the range of 200 ° C. to 1400 ° C. when heating the carbon material under reduced pressure. Also,
Also when heating the carbon material together with the lithium compound in an inert atmosphere, the range of 200 ° C to 1400 ° C is preferable. When using a solid-phase carbonized material, the temperature range is 400 to 2000 ° C., and when using a liquid-phase carbonized material, 400 to 300 ° C.
A range of 0 ° C is suitable for each.

【0009】本発明によれば、炭素材料を減圧中で加熱
することにより、その表面状態の改良や不純物の減少あ
るいは充放電に寄与しない物質の除去という効果が得ら
れる。また、減圧中での加熱という煩雑で生産性の低い
工程に代わって、炭素材料、固相炭素化材料もしくは液
相炭素化材料にリチウム化合物を加え、不活性雰囲気中
で加熱した場合にも、その表面状態の改良や不純物の減
少あるいは充放電に寄与しない物質の除去などの効果が
得られる。さらには、この処理により炭素材料があらか
じめリチウムと反応し、1回目の充電時に炭素上でのリ
チウムの消費が軽減されるなどが考えられる。その結
果、1回目の充電時に負極で消費されるリチウムが減少
し、より高エネルギー密度の、デンドライトによる短絡
のない信頼性の高い二次電池を得ることが可能となる。
According to the present invention, by heating the carbon material under reduced pressure, the effects of improving the surface condition of the carbon material, reducing impurities, and removing substances that do not contribute to charge and discharge can be obtained. Further, in place of the complicated and low productivity process of heating under reduced pressure, when a lithium compound is added to a carbon material, a solid-phase carbonized material or a liquid-phase carbonized material, and the mixture is heated in an inert atmosphere, Effects such as improvement of the surface condition, reduction of impurities, and removal of substances that do not contribute to charge / discharge can be obtained. Furthermore, it is conceivable that this treatment causes the carbon material to react with lithium in advance to reduce the consumption of lithium on carbon during the first charging. As a result, the lithium consumed in the negative electrode during the first charge is reduced, and it is possible to obtain a highly reliable secondary battery having a higher energy density and not causing a short circuit due to dendrites.

【0010】また、本発明による炭素材料を減圧加熱す
る技術と、炭素材料、固相炭素化材料もしくは液相炭素
化材料にリチウム化合物を加えて不活性雰囲気中で加熱
する技術とを組み合わせた場合には、一層の効果がある
のは言うまでもない。また、本発明の製造方法によれ
ば、炭素材料を含む負極板を減圧中で加熱する工程、も
しくは、前記負極板にリチウム化合物を加えて不活性雰
囲気中で加熱する工程を有することにより、炭素材料、
固相炭素化材料もしくは液相炭素化材料に対して行う場
合に比べて、一層高い再現性が実現でき、負極板の製造
ばらつきを少なくできる効果もある。
In the case where the technique of heating the carbon material according to the present invention under reduced pressure is combined with the technique of adding the lithium compound to the carbon material, the solid-phase carbonized material or the liquid-phase carbonized material and heating it in an inert atmosphere Needless to say, is more effective. Further, according to the production method of the present invention, the step of heating a negative electrode plate containing a carbon material under reduced pressure, or by adding a lithium compound to the negative electrode plate and heating in an inert atmosphere, carbon material,
Compared with the case where the solid-phase carbonized material or the liquid-phase carbonized material is used, higher reproducibility can be realized, and there is an effect that the manufacturing variation of the negative electrode plate can be reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明をその実施例により
さらに詳しく説明する。 [実施例1]炭素材料を減圧中で加熱処理する例を説明
する。本実施例では、炭素材料として、石油ピッチを窒
素雰囲気中において1000℃で加熱して得たものを用
いた。この炭素材料は、その平均粒径が20μmで、C
u−Kα線源によるX線広角回折法における(002)
面の面間隔(d002)が3.4オングストローム、c軸
方向の結晶子の大きさ(Lc)が10オングストローム
である。負極は、負極活物質である上記の炭素材料を減
圧中で700℃に加熱したものを用いた。上記の炭素材
料を減圧中で加熱せず、そのまま活物質とした負極を比
較例とする。これらの炭素材料10gに結着剤のポリエ
チレン粉末1gを混合し、この合剤0.1gを直径1
7.5mmの円盤に加圧成型した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail by way of its examples. [Example 1] An example of heat-treating a carbon material under reduced pressure will be described. In this example, the carbon material used was obtained by heating petroleum pitch at 1000 ° C. in a nitrogen atmosphere. This carbon material has an average particle size of 20 μm, and C
(002) in the X-ray wide-angle diffraction method using the u-Kα radiation source
The interplanar spacing (d 002 ) is 3.4 Å, and the crystallite size (Lc) in the c-axis direction is 10 Å. The negative electrode was prepared by heating the above carbon material, which is a negative electrode active material, to 700 ° C. under reduced pressure. A negative electrode, in which the above carbon material was not heated under reduced pressure and used as an active material as it is, is used as a comparative example. 1 g of polyethylene powder as a binder was mixed with 10 g of these carbon materials, and 0.1 g of this mixture was added to a diameter of 1
It was pressure-molded into a 7.5 mm disk.

【0012】こうして得た炭素電極を用いて図1のよう
な試験セルを組み立てた。1はこの炭素電極を表し、金
属ケース2の中央に配置されている。この電極1上に、
微孔性ポリプロピレンからなるセパレータ3を置き、非
水電解液を注液した後、内側に直径17.5mmの円盤
状金属リチウム4を張り付け、外周部にポリプロピレン
製ガスケット5を付けた封口板6を組み合わせて封口し
た。なお、電解液は、エチレンカーボネートとジメトキ
シエタンの体積比1:1の混合溶媒に過塩素酸リチウム
(LiClO4)を1モル/lの割合で溶解したもので
ある。上記の構成の試験電池について、まず、0.5m
Aの定電流で、炭素電極がリチウム対極に対して0Vに
なるまでカソード分極(炭素電極を負極としてみる場合
には充電に相当)し、次に電極が1.0Vになるまでア
ノード分極(放電に相当)した。このカソード分極、ア
ノード分極を10回繰り返し行い、10サイクル目の容
量を初期容量とした。なお、容量は炭素重量当りで評価
した。 さらに、上記の定電流試験を100サイクル繰
り返す充放電サイクル試験を行った。これらの結果を表
1に示した。
A test cell as shown in FIG. 1 was assembled using the carbon electrode thus obtained. Reference numeral 1 denotes this carbon electrode, which is arranged in the center of the metal case 2. On this electrode 1,
After placing the separator 3 made of microporous polypropylene and injecting the non-aqueous electrolyte, a disc-shaped metallic lithium 4 having a diameter of 17.5 mm is attached to the inside, and the sealing plate 6 having the polypropylene gasket 5 attached to the outer peripheral portion is attached. Combined and sealed. The electrolytic solution was prepared by dissolving lithium perchlorate (LiClO 4 ) in a mixed solvent of ethylene carbonate and dimethoxyethane at a volume ratio of 1: 1 at a ratio of 1 mol / l. Regarding the test battery having the above configuration, first, 0.5 m
At constant current of A, cathode polarization is performed until the carbon electrode becomes 0 V with respect to the lithium counter electrode (corresponding to charging when the carbon electrode is regarded as a negative electrode), and then anode polarization (discharging is performed until the electrode becomes 1.0 V). Equivalent to). This cathodic polarization and anodic polarization were repeated 10 times, and the capacity at the 10th cycle was taken as the initial capacity. The capacity was evaluated based on the weight of carbon. Further, a charge / discharge cycle test was conducted in which the above constant current test was repeated 100 cycles. The results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明による電池は、比較例に比べて放電
容量が極めて大きい。しかも、1サイクル目の充電容量
と放電容量の差がない。一方、比較例の電池は、1サイ
クル目の充電容量と放電容量の差が120mAh/gも
発生した。先に説明したとおり、この充放電容量差は
「容量ロス」や「リテンション」などと称され、正極に
リチウムを含むたとえばLiCoO2を使用し、負極に
炭素材料を用いるリチウムイオン二次電池では負極の充
放電容量差は重大な問題である。この電池の容量は、正
極で支配されるため、1回目の充電時に正極から負極へ
与えられたリチウムの一部が放電に使用されることなく
消費されてしまう。その結果、消費されたリチウム量だ
け電池容量が減少することとなるのである。また、10
0サイクル目の放電容量維持率も本発明の電池が高い値
を示した。以上から明らかなように、本発明による負極
を用いた電池は、高容量で、優れたサイクル特性を兼ね
備えた電池である。
The battery according to the present invention has an extremely large discharge capacity as compared with the comparative example. Moreover, there is no difference between the charge capacity and the discharge capacity in the first cycle. On the other hand, in the battery of the comparative example, the difference between the charge capacity and the discharge capacity in the first cycle was 120 mAh / g. As described above, this charge / discharge capacity difference is referred to as “capacity loss” or “retention”, and for example, LiCoO 2 containing lithium is used for the positive electrode and a negative electrode is used in the lithium ion secondary battery using the carbon material for the negative electrode. The difference in charge and discharge capacity is a serious problem. Since the capacity of this battery is governed by the positive electrode, part of the lithium given from the positive electrode to the negative electrode during the first charging is consumed without being used for discharging. As a result, the battery capacity is reduced by the amount of lithium consumed. Also, 10
The discharge capacity retention rate at the 0th cycle was also high in the battery of the present invention. As is apparent from the above, the battery using the negative electrode according to the present invention has a high capacity and excellent cycle characteristics.

【0015】[実施例2]炭素材料の結晶構造について
検討した。試験に用いた炭素材料のCu−Kα線源によ
るX線広角回折法における(002)面の面間隔(d
002)、およびc軸方向の結晶子の大きさ(Lc)を表
2に示した。これらの炭素材料を実施例1と同様に減圧
中で700℃に加熱した後、電極に成型して図1のよう
な試験電池を組み立て、実施例1と同じ条件で1サイク
ル目の充電容量と放電容量、および100サイクル目の
放電容量維持率を調べた。これらの結果を表2に示す。
なお、容量は炭素重量当りで評価した。
Example 2 The crystal structure of the carbon material was examined. The interplanar spacing (d) of the (002) plane in the X-ray wide-angle diffraction method using the Cu-Kα radiation source of the carbon material used for the test
002 ) and the crystallite size (Lc) in the c-axis direction are shown in Table 2. These carbon materials were heated to 700 ° C. under reduced pressure in the same manner as in Example 1, and then molded into electrodes to assemble a test battery as shown in FIG. The discharge capacity and the discharge capacity retention rate at the 100th cycle were examined. Table 2 shows the results.
The capacity was evaluated based on the weight of carbon.

【0016】[0016]

【表2】 [Table 2]

【0017】(002)面の面間隔(d002)が3.3
7〜3.90オングストロームで、c軸方向の結晶子の
大きさ(Lc)が5〜150オングストロームの範囲に
ある炭素材料が大きな放電容量を持っている。しかも、
この範囲にある炭素材料は、1サイクル目の充電容量と
放電容量の差が0である。d002が3.37オングスト
ロームより小さな炭素材料は、かなり結晶性が高く、多
くの場合、3000℃近い高温で炭素化(黒鉛化)され
ている。したがって、このような炭素材料では、さらに
減圧中(真空中)での加熱を行うことでは、未成長の炭
素成分の除去や表面不純物の低減効果がないと考えられ
る。一方、d002が3.90オングストロームより大き
い炭素材料は、その表面構造や官能基の状態などがかな
り複雑で、減圧中での加熱を行うことでは充分にその改
質を行えないと思われる。
The spacing (d 002 ) of the (002) plane is 3.3.
A carbon material having a crystallite size (Lc) in the c-axis direction of 7 to 3.90 angstroms in the range of 5 to 150 angstroms has a large discharge capacity. Moreover,
The carbon material in this range has a difference of 0 between the charge capacity and the discharge capacity in the first cycle. A carbon material having d 002 smaller than 3.37 angstrom has a high degree of crystallinity, and is often carbonized (graphitized) at a high temperature close to 3000 ° C. Therefore, in such a carbon material, it is considered that there is no effect of removing ungrown carbon components or reducing surface impurities by further heating under reduced pressure (in vacuum). On the other hand, a carbon material having a d 002 of greater than 3.90 Å has a considerably complicated surface structure and functional group state, and it is considered that the carbon material cannot be sufficiently modified by heating under reduced pressure.

【0018】[実施例3]実施例1と同様に石油ピッチ
を窒素雰囲気中で1000℃で加熱して得た炭素材料に
ついて、円筒型電池を構成して評価した。まず、負極活
物質である上記の炭素材料を減圧中で700℃に加熱し
たもの100gにスチレンブタジエンゴム結着剤5gを
混合し、この混合物を石油系溶剤を用いてペ−スト状と
した。このペーストを銅の芯材に塗布し、100℃で乾
燥することにより負極板を作製した。比較のため、上記
の炭素粉末を減圧中で加熱せず、そのまま活物質として
負極を作製した。いずれの電極も炭素の重量は2gとし
た。正極活物質には、Li2CO3とMn34とCoCO
3とを所定のモル比で混合し、900℃で加熱すること
によって合成したLiMn1.8Co0.24を用いた。こ
の正極活物質を100メッシュ以下に分級したもの10
0gに、導電剤として炭素粉末を10g、結着剤として
ポリ四フッ化エチレンの水性ディスパージョンを固形分
で8g加えてペースト状にし、チタンの芯材に塗布し、
乾燥後、圧延して正極を得た。正極活物質の重量は5g
とした。セパレ−タの材質には微孔性ポリプロピレンを
用いた。
[Example 3] In the same manner as in Example 1, the carbon material obtained by heating petroleum pitch at 1000 ° C in a nitrogen atmosphere was evaluated by constructing a cylindrical battery. First, 5 g of a styrene-butadiene rubber binder was mixed with 100 g of the above-mentioned carbon material, which is a negative electrode active material, heated to 700 ° C. under reduced pressure, and the mixture was made into a paste using a petroleum solvent. This paste was applied to a copper core material and dried at 100 ° C. to prepare a negative electrode plate. For comparison, the above carbon powder was not heated under reduced pressure, and a negative electrode was produced as it was as an active material. The weight of carbon in each electrode was 2 g. The positive electrode active material includes Li 2 CO 3 , Mn 3 O 4 and CoCO.
LiMn 1.8 Co 0.2 O 4 synthesized by mixing 3 and 3 at a predetermined molar ratio and heating at 900 ° C. was used. This positive electrode active material is classified to 100 mesh or less 10
To 0 g, 10 g of carbon powder as a conductive agent and 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder in a solid content were added to form a paste, which was applied to a titanium core material.
After drying, it was rolled to obtain a positive electrode. Weight of positive electrode active material is 5g
And Microporous polypropylene was used as the material of the separator.

【0019】正極板11と負極板12と両極板間に介在
させたセパレータ13とを渦巻き状に捲回した極板群を
その上下それぞれにポリプロピレン製の絶縁板16、1
7を配して電槽18に挿入し、電槽18の上部に段部を
形成させた後、非水電解液を注入し、封口板19で密閉
して図2のような密閉電池を作製した。電解液は、エチ
レンカーボネートとジメトキシエタンの体積比1:1の
混合溶媒に過塩素酸リチウムを1モル/lの割合で溶解
したものである。15、16はそれぞれスポット溶接に
より正極11、負極12に接続されたリードである。2
0は正極端子である。このように異なる2種類の負極板
を用いた電池について、充放電電流0.5mA/c
2、充放電電圧範囲4.3V〜3.0Vで充放電サイ
クル試験を行い、初期容量、および100サイクル目の
容量維持率を調べた。その結果を表3に示す。本発明に
よる電池は、放電容量が極めて大きく、100サイクル
目の放電容量維持率も高い値を示した。
Insulating plates 16 and 1 made of polypropylene are formed on the upper and lower sides of the electrode plate group in which the positive electrode plate 11, the negative electrode plate 12 and the separator 13 interposed between both electrode plates are spirally wound.
7 is placed and inserted in the battery case 18, a step is formed on the upper part of the battery case 18, a non-aqueous electrolyte is injected, and the battery is sealed with a sealing plate 19 to produce a sealed battery as shown in FIG. did. The electrolytic solution is prepared by dissolving lithium perchlorate in a mixed solvent of ethylene carbonate and dimethoxyethane in a volume ratio of 1: 1 at a ratio of 1 mol / l. Reference numerals 15 and 16 respectively denote leads connected to the positive electrode 11 and the negative electrode 12 by spot welding. 2
0 is a positive electrode terminal. A battery using two different types of negative electrode plates as described above has a charge / discharge current of 0.5 mA / c
A charge / discharge cycle test was performed at m 2 and a charge / discharge voltage range of 4.3 V to 3.0 V to examine the initial capacity and the capacity retention rate at the 100th cycle. Table 3 shows the results. The battery according to the present invention had an extremely large discharge capacity and a high discharge capacity retention ratio at the 100th cycle.

【0020】[0020]

【表3】 [Table 3]

【0021】[実施例4]本実施例では、炭素材料にリ
チウム化合物を加え、加熱して得たものについて説明す
る。負極活物質には、実施例1と同様に石油ピッチを窒
素雰囲気中で1000℃で加熱して得た炭素材料100
gに水酸化リチウム50gを加え、アルゴン雰囲気中に
おいて700℃に加熱したものを用いた。本実施例で
は、リチウム化合物として、水酸化リチウムの他に炭酸
リチウム、酸化リチウム、塩化リチウム、硝酸リチウム
について同様の試験を行った。比較例には、リチウム化
合物を加えず、加熱も行なわない炭素材料を用いた。ま
ず、上記のそれぞれの炭素材料粉末100gにスチレン
ブタジエンゴム結着剤5gを混合し、この混合物を石油
系溶剤を用いてペ−スト状としたものを銅の芯材に塗布
し、100℃で乾燥した。こうして、炭素材料を2g含
む負極を得た。正極は、活物質にLiMn1.8Co0.2
4を用いた実施例3と同じ構成のもである。上記のよう
に異なる種類の負極板に正極板を組み合わせて実施例3
と同様の円筒型電池を構成し、充放電電流0.5mA/
cm2、充放電電圧範囲4.3V〜3.0Vで充放電サ
イクル試験を行った。表4に初期容量、および100サ
イクル目の容量維持率を示す。
[Embodiment 4] In this embodiment, a material obtained by adding a lithium compound to a carbon material and heating it will be described. As the negative electrode active material, a carbon material 100 obtained by heating petroleum pitch at 1000 ° C. in a nitrogen atmosphere in the same manner as in Example 1.
Lithium hydroxide (50 g) was added to g, and the mixture was heated to 700 ° C. in an argon atmosphere and used. In the present example, similar tests were conducted using lithium carbonate, lithium carbonate, lithium oxide, lithium chloride, and lithium nitrate as the lithium compound. In the comparative example, a carbon material was used in which a lithium compound was not added and heating was not performed. First, 5 g of a styrene-butadiene rubber binder was mixed with 100 g of each of the above carbon material powders, and the mixture was made into a paste using a petroleum solvent and applied to a copper core material at 100 ° C. Dried. Thus, a negative electrode containing 2 g of the carbon material was obtained. The positive electrode has an active material of LiMn 1.8 Co 0.2 O
It has the same configuration as in Example 3 using 4 . Example 3 in which the positive electrode plate is combined with the different types of negative electrode plates as described above
A cylindrical battery similar to the above is configured, and the charge / discharge current is 0.5 mA /
A charging / discharging cycle test was performed in a cm 2 range of charging / discharging voltage of 4.3V to 3.0V. Table 4 shows the initial capacity and the capacity retention rate at the 100th cycle.

【0022】[0022]

【表4】 [Table 4]

【0023】本発明による電池は、放電容量が極めて大
きく、また、100サイクル目の放電容量維持率も高い
値を示した。さらに、リチウム化合物としては、水酸化
リチウムと同様に炭酸リチウム、酸化リチウム、塩化リ
チウム、硝酸リチウムについても同じ効果があることが
わかった。
The battery according to the present invention had an extremely large discharge capacity and a high discharge capacity retention ratio at the 100th cycle. Further, it was found that lithium carbonate, lithium carbonate, lithium oxide, lithium chloride, and lithium nitrate had the same effect as lithium hydroxide.

【0024】[実施例5]本実施例においては、固相炭
素化材料としてポリアクリロニトリル、コ−クス、セル
ロ−ス、フラン樹脂、フェノ−ル樹脂、エポキシ樹脂、
レ−ヨン、セルロ−スをそれぞれ使用した。まず、固体
炭素化材料のポリアクリロニトリル100gに水酸化リ
チウム50gを加えて、充分に混合したのち、アルゴン
気流中において700℃に加熱した。得られた粉体を負
極活物質とし、その100gにスチレンブタジエンゴム
結着剤5gを混合した。この混合物に石油系溶剤を加え
てペ−スト状とし、これを銅の芯材に塗布し、100℃
で乾燥して負極板を作製した。比較のため、ポリアクリ
ロニトリルに水酸化リチウムを加えず、そのまま700
℃に加熱して得た粉体を負極活物質とし、上記と同様に
して負極板を作製した。また、固相炭素化材料としてポ
リアクリロニトリルの他に、コ−クス、セルロ−ス、フ
ラン樹脂、フェノ−ル樹脂、エポキシ樹脂、レ−ヨンに
ついても全く同様の処理をした後、負極板を作製した。
いずれも負極活物質の重量は2gとした。
[Embodiment 5] In this embodiment, polyacrylonitrile, coke, cellulose, furan resin, phenol resin, epoxy resin, solid phase carbonized material,
Rayon and cellulose were used respectively. First, 50 g of lithium hydroxide was added to 100 g of polyacrylonitrile, which is a solid carbonized material, and sufficiently mixed, and then heated to 700 ° C. in an argon stream. The obtained powder was used as a negative electrode active material, and 100 g thereof was mixed with 5 g of a styrene-butadiene rubber binder. A petroleum-based solvent is added to this mixture to form a paste, which is applied to a copper core material at 100 ° C.
And dried to prepare a negative electrode plate. For comparison, 700% without adding lithium hydroxide to polyacrylonitrile
A powder obtained by heating to ° C was used as a negative electrode active material, and a negative electrode plate was prepared in the same manner as above. In addition to polyacrylonitrile as a solid-phase carbonization material, coke, cellulose, furan resin, phenol resin, epoxy resin, and rayon were treated in exactly the same manner to prepare a negative electrode plate. did.
In each case, the weight of the negative electrode active material was 2 g.

【0025】これらの負極板を用いて実施例3と同様に
して図2に示す構成の円筒型電池を作製した。これらの
電池について、充放電電流0.5mA/cm2、充放電
電圧範囲4.3V〜3.0Vで充放電サイクル試験を行
った。表5に初期容量、および100サイクル目の容量
維持率を示す。
Using these negative electrode plates, a cylindrical battery having the structure shown in FIG. 2 was prepared in the same manner as in Example 3. A charge / discharge cycle test was performed on these batteries at a charge / discharge current of 0.5 mA / cm 2 and a charge / discharge voltage range of 4.3V to 3.0V. Table 5 shows the initial capacity and the capacity retention rate at the 100th cycle.

【0026】[0026]

【表5】 [Table 5]

【0027】本発明による電池は、放電容量が極めて大
きく、しかも、1サイクル目の充電容量と放電容量の差
が0である。一方、比較例の電池は、1サイクル目の充
電容量と放電容量の差が150mAh以上も発生した。
100サイクル目の放電容量維持率も本発明による電池
は高い値を示した。このように、本発明による負極を用
いた電池は、高容量で、優れたサイクル特性を兼ね備え
た電池であることがわかった。なお、実施例では、正極
活物質としてLiMn1.8Co0.24を用いた例につい
て説明したが、本発明による負極は、この他に、LiC
oO2、LiNiO2、LiFeO2、γ型LiV25
ど充電放電に対して可逆性を有する正極と組み合わせた
場合にも同様の効果があることは言うまでもない。
The battery according to the present invention has an extremely large discharge capacity, and the difference between the charge capacity and the discharge capacity in the first cycle is zero. On the other hand, in the battery of the comparative example, the difference between the charge capacity and the discharge capacity in the first cycle was 150 mAh or more.
The discharge capacity retention rate at the 100th cycle was also high in the battery according to the present invention. As described above, it was found that the battery using the negative electrode according to the present invention has a high capacity and excellent cycle characteristics. In addition, although the example using LiMn 1.8 Co 0.2 O 4 as the positive electrode active material has been described in the examples, the negative electrode according to the present invention is not limited to this.
oO 2, LiNiO 2, LiFeO 2 , γ -type LiV it goes without saying that the same effect even when combined with a positive electrode having a reversible against 2 O 5 and charging discharging.

【0028】[実施例6]本実施例においては、液相炭
素化材料として樹脂系ピッチを用いた。まず、樹脂系ピ
ッチとしてのポリ塩化ビニル系ピッチ100gに水酸化
リチウムを50g加えて、充分に混合したのち、アルゴ
ン気流中で700℃に加熱した。得られた粉体を負極活
物質とし、これにスチレンブタジエンゴムを結着剤とし
て混合し、負極活物質とし、その100gにスチレンブ
タジエンゴム結着剤5gを混合した。この混合物に石油
系溶剤を加えてペ−スト状とし、これを銅の芯材に塗布
し、100℃で乾燥して負極板を作製した。比較のた
め、ポリ塩化ビニル系ピッチにキノリンを加えず、その
まま700℃に加熱して得られた粉体を負極活物質と
し、上記と同様にして負極板を作製した。また、液相炭
素化材料として樹脂系ピッチの他に、石油ピッチ、石炭
ピッチ、についても全く同様の処理をした後、負極板を
作製した。比較例として、液相炭素化材料として樹脂系
ピッチ、石油ピッチ、石炭ピッチについて、水酸化リチ
ウムを加えず、そのまま700℃に加熱して得られた粉
体を負極活物質とし、同様にして負極板を作製した。い
ずれも負極活物質の重量は2gとした。
[Embodiment 6] In this embodiment, a resin pitch is used as the liquid carbonization material. First, 50 g of lithium hydroxide was added to 100 g of polyvinyl chloride pitch as a resin pitch and mixed sufficiently, and then heated to 700 ° C. in an argon stream. The obtained powder was used as a negative electrode active material, and styrene-butadiene rubber was mixed as a binder into this powder, which was used as a negative electrode active material, and 100 g thereof was mixed with 5 g of a styrene-butadiene rubber binder. A petroleum solvent was added to this mixture to form a paste, which was applied to a copper core material and dried at 100 ° C. to prepare a negative electrode plate. For comparison, a powder obtained by directly heating to 700 ° C. without adding quinoline to polyvinyl chloride pitch was used as a negative electrode active material, and a negative electrode plate was prepared in the same manner as above. In addition to the resin pitch as the liquid-phase carbonization material, petroleum pitch and coal pitch were treated in exactly the same manner, and then a negative electrode plate was produced. As a comparative example, for resin-based pitch, petroleum pitch, and coal pitch as liquid-phase carbonization materials, powder obtained by directly heating to 700 ° C. without adding lithium hydroxide was used as a negative electrode active material. A plate was made. In each case, the weight of the negative electrode active material was 2 g.

【0029】これらの負極板を用いて実施例3と同様に
して図2に示す構成の円筒型電池を作製した。これらの
電池について、充放電電流0.5mA/cm2、充放電
電圧範囲4.3V〜3.0Vで充放電サイクル試験を行
った。表6に初期容量、および100サイクル目の容量
維持率を示す。本発明による電池は、放電容量が極めて
大きく、100サイクル目の放電容量維持率も高い値を
示した。
Using these negative electrode plates, a cylindrical battery having the structure shown in FIG. 2 was prepared in the same manner as in Example 3. A charge / discharge cycle test was performed on these batteries at a charge / discharge current of 0.5 mA / cm 2 and a charge / discharge voltage range of 4.3V to 3.0V. Table 6 shows the initial capacity and the capacity retention rate at the 100th cycle. The battery according to the present invention had an extremely large discharge capacity and a high discharge capacity retention ratio at the 100th cycle.

【0030】[0030]

【表6】 [Table 6]

【0031】[実施例7]本実施例においては、炭素材
料に対するリチウム化合物の混合割合について検討し
た。炭素材料には、実施例1と同じく石油ピッチを窒素
雰囲気中で1000℃で加熱して得たものを用いた。こ
の炭素材料は、その平均粒径が20μm、d200が3.
4オングストロームで、Lcが10オングストロームで
ある。上記の炭素材料100gに水酸化リチウムを各種
の割合で加えた後、アルゴン雰囲気中で700℃に加熱
した。ここでは、炭素材料の重量をW1、水酸化リチウ
ムの重量をW2としたとき、W2/W1の値が0/100
から120/100の範囲で検討した。上記の処理をし
た炭素材料の粉末を負極活物質とした。比較のため、上
記の炭素材料にリチウム化合物を加えず、加熱も行なわ
ないものを活物質とした。これらの活物質を用いて実施
例3と全く同様にして負極板を作製し、実施例3と同じ
正極板と組み合わせて円筒型電池を構成した。各種の負
極板を用いた電池について、充放電電流0.5mA/c
2、充放電電圧範囲4.3V〜3.0Vで充放電サイ
クル試験を行った。表7に初期容量、および100サイ
クル目の容量維持率を示す。
[Embodiment 7] In this embodiment, the mixing ratio of the lithium compound to the carbon material was examined. As the carbon material, the one obtained by heating petroleum pitch at 1000 ° C. in a nitrogen atmosphere as in Example 1 was used. This carbon material has an average particle size of 20 μm and a d 200 of 3.
At 4 angstroms, Lc is 10 angstroms. Lithium hydroxide was added to 100 g of the above carbon material at various ratios, and then heated to 700 ° C. in an argon atmosphere. Here, when the weight of the carbon material is W 1 and the weight of lithium hydroxide is W 2 , the value of W 2 / W 1 is 0/100.
From 120 to 100/100. The powder of the carbon material treated as described above was used as the negative electrode active material. For comparison, an active material was prepared by adding no lithium compound to the above carbon material and not heating it. A negative electrode plate was produced using these active materials in exactly the same manner as in Example 3, and was combined with the same positive electrode plate as in Example 3 to form a cylindrical battery. Charge / discharge current of 0.5 mA / c for batteries using various negative plates
A charge / discharge cycle test was performed at m 2 and a charge / discharge voltage range of 4.3V to 3.0V. Table 7 shows the initial capacity and the capacity retention rate at the 100th cycle.

【0032】[0032]

【表7】 [Table 7]

【0033】放電容量は、W2/W1の値が1/100か
ら100/100の範囲で極めて大きい値を示した。ま
た、100サイクル目の放電容量維持率も同じ重量範囲
で高い値を示した。W2/W1の値が1/100未満の場
合には、炭素材料の表面状態の改良や不純物の減少ある
いは充放電に寄与しない物質の除去などの作用が充分で
ないと考えられる。一方、W2/W1の値が100/10
0を越えると、過剰のリチウム化合物が負極中に存在す
ることとなり、放電容量やサイクル特性に悪影響を与え
ると考えられる。なお、固相炭素化材料および液相炭素
化材料を炭素化した炭素材料についても全く同様の検討
を実施した。その結果、炭素材料、固相炭素化材料ある
いは液相炭素化材料のいずれかの重量をW1とし、水酸
化リチウムの重量をW2としたとき、W2/W1の値が1
/100から100/100の範囲で放電容量が大き
く、サイクル特性にも優れたものが得られることがわか
った。さらに、リチウム化合物としては、水酸化リチウ
ムと同様に炭酸リチウム、酸化リチウム、塩化リチウ
ム、硝酸リチウムについても同じ効果があることが確認
された。
The discharge capacity showed an extremely large value in the range of W 2 / W 1 from 1/100 to 100/100. Further, the discharge capacity retention ratio at the 100th cycle also showed a high value in the same weight range. When the value of W 2 / W 1 is less than 1/100, it is considered that the effects of improving the surface condition of the carbon material, reducing impurities, and removing substances that do not contribute to charge and discharge are not sufficient. On the other hand, the value of W 2 / W 1 is 100/10
If it exceeds 0, excess lithium compound is present in the negative electrode, which is considered to adversely affect the discharge capacity and cycle characteristics. In addition, the same study was carried out on the carbon material obtained by carbonizing the solid phase carbonized material and the liquid phase carbonized material. As a result, when the weight of any one of the carbon material, the solid-phase carbonized material or the liquid-phase carbonized material is W 1 and the weight of lithium hydroxide is W 2 , the value of W 2 / W 1 is 1
It was found that the discharge capacity was large in the range of / 100 to 100/100 and that excellent cycle characteristics were obtained. Further, as the lithium compound, it was confirmed that lithium carbonate, lithium oxide, lithium chloride, and lithium nitrate had the same effect as lithium hydroxide.

【0034】[実施例8]本実施例においては、炭素材
料を含む負極板を作製した後、減圧中で加熱処理する例
を説明する。炭素材料として、石油ピッチを窒素雰囲気
中で1000℃で加熱して得たものを用いた。この炭素
材料はその平均粒径が20μm、d200が3.4オング
ストロームで、Lcが10オングストロームである。上
記炭素材料に結着剤のスチレンブタジエンゴムを重量比
で100:10の割合で加えたのち、石油系溶剤を用い
てペ−スト状とし、このペーストを銅の芯材に塗布し、
200℃で乾燥して負極板を作製した。負極活物質の重
量は2gとした。次いで、この負極板を減圧中で700
℃に加熱した。一方、上記負極板を前記の加熱処理をせ
ずにそのまま用いたものを比較例とする。これらの負極
板を用いて実施例3と同様にして円筒型電池を構成し
た。これらの電池について、前記と同じ条件で充放電サ
イクル試験を行した。表8に初期容量、および100サ
イクル目の容量維持率を示す。本発明による電池は、放
電容量が極めて大きく、100サイクル目の放電容量維
持率も高い値を示した。
[Embodiment 8] In this embodiment, an example of producing a negative electrode plate containing a carbon material and then performing heat treatment under reduced pressure will be described. A carbon material obtained by heating petroleum pitch at 1000 ° C. in a nitrogen atmosphere was used. This carbon material has an average particle size of 20 μm, d 200 of 3.4 angstroms, and Lc of 10 angstroms. Styrene-butadiene rubber as a binder was added to the above carbon material at a weight ratio of 100: 10, and then made into a paste using a petroleum solvent, and this paste was applied to a copper core material,
It was dried at 200 ° C. to prepare a negative electrode plate. The weight of the negative electrode active material was 2 g. Then, the negative electrode plate was placed under reduced pressure to 700
Heated to ° C. On the other hand, a comparative example uses the above negative electrode plate as it is without being subjected to the heat treatment. Using these negative electrode plates, a cylindrical battery was constructed in the same manner as in Example 3. A charge / discharge cycle test was performed on these batteries under the same conditions as described above. Table 8 shows the initial capacity and the capacity retention rate at the 100th cycle. The battery according to the present invention had an extremely large discharge capacity and a high discharge capacity retention ratio at the 100th cycle.

【0035】[0035]

【表8】 [Table 8]

【0036】[実施例9]本実施例においては、固相炭
素化材料を負極集電体表面に形成する工程とこれにリチ
ウム化合物を加えたのち、加熱する工程を有する負極の
製造法について検討した。固相炭素化材料として、ポリ
アクリロニトリルを用いた。ポリアクリロニトリルにス
チレンブタジエンゴムを重量比で100:10の割合で
加えたのち、石油系溶剤を用いてペ−スト状とし、これ
を銅の芯材に塗布し、200℃で乾燥して負極板を作製
した。塗着された固相炭素化材料の重量は2gである。
この極板に水酸化リチウム1gを加えたのち、アルゴン
気流中で700℃で加熱し、負極板とした。一方、比較
例として、上記負極板に水酸化リチウムを加えずにその
ままアルゴン気流中で700℃で加熱した。これらの負
極板を用いて実施例3と同様にして円筒型電池を構成
し、前記と同じ条件で充放電サイクル試験を行した。表
9に初期容量、および100サイクル目の容量維持率を
示す。本発明による電池は、放電容量が極めて大きく、
100サイクル目の放電容量維持率も高い値を示した。
[Embodiment 9] In this embodiment, a method of forming a solid-phase carbonized material on the surface of a negative electrode current collector and a method of manufacturing a negative electrode having a step of adding a lithium compound thereto and then heating the material will be examined. did. Polyacrylonitrile was used as the solid-phase carbonization material. Styrene-butadiene rubber was added to polyacrylonitrile at a weight ratio of 100: 10, and then made into a paste using a petroleum solvent, which was applied to a copper core material and dried at 200 ° C. to prepare a negative electrode plate. Was produced. The weight of the solid-phase carbonized material applied is 2 g.
After adding 1 g of lithium hydroxide to this electrode plate, it was heated at 700 ° C. in an argon stream to obtain a negative electrode plate. On the other hand, as a comparative example, the negative electrode plate was heated at 700 ° C. in an argon stream without adding lithium hydroxide. A cylindrical battery was constructed using these negative electrode plates in the same manner as in Example 3, and a charge / discharge cycle test was performed under the same conditions as described above. Table 9 shows the initial capacity and the capacity retention rate at the 100th cycle. The battery according to the present invention has an extremely large discharge capacity,
The discharge capacity retention rate at the 100th cycle also showed a high value.

【0037】[0037]

【表9】 [Table 9]

【0038】[実施例10]本実施例においては、液相
炭素化材料を負極集電体表面に形成する工程と、これに
リチウム化合物を加える工程と、これを加熱する工程と
を有する負極の製造法について検討した。液相炭素化材
料として、樹脂系ピッチであるポリ塩化ビニル系ピッチ
にスチレンブタジエンゴムを重量比で100:10の割
合で加えたのち、石油系溶剤を用いてペ−スト状とし、
これを銅の芯材に塗布し、200℃で乾燥して負極板を
作製した。塗着された液相炭素化材料の重量は2gであ
る。この極板に水酸化リチウム1gを加えたのち、アル
ゴン気流中で700℃で加熱し、負極板とした。一方、
比較例として、上記負極板に水酸化リチウムを加えずに
そのままアルゴン気流中で700℃で加熱した。これら
の負極板を用いて実施例3と同様にして円筒型電池を構
成し、前記と同じ条件で充放電サイクル試験を行した。
表10に初期容量、および100サイクル目の容量維持
率を示す。
[Embodiment 10] In this embodiment, a negative electrode having a step of forming a liquid-phase carbonized material on the surface of a negative electrode current collector, a step of adding a lithium compound to it, and a step of heating the same. The manufacturing method was examined. As a liquid-phase carbonization material, styrene-butadiene rubber was added to polyvinyl chloride pitch, which is a resin pitch, at a weight ratio of 100: 10, and then made into a paste using a petroleum solvent,
This was applied to a copper core material and dried at 200 ° C. to prepare a negative electrode plate. The weight of the liquid-phase carbonized material applied is 2 g. After adding 1 g of lithium hydroxide to this electrode plate, it was heated at 700 ° C. in an argon stream to obtain a negative electrode plate. on the other hand,
As a comparative example, the negative electrode plate was heated at 700 ° C. in an argon stream without adding lithium hydroxide. A cylindrical battery was constructed using these negative electrode plates in the same manner as in Example 3, and a charge / discharge cycle test was performed under the same conditions as described above.
Table 10 shows the initial capacity and the capacity retention rate at the 100th cycle.

【0039】[0039]

【表10】 [Table 10]

【0040】本発明による電池は、放電容量が極めて大
きく、100サイクル目の放電容量維持率も高い値を示
した。さらに、実施例では、炭素材料として上記の炭素
材料を用いて説明したが、天然黒鉛、人造黒鉛、炭素繊
維、黒鉛ウィスカ−、難黒鉛化炭素などをはじめとする
充電放電に対して可逆性を有する負極炭素材を用いた場
合にも同様の効果があることは言うまでもない。
The battery according to the present invention had an extremely large discharge capacity and a high discharge capacity retention ratio at the 100th cycle. Furthermore, in the examples, the above carbon material was used as the carbon material, but reversibility with respect to charging and discharging including natural graphite, artificial graphite, carbon fiber, graphite whiskers, non-graphitizable carbon, etc. It is needless to say that the same effect can be obtained when the negative electrode carbon material is used.

【0041】[実施例11]本実施例においては、実施
例3における、減圧中での加熱温度について検討した。
加熱温度は、100〜1600℃の範囲で変えた。この
他は実施例3と全く同様にして電池を構成し、特性を調
べた。その結果を表11に示した。
Example 11 In this example, the heating temperature under reduced pressure in Example 3 was examined.
The heating temperature was changed in the range of 100 to 1600 ° C. A battery was constructed in the same manner as in Example 3 except for the above, and the characteristics were examined. The results are shown in Table 11.

【0042】[0042]

【表11】 [Table 11]

【0043】加熱温度が200℃〜1400℃の範囲で
大きな放電容量と優れたサイクル特性が得られた。加熱
温度が200℃より低い場合、未成長炭素が充分に除去
されないために、炭素材料の充放電反応に悪影響を与
え、その結果、電池の放電容量が小さいと考えられる。
一方、加熱温度が1400℃を越えた場合、放電容量は
同様に大きいが、サイクル特性が劣っている。詳しい原
因は明らかではないが、必要以上の加熱により炭素材料
がその表面などに悪影響を受けたと考えられる。
A large discharge capacity and excellent cycle characteristics were obtained in the heating temperature range of 200 ° C to 1400 ° C. When the heating temperature is lower than 200 ° C., the ungrown carbon is not sufficiently removed, which adversely affects the charge / discharge reaction of the carbon material, and as a result, the discharge capacity of the battery is considered to be small.
On the other hand, when the heating temperature exceeds 1400 ° C., the discharge capacity is similarly large, but the cycle characteristics are poor. Although the detailed cause is not clear, it is considered that the carbon material is adversely affected on its surface by excessive heating.

【0044】[実施例12]本実施例では、実施例4に
おいて、リチウム化合物を加えた炭素材料をアルゴン雰
囲気中で加熱する際の加熱温度について検討した。加熱
温度は、100〜1600℃の範囲で変えた。この他は
実施例4と全く同様にして電池を構成し、特性を調べ
た。その結果を表12に示した。
[Embodiment 12] In this embodiment, the heating temperature when the carbon material to which the lithium compound is added in Embodiment 4 is heated in an argon atmosphere was examined. The heating temperature was changed in the range of 100 to 1600 ° C. Except for this, a battery was constructed in exactly the same manner as in Example 4, and the characteristics were examined. Table 12 shows the results.

【0045】[0045]

【表12】 [Table 12]

【0046】加熱温度が200℃〜1400℃の範囲で
大きな放電容量と優れたサイクル特性が得られた。実施
例11の場合と同様に、加熱温度が200℃より低い場
合、未成長炭素が充分に除去されないために、炭素材料
の充放電反応に悪影響を与え、その結果、電池の放電容
量が小さいと考えられる。一方、加熱温度が1400℃
を越えた場合、放電容量は同様に大きいが、サイクル特
性が劣っている。必要以上の加熱により、炭素材料がそ
の表面などに悪影響を受けたためと考えられる。
A large discharge capacity and excellent cycle characteristics were obtained in the heating temperature range of 200 ° C to 1400 ° C. As in the case of Example 11, when the heating temperature is lower than 200 ° C., the ungrown carbon is not sufficiently removed, which adversely affects the charge / discharge reaction of the carbon material and, as a result, when the discharge capacity of the battery is small. Conceivable. On the other hand, the heating temperature is 1400 ° C
If it exceeds, the discharge capacity is also large, but the cycle characteristics are inferior. It is considered that the carbon material had an adverse effect on the surface of the carbon material due to excessive heating.

【0047】[実施例13]本実施例では、実施例5に
おいて、リチウム化合物を加えた固相炭素化材料をアル
ゴン雰囲気中で加熱する際の加熱温度について検討し
た。加熱温度は、300〜2500℃の範囲で変えた。
この他は実施例5と全く同様にして電池を構成し、特性
を調べた。その結果を表13に示した。
[Embodiment 13] In this embodiment, the heating temperature for heating the solid-phase carbonized material to which the lithium compound was added in Embodiment 5 in an argon atmosphere was examined. The heating temperature was changed in the range of 300 to 2500 ° C.
Except for this, a battery was constructed in exactly the same manner as in Example 5, and the characteristics were examined. The results are shown in Table 13.

【0048】[0048]

【表13】 [Table 13]

【0049】加熱温度が400℃〜2000℃の範囲で
大きな放電容量と優れたサイクル特性が得られた。加熱
温度が400℃より低い場合、ポリアクリロニトリルが
充分に炭素化しないために、これがリチウムを吸蔵放出
する活物質として作用せず、その結果、負極の放電容量
が小さいと考えられる。一方、加熱温度が2000℃を
越えた場合、必要以上の加熱により急激な炭化や一部で
気化が起こり、負極板の組織劣化を引き起こし、これに
よって負極板の強度が低下し、また負極の集電性も低下
したため、初期放電容量および充放電サイクルによる容
量維持率が低いと考えられる。
A large discharge capacity and excellent cycle characteristics were obtained in the heating temperature range of 400 ° C to 2000 ° C. When the heating temperature is lower than 400 ° C., it is considered that the polyacrylonitrile does not carbonize sufficiently, so that it does not act as an active material that absorbs and releases lithium, and as a result, the discharge capacity of the negative electrode is small. On the other hand, when the heating temperature exceeds 2000 ° C., excessive carbonization causes rapid carbonization and partial vaporization, which causes deterioration of the structure of the negative electrode plate, which lowers the strength of the negative electrode plate and causes the negative electrode plate to collect. It is considered that the initial discharge capacity and the capacity retention rate due to the charge / discharge cycle were low because the electrical property also decreased.

【0050】[実施例14]本実施例では、実施例6に
おいて、リチウム化合物を加えた液相炭素化材料をアル
ゴン雰囲気中で加熱する際の加熱温度について検討し
た。加熱温度は、300〜3200℃の範囲で変えた。
この他は実施例6と全く同様にして電池を構成し、特性
を調べた。その結果を表14に示した。
[Embodiment 14] In this embodiment, the heating temperature for heating the liquid phase carbonized material to which the lithium compound is added in Embodiment 6 in an argon atmosphere was examined. The heating temperature was changed in the range of 300 to 3200 ° C.
A battery was constructed in the same manner as in Example 6 except for the above, and the characteristics were examined. Table 14 shows the results.

【0051】[0051]

【表14】 [Table 14]

【0052】加熱温度が400℃〜3000℃の範囲で
大きな放電容量と優れたサイクル特性が得られた。加熱
温度が400℃より低い場合、石炭ピッチが充分に炭素
化しないために、これがリチウムを吸蔵放出する活物質
として作用せず、その結果、負極の放電容量が小さいと
考えられる。一方、加熱温度が3000℃を越えた場
合、必要以上の加熱により急激な炭化や一部で気化が起
こり、負極組織劣化を引き起こし、これによって充放電
サイクルによる容量維持率が低いと考えられる。また、
3000℃を越える加熱は、その経済性の観点からも工
業的に実施が容易ではない。
A large discharge capacity and excellent cycle characteristics were obtained when the heating temperature was in the range of 400 ° C to 3000 ° C. When the heating temperature is lower than 400 ° C., it is considered that the coal pitch does not carbonize sufficiently, so that it does not act as an active material that absorbs and releases lithium, and as a result, the discharge capacity of the negative electrode is small. On the other hand, when the heating temperature exceeds 3000 ° C., excessive carbonization causes rapid carbonization and partial vaporization to cause deterioration of the negative electrode structure, which is considered to result in a low capacity retention rate due to charge / discharge cycles. Also,
Heating above 3000 ° C. is not easy to carry out industrially from the economical viewpoint.

【0053】[実施例15]本実施例では、実施例9に
おいて、リチウム化合物を加えた負極板をアルゴン雰囲
気中で加熱する際の加熱温度について検討した。加熱温
度は、100〜1200℃の範囲で変えた。この他は実
施例9と全く同様にして電池を構成し、特性を調べた。
その結果を表15に示した。
Example 15 In this example, the heating temperature for heating the negative electrode plate containing the lithium compound in Example 9 in an argon atmosphere was examined. The heating temperature was changed in the range of 100 to 1200 ° C. A battery was constructed in the same manner as in Example 9 except for the above, and the characteristics were examined.
Table 15 shows the results.

【0054】[0054]

【表15】 [Table 15]

【0055】加熱温度が200℃〜1000℃の範囲で
大きな放電容量と優れたサイクル特性が得られた。加熱
温度が200℃より低い場合、石油系溶剤が充分に気化
しないために、炭素材料の充放電反応に悪影響を与え、
その結果、電池の放電容量が小さいと考えられる。な
お、芯材である銅の融点が1083℃であるため、12
00℃で加熱すると銅板が溶解したため電池を作製でき
なかった。
A large discharge capacity and excellent cycle characteristics were obtained in the heating temperature range of 200 ° C to 1000 ° C. When the heating temperature is lower than 200 ° C., the petroleum solvent does not vaporize sufficiently, which adversely affects the charge / discharge reaction of the carbon material.
As a result, the discharge capacity of the battery is considered to be small. Since the melting point of copper, which is the core material, is 1083 ° C.,
When heated at 00 ° C., the copper plate was melted and a battery could not be produced.

【0056】[実施例16]本実施例では、実施例10
において、リチウム化合物を加えた負極板をアルゴン雰
囲気中で加熱する際の加熱温度について検討した。加熱
温度は、300〜1200℃の範囲で変えた。この他は
実施例10と全く同様にして電池を構成し、特性を調べ
た。その結果を表16に示した。
[Embodiment 16] In this embodiment, Embodiment 10 will be described.
In, the heating temperature when heating the negative electrode plate containing the lithium compound in an argon atmosphere was examined. The heating temperature was changed in the range of 300 to 1200 ° C. Except for this, a battery was constructed and characteristics were examined in exactly the same manner as in Example 10. Table 16 shows the results.

【0057】[0057]

【表16】 [Table 16]

【0058】加熱温度が400℃〜1000℃の範囲で
大きな放電容量と優れたサイクル特性が得られた。加熱
温度が400℃より低い場合、ピッチが充分に炭素化し
ないために、これがリチウムを吸蔵放出する活物質とし
て作用せず、その結果、負極の放電容量が小さいと考え
られる。また、1200℃では銅板が溶解したため電池
を作製できなかった。
A large discharge capacity and excellent cycle characteristics were obtained in the heating temperature range of 400 ° C to 1000 ° C. When the heating temperature is lower than 400 ° C., it is considered that the pitch does not carbonize sufficiently, so that it does not act as an active material that absorbs and releases lithium, and as a result, the discharge capacity of the negative electrode is small. Further, at 1200 ° C., the copper plate was melted, so that the battery could not be manufactured.

【0059】[0059]

【発明の効果】以上のように本発明によれば、高エネル
ギー密度で、デンドライトによる短絡のない信頼性の高
い非水電解質二次電池を与える負極を得ることができ
る。
As described above, according to the present invention, it is possible to obtain a negative electrode which provides a highly reliable non-aqueous electrolyte secondary battery having a high energy density and not causing a short circuit due to dendrite.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における負極を評価するための
試験セルの縦断面略図である。
FIG. 1 is a schematic vertical sectional view of a test cell for evaluating a negative electrode in an example of the present invention.

【図2】本発明の実施例に用いた円筒型電池の縦断面略
図である。
FIG. 2 is a schematic vertical sectional view of a cylindrical battery used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 炭素電極 2 ケース 3 セパレータ 4 金属リチウム 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード 15 負極リード 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 1 Carbon Electrode 2 Case 3 Separator 4 Metal Lithium 5 Gasket 6 Sealing Plate 11 Positive Electrode 12 Negative Electrode 13 Separator 14 Positive Electrode Lead 15 Negative Electrode Lead 16 Upper Insulating Plate 17 Lower Insulating Plate 18 Battery Case 19 Sealing Plate 20 Positive Electrode Terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Ito 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In the company

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を減圧中で加熱する工程を有す
る非水電解質二次電池用負極の製造方法。
1. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising a step of heating a carbon material under reduced pressure.
【請求項2】 炭素材料をリチウム化合物とともに不活
性雰囲気中で加熱する工程を有する非水電解質二次電池
用負極の製造方法。
2. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which comprises a step of heating a carbon material together with a lithium compound in an inert atmosphere.
【請求項3】 前記加熱する工程が、前記炭素材料を含
む電極を形成後に行われる請求項1または2記載の非水
電解質二次電池用負極の製造方法。
3. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the heating step is performed after forming the electrode containing the carbon material.
【請求項4】 前記炭素材料が、Cu−Kα線源による
X線広角回折法での(002)面の面間隔が3.37〜
3.90オングストロームで、c軸方向の結晶子の大き
さが5〜150オングストロームである請求項1〜3の
いずれかに記載の非水電解質二次電池用負極の製造方
法。
4. The carbon material has an interplanar spacing of (002) planes of 3.37 to 3 by an X-ray wide-angle diffraction method using a Cu—Kα radiation source.
4. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the size of the crystallite in the c-axis direction is 3.90 angstroms and 5 to 150 angstroms.
【請求項5】 固相炭素化材料にリチウム化合物を加
え、不活性雰囲気中で加熱して前記固相炭素化材料を炭
素化する工程を有する非水電解質二次電池用負極の製造
方法。
5. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising a step of adding a lithium compound to a solid-phase carbonized material and heating the solid-state carbonized material in an inert atmosphere to carbonize the solid-phase carbonized material.
【請求項6】 液相炭素化材料にリチウム化合物を加
え、不活性雰囲気中で加熱して前記液相炭素化材料を炭
素化する工程を有する非水電解質二次電池用負極の製造
方法。
6. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which comprises the step of adding a lithium compound to a liquid-phase carbonized material and heating it in an inert atmosphere to carbonize the liquid-phase carbonized material.
【請求項7】 固相炭素化材料を負極集電体表面に形成
する工程、これにリチウム化合物を加える工程、および
これを不活性雰囲気中で加熱して前記固相炭素化材料を
炭素化する工程を有する非水電解質二次電池用負極の製
造方法。
7. A step of forming a solid-phase carbonized material on the surface of a negative electrode current collector, a step of adding a lithium compound thereto, and heating this in an inert atmosphere to carbonize the solid-phase carbonized material. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which has a step.
【請求項8】 液相炭素化材料を負極集電体表面に形成
する工程、これにリチウム化合物を加える工程、および
これを不活性雰囲気中で加熱して前記液相炭素化材料を
炭素化する工程を有する非水電解質二次電池用負極の製
造方法。
8. A step of forming a liquid-phase carbonized material on the surface of a negative electrode current collector, a step of adding a lithium compound thereto, and heating this in an inert atmosphere to carbonize the liquid-phase carbonized material. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which has a step.
【請求項9】 前記リチウム化合物が水酸化リチウム、
炭酸リチウム、酸化リチウム、塩化リチウム、および硝
酸リチウムからなる群より選ばれる少なくとも一種であ
る請求項2、5、6、7、8のいずれかに記載の非水電
解質二次電池用負極の製造方法。
9. The lithium compound is lithium hydroxide,
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 2, 5, 6, 7, and 8, which is at least one selected from the group consisting of lithium carbonate, lithium oxide, lithium chloride, and lithium nitrate. .
【請求項10】 加熱温度が200〜1400℃の範囲
である請求項1〜3のいずれかに記載の非水電解質二次
電池用負極の製造方法。
10. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the heating temperature is in the range of 200 to 1400 ° C.
【請求項11】 加熱温度が400〜2000℃の範囲
である請求項5または7に記載の非水電解質二次電池用
負極の製造方法。
11. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 5, wherein the heating temperature is in the range of 400 to 2000 ° C.
【請求項12】 加熱温度が400〜3000℃の範囲
である請求項6または8に記載の非水電解質二次電池用
負極の製造方法。
12. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 6, wherein the heating temperature is in the range of 400 to 3000 ° C.
JP7263347A 1995-10-11 1995-10-11 Manufacture of negative electrode for non-aqueous electrolyte secondary battery Pending JPH09106818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7263347A JPH09106818A (en) 1995-10-11 1995-10-11 Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263347A JPH09106818A (en) 1995-10-11 1995-10-11 Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09106818A true JPH09106818A (en) 1997-04-22

Family

ID=17388215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263347A Pending JPH09106818A (en) 1995-10-11 1995-10-11 Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09106818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051309A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008257883A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
CN112645300A (en) * 2019-11-07 2021-04-13 上海杉杉科技有限公司 Hard carbon negative electrode material, lithium ion battery and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051309A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008257883A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
CN112645300A (en) * 2019-11-07 2021-04-13 上海杉杉科技有限公司 Hard carbon negative electrode material, lithium ion battery and preparation method and application thereof
CN112645300B (en) * 2019-11-07 2023-02-07 上海杉杉科技有限公司 Hard carbon negative electrode material, lithium ion battery, and preparation method and application of hard carbon negative electrode material

Similar Documents

Publication Publication Date Title
US6106976A (en) Secondary battery or cell with a non-aqueous electrolyte
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JPH087885A (en) Lithium secondary battery
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
JPH05190209A (en) Liquid electrolyte and rechargeable chemical cell with lithium/carbon anode
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP3311104B2 (en) Lithium secondary battery
JPH06318459A (en) Lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP3061337B2 (en) Non-aqueous electrolyte secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP3253185B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode thereof
JPH07105938A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP3406843B2 (en) Lithium secondary battery
JP3444616B2 (en) Negative electrode for non-aqueous secondary batteries
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
WO2002089235A1 (en) Carbonaceous material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell comprising the same
JP3863514B2 (en) Lithium secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH09106818A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JPH07105937A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery
JPH10270080A (en) Nonaqueous electrolyte secondary battery