JP2008257883A - Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element - Google Patents

Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element Download PDF

Info

Publication number
JP2008257883A
JP2008257883A JP2007095391A JP2007095391A JP2008257883A JP 2008257883 A JP2008257883 A JP 2008257883A JP 2007095391 A JP2007095391 A JP 2007095391A JP 2007095391 A JP2007095391 A JP 2007095391A JP 2008257883 A JP2008257883 A JP 2008257883A
Authority
JP
Japan
Prior art keywords
electrode
carbon material
carbon
lithium
electrochemical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095391A
Other languages
Japanese (ja)
Other versions
JP5261959B2 (en
Inventor
Shuichi Ishimoto
修一 石本
Naoya Nishina
直也 仁科
Junji Koga
淳史 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2007095391A priority Critical patent/JP5261959B2/en
Publication of JP2008257883A publication Critical patent/JP2008257883A/en
Application granted granted Critical
Publication of JP5261959B2 publication Critical patent/JP5261959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a carbon material for the electrode of an electrochemical element having a high capacity, high charge discharge stability, and coping with high output (high current density) charging/discharging. <P>SOLUTION: The carbon material for the electrode is obtained by mixing prescribed graphitizing carbon and a prescribed alkali metal carbonate in a ratio of 1:1 to 1:4, and heat-treating at 600-1500°C in an inert gas atmosphere. As the alkali metal, potassium, sodium, or lithium is used. The electrode for the electrochemical element is manufactured with the carbon material obtained, in this way. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二次電池やキャパシタなどの電気化学素子の電極材料に関し、さらに詳しくは、出力やサイクル特性に優れ、高電圧特性を有する電気化学素子の電極用炭素材料及びその製造方法、並びに電気化学素子用電極に関する。   The present invention relates to an electrode material for an electrochemical element such as a secondary battery or a capacitor. More specifically, the present invention relates to an electrode carbon material for an electrochemical element having excellent output and cycle characteristics and high voltage characteristics, a method for producing the same, and an electric The present invention relates to a chemical element electrode.

近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する電気化学素子が用いられる。このような電気化学素子としては、二次電池、電気二重層キャパシタがある。   In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, an electrochemical element having high energy density and high output density characteristics is used as a power source for driving the motor. Such electrochemical elements include secondary batteries and electric double layer capacitors.

上記二次電池には、鉛電池、ニッケル・カドミウム電池、ニッケル水素電池、またはプロトン電池などがある。これらの二次電池は、イオン伝導性の高い酸性またはアルカリ性の水系電解液を用いているため、充放電の際に大電流が得られるという優れた出力特性を有するが、水の電気分解電圧が1.23Vであるため、それ以上の高い電圧を得ることができない。電気自動車の電源としては、200V前後の高電圧が必要であるため、それだけ多くの電池を直列に接続しなければならず、電源の小型・軽量化には不利である。   Examples of the secondary battery include a lead battery, a nickel / cadmium battery, a nickel metal hydride battery, and a proton battery. Since these secondary batteries use an acidic or alkaline aqueous electrolyte having high ion conductivity, they have excellent output characteristics that a large current can be obtained during charging and discharging, but the electrolysis voltage of water is low. Since it is 1.23V, a voltage higher than that cannot be obtained. As a power source for an electric vehicle, a high voltage of about 200 V is necessary, so that many batteries have to be connected in series, which is disadvantageous for reducing the size and weight of the power source.

また、高電圧型の二次電池としては、有機電解液を用いたリチウムイオン二次電池が知られている。このリチウムイオン二次電池は、分解電圧の高い有機溶媒を電解液溶媒としているため、最も卑な電位を示すリチウムイオンを充放電反応に関与する電荷とすれば、3V以上の電位を示す。このリチウムイオン二次電池は、リチウムイオンを吸蔵、放出する炭素を負極とし、コバルト酸リチウム(LiCoO2)を正極として用いたものが主流である。電解液には、六フッ化リン酸リチウム(LiPF6)などのリチウム塩をエチレンカーボネートやプロピレンカーボネートなどの溶媒に溶解させたものが用いられている。このようなリチウムイオン二次電池は、平均作動電圧として3.6Vを示す。 As a high voltage type secondary battery, a lithium ion secondary battery using an organic electrolyte is known. Since this lithium ion secondary battery uses an organic solvent having a high decomposition voltage as the electrolyte solvent, if the lithium ion having the lowest potential is used as a charge involved in the charge / discharge reaction, it exhibits a potential of 3 V or more. This lithium ion secondary battery mainly uses carbon that absorbs and releases lithium ions as a negative electrode and lithium cobaltate (LiCoO 2 ) as a positive electrode. As the electrolytic solution, a solution obtained by dissolving a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) in a solvent such as ethylene carbonate or propylene carbonate is used. Such a lithium ion secondary battery has an average operating voltage of 3.6V.

さらに、セパレータを挟んで対向する電極と、電解液とを容器中に収容した電気二重層キャパシタであって、正極が活性炭を主体とする分極性電極であり、負極がリチウムをイオン化した状態で吸蔵、離脱しうる炭素材料に化学的方法又は電気化学的方法で予めリチウムを吸蔵させた炭素質材料を主体とする電極であり、電解液が非水系電解液である電気二重層キャパシタが知られている(特許文献1)。   Furthermore, an electric double layer capacitor in which an electrode facing each other with a separator in between and an electrolytic solution are contained in a container, the positive electrode is a polarizable electrode mainly composed of activated carbon, and the negative electrode is occluded in a state of ionizing lithium. There is known an electric double layer capacitor that is an electrode mainly composed of a carbonaceous material in which lithium is occluded in advance by a chemical method or an electrochemical method in a carbon material that can be detached, and the electrolytic solution is a non-aqueous electrolytic solution. (Patent Document 1).

このような炭素材料の単位重量当たりの電気容量は、リチウムのドープ量によって決まり、従って電池の充放電容量を大きくするためには、炭素材料のリチウムに対するドープ量をできる限り大きくすることが望ましい(理論的には、炭素原子6個に対してLi原子1個の割合が上限である)。   The electric capacity per unit weight of such a carbon material is determined by the doping amount of lithium. Therefore, in order to increase the charge / discharge capacity of the battery, it is desirable to increase the doping amount of the carbon material to lithium as much as possible ( Theoretically, the ratio of one Li atom to six carbon atoms is the upper limit).

また、負極に用いられる炭素材料は、結晶構造的に分類すると、易黒鉛化炭素と難黒鉛化炭素に分類される。易黒鉛化炭素の特長は、放電電位の平坦性に優れることであるが、充放電電流密度を上げるとその容量は極端に低下してしまうことが知られている。そこで、その用途としては、メモリバックアップ用の電気二重層キャパシタ、二次電池などの比較的電流密度の低い用途に限定される。   Moreover, the carbon material used for the negative electrode is classified into graphitizable carbon and non-graphitizable carbon when classified by crystal structure. The characteristic of graphitizable carbon is that it is excellent in flatness of the discharge potential, but it is known that the capacity decreases extremely when the charge / discharge current density is increased. Therefore, the application is limited to applications having a relatively low current density such as an electric double layer capacitor for memory backup and a secondary battery.

一方、難黒鉛化炭素の特長は、放電電位の平坦性には劣るものの、易黒鉛化炭素に比べ高い電流密度で充放電できることである。しかしながら、この難黒鉛化炭素を用いた場合でも電気自動車などの大電流を必要とする用途に対しては充分ではない。   On the other hand, the characteristic of non-graphitizable carbon is that it can be charged and discharged at a higher current density than easily graphitized carbon, although it is inferior in flatness of the discharge potential. However, even when this non-graphitizable carbon is used, it is not sufficient for applications requiring a large current, such as an electric vehicle.

このように易黒鉛化炭素、難黒鉛化炭素はともに特長と欠点を有しており、それらの特性を向上させる試みがなされ、現在まで種々の特許出願がなされている。例えば、結晶セルロースをチッ素ガス流下、1,800℃で焼成して得られる炭素物質(特許文献2参照)、石炭ピッチあるいは石油ピッチを不活性雰囲気中、2,500℃以上で黒鉛化処理したもの(特許文献3参照)、2,000℃を超える高温で処理されたグラファイト化の進んだものなどが用いられ、金属リチウムやリチウム合金と比較して容量の低下はあるが、サイクル安定性のあるものが得られている。   Thus, both graphitizable carbon and non-graphitizable carbon have features and drawbacks. Attempts have been made to improve these characteristics, and various patent applications have been filed to date. For example, carbon material obtained by baking crystalline cellulose at 1,800 ° C. under nitrogen gas flow (see Patent Document 2), coal pitch or petroleum pitch was graphitized at 2,500 ° C. or higher in an inert atmosphere. (See Patent Document 3), advanced graphitized material processed at a high temperature exceeding 2,000 ° C., and the like, although there is a decrease in capacity as compared with lithium metal and lithium alloy, cycle stability Something has been obtained.

このような炭素材料による負極は、金属リチウムやリチウム合金に比べて、充電状態、すなわち炭素にリチウムが吸蔵された状態においても、水との反応が充分に穏やかで、充放電に伴うデンドライトの形成もほとんどみられず、優れたものである。   The negative electrode made of such a carbon material has a sufficiently mild reaction with water even in a charged state, that is, in a state where lithium is occluded in carbon, compared to metallic lithium or lithium alloy, and formation of dendrite accompanying charging / discharging. It is an excellent one with almost no signs.

なお、易黒鉛化炭素と難黒鉛化炭素の分類方法としては、主にX線回折法によるd200の面間隔及びC軸方向、a軸方向の結晶子の大きさ、レーザーラマンスペクトル解析による積層構造と乱層構造の比率で分類する方法が用いられている。この2つの評価方法は、充分に炭化が終了した炭素(焼成温度1,500℃以上)に対して有効である。
特開平8−107048号公報 特開平3−176963号公報 特開平2−82466号公報
As the classification method graphitizable carbon and non-graphitizable carbon, mainly plane spacing and C-axis direction of the d 200 by X-ray diffraction method, a direction of the crystallite size, lamination by laser Raman spectral analysis A method of classifying by the ratio of structure and turbulent structure is used. These two evaluation methods are effective for carbon that has been sufficiently carbonized (firing temperature of 1,500 ° C. or higher).
Japanese Patent Laid-Open No. 8-1007048 Japanese Patent Laid-Open No. 3-176963 Japanese Patent Laid-Open No. 2-82466

しかしながら、上述したような特許文献1〜特許文献3に示された負極でも、高電流密度での充放電においては充分なサイクル安定性は得られていないという問題点があった。これは、易黒鉛化炭素から得られる炭素材料の面間隔が狭いために、黒鉛の面間にリチウムが入りづらく、そのため急速な充放電では、リチウムの吸蔵、放出が追従できず、見掛けの容量が減少してしまうためであると推定される。   However, even the negative electrodes shown in Patent Documents 1 to 3 as described above have a problem that sufficient cycle stability is not obtained in charge and discharge at a high current density. This is because the carbon material obtained from graphitizable carbon has a narrow surface spacing, so it is difficult for lithium to enter between the surfaces of the graphite. Therefore, rapid charge and discharge cannot follow the insertion and extraction of lithium, and the apparent capacity. Is presumed to decrease.

本発明は、上述したような従来技術の問題点を解消するために提案されたものであって、その目的は、高容量でサイクル安定性に優れ、高出力(高電流密度)の充放電にも対応できる電気化学素子の電極用炭素材料及びその製造方法、並びに電気化学素子用電極を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to provide high capacity, excellent cycle stability, and high output (high current density) charge / discharge. Is to provide a carbon material for an electrode for an electrochemical element, a method for producing the same, and an electrode for an electrochemical element.

本発明者等は、上記課題を解決すべく、リチウムイオン電池、電気二重層キャパシタ等の負極に用いる炭素材料、及びその製造方法について鋭意検討を重ねた結果、本発明を完成させるに至ったものである。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on carbon materials used for negative electrodes such as lithium ion batteries and electric double layer capacitors, and methods for producing the same. As a result, the present invention has been completed. It is.

(電極用炭素材料及びその製造方法)
本発明に係る電極用炭素材料は、易黒鉛化炭素材料を用いて作製される。この易黒鉛化炭素の出発原料としては、石油コークス、石炭コークス、石油ピッチ(タール)、石炭ピッチ(タール)、メソフェーズカーボン、ポリ塩化ビニル、ポリイミド等が用いられる。なお、これらの出発原料は、1種類を単独で用いても良いし、複数種を混合して用いても良い。
(Carbon material for electrodes and manufacturing method thereof)
The carbon material for an electrode according to the present invention is produced using a graphitizable carbon material. As the starting material for the graphitizable carbon, petroleum coke, coal coke, petroleum pitch (tar), coal pitch (tar), mesophase carbon, polyvinyl chloride, polyimide and the like are used. In addition, these starting materials may be used alone or in a mixture of a plurality of types.

上記の易黒鉛化炭素原料を熱処理して炭化し、易黒鉛化炭素を得る。この炭化処理は、不活性ガス雰囲気中、約500℃〜1000℃の温度範囲で好適に行われる。なお、不活性ガスとしては、窒素ガス、並びにアルゴンガスやヘリウムガスといった希ガスが好適に用いられる。   The graphitizable carbon raw material is heat-treated and carbonized to obtain graphitizable carbon. This carbonization treatment is suitably performed in an inert gas atmosphere at a temperature range of about 500 ° C to 1000 ° C. As the inert gas, nitrogen gas and rare gases such as argon gas and helium gas are preferably used.

次に、上記のようにして得られた易黒鉛化炭素を、所定粒径を有するように粉砕することが好ましい。なお、易黒鉛化炭素が粉末の形で得られる場合には、粉砕処理は必ずしも必要ではない。この粉砕処理により、次工程における部分酸化処理の反応の均一化と、処理時間の短縮を図ることができるようになる。なお、ここでの粉砕処理には、乾式・湿式を問わず、公知の種々の方法を用いることができる。   Next, the graphitizable carbon obtained as described above is preferably pulverized so as to have a predetermined particle size. In the case where the graphitizable carbon is obtained in the form of a powder, the pulverization treatment is not always necessary. By this pulverization treatment, the reaction of the partial oxidation treatment in the next step can be made uniform and the treatment time can be shortened. In addition, the well-known various methods can be used for the grinding | pulverization process here regardless of a dry type and wet type.

そして、この易黒鉛化炭素とアルカリ金属の炭酸エステル(アルカリ金属カーボネート)を混合して、熱処理を行う。なお、易黒鉛化炭素とアルカリ金属カーボネートの混合比は、1:1〜1:4が好ましい。   Then, the graphitizable carbon and an alkali metal carbonate (alkali metal carbonate) are mixed and subjected to heat treatment. The mixing ratio of graphitizable carbon and alkali metal carbonate is preferably 1: 1 to 1: 4.

黒鉛化炭素とアルカリ金属カーボネートの混合比は、1:1未満であると、炭素の層間に入り込むアルカリ金属の量が少なくなるため、得られる炭素材料は面間隔が広い炭素材料と、通常の炭素材料が混在するようになると考えられる。このため、この炭素材料によって作製した電極では、充放電の際の出力特性が低下する。一方で、1:4を超えた場合でも、得られた炭素材料の特性に変化がないが、炭素材料を得る際の洗浄時間が長くなるため、作業効率の悪化を招く。   When the mixing ratio of graphitized carbon and alkali metal carbonate is less than 1: 1, the amount of alkali metal that enters between carbon layers decreases, so that the resulting carbon material is a carbon material with a wide interplanar spacing and normal carbon. It is thought that materials will be mixed. For this reason, in the electrode produced with this carbon material, the output characteristic in the case of charging / discharging falls. On the other hand, even when the ratio exceeds 1: 4, there is no change in the characteristics of the obtained carbon material, but the cleaning time for obtaining the carbon material becomes long, so that the work efficiency is deteriorated.

また、アルカリ金属としては、カリウム、ナトリウム、リチウム、ルビジウム、セシウムを用いることができるが、中でもカリウム、ナトリウム、リチウムが好ましい。この理由としては、リチウム、ナトリウム、カリウムは原子半径が小さく、炭素の層間に入り込みやすいためである。   Moreover, as an alkali metal, potassium, sodium, lithium, rubidium, and cesium can be used, but potassium, sodium, and lithium are particularly preferable. This is because lithium, sodium, and potassium have small atomic radii and can easily enter between carbon layers.

また、易黒鉛化炭素とアルカリ金属カーボネートを混合した後に行う熱処理は、不活性ガス雰囲気中、アルカリ金属蒸気が発生する温度以上で処理する。このような熱処理の温度範囲は、600℃〜1500℃の範囲が好適である。600℃未満では、アルカリ金属蒸気が発生せず、アルカリ金属で処理する効果が得られない。一方、1500℃を超えると、炭素の酸化反応が進行し、炭素がガスとして失われるために容量が減少してしまうため好ましくない。   Further, the heat treatment performed after mixing graphitizable carbon and alkali metal carbonate is performed at a temperature equal to or higher than the temperature at which alkali metal vapor is generated in an inert gas atmosphere. The temperature range of such heat treatment is preferably in the range of 600 ° C to 1500 ° C. If it is less than 600 degreeC, an alkali metal vapor | steam will not generate | occur | produce and the effect processed with an alkali metal will not be acquired. On the other hand, if the temperature exceeds 1500 ° C., the oxidation reaction of carbon proceeds, and carbon is lost as a gas, so that the capacity decreases, which is not preferable.

上述したように、アルカリ金属の存在下に熱処理された炭素材料は、不要なアルカリ金属化合物が炭素材料に付着等しているので、これを除去する必要がある。そこで、メタノールやエタノール等のアルコール系溶媒や蒸留水等を用いて、炭素材料に不要に付着等したアルカリ金属化合物を溶解し、炭素材料を洗浄、濾過する。このようにして、電気化学素子の負極に用いられる炭素材料が得られる。   As described above, the carbon material that has been heat-treated in the presence of an alkali metal has an unnecessary alkali metal compound attached to the carbon material, and thus needs to be removed. Therefore, an alcoholic solvent such as methanol or ethanol, distilled water, or the like is used to dissolve an alkali metal compound that is unnecessarily adhered to the carbon material, and the carbon material is washed and filtered. Thus, the carbon material used for the negative electrode of an electrochemical element is obtained.

以上のような工程で作製された炭素材料は、黒鉛化されていると共に、黒鉛の層間にアルカリ金属が入り込み、層間が広く形成されるものと推定される。そしてその後の洗浄によって、アルカリ金属は除去されるため、層間が広い黒鉛からなる炭素材料が得られる。   It is presumed that the carbon material produced by the above steps is graphitized and an alkali metal enters between the graphite layers so that the layers are widely formed. And since an alkali metal is removed by subsequent washing | cleaning, the carbon material which consists of graphite with a wide interlayer is obtained.

(電気化学素子用電極)
電極の作製は次のように行った。N−メチルピロリドン等の有機溶媒にポリフッ化ビニリデン等のバインダーを溶解し、この溶液に前述した炭素材料を混合してスラリーを作製した。このスラリーを、帯状の銅箔からなる集電体に均一の厚みに塗布し、乾燥して電極を形成する。このような電極はリチウムイオン二次電池、電気二重層キャパシタの負極として適用できる。
(Electrodes for electrochemical devices)
The electrode was produced as follows. A binder such as polyvinylidene fluoride was dissolved in an organic solvent such as N-methylpyrrolidone, and the above-described carbon material was mixed with this solution to prepare a slurry. This slurry is applied to a current collector made of a strip-shaped copper foil with a uniform thickness and dried to form an electrode. Such an electrode can be applied as a negative electrode of a lithium ion secondary battery or an electric double layer capacitor.

以下、本発明の電極を負極として用いたリチウム二次電池について説明する。リチウム二次電池は、例えば、ステンレスからなる有底円筒状のケースに電極群が収納されている。電極群は、正極、セパレータ及び負極をこの順序で積層した帯状物を負極が外側に位置するように渦巻き状に巻回した構造になっている。   Hereinafter, a lithium secondary battery using the electrode of the present invention as a negative electrode will be described. In the lithium secondary battery, for example, an electrode group is housed in a bottomed cylindrical case made of stainless steel. The electrode group has a structure in which a strip obtained by laminating a positive electrode, a separator, and a negative electrode in this order is wound in a spiral shape so that the negative electrode is located outside.

また、正極は、例えば、活物質に導電剤及びバインダーを適当な溶媒に混ぜてスラリーとし、このスラリーを集電体に塗布、乾燥して薄板状にすることにより作製されたものである。   The positive electrode is produced, for example, by mixing an active material with a conductive agent and a binder in a suitable solvent to form a slurry, and applying the slurry to a current collector and drying to form a thin plate.

この正極活物質は、コバルト、ニッケル、マンガン、バナジウム、チタン、モリブデン及び鉄の群から選ばれる少なくとも1種以上の金属を主体とし、且つ、リチウムを含む金属化合物を用いることが好ましい。前記金属化合物としては、リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn24、LiMnO2)が好適である。 The positive electrode active material is preferably a metal compound mainly composed of at least one metal selected from the group consisting of cobalt, nickel, manganese, vanadium, titanium, molybdenum, and iron, and containing lithium. As the metal compound, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMn 2 O 4 , LiMnO 2 ) are preferable.

また、導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDE)、スチレン−ブタジエンゴム(SBR)等を用いることができる。集電体としては、例えば、厚さが10〜40μmのアルミニウム箔、ステンレス箔、ニッケル箔等を用いることが好ましい。また、セパレータは、例えば、合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムから形成されている。   Examples of the conductive agent include acetylene black, carbon black, and graphite. As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDE), styrene-butadiene rubber (SBR), or the like can be used. As the current collector, for example, an aluminum foil, a stainless steel foil, a nickel foil or the like having a thickness of 10 to 40 μm is preferably used. Moreover, the separator is formed from the synthetic resin nonwoven fabric, the polyethylene porous film, and the polypropylene porous film, for example.

前記ケース内には、電極群とともに電解液が収容され、開口部が封口されてリチウム二次電池を構成する。   In the case, an electrolytic solution is accommodated together with the electrode group, and the opening is sealed to constitute a lithium secondary battery.

電解液としては、例えば、エチレンカーボネート、プロピレンンカーボネート、ブチレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、アセトニトリル、ベンゾニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランから選ばれる少なくとも1種の非水系溶媒に、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]などのリチウム塩を溶解した電解液を用いる。 Examples of the electrolytic solution include ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, acetonitrile, benzonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, Examples of at least one non-aqueous solvent selected from 2-methyltetrahydrofuran include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and arsenic hexafluoride. An electrolytic solution in which a lithium salt such as lithium (LiAsF 6 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ] is dissolved is used.

また電気二重層キャパシタとしては、正極に活性炭電極を用いた他は、前述のリチウム二次電池と同等の構成とすることができる。   The electric double layer capacitor can have the same configuration as the above-described lithium secondary battery except that an activated carbon electrode is used for the positive electrode.

本発明によれば、高容量でサイクル安定性に優れ、高出力(高電流密度)の充放電にも対応できる電気化学素子の電極用炭素材料及びその製造方法、並びに電気化学素子用電極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the carbon material for electrodes of the electrochemical element which is excellent in cycle stability with high capacity | capacitance, and can respond also to charging / discharging of high output (high current density), its manufacturing method, and the electrode for electrochemical elements are provided. can do.

(実施例1)
易黒鉛化炭素であるメソカーボンマイクロビーンズ粉末とカリウムカーボネート粉末を重量比4:1で混合した。この混合物粉末をアルゴンガス雰囲気中900℃の温度で3時間熱処理した。その後、得られた処理物を純水洗浄し、さらに70℃で4時間予備乾燥後、120℃で12時間乾燥して炭素材料を得た。
Example 1
Mesocarbon microbean powder, which is graphitizable carbon, and potassium carbonate powder were mixed at a weight ratio of 4: 1. This mixture powder was heat-treated at 900 ° C. for 3 hours in an argon gas atmosphere. Thereafter, the resulting treated product was washed with pure water, further preliminarily dried at 70 ° C. for 4 hours, and then dried at 120 ° C. for 12 hours to obtain a carbon material.

この炭素材料を用いて電極を作製した。電極の作製は次のように行った。N−メチルピロリドン90重量部にポリフッ化ビニリデンからなるバインダー10重量部を溶解し、この溶液に前述した炭素材料(100重量部)を混合してスラリーを作製した。このスラリーを、帯状の銅箔からなる厚み100μm、幅10mm、長さ10mmの集電体に均一の厚みに塗布し、乾燥して電極を形成した。   An electrode was produced using this carbon material. The electrode was produced as follows. 10 parts by weight of a binder made of polyvinylidene fluoride was dissolved in 90 parts by weight of N-methylpyrrolidone, and the above-mentioned carbon material (100 parts by weight) was mixed with this solution to prepare a slurry. This slurry was applied to a current collector made of a strip-shaped copper foil with a thickness of 100 μm, a width of 10 mm, and a length of 10 mm, and dried to form an electrode.

(従来例1)
電極を作製する炭素材料として難黒鉛化炭素(株式会社クレハ製:カーボトロンP)を用いた。この炭素材料を用いて電極を作製した。電極の作製方法は実施例1と同様である。
(Conventional example 1)
Non-graphitizable carbon (manufactured by Kureha Co., Ltd .: Carbotron P) was used as a carbon material for producing the electrode. An electrode was produced using this carbon material. The method for manufacturing the electrode is the same as in Example 1.

(測定結果)
これら2つの電極の比表面積と電荷移動抵抗を測定したところ、表1に示したような結果が得られた。なお、電荷移動抵抗については、交流インピーダンス測定によって算出した。インピーダンス測定は周波数範囲20KHz−10mHz、振幅10mVの条件で行った。インピーダンス測定によって得られた結果は複素平面表示し、そのときに現れる半円部分の直径を電荷移動抵抗とした。

Figure 2008257883
(Measurement result)
When the specific surface area and charge transfer resistance of these two electrodes were measured, the results shown in Table 1 were obtained. The charge transfer resistance was calculated by AC impedance measurement. Impedance measurement was performed under conditions of a frequency range of 20 KHz-10 mHz and an amplitude of 10 mV. The result obtained by the impedance measurement is displayed in a complex plane, and the diameter of the semicircular portion appearing at that time is defined as the charge transfer resistance.
Figure 2008257883

電荷移動抵抗は、キャパシタの充放電特性の目安となる指標であり、電荷移動抵抗が小さいほど急速な充放電が可能となることを示しているが、表1から明らかなように、従来、易黒鉛化炭素よりも充放電特性が良好であるとされている難黒鉛化炭素を用いた従来例1よりも、実施例1の方が優れた値を示した。   The charge transfer resistance is an index serving as a standard for the charge / discharge characteristics of the capacitor, and indicates that the smaller the charge transfer resistance, the faster the charge / discharge can be performed. The value of Example 1 was superior to that of Conventional Example 1 using non-graphitizable carbon, which is considered to have better charge / discharge characteristics than graphitized carbon.

Claims (5)

所定の易黒鉛化炭素と所定のアルカリ金属カーボネートを、混合比が1:1〜1:4となるように混合し、600〜1500℃の範囲で熱処理することにより得られたことを特徴とする電気化学素子の電極用炭素材料。   It is obtained by mixing a predetermined graphitizable carbon and a predetermined alkali metal carbonate so that the mixing ratio is 1: 1 to 1: 4 and heat-treating in a range of 600 to 1500 ° C. Carbon material for electrodes of electrochemical devices. 前記アルカリ金属が、カリウム、ナトリウム、リチウムのいずれかであることを特徴とする請求項1に記載の電気化学素子の電極用炭素材料。   The carbon material for an electrode of an electrochemical element according to claim 1, wherein the alkali metal is any one of potassium, sodium, and lithium. 所定の易黒鉛化炭素と所定のアルカリ金属カーボネートを、混合比が1:1〜1:4となるように混合し、不活性ガス雰囲気中で、600〜1500℃の範囲で熱処理することを特徴とする電気化学素子の電極用炭素材料の製造方法。   A predetermined graphitizable carbon and a predetermined alkali metal carbonate are mixed so as to have a mixing ratio of 1: 1 to 1: 4, and heat-treated in an inert gas atmosphere in a range of 600 to 1500 ° C. A method for producing a carbon material for an electrode of an electrochemical element. 前記アルカリ金属が、カリウム、ナトリウム、リチウムのいずれかであることを特徴とする請求項3に記載の電気化学素子の電極用炭素材料の製造方法。   The method for producing a carbon material for an electrode of an electrochemical element according to claim 3, wherein the alkali metal is any one of potassium, sodium, and lithium. 請求項1又は請求項2に記載の電極用炭素材料を含有することを特徴とする電気化学素子用電極。   An electrode for an electrochemical device comprising the carbon material for an electrode according to claim 1 or 2.
JP2007095391A 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical device, method for producing the same, and electrode for electrochemical device Expired - Fee Related JP5261959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095391A JP5261959B2 (en) 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical device, method for producing the same, and electrode for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095391A JP5261959B2 (en) 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical device, method for producing the same, and electrode for electrochemical device

Publications (2)

Publication Number Publication Date
JP2008257883A true JP2008257883A (en) 2008-10-23
JP5261959B2 JP5261959B2 (en) 2013-08-14

Family

ID=39981260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095391A Expired - Fee Related JP5261959B2 (en) 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical device, method for producing the same, and electrode for electrochemical device

Country Status (1)

Country Link
JP (1) JP5261959B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106818A (en) * 1995-10-11 1997-04-22 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JPH1087311A (en) * 1996-09-10 1998-04-07 Mitsubishi Electric Corp Fine graphite particles, their production and lithium battery using the same
JPH11322322A (en) * 1998-05-11 1999-11-24 Mitsubishi Chemical Corp Carbonaceous substance and its production and electric double layer capacitor using the same
JP2000500612A (en) * 1995-11-22 2000-01-18 モトローラ・インコーポレーテッド Improved carbon electrode material for lithium battery cell and method of manufacturing the same
JP2003212529A (en) * 2002-01-17 2003-07-30 Mitsubishi Gas Chem Co Inc Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106818A (en) * 1995-10-11 1997-04-22 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JP2000500612A (en) * 1995-11-22 2000-01-18 モトローラ・インコーポレーテッド Improved carbon electrode material for lithium battery cell and method of manufacturing the same
JPH1087311A (en) * 1996-09-10 1998-04-07 Mitsubishi Electric Corp Fine graphite particles, their production and lithium battery using the same
JPH11322322A (en) * 1998-05-11 1999-11-24 Mitsubishi Chemical Corp Carbonaceous substance and its production and electric double layer capacitor using the same
JP2003212529A (en) * 2002-01-17 2003-07-30 Mitsubishi Gas Chem Co Inc Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material

Also Published As

Publication number Publication date
JP5261959B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP7082228B2 (en) Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing negative electrode active material for lithium ion secondary battery, lithium A method for manufacturing a negative electrode for an ion secondary battery and a method for manufacturing a lithium ion secondary battery.
KR101545116B1 (en) Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
JP5994571B2 (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
US20040023118A1 (en) Nonaqueous lithium secondary battery
JP5049820B2 (en) Lithium ion secondary battery
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP6236830B2 (en) Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery
JP2006324237A (en) Negative electrode material for lithium-ion secondary battery, its manufacturing method, negative electrode for lithium-ion secondary battery using the material, and lithium-ion secondary battery
JP4916263B2 (en) Power storage device
US10604410B2 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
JP4354723B2 (en) Method for producing graphite particles
JP4083040B2 (en) Lithium battery
CN108878880B (en) Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP6065678B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP3807854B2 (en) Electric double layer capacitor
JP2008257888A (en) Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
KR102439849B1 (en) Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JP4205410B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
US10497967B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP5261959B2 (en) Carbon material for electrode of electrochemical device, method for producing the same, and electrode for electrochemical device
JP2009130066A (en) Lithium ion capacitor
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy
JP2009108444A (en) Method for producing mesophase pitch-based carbon fiber baked at low-temperature
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees