JP2000113877A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000113877A
JP2000113877A JP10285449A JP28544998A JP2000113877A JP 2000113877 A JP2000113877 A JP 2000113877A JP 10285449 A JP10285449 A JP 10285449A JP 28544998 A JP28544998 A JP 28544998A JP 2000113877 A JP2000113877 A JP 2000113877A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
lithium secondary
metal
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10285449A
Other languages
Japanese (ja)
Other versions
JP3055892B2 (en
Inventor
Seiji Takeuchi
瀞士 武内
Hidetoshi Honbou
英利 本棒
Junya Kaneda
潤也 金田
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10285449A priority Critical patent/JP3055892B2/en
Publication of JP2000113877A publication Critical patent/JP2000113877A/en
Application granted granted Critical
Publication of JP3055892B2 publication Critical patent/JP3055892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having the high capacity, excellent in charging and discharging cycle characteristics, and having the small quantity metal used by making a negative electrode of a mixed system of a conductive auxiliary material of carbon grains having metal for making alloy with lithium and graphite capable of being intercalated and de-intercalated, and making the grain diameter of carbon grains having metallic particles smaller than the grain diameter of graphite. SOLUTION: A negative electrode is preferably a mixed system of a conductive auxiliary material of carbon grains having metal for forming alloy with lithium and amorphous carbon, and metal in the conductive auxiliary material is selected from Al, Sb, B, Ba, Bi, Cd, Ca, Ga, In, Ir, Pd, Pb, Hg, Si, Ag, Sr, Te, Ti and Sn. It is desirable that the specific surface area of the carbon grain is in the range of 1 to 1000 m2/g and that the grain diameter of metallic particles is 500 nm or less. Therefore, the service capacity is increased, electric conductivity is improved, the output density is increased, cycle characteristics are improved, and heat radiation property is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に係わり、放電容量、出力密度が大であってサイクル特
性に優れたリチウム二次電池用負極に関する。特にリチ
ウム原子1に対し7以下の原子比で合金を形成する金属
を担持した炭素粒子を導電助材としLiイオンをインタ
ーカレート,デインターカレートできる黒鉛粒子及び非
晶質炭素との混合系を集電体に保持させてなり、これを
負極に用いた電池の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a negative electrode for a lithium secondary battery having a large discharge capacity and a high power density and excellent cycle characteristics. In particular, a mixture of graphite particles capable of intercalating and de-intercalating Li ions using carbon particles carrying a metal that forms an alloy at an atomic ratio of 7 or less with respect to 1 lithium atom, and amorphous carbon. The present invention relates to an improvement in a battery using the current collector as a negative electrode.

【0002】[0002]

【従来の技術】リチウム二次電池の負極として、従来は
(Li)金属及びLi−Al,Li−Pb等の合金が用
いられてきたが、これらの電池は、樹脂状リチウムの析
出による正負両極の短絡やサイクル寿命が短く、エネル
ギー密度が低いという欠点があった。最近ではこれらの
問題点を解決するため炭素材を負極に用いる研究が活発
である。この種の負極は、例えば特開平5―29907
3号公報、特開平2―121258号公報に開示されて
いる。
2. Description of the Related Art Conventionally, (Li) metal and alloys such as Li--Al and Li--Pb have been used as a negative electrode of a lithium secondary battery. Have shortcomings, short cycle life and low energy density. Recently, research on using a carbon material for a negative electrode has been actively conducted to solve these problems. This type of negative electrode is disclosed, for example, in Japanese Patent Laid-Open No. 5-29907
No. 3, JP-A-2-121258.

【0003】特開平5−299073号公報での構成
は、芯を形成する高結晶炭素粒子の表面をVIII族の
金属元素を含む膜で被覆し、さらにその上を炭素が被覆
することよりなる炭素複合体を電極材料としており、こ
れによって表面乱層構造を有する炭素材料がリチウムの
インターカレーションを助けると同時に、電極の表面積
が大きいために充放電容量および充放電速度が著しく向
上したとしている。
The structure disclosed in Japanese Patent Application Laid-Open No. H5-299073 is a method in which the surface of highly crystalline carbon particles forming a core is coated with a film containing a metal element of Group VIII, and carbon is further coated thereon. The composite is used as an electrode material, whereby the carbon material having a surface turbulent layer structure assists the intercalation of lithium, and the charge / discharge capacity and the charge / discharge rate are remarkably improved due to the large surface area of the electrode.

【0004】一方、特開平2−121258号公報で
は、六方晶でH/C<0.15,面間隔>0.337n
mおよびC軸方向の結晶子の大きさLc<15nmであ
る炭素物質とLiと合金可能な金属との混合物とするこ
とにより、充放電サイクル寿命が長く、大電流における
充放電特性も良好であるとしている。
On the other hand, in Japanese Patent Application Laid-Open No. 2-121258, H / C <0.15, interplanar spacing> 0.337 n in hexagonal system
By using a mixture of a carbon material having a crystallite size Lc <15 nm in the m and C axis directions and a metal alloyable with Li, the charge / discharge cycle life is long and the charge / discharge characteristics at a large current are good. And

【0005】しかし、いずれにおいても、負極炭素材の
合成の難しさや炭素の理論容量が引き出されておらず、
出力密度が未だ十分とは言えなかった。更には、金属担
持炭素は金属の価格によってはコストが高いと言う問題
があった。
However, in each case, the difficulty in synthesizing the negative electrode carbon material and the theoretical capacity of carbon have not been drawn out.
The power density was not yet sufficient. Further, there is a problem that metal-supported carbon is expensive depending on the price of the metal.

【0006】[0006]

【発明が解決しようとする課題】前述したごとく、炭素
材及び複合材を負極として用いた場合、炭素の理論容量
を引き出せないことや電極製造の難しさやコストの面で
問題がある。
As described above, when a carbon material and a composite material are used as a negative electrode, there are problems in that the theoretical capacity of carbon cannot be obtained, that the electrode is difficult to manufacture, and that the cost is low.

【0007】本発明の目的は、リチウムと合金可能な金
属の微細粒子を担持した炭素粒子を導電助材として負極
に用いることにより、高容量で充放電サイクル特性が優
れ、且つ金属使用量の少ないリチウム二次電池を提供す
ることにある。
An object of the present invention is to use a carbon particle carrying fine particles of a metal which can be alloyed with lithium for a negative electrode as a conductive additive, thereby achieving high capacity, excellent charge / discharge cycle characteristics, and a small amount of metal used. An object of the present invention is to provide a lithium secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前述の問
題点を解決するため種々検討した結果、以下に述べる知
見を基に本発明を完成するに至った。
The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, have completed the present invention based on the following findings.

【0009】図5は、従来型負極と本発明の改良型負極
のサイクル特性B1´とA1´の測定結果を示す。用い
た炭素は高純度化処理をした天然黒鉛であり、粒径は約
11μmである。この炭素に結着剤としてポリフッ化ビ
ニリデン(以下PVDFと略記する)をN−メチルピロ
リドン(以下NMPと略記する)に溶解した溶液を用
い、炭素とPVDFが90:10の重量比になるように
したペーストを集電体である厚さ20μmの銅箔に塗布
した。
FIG. 5 shows the measurement results of the cycle characteristics B1 'and A1' of the conventional negative electrode and the improved negative electrode of the present invention. The carbon used was natural graphite that had been subjected to a high-purification treatment, and had a particle size of about 11 μm. A solution in which polyvinylidene fluoride (hereinafter abbreviated as PVDF) is dissolved in N-methylpyrrolidone (hereinafter abbreviated as NMP) is used as a binder so that the carbon and PVDF have a weight ratio of 90:10. The paste thus obtained was applied to a 20 μm-thick copper foil as a current collector.

【0010】改良型負極は以下の手順で作成した。高純
度化処理をした天然黒鉛(粒径11μm)の9.0gを
25mlのエチルアルコールを含む水450mlに懸濁
させる。これを約60℃に加温し、強攪拌しながら1.
73gの硝酸銀(AgNO3)を溶解させる。これに
0.5重量%のテトラヒドロホウ酸ナトリウム(NaB
H4)水溶液をマイクロチューブポンプで滴下し、約4
時間以上かけて還元反応を完結させる。その後、濾過・
水洗して300℃で6時間真空乾燥した。
An improved negative electrode was prepared according to the following procedure. 9.0 g of highly purified natural graphite (particle size 11 μm) is suspended in 450 ml of water containing 25 ml of ethyl alcohol. This was heated to about 60 ° C., and with strong stirring.
Dissolve 73 g of silver nitrate (AgNO 3 ). 0.5% by weight of sodium tetrahydroborate (NaB
H4) Drop the aqueous solution with a micro tube pump,
Complete the reduction reaction over time. After that, filtration
It was washed with water and vacuum dried at 300 ° C. for 6 hours.

【0011】得られた粉末Aの担持量は、化学分析によ
れば、仕込み組成の10.0重量%に対して、9.9重
量%と良好な担持量であった。また、X線回折によりA
gの存在状態を調べたところ金属状態の銀の回折線のみ
が検出された。次にエネルギー分散型電子プローブマイ
クロアナリシスにより、Agの分散状態を観察したとこ
ろ、Ag粒子は黒鉛粒子の前面に分布しており、黒鉛粒
子の端面部に若干濃縮していた。さらに透過型電子顕微
鏡でAg粒子の大きさを観察したところ、数100nm
以下の粒子がほぼ均一に分散していた。この炭素材を前
述と同様の方法でCu箔に塗布した。
According to the chemical analysis, the amount of the obtained powder A was 9.9% by weight with respect to 10.0% by weight of the charged composition. In addition, A
When the state of g was examined, only diffraction lines of silver in a metallic state were detected. Next, when the dispersion state of Ag was observed by an energy dispersive electron probe microanalysis, the Ag particles were distributed on the front surface of the graphite particles and were slightly concentrated on the end surfaces of the graphite particles. Further, when the size of the Ag particles was observed with a transmission electron microscope, several 100 nm
The following particles were almost uniformly dispersed. This carbon material was applied to a Cu foil in the same manner as described above.

【0012】両者を風乾後、80℃で2時間真空乾燥
し、0.5ton/cm2の圧力で成形したのち、さら
に120℃で3時間真空乾燥し、それぞれ負極とした。
これら負極の一つを、セパレータであるポリエチレン製
微孔膜を間に挟んで、リチウム金属の対極と組合わせ、
電解液として1M LiPF6/エチレンカーボネート
ージメチルカーボネート(以下EC−DMCと略記す
る)、参照極としてリチウム金属を用いた試験セルを組
み立てた。従来型負極、改良型負極についてそれぞれ、
この試験セルを用いて、充放電速度はカーボン1g当た
り120mA、充放電の電位幅:0.01〜1.0Vで
サイクル試験を行った。
After air-drying, both were vacuum-dried at 80 ° C. for 2 hours, molded at a pressure of 0.5 ton / cm 2 , and further vacuum-dried at 120 ° C. for 3 hours to obtain negative electrodes.
Combining one of these negative electrodes with a lithium metal counter electrode with a polyethylene microporous membrane serving as a separator in between,
A test cell using 1 M LiPF 6 / ethylene carbonate-dimethyl carbonate (hereinafter abbreviated as EC-DMC) as an electrolyte and lithium metal as a reference electrode was assembled. For the conventional negative electrode and the improved negative electrode,
Using this test cell, a cycle test was performed at a charge / discharge rate of 120 mA per gram of carbon and a charge / discharge potential width of 0.01 to 1.0 V.

【0013】試験の結果は、図5から明らかなように従
来型負極を用いた場合は、サイクル毎に放電容量は低下
し、約500サイクル後には放電容量は初期容量の約6
0%まで低下した。一方、改良型負極2を用いた場合、
初期の放電容量はAgとLiの合金化容量が加わるため
炭素のみの負極に対し約30mAh/cm3大きく、寿
命的には500サイクル後においても低下率は4.5
(%)と非常に小さく改良型負極の効果が見られた。こ
のサイクル特性の改善は、炭素の粒子間の集電効果が充
放電の繰り返しによる体積変化などに起因する電極の膨
れのために低下するのを金属担持炭素負極によって抑制
できたからと考えられる。
As is clear from FIG. 5, when the conventional negative electrode is used, the discharge capacity decreases every cycle, and after about 500 cycles, the discharge capacity decreases to about 6 times the initial capacity.
It dropped to 0%. On the other hand, when the improved negative electrode 2 is used,
The initial discharge capacity is about 30 mAh / cm 3 larger than that of the carbon-only negative electrode due to the addition of the alloying capacity of Ag and Li, and the life reduction rate is 4.5 even after 500 cycles.
(%), The effect of the improved negative electrode was very small. This improvement in cycle characteristics is considered to be because the metal-carrying carbon negative electrode was able to suppress a decrease in the current collection effect between carbon particles due to electrode swelling due to volume changes due to repeated charge and discharge.

【0014】以上の結果から負極合剤層の集電性を高め
ることは、放電容量やサイクル特性の向上に重要な因子
であり、金属の微細粒子を炭素上に担持することによ
り、リチウムとの合金化容量が利用できる、又炭素粒子
間に金属を介在させることによる電気伝導度や熱伝導度
の向上などが期待できるという機能をもたらすことを見
出した。
From the above results, increasing the current collecting performance of the negative electrode mixture layer is an important factor for improving the discharge capacity and the cycle characteristics. By supporting fine metal particles on carbon, the It has been found that an alloying capacity can be used, and a function of improving electrical conductivity and thermal conductivity by interposing a metal between carbon particles can be expected.

【0015】本発明の要旨をいかに記述する。すなわ
ち、第1の発明は、一対の正極および負極と、正負両極
間に介在するセパレータと、正負両極及びセパレータを
浸漬する電解液とを備えたリチウム二次電池において、
前記負極は、リチウム原子1に対し7以下の原子比で合
金を形成する金属を担持した炭素粒子が導電助材である
ことを特徴とするリチウム二次電池。
The gist of the present invention will be described. That is, the first invention is a lithium secondary battery including a pair of positive and negative electrodes, a separator interposed between the positive and negative electrodes, and an electrolytic solution for immersing the positive and negative electrodes and the separator.
The negative electrode is a lithium secondary battery, wherein carbon particles supporting a metal that forms an alloy at an atomic ratio of 1 or less to 1 lithium atom are conductive assistants.

【0016】第2の発明は、一対の正極および負極と、
正負両極間に介在するセパレータと、正負両極及びセパ
レータを浸漬する電解液とを備えたリチウム二次電池に
おいて、前記負極は、リチウム原子1に対し7以下の原
子比で合金を形成する金属を担持した炭素粒子導電助材
とLiイオンをインターカレート,デインターカレート
できる黒鉛との混合系であることを特徴とするリチウム
二次電池。
According to a second aspect of the present invention, a pair of a positive electrode and a negative electrode,
In a lithium secondary battery including a separator interposed between the positive and negative electrodes and an electrolyte for immersing the positive and negative electrodes and the separator, the negative electrode carries a metal that forms an alloy at an atomic ratio of 7 or less with respect to 1 lithium atom. A lithium secondary battery characterized in that it is a mixed system of a carbon particle conductive aid and graphite capable of intercalating and deintercalating Li ions.

【0017】第3の発明は、負極は、リチウム原子1に
対し7以下の原子比で合金を形成する金属を担持した炭
素粒子導電助材と非晶質炭素との混合系であることを特
徴とするリチウム二次電池。
According to a third aspect of the present invention, the negative electrode is a mixed system of a carbon particle conductive additive supporting a metal forming an alloy at an atomic ratio of 7 or less to 1 lithium atom and amorphous carbon. Lithium secondary battery.

【0018】第4の発明は、導電助材に担持する金属は
Al,Sb,B,Ba,Bi,Cd,Ca,Ga,I
n,Ir,Pd,Pb,Hg,Si,Ag,Sr,T
e,Tl及びSnのうち少なくとも一種類を用いること
を特徴とするリチウム二次電池。
According to a fourth aspect of the present invention, the metal supported on the conductive additive is Al, Sb, B, Ba, Bi, Cd, Ca, Ga, I
n, Ir, Pd, Pb, Hg, Si, Ag, Sr, T
A lithium secondary battery comprising at least one of e, Tl and Sn.

【0019】第5の発明は、前記炭素粒子の比表面積が
1〜1000m2/gであり、担持金属粒子の粒径が5
00nm以下であることを特徴とするリチウム二次電
池。
According to a fifth aspect of the present invention, the carbon particles have a specific surface area of 1 to 1000 m 2 / g and the supported metal particles have a particle size of 5 to 5 m 2 / g.
A lithium secondary battery having a thickness of not more than 00 nm.

【0020】第6の発明は、負極は、リチウム原子1に
対し7以下の原子比で合金を形成する金属を担持した炭
素粒子導電助材とLiイオンをインターカレート,デイ
ンターカレートできる黒鉛粒子との混合系を集電体に保
持させてなり、前記黒鉛粒子は、X線回折法による面間
隔(d002)が0.3354〜0.3369nmで、
C軸方向の結晶の大きさ(Lc)が30nm以上で、か
つ比表面積が0.1〜30m2/gであることを特徴と
するリチウム二次電池。
According to a sixth aspect of the present invention, there is provided a negative electrode comprising a carbon particle conductive auxiliary material supporting a metal forming an alloy at an atomic ratio of 7 or less to 1 lithium atom and graphite capable of intercalating and deintercalating Li ions. The current collector is held in a mixed system with the particles, and the graphite particles have a plane spacing (d002) of 0.3354 to 0.3369 nm by an X-ray diffraction method.
A lithium secondary battery having a crystal size (Lc) in the C-axis direction of 30 nm or more and a specific surface area of 0.1 to 30 m 2 / g.

【0021】第7の発明は、負極は、リチウム原子1に
対し7以下の原子比で合金を形成する金属を担持した炭
素粒子導電助材と非晶質炭素粒子との混合系を集電体に
保持させてなり、前記非晶質炭素粒子は、X線回折法に
よる面間隔(d002)が0.337nm以上であるこ
とを特徴とするリチウム二次電池。
According to a seventh aspect of the present invention, there is provided a negative electrode comprising a current collector comprising a mixture of a carbon particle conductive auxiliary material supporting a metal forming an alloy at an atomic ratio of 7 or less to 1 lithium atom and amorphous carbon particles. Wherein the amorphous carbon particles have a plane distance (d002) of 0.337 nm or more determined by an X-ray diffraction method.

【0022】第8の発明は、負極と正極及び電解液を組
み合わせた単電池において、正極材はLiXO2又はL
iX24(XはCo,Ni,Mnなどの遷移金属の一種
又は複数種)であり、その組成比はストイキオ組成に対
してLiが過剰であることを特徴とするリチウム二次電
池。
According to an eighth aspect of the present invention, there is provided a unit cell comprising a combination of a negative electrode, a positive electrode and an electrolyte, wherein the positive electrode material is LiXO 2 or LXO 2.
A lithium secondary battery comprising iX 2 O 4 (X is one or a plurality of transition metals such as Co, Ni, and Mn), and the composition ratio of Li is excessive relative to the stoichiometric composition.

【0023】第9の発明は、電解液層はポリビニリデン
フルオライドとヘキサフルオロプロピレン等のコーポリ
マー電解質であることを特徴とするリチウム二次電池。
According to a ninth aspect, in the lithium secondary battery, the electrolyte layer is a copolymer electrolyte such as polyvinylidene fluoride and hexafluoropropylene.

【0024】第10の発明は、正極と負極との間にセパ
レータを介在し、正負両極及びセパレータを電解液で浸
漬するリチウム二次電池において、前記負極は導電部材
に混合層を被覆し、Liイオンをインターカレート,デ
インターカレートできる黒鉛と、Liと合金を形成する
金属粒子を有する炭素粒子とから成り、この混合層中の
金属粒子量は1重量(%)以上であることを特徴とする
リチウム二次電池。
According to a tenth aspect of the present invention, there is provided a lithium secondary battery in which a separator is interposed between a positive electrode and a negative electrode, and the positive and negative electrodes and the separator are immersed in an electrolyte solution. It is composed of graphite capable of intercalating and deintercalating ions and carbon particles having metal particles forming an alloy with Li, wherein the amount of metal particles in this mixed layer is at least 1% by weight (%). Lithium secondary battery.

【0025】第11の発明は、上記混合層中のLiと合
金を形成する金属粒子量は1〜5重量(%)有すること
を特徴とする請求項10記載のリチウム二次電池。
11. The lithium secondary battery according to claim 10, wherein the amount of metal particles forming an alloy with Li in the mixed layer is 1 to 5% by weight (%).

【0026】第12の発明は、金属粒子を担持した炭素
粒子の粒径を黒鉛の粒径より小さいもので構成すること
を特徴とする請求項10記載のリチウム二次電池。
A twelfth aspect of the present invention is the lithium secondary battery according to claim 10, wherein said carbon particles carrying metal particles have a particle size smaller than that of graphite.

【0027】本発明の導電助材としての金属を担持する
炭素は、高比表面積を有する非晶質炭素、Liイオンを
インターカレート,デインターカレートできる黒鉛とし
ては、高結晶性炭素粒子、例えば天然黒鉛、石油コーク
ス或いは石炭ピッチコークス等から得られる易黒鉛化材
料を2500℃以上の高温で熱処理して得られる。これ
ら非晶質炭素及び黒鉛の平均粒径は50μm以下、好ま
しくは0.1〜20μmが好適である。又形状は、球
形、塊状、燐片状、繊維状あるいはそれらの粉砕品であ
って良い。
The carbon supporting the metal as the conductive additive according to the present invention includes amorphous carbon having a high specific surface area, and graphite capable of intercalating and deintercalating Li ions includes highly crystalline carbon particles, For example, it is obtained by heat-treating a graphitizable material obtained from natural graphite, petroleum coke or coal pitch coke at a high temperature of 2500 ° C. or higher. The average particle size of the amorphous carbon and graphite is preferably 50 μm or less, and more preferably 0.1 to 20 μm. The shape may be spherical, massive, scaly, fibrous, or a crushed product thereof.

【0028】次に担持金属としては、Al,Sb,B,
Ba,Bi,Cd,Ca,Ga,In,Ir,Pd,P
b,Hg、Si,Ag,Sr,Te,Tl及びSnのう
ち少なくとも一種が選択されるが、以下の条件を満たす
元素が好ましい。
Next, as the supported metal, Al, Sb, B,
Ba, Bi, Cd, Ca, Ga, In, Ir, Pd, P
At least one of b, Hg, Si, Ag, Sr, Te, Tl and Sn is selected, but an element satisfying the following conditions is preferable.

【0029】(1)リチウム含有量が多い合金組成、
(2)原子量が比較的小さく、密度が比較的大きい
(3)還元が容易、(4)リチウム合金の酸化還元電位
が低い(5)廃棄上の問題が少ない、(6)比較的安価
である。
(1) an alloy composition having a high lithium content,
(2) Relatively small atomic weight and relatively high density (3) Easy reduction, (4) Low oxidation-reduction potential of lithium alloy (5) Less disposal problem, (6) Relatively inexpensive .

【0030】金属の担持方法としては、蒸着法、スパッ
タリング法、湿式還元法、電気化学還元法、メッキ法、
及び気相還元ガス処理法等の方法があるが、用いる金属
種に対応して最適な担持法を適用すれば良い。又金属の
担持量としては、10〜50wt(%)好ましくは10
〜30wt(%)が最適である。更に担持された金属の
粒径は、充放電におけるリチウム合金の析出・溶解速度
を考慮したとき金属粒子はできるだけ小さく、又合金化
の体積変化にともなう金属粒子の崩壊を考えると微粒子
の方が長寿命化に有利であることが予想され、これらを
満たす条件としては500nm以下が望ましい。
The metal can be supported by vapor deposition, sputtering, wet reduction, electrochemical reduction, plating,
And a method such as a gas-phase reducing gas treatment method, but an optimal supporting method may be applied according to the type of metal used. The amount of metal carried is 10 to 50 wt (%), preferably 10 to 50 wt (%).
3030 wt (%) is optimal. In addition, the particle size of the supported metal is as small as possible when considering the precipitation and dissolution rate of the lithium alloy during charge and discharge, and the fine particles are longer in consideration of the collapse of the metal particles due to the change in volume during alloying. It is expected to be advantageous for extending the life, and a condition satisfying these conditions is desirably 500 nm or less.

【0031】以上で得られた金属担持炭素粒子とLiイ
オンをインターカレート,デインターカレートできる黒
鉛を用いて負極を作成するが、この場合に結着剤を用い
る。結着剤としては、例えばEPDM(エチレンプロピ
レンターポリマー),PVDF、ポリテトラフルオロエ
チレン等電解液と反応しないものであれば、特に限定さ
れない。結着剤の配合量は、カーボンに対し1〜30w
t(%),好ましくは、5〜15wt(%)が好適であ
る。前述の合剤を用いた負極形状としては、シート状、
フィルム状、金属箔上にフィルム状或いは発泡金属に充
填するなどして電池形状に適応させることが可能であ
る。合剤層厚みは、10〜200μmの範囲が望まし
い。
A negative electrode is prepared using the metal-supported carbon particles obtained above and graphite capable of intercalating and deintercalating Li ions. In this case, a binder is used. The binder is not particularly limited as long as it does not react with an electrolytic solution such as EPDM (ethylene propylene terpolymer), PVDF, and polytetrafluoroethylene. The amount of the binder is 1 to 30 w per carbon.
t (%), preferably 5 to 15 wt (%) is suitable. As the negative electrode shape using the aforementioned mixture, a sheet shape,
It is possible to adapt to the shape of the battery by filling it into a film or a foamed metal on a film or a metal foil. The thickness of the mixture layer is preferably in the range of 10 to 200 μm.

【0032】このようにして得られた負極は、通常用い
られる正極、セパレータおよび電解液と組み合せること
により最適なリチウム二次電池とすることができる。正
極に用いる活物質としては、一般式LiXO2又はLi
24(XはCo,Ni,Mnなどの遷移金属の一種又
は複数種)で表わされる複合酸化物、例えばLiCoO
2,LiNiO2,LiMnO2,Li(Ni1−xCo
x)O2,LiMn24などのリチウムを含有した複合
酸化物及びLiMn24化合物のストイキオ組成に対
し、Liが過剰のものが用いられてよく、これに導電剤
のカーボンブラックや炭素および結着剤を混合したもの
をAl箔等の集電体に塗布して正極とする。
The negative electrode thus obtained can be combined with a commonly used positive electrode, separator and electrolyte to form an optimal lithium secondary battery. As the active material used for the positive electrode, a general formula LiXO 2 or LiXO 2
A composite oxide represented by X 2 O 4 (X is one or more of transition metals such as Co, Ni and Mn), for example, LiCoO
2 , LiNiO 2 , LiMnO 2 , Li (Ni1-xCo
x) O 2, with respect to stoichiometric composition of the composite oxide containing lithium, such as LiMn 2 O 4 and LiMn 2 O 4 compounds may Li is used an excess of things, carbon black or carbon of which the conductive agent A mixture of the binder and the binder is applied to a current collector such as an Al foil to form a positive electrode.

【0033】セパレータとしては、ポリプロピレン、ポ
リエチレンやポリオレフィン系の多孔質膜が用いられて
いる。又電解液としては、プロピレンカーボネート(P
C),エチレンカーボネート(EC)、1,2−ヂメト
キシエタン(DME)、ヂメチルカーボネート(DM
C)、ヂエチルカーボネート(DEC)、メチエチルカ
ーボネート(MEC)などの二種類以上の混合溶媒が用
いられる。又電解質としては、LiPF6,LiBF4
LiClO4等があり、上記溶媒に溶解したものが用い
られる。又、セパレータ、電解液及び電解質の機能を兼
ね備えたポリマー電解質を用いてもよい。
As the separator, a porous film of polypropylene, polyethylene or polyolefin is used. As the electrolyte, propylene carbonate (P
C), ethylene carbonate (EC), 1,2- {methoxyethane (DME),} methyl carbonate (DM
Two or more kinds of mixed solvents such as C), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) are used. LiPF 6 , LiBF 4 ,
LiClO 4 and the like, and those dissolved in the above solvents are used. Further, a polymer electrolyte having the functions of a separator, an electrolytic solution and an electrolyte may be used.

【0034】以上の構成によるリチウム二次電池おい
て、炭素負極をリチウム原子1に対し7以下の原子比で
合金を形成する金属を担持した炭素粒子導電助材とLi
イオンをインターカレート、デインターカレートできる
黒鉛及び非晶質炭素との混合系に改良することにより
(1)放電容量の増大、(2)電気伝導性、(3)出力
密度、(4)サイクル特性、(5)組電池における熱放
散性の向上及び(6)高速充放電、(7)担持金属量の
低減が可能になった。
In the lithium secondary battery having the above-described structure, the carbon negative electrode is made of a carbon particle conductive auxiliary material carrying a metal forming an alloy at an atomic ratio of 7 or less to 1 lithium atom and Li
By improving the ion into a mixed system of graphite and amorphous carbon capable of intercalating and deintercalating, (1) increase in discharge capacity, (2) electric conductivity, (3) power density, (4) Cycle characteristics, (5) improvement of heat dissipation in the assembled battery, (6) high-speed charge and discharge, and (7) reduction of the amount of supported metal became possible.

【0035】[0035]

【発明の実施の形態】(実施例1)アセチレンブラック
(比表面積:70m2/g)の8.0gを20vol
(%)のエチルアルコールを含む水1800mlに懸濁
させる。これを約50℃に加温し、強攪拌しながら3.
15gの硝酸銀(AgNO3)を溶解させる。これに
2.0重量(%)のテトラヒドロホウ酸ナトリウム(N
aBH4)水溶液をマイクロチューブポンプで滴下し、
4時間かけて還元反応を完結させる。
(Example 1) 8.0 g of acetylene black (specific surface area: 70 m 2 / g) was added to 20 vol.
(%) Of ethyl alcohol in 1800 ml of water. This was heated to about 50 ° C. and stirred vigorously.
Dissolve 15 g of silver nitrate (AgNO 3 ). To this, 2.0% by weight of sodium tetrahydroborate (N
aBH 4 ) An aqueous solution is dropped with a micro tube pump,
Complete the reduction reaction over 4 hours.

【0036】その後、濾過・水洗して150℃で6時間
真空乾燥した。得られた粉末Aの担持量は、化学分析に
よれば、仕込み組成の20.0(%)重量に対して、1
9.8重量(%)と良好な担持量であった。また、X線
回折によりAgの存在状態を調べたところ金属状態の銀
の回折線のみが検出された。
Thereafter, the mixture was filtered, washed with water, and vacuum dried at 150 ° C. for 6 hours. According to the chemical analysis, the amount of the powder A obtained was 1% with respect to 20.0 (%) weight of the charged composition.
The loading amount was 9.8% by weight (%), which was a good value. Further, when the presence state of Ag was examined by X-ray diffraction, only the diffraction line of silver in a metallic state was detected.

【0037】次にエネルギー分散型電子プローブマイク
ロアナリシスにより、Agの分散状態を観察したとこ
ろ、Ag粒子はアセチレンブラックの前面に分布してい
た。さらに透過型電子顕微鏡でAg粒子の大きさを観察
したところ、500nm以下の粒子がほぼ均一に分散し
ていた。
Next, when the dispersion state of Ag was observed by an energy dispersive electron probe microanalysis, the Ag particles were distributed on the front surface of acetylene black. Further, when the size of the Ag particles was observed with a transmission electron microscope, particles having a size of 500 nm or less were almost uniformly dispersed.

【0038】(実施例2)カーボンブラック(比表面
積:600m2/g)の8.0gを20vol(%)の
エチルアルコールを含む水1800mlに懸濁させる。
これを約50℃に加温し、強攪拌しながら3.15gの
硝酸銀(AgNO3)を溶解させる。これに2.0重量
(%)のテトラヒドロホウ酸ナトリウム(NaBH4
水溶液をマイクロチューブポンプで滴下し、4時間かけ
て還元反応を完結させる。
Example 2 8.0 g of carbon black (specific surface area: 600 m 2 / g) is suspended in 1800 ml of water containing 20 vol (%) of ethyl alcohol.
This is heated to about 50 ° C., and 3.15 g of silver nitrate (AgNO 3 ) is dissolved with vigorous stirring. 2.0% (%) sodium tetrahydroborate (NaBH 4 )
The aqueous solution is dropped by a microtube pump, and the reduction reaction is completed over 4 hours.

【0039】その後、濾過・水洗して150℃で6時間
真空乾燥した。得られた粉末Bの担持量は、化学分析に
よれば、仕込み組成の20.0(%)重量に対して、1
9.8重量(%)と良好な担持量であった。また、X線
回折によりAgの存在状態を調べたところ金属状態の銀
の回折線のみが検出された。次にエネルギー分散型電子
プローブマイクロアナリシスにより、Agの分散状態を
観察したところ、Ag粒子は黒鉛粒子の前面に分布して
いた。さらに透過型電子顕微鏡でAg粒子の大きさを観
察したところ、500nm以下の粒子がほぼ均一に分散
していた。
Thereafter, the mixture was filtered, washed with water, and vacuum dried at 150 ° C. for 6 hours. According to the chemical analysis, the amount of the obtained powder B supported was 1% with respect to 20.0 (%) weight of the charged composition.
The loading amount was 9.8% by weight (%), which was a good value. Further, when the presence state of Ag was examined by X-ray diffraction, only the diffraction line of silver in a metallic state was detected. Next, when the dispersion state of Ag was observed by an energy dispersive electron probe microanalysis, the Ag particles were distributed in front of the graphite particles. Further, when the size of the Ag particles was observed with a transmission electron microscope, particles having a size of 500 nm or less were almost uniformly dispersed.

【0040】(実施例3)上記実施の形態1で得られた
粉末AとX線回折法による面間隔(d002)が0.3
36nmで、C軸方向の結晶の大きさ(Lc)が100
nm、かつ比表面積が3.2m2/gの黒鉛を重量比で
(1:9)に混合し、これに結着剤としてPVDFのN
−メチルピロリドン溶液を用い、混合粉末とPVDFを
90:10の重量比になるようにしたペーストを集電体
である厚さ20μmの銅箔に塗布、風乾後、80℃で3
時間真空乾燥し、0.5ton/cm2の圧力で成形し
た後、更に120℃で2時間真空乾燥し、負極を得た。
これらの負極とポリエチレン製膜を挟んでリチウム金属
の対極と組み合わせ、電解液に1MliPF6/EC−
DMC,参照極にリチウム金属を用いた試験セルを組み
立てた。充放電電流密度は、0.3〜4.0mA/cm
2,充放電の上下限電位は、それぞれ1.0Vと0.0
1Vとした。
(Example 3) The powder A obtained in the first embodiment has a plane distance (d002) of 0.3 according to the X-ray diffraction method.
At 36 nm, the crystal size (Lc) in the C-axis direction is 100
The graphite having a specific surface area of 3.2 m 2 / g was mixed at a weight ratio of (1: 9).
Using a methylpyrrolidone solution, applying a paste in which the mixed powder and PVDF were in a weight ratio of 90:10 to a 20-μm-thick copper foil as a current collector, air-dried, and then dried at 80 ° C. for 3 hours;
After vacuum drying for 0.5 hour and molding at a pressure of 0.5 ton / cm 2 , vacuum drying was further performed at 120 ° C. for 2 hours to obtain a negative electrode.
These negative electrodes were combined with a lithium metal counter electrode with a polyethylene film interposed therebetween, and 1 MliPF 6 / EC-
A test cell using lithium metal for the DMC and the reference electrode was assembled. The charge / discharge current density is 0.3 to 4.0 mA / cm
2. The upper and lower limit potentials of charge and discharge are 1.0V and 0.0V, respectively.
1V.

【0041】その結果を黒鉛のみの負極及び本発明より
なる黒鉛負極と比較して、図6に示した。図6におい
て、横軸は放電電流密度,縦軸は放電容量維持率(%)
で表してある。図より明らかなごとく、電流密度が1m
A/cm2迄は本発明と従来技術の負極において差は見
られないが、1mA/cm2を超えるあたりから黒鉛の
みの負極を使用した従来技術の放電特性B1の容量が著
しく低下するのに対し、本発明のAgを担持した炭素材
と黒鉛とより成る負極を使用した放電特性A1の放電容
量維持率低下の少ないことが判る。本発明負極中のAg
量は活性部質量に対し2wt(%)である。ちなみに実
施の形態2で得られた粉末Bも粉末Aと同様の試験を行
ったところ、ほとんど同じ結果が得られた。
The results are shown in FIG. 6 in comparison with the graphite negative electrode and the graphite negative electrode according to the present invention. In FIG. 6, the horizontal axis is the discharge current density, and the vertical axis is the discharge capacity retention ratio (%).
It is represented by As is clear from the figure, the current density is 1 m.
No difference is observed between the negative electrode of the present invention and the prior art negative electrode up to A / cm 2, but the capacity of the discharge characteristic B1 of the prior art using the graphite only negative electrode is remarkably reduced from around 1 mA / cm 2. On the other hand, it can be seen that there is little decrease in the discharge capacity retention ratio of the discharge characteristic A1 using the negative electrode composed of the carbon material carrying Ag of the present invention and graphite. Ag in the negative electrode of the present invention
The amount is 2 wt (%) based on the mass of the active part. Incidentally, powder B obtained in the second embodiment was subjected to the same test as powder A, and almost the same results were obtained.

【0042】(実施例4)上記実施の形態1で得られた
粉末AとX線回折法による面間隔(d002)が0.3
36nmで、C軸方向の結晶の大きさ(Lc)が100
nm、かつ比表面積が3.2m2/gの黒鉛を重量比で
(5:95)及び(15:85)に混合し、これに結着
剤としてPVDFのN−メチルピロリドン溶液を用い、
混合粉末とPVDFを90:10の重量比になるように
したペーストを集電体である厚さ20μmの銅箔に塗
布、風乾後、80℃で3時間真空乾燥し、0.5ton
/cm 2の圧力で成形した後、更に120℃で2時間真
空乾燥し、負極を得た。
(Example 4) Obtained in the first embodiment.
Powder A and a plane distance (d002) by X-ray diffraction method of 0.3
At 36 nm, the crystal size (Lc) in the C-axis direction is 100
nm and specific surface area is 3.2mTwo/ G of graphite in weight ratio
Mix at (5:95) and (15:85) and bind to this
Using an N-methylpyrrolidone solution of PVDF as an agent,
The mixed powder and PVDF should be in a weight ratio of 90:10.
The paste is applied to a 20 μm thick copper foil as a current collector.
Cloth, air dried, vacuum dried at 80 ° C for 3 hours, 0.5 ton
/ Cm TwoAfter molding under pressure of
It was air-dried to obtain a negative electrode.

【0043】これらの負極を用いて実施例3と同様の試
験を行ったところ、図6とほとんど同じ値を示した。ち
なみにAg使用量は、(5:95)の場合は1wt
(%)、(15:85)では3wt(%)に相当する。
When a test similar to that of Example 3 was performed using these negative electrodes, values almost the same as those in FIG. 6 were shown. By the way, the amount of Ag used is 1wt in the case of (5:95)
(%) And (15:85) correspond to 3 wt (%).

【0044】(実施例5)上記の形態1で得られた粉末
AとX線回折法による面間隔(d002)が0.382
nmで、且つ比表面積が4.5m2/gの非晶質炭素を
重量比で(1:9)に混合し、これに結着剤としてPV
DFのN−メチルピロリドン溶液を用い、混合粉末とP
VDFを90:10の重量比になるようにしたペースト
を集電体である厚さ20μmの銅箔に塗布、風乾後、8
0℃で3時間真空乾燥し、2.0ton/cm2の圧力
で成形した後、更に120℃で2時間真空乾燥し、負極
を得た。
(Example 5) The powder A obtained in the above-mentioned mode 1 had a plane distance (d002) of 0.382 as determined by X-ray diffraction.
of amorphous carbon having a specific surface area of 4.5 m 2 / g in a weight ratio of (1: 9),
Using N-methylpyrrolidone solution of DF, mixed powder and P
A paste in which VDF is adjusted to a weight ratio of 90:10 is applied to a 20 μm-thick copper foil as a current collector, air-dried, and then dried.
After vacuum drying at 0 ° C. for 3 hours and molding at a pressure of 2.0 ton / cm 2 , vacuum drying was further performed at 120 ° C. for 2 hours to obtain a negative electrode.

【0045】これらの負極とポリエチレン製膜を挟んで
リチウム金属の対極と組み合わせ、電解液に1MliP
6/PC−DMC,参照極にリチウム金属を用いた試
験セルを組み立てた。充放電電流密度は,0.3〜4.
0mA/cm2,充放電の上下限電位は、それぞれ1.
5Vと0.005Vとした。又充電は4hのCCCV法
で行った。比較するため、非晶質炭素のみの負極につい
ても同様の試験を行った。その結果、実施例3と同様2
mA/cm2を超えるあたりから非晶質炭素のみの負極
の容量が著しく低下するのに対し、本発明により成るA
g担持炭素材と非晶質炭素を混合した負極の放電容量維
持率低下の少ないことが確認できた。
These negative electrodes were combined with a lithium metal counter electrode with a polyethylene film interposed therebetween, and 1 M LiP
F 6 / PC-DMC, was assembled test cell using lithium metal reference electrode. The charge / discharge current density is 0.3 to 4.
0 mA / cm 2 , the upper and lower limit electric potentials of charge and discharge were 1.
5V and 0.005V. Charging was performed by the CCCV method for 4 hours. For comparison, a similar test was performed for a negative electrode containing only amorphous carbon. As a result, as in Example 3, 2
While the capacity of the negative electrode made of only amorphous carbon is remarkably reduced from around mA / cm 2 , the A
It was confirmed that the negative electrode in which the g-supported carbon material and the amorphous carbon were mixed had a small decrease in the discharge capacity retention ratio.

【0046】(実施例6)アセチレンブラック(比表面
積:70 m2/g)の8.0gを20vol(%)の
エチルアルコールを含む水1800mlに懸濁させる。
これを約50℃に加温し、強攪拌しながら3.8gSn
Cl22H2Oを2mlCH3COOH+200mlC2
5OHに溶解させた溶液を添加する。これに2.0重
量(%)のテトラヒドロホウ酸ナトリウム(NaBH
4)水溶液をマイクロチューブポンプで滴下し、4時間
かけて還元反応を完結させる。
Example 6 8.0 g of acetylene black (specific surface area: 70 m 2 / g) is suspended in 1800 ml of water containing 20 vol (%) of ethyl alcohol.
This was heated to about 50 ° C., and 3.8 g Sn
The Cl22H 2 O 2mlCH 3 COOH + 200mlC 2
Adding a solution dissolved in H 5 OH. 2.0% (%) sodium tetrahydroborate (NaBH)
4) The aqueous solution is dropped with a microtube pump, and the reduction reaction is completed over 4 hours.

【0047】その後、濾過・水洗して150℃で6時間
真空乾燥した。得られた粉末Cを1(%)H2/He気
流中400℃で5時間還元処理を行った。粉末Cの化学
分析をしたところ、仕込み組成の20.0(%)重量に
対して、19.7重量(%)と良好な担持量であった。
また、X線回折によりSnの存在状態を調べたところ金
属状態のSnとSnO2に基ずく微量の回折線が検出さ
れた。次にエネルギー分散型電子プローブマイクロアナ
リシスにより、Snの分散状態を観察したところ、Sn
粒子はアセチレンブラックの前面に分布していた。さら
に透過型電子顕微鏡でSn粒子の大きさを観察したとこ
ろ、500nm以下の粒子がほぼ均一に分散していた。
Thereafter, the mixture was filtered, washed with water, and vacuum dried at 150 ° C. for 6 hours. The obtained powder C was subjected to a reduction treatment at 400 ° C. for 5 hours in a stream of 1% H 2 / He. The powder C was subjected to chemical analysis and found to be 19.7% by weight (%) with respect to 20.0% by weight of the charged composition.
When the existence state of Sn was examined by X-ray diffraction, a trace amount of diffraction lines based on Sn and SnO 2 in a metallic state were detected. Next, when the dispersion state of Sn was observed by an energy dispersive electron probe microanalysis,
The particles were distributed in front of the acetylene black. Further, when the size of the Sn particles was observed with a transmission electron microscope, particles having a size of 500 nm or less were almost uniformly dispersed.

【0048】(実施例7)上記実施の形態6で得られた
粉末CとX線回折法による面間隔(d002)が0.3
36nmで、C軸方向の結晶の大きさ(Lc)が100
nm、かつ比表面積が3.2m2/gの黒鉛を重量比で
(1:9)に混合し、これに結着剤としてPVDFのN
−メチルピロリドン溶液を用い、混合粉末とPVDFを
90:10の重量比になるようにしたペーストを集電体
である厚さ20μmの銅箔に塗布、風乾後、80℃で3
時間真空乾燥し、0.5ton/cm2の圧力で成形し
た後、更に120℃で2時間真空乾燥し、負極を得た。
これらの負極を用いて実施例3と同様の試験を行った。
その結果、電流密度が2mA/cm2における放電容量
維持率は95(%)の値であった。
(Example 7) The powder C obtained in the above-mentioned embodiment 6 had a plane distance (d002) of 0.3 according to the X-ray diffraction method.
At 36 nm, the crystal size (Lc) in the C-axis direction is 100
The graphite having a specific surface area of 3.2 m 2 / g was mixed at a weight ratio of (1: 9).
Using a methylpyrrolidone solution, applying a paste in which the mixed powder and PVDF were in a weight ratio of 90:10 to a 20-μm-thick copper foil as a current collector, air-dried, and then dried at 80 ° C. for 3 hours;
After vacuum drying for 0.5 hour and molding at a pressure of 0.5 ton / cm 2 , vacuum drying was further performed at 120 ° C. for 2 hours to obtain a negative electrode.
The same test as in Example 3 was performed using these negative electrodes.
As a result, the discharge capacity retention ratio at a current density of 2 mA / cm 2 was 95 (%).

【0049】(実施例8)上記実施の形態6で得られた
粉末CとX線回折法による面間隔(d002)が0.3
82nmで、かつ比表面積が4.5m2/gの非晶質炭
素を重量比で(1:9)に混合し、これに結着剤として
PVDFのN−メチルピロリドン溶液を用い、混合粉末
とPVDFを90:10の重量比になるようにしたペー
ストを集電体である厚さ20μmの銅箔に塗布、風乾
後、80℃で3時間真空乾燥し、2.0ton/cm2
の圧力で成形した後、更に120℃で2時間真空乾燥
し、負極を得た。
(Example 8) The powder C obtained in the above-mentioned embodiment 6 had a plane distance (d002) of 0.3 according to the X-ray diffraction method.
Amorphous carbon having a specific surface area of 82 nm and a specific surface area of 4.5 m 2 / g was mixed at a weight ratio of (1: 9), and an N-methylpyrrolidone solution of PVDF was used as a binder. A paste in which PVDF was adjusted to a weight ratio of 90:10 was applied to a copper foil having a thickness of 20 μm as a current collector, air-dried, and then vacuum-dried at 80 ° C. for 3 hours to obtain 2.0 ton / cm 2.
, And vacuum dried at 120 ° C for 2 hours to obtain a negative electrode.

【0050】これらの負極とポリエチレン製膜を挟んで
リチウム金属の対極と組み合わせ、電解液に1MliP
6/PC−DMC,参照極にリチウム金属を用いた試
験セルを組み立てた。充放電電流密度は,0.3〜4.
0mA/cm2,充放電の上下限電位は、それぞれ1.
5Vと0.005Vとした。又充電は4hのCCCV法
で行った。本発明により成るSn担持炭素材と非晶質炭
素を混合した負極は、電流密度が2mA/cm2での放
電容量維持率は93(%)の値であった。
These negative electrodes were combined with a lithium metal counter electrode with a polyethylene film interposed therebetween, and 1 M LiP
F 6 / PC-DMC, was assembled test cell using lithium metal reference electrode. The charge / discharge current density is 0.3 to 4.
0 mA / cm 2 , the upper and lower limit electric potentials of charge and discharge were 1.
5V and 0.005V. Charging was performed by the CCCV method for 4 hours. The negative electrode obtained by mixing the Sn-supporting carbon material and amorphous carbon according to the present invention had a discharge capacity retention of 93 (%) at a current density of 2 mA / cm 2 .

【0051】(実施例9)本実施例では、実施の形態1
で得られた負極と正極及び電解液と組合せた電池の構成
について述べる。
(Embodiment 9) In this embodiment, the first embodiment will be described.
The configuration of the battery obtained by combining the negative electrode, the positive electrode, and the electrolyte obtained in the above will be described.

【0052】正極活物質として、LiCoO2、導電剤
として人造黒鉛、結着剤としてポリフッ化ビニリデンを
重量比で87:9:4とした合剤スラリーを集電体であ
るAl箔に両面塗付し乾燥・圧延し正極を作成した。
A mixture slurry of LiCoO 2 as a positive electrode active material, artificial graphite as a conductive agent, and polyvinylidene fluoride as a binder in a weight ratio of 87: 9: 4 was applied on both sides of an Al foil as a current collector. After drying and rolling, a positive electrode was prepared.

【0053】電解液として、エチレンカーボネート(E
C)とジメチルカーボネート(DMC)を体積比で1:
2で混合した溶媒に電解質としてLiPF6を1M/l
となるように溶解して電解液を得た。
As an electrolytic solution, ethylene carbonate (E
C) and dimethyl carbonate (DMC) in a volume ratio of 1:
1M / l of LiPF 6 as an electrolyte in the solvent mixed in 2
To obtain an electrolyte solution.

【0054】電池として、負極と前述の正極及び電解液
を用いた単三型の電池を図1により説明する。
An AA battery using a negative electrode, the above-described positive electrode and an electrolytic solution will be described with reference to FIG.

【0055】図1において、正極6及び負極7とこれら
両極を隔離するポリエチレン製多孔質膜のセパレータ
8、負極缶9、正極リード10、負極リード11、正極
外部端子12、封口ガスケット13、絶縁板14などか
ら構成される。
In FIG. 1, a positive electrode 6 and a negative electrode 7 and a separator 8 of a polyethylene porous film for separating these two electrodes, a negative electrode can 9, a positive electrode lead 10, a negative electrode lead 11, a positive external terminal 12, a sealing gasket 13, an insulating plate 14 and the like.

【0056】セパレーター8を介して渦巻状に捲回され
正極6及び負極7は負極缶9内に収納される。正極6は
正極リード10を介して正極外部端子12に接続されて
いる。負極7は負極リード11を介して負極缶9に接続
され電気エネルギーを外部に取り出せるようにしてい
る。正極外部端子12と負極缶9との間は封口ガスケッ
ト13に絶縁密封している。又負極缶9の底面と対応す
る絶縁板14は、負極缶9とセパレーター8及び正極6
との間を絶縁している。尚、図2のボタン型電池と図1
の電池の主構成部品は同じなので、ボタン型電池では図
1の電池の主構成部品と同じ部品には同一符号を付して
説明を省略する。
The positive electrode 6 and the negative electrode 7 are spirally wound via the separator 8 and housed in the negative electrode can 9. The positive electrode 6 is connected to a positive electrode external terminal 12 via a positive electrode lead 10. The negative electrode 7 is connected to a negative electrode can 9 via a negative electrode lead 11 so that electric energy can be extracted to the outside. A sealing gasket 13 is insulated and sealed between the positive electrode external terminal 12 and the negative electrode can 9. The insulating plate 14 corresponding to the bottom surface of the negative electrode can 9 comprises the negative electrode can 9, the separator 8 and the positive electrode 6.
Is insulated between The button-type battery shown in FIG.
Since the main components of the battery are the same, in the button-type battery, the same components as those of the battery of FIG.

【0057】負極7の構成は図3(A)、(B)により
説明する。導電部材例えばCu箔7Aに混合層7Bを被
覆しる。混合層7BはLiイオンをインターカレート、
デインターカレートできる黒鉛7Gと、Liと合金を形
成する金属微細粒子例えばAg7Dを坦持した炭素粒子
7C(以下導電助材と称する)とをバインダー7Eで混
合した層より成る。バインダー7Eは黒鉛7G、Ag7
D、炭素粒子7Cを結着する結着材である。
The structure of the negative electrode 7 will be described with reference to FIGS. A mixed layer 7B is coated on a conductive member such as a Cu foil 7A. The mixed layer 7B intercalates Li ions,
It is composed of a layer in which graphite 7G that can be deintercalated and carbon fine particles 7C carrying Ag7D (hereinafter referred to as a conductive additive) carrying an alloy with Li are mixed with a binder 7E. Binder 7E is graphite 7G, Ag7
D, a binder for binding the carbon particles 7C.

【0058】黒鉛7Gと導電助材との混合比を図4によ
り説明する。図4はAgを1重量(%)の時には、黒鉛
7Gが95重量(%)と導電助材が5重量(%)とから
成り、5重量(%)のうち20重量(%)が1重量
(%)のAgに相当する。又Agを5重量(%)の時に
は、黒鉛7Gが75重量(%)と導電助材が25重量
(%)とから成り、25重量(%)のうち20重量
(%)が5重量(%)のAgに相当する。
The mixing ratio of graphite 7G and the conductive additive will be described with reference to FIG. FIG. 4 shows that when Ag is 1% (%), graphite 7G is 95% (%) and the conductive additive is 5% (%), and 20% (5%) of 5% (1%) is 1%. (%) Of Ag. When Ag is 5% by weight (%), graphite 7G is 75% by weight (%) and the conductive additive is 25% by weight, and 20% (25%) of 25% by weight is 5% by weight (%). ) Ag.

【0059】このため、図4の放電容量維持率特性から
明らかなようにAgを含まない従来の特性Bでは5重量
(%)以下になると、放電容量維持率が急激に低下して
電池として使用できない。
For this reason, as is apparent from the discharge capacity retention ratio characteristics shown in FIG. 4, in the conventional characteristic B containing no Ag, when the weight becomes 5% (%) or less, the discharge capacity retention ratio drops sharply and the battery is used as a battery. Can not.

【0060】しかしながら、本発明の特性Aは1重量
(%)から5重量(%)の範囲内にAgを含有すれば、
放電容量維持率の特性Aを90(%)に維持することが
出来るが、Agが1重量(%)以下になると、放電容量
維持率が急激に低下して電池として使用できない。また
Agは5重量(%)以上を含有しても放電容量維持率は
変わらないので、1重量(%)〜5重量(%)含有する
のが、一番経済的であるばかりか、また以下の効果を達
成することが出来る。Agの含有量を15重量(%)以
上にすると、今度はコスト高となり、経済的に成りたな
い。
However, if the characteristic A of the present invention contains Ag in the range of 1% by weight (%) to 5% by weight (%),
The characteristic A of the discharge capacity maintenance ratio can be maintained at 90 (%), but when Ag becomes 1% by weight or less, the discharge capacity maintenance ratio sharply decreases and the battery cannot be used. Further, even if Ag contains 5% by weight or more, the discharge capacity retention ratio does not change. Therefore, it is most economical to contain 1% by weight to 5% by weight. The effect of can be achieved. If the Ag content is 15% by weight (%) or more, the cost will be high and the cost will not be increased.

【0061】またAg7Dを坦持した炭素粒子7C(導
電助材)の粒径は黒鉛7Gの粒径より小さいもので構成
すると、黒鉛7Gと黒鉛7Gとの間に導電助材が浸入し
やすく、充填密度(%)が高まり、粒子同志の接触点が
増大し、電流経路が増える結果、例えば図6のように本
発明の放電特性A1が導電助材を使用しない従来の放電
特性B1に比べて放電電流密度mA/cm2が1を越え
ても急激に低下すること無く、大電流を流すことが出来
る。
When the particle size of the carbon particles 7C carrying Ag7D (conductive auxiliary material) is smaller than that of graphite 7G, the conductive auxiliary material easily penetrates between graphite 7G and graphite 7G. As the packing density (%) is increased, the contact points between the particles are increased, and the current path is increased. As a result, for example, as shown in FIG. Even if the discharge current density mA / cm 2 exceeds 1, a large current can flow without abrupt reduction.

【0062】即ち、図5は本発明のリチウム2次電池の
充電放電を行うサイクル数(回)と放電容量(mAh/
cm3)との関係を示す特性図である。本発明と従来の
リチウム2次電池の負極は、本発明では上述の負極を使
用したが、従来例では黒鉛と炭素とを混合したものを使
用した。図5の試験条件として充放電速度:1C、充電
終始止電圧:4.2V、放電終止電圧:2.5Vとして
行った。
FIG. 5 shows the number of charge / discharge cycles (times) and discharge capacity (mAh / mAh) of the lithium secondary battery of the present invention.
FIG. 3 is a characteristic diagram showing a relationship with cm 3 ). In the present invention, the above-described negative electrode was used as the negative electrode of the present invention and the conventional lithium secondary battery. In the conventional example, a mixture of graphite and carbon was used. The test conditions in FIG. 5 were as follows: charge / discharge rate: 1 C, charge end voltage: 4.2 V, discharge end voltage: 2.5 V.

【0063】その結果、本発明のリチウム2次電池の特
性A1は従来の特性B1に比べて、サイクル数が増加し
ても、本発明のリチウム2次電池の特性A1はサイクル
数が低下せず、300サイクルまで安定した性能が得ら
れるのに対して、従来の特性B1はサイクル数が増加す
ると著しく放電容量が低下し、性能が安定しない。この
ため、本発明の負極を使用したリチウム2次電池を使用
すれば、従来のリチウム2次電池に比べて、頻繁にリチ
ウム2次電池を交換することなく、長期間に渡って安定
した音、明かり等を楽しむことが出来るようになった。
As a result, even if the number of cycles increases, the characteristic A1 of the lithium secondary battery of the present invention does not decrease even if the number of cycles increases, as compared with the conventional characteristic B1. And 300 cycles, stable performance can be obtained, whereas in the conventional characteristic B1, as the number of cycles increases, the discharge capacity decreases significantly and the performance becomes unstable. For this reason, if a lithium secondary battery using the negative electrode of the present invention is used, a stable sound can be obtained for a long period of time without frequently replacing the lithium secondary battery, as compared with a conventional lithium secondary battery. Now you can enjoy the lights.

【0064】更に、図6により放電容量維持率(%)と
放電電流密度(mA/cm2)との関係を示す特性図に
より説明する。本発明の放電特性A1は従来の放電特性
B1に比べて放電電流密度(mA/cm2)が増加して
も、急激に減少することなく、大電流を流すことが出来
るので、図5と同様に上述の効果を達成することが出来
る。
FIG. 6 is a graph showing the relationship between the discharge capacity maintenance ratio (%) and the discharge current density (mA / cm 2 ). The discharge characteristic A1 of the present invention can flow a large current without drastically decreasing even if the discharge current density (mA / cm 2 ) increases as compared with the conventional discharge characteristic B1, and is the same as FIG. In addition, the above-described effects can be achieved.

【0065】[0065]

【発明の効果】以上のように本発明により得られた負
極、すなわち炭素粒子にリチウム1原子に対し7以下の
原子比で合金を形成する金属の微細粒子を担持した導電
助材と黒鉛或いは非晶質炭素とを混合して負極に用いれ
ば、炭素粒子間に金属を介在させることにより(1)電
気伝導性が向上し、充放電反応の速度が向上する。
(2)放電容量が大きくなるので、電池の出力密度も当
然大きくなる。(3)(1)に付随してサイクル特性も
向上し、組電池における熱放散性も向上させることがで
きる。(4)担持金属使用量を低減できる。
As described above, the negative electrode obtained by the present invention, that is, a conductive auxiliary material in which carbon particles carry fine particles of a metal which forms an alloy at an atomic ratio of 7 or less with respect to 1 atom of lithium and graphite or non-conductive material When mixed with crystalline carbon and used for the negative electrode, by interposing a metal between carbon particles, (1) electric conductivity is improved, and the speed of charge / discharge reaction is improved.
(2) Since the discharge capacity increases, the output density of the battery naturally increases. (3) The cycle characteristics are improved in association with (1), and the heat dissipation of the assembled battery can be improved. (4) The amount of supported metal used can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例として示したリチウム二次電池
の側断面図。
FIG. 1 is a side sectional view of a lithium secondary battery shown as an example of the present invention.

【図2】本発明の別の実施例として示したボタン型リチ
ウム二次電池の断面図。
FIG. 2 is a cross-sectional view of a button-type lithium secondary battery shown as another embodiment of the present invention.

【図3】(A)及び(B)は図1の負極の側断面図及び
同図(A)に使用した混合層の構成図。
FIGS. 3A and 3B are a side sectional view of the negative electrode in FIG. 1 and a configuration diagram of a mixed layer used in FIG.

【図4】図1の負極に使用したAg量と放電容量との関
係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the amount of Ag used for the negative electrode of FIG. 1 and the discharge capacity.

【図5】図1の放電容量とサイクル数との関係を示す特
性図。
FIG. 5 is a characteristic diagram showing the relationship between the discharge capacity and the number of cycles in FIG.

【図6】図1の放電容量と放電電流との関係を示す特性
図。
FIG. 6 is a characteristic diagram showing a relationship between a discharge capacity and a discharge current in FIG.

【符号の説明】[Explanation of symbols]

6…正極、7…負極、7A…Cu箔、7B…混合層、7
C…Ag、7D…炭素粒子、7G…黒鉛、8…セパレー
タ、9…負極缶。
6 positive electrode, 7 negative electrode, 7A Cu foil, 7B mixed layer, 7
C: Ag, 7D: carbon particles, 7G: graphite, 8: separator, 9: negative electrode can.

【手続補正書】[Procedure amendment]

【提出日】平成11年7月30日(1999.7.3
0)
[Submission date] July 30, 1999 (July 7, 1999)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【請求項】 正極および負極と、正負両極間に介在す
るセパレータと、正負両極及びセパレータ浸漬する電解
液とを備えたリチウム二次電池において、前記負荷は、
リチウムと合金を形成する金属を坦持した炭素粒子の導
電助材とインターカレート、デインターカレートでがき
る黒鉛との混合系であると共に、金属粒子を坦持した炭
素粒子の粒径が黒鉛の粒径より小さいことを特徴とする
リチウム二次電池。
And 1. A positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, a lithium secondary battery comprising a positive and negative electrodes and electrolyte separators immersion, the load,
Lithium conductive additive of arm and alloys metal carrying carbon particles to form the intercalate, brat in deintercalating
Is a mixed system with graphite and metal particles
A lithium secondary battery , wherein the particle size of elementary particles is smaller than the particle size of graphite .

【請求項】 前記負荷は、リチウムと合金を形成する
金属を坦持した炭素粒子の導電助材と非晶質炭素との混
合系であることを特徴とする請求項1に記載のリチウム
二次電池。
Wherein said load according to claim 1, characterized in that a mixed system of conductive agent and the amorphous carbon in the carbon particles carrying a metal which forms a lithium and alloys Lithium secondary battery.

【請求項】 請求項1又は2において、導電助材に坦
持する金属は、Al,Sb,B,Ba,Cd,Ca,G
a,In,Ir,Pd,Pb,Hg,Si,Ag,S
r,Te,Tl及びSnのうち少なくとも一種類を用い
ることを特徴とするリチウム二次電池。
3. The metal according to claim 1, wherein the metal carried on the conductive auxiliary material is Al, Sb, B, Ba, Cd, Ca, G
a, In, Ir, Pd, Pb, Hg, Si, Ag, S
A lithium secondary battery using at least one of r, Te, Tl, and Sn.

【請求項】 前記炭素粒子の比表面積が1〜1000
2/gであり、坦持金属炭素粒子の粒径が500nm
以下であることを請求項1又は2に記載のリチウム二次
電池。
The specific surface area of claim 4, wherein said carbon particles are 1 to 1000
m 2 / g, and the particle size of the supported metal carbon particles is 500 nm.
The lithium secondary battery according to claim 1, wherein:

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】削除[Correction method] Deleted

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】本発明の要旨を以下に記述する。即ち、第
の発明は、正極および負極と、正負両極間に介在する
セパレータと、正負両極及びセパレータ浸漬する電解液
とを備えたリチウム二次電池において、前記負荷は、リ
チウムと合金を形成する金属を坦持した炭素粒子の導電
助材とインターカレート、デインターカレートできる黒
鉛との混合系であると共に、金属粒子を坦持した炭素粒
子の粒径が黒鉛の粒径より小さいことを特徴とするリチ
ウム二次電池。
The gist of the present invention will be described below. That is,
1 of the invention includes a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, a lithium secondary battery comprising a positive and negative electrodes and electrolyte separators immersion, the load is re <br/> Chiu arm and covering Conductive auxiliary material of carbon particles carrying metal that forms gold and black that can be intercalated and deintercalated
Carbon particles mixed with lead and carrying metal particles
A lithium secondary battery , wherein the particle size of the particles is smaller than the particle size of graphite .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】第2の発明の前記負荷は、リチウムと合
を形成する金属を坦持した炭素粒子の導電助材と非晶質
炭素との混合系であることを特徴とする請求項1に記載
のリチウム二次電池。
[0017] The load of the second invention, according to claim 1, characterized in that a mixed system of conductive agent and the amorphous carbon in the carbon particles carrying a metal which forms a lithium and alloys 4. The lithium secondary battery according to 1.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】第3の発明は、請求項1又は2において、
導電助材に坦持する金属は、Al,Sb,B,Ba,C
d,Ca,Ga,In,Ir,Pd,Pb,Hg,S
i,Ag,Sr,Te,Tl及びSnのうち少なくとも
一種類を用いることを特徴とするリチウム二次電池。
According to a third aspect of the present invention, in the first or second aspect,
The metal supported on the conductive auxiliary material is Al, Sb, B, Ba, C
d, Ca, Ga, In, Ir, Pd, Pb, Hg, S
A lithium secondary battery using at least one of i, Ag, Sr, Te, Tl and Sn.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】第4の発明は、前記炭素粒子の比表面積が
1〜1000m2/gであり、坦持金属炭素粒子の粒径
が500nm以下であることを請求項1又は2に記載の
リチウム二次電池。
A fourth aspect of the present invention is the lithium secondary battery according to claim 1 or 2, wherein the specific surface area of the carbon particles is 1 to 1000 m 2 / g, and the particle size of the supported metal carbon particles is 500 nm or less. Next battery.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】削除[Correction method] Deleted

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】削除[Correction method] Deleted

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】削除[Correction method] Deleted

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】削除[Correction method] Deleted

【手続補正11】[Procedure amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】削除[Correction method] Deleted

【手続補正12】[Procedure amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】削除[Correction method] Deleted

【手続補正13】[Procedure amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】削除[Correction method] Deleted

【手続補正14】[Procedure amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】このようにして得られた負荷は、通常用い
られる正極、セパレータおよび電解液と組み合わせるこ
とにより、最適なリチウム二次電池とすることができ
る。正極に用いる活性物資としては、一般式LiXO2
又はLiX24(XはCo,Ni,Mnなぞの遷移金属
の一種又は複数種)で表せられる複合酸化物、例えばL
iCoO2,LiNiO2,LiMnO2(Ni1−xC
ox)O2,LiMn24なぞのリチウムを含有した複
合酸化物、及びLiMn24化合物のストイキオ組成に
対し、Liが過剰のものが用いられてよく、これに導電
剤のカーボンブラックや炭素および結着剤を混合したも
のをAl箔等の集電体に塗布して正極とする。ここで、
ストイキオ組成とは例えば元素Mnを用いた場合、Li
含有Mnスピンネル化合物のストイキオ組成とはLi1
Mn24であり、ストイキオ組成からずれるということ
はLi1+Mn2_x4_Y組成を言う
By combining the load thus obtained with a commonly used positive electrode, separator and electrolyte, an optimum lithium secondary battery can be obtained. The active substance used for the positive electrode is represented by the general formula LiXO 2
Or a composite oxide represented by LiX 2 O 4 (X is one or more of transition metals such as Co, Ni and Mn), for example, L
iCoO 2 , LiNiO 2 , LiMnO 2 (Ni1-xC
ox) O 2 , LiMn 2 O 4 Lithium-containing composite oxides, and LiMn 2 O 4 compounds may contain an excess of Li relative to the stoichiometric composition of the compound. A mixture of carbon and a binder is applied to a current collector such as an Al foil to form a positive electrode. here,
The stoichiometric composition is, for example, when the element Mn is used, Li
The stoichiometric composition of the contained Mn spinel compound is Li 1
Mn 2 O 4 and deviates from the stoichiometric composition
Means Li 1 + Mn 2 —xO 4 —Y composition .

【手続補正15】[Procedure amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】以上の構成によるリチウム二次電池おい
て、炭素負荷をリチウムと合金を形成する金属を坦持し
た炭素粒子導電助材とLiイオンをインターカレー
ト、デインターカレートできる黒鉛及び非晶質炭素との
混合系に改良することにより、(1)放電容量の増大、
(2)電気伝導性の向上、(3)出力密度の増大
(4)サイクル特性の向上、(5)組電池における熱方
散性の向上、(6)高速放電、(7)胆持金属の低減が
可能になった。
The above configuration Te placed <br/> in the lithium secondary battery according to, conductive additive and Li ion intercalated carbon particles carrying a metal which forms a lithium and alloys carbon load, de By improving to a mixed system of graphite and amorphous carbon which can be intercalated, (1) increase of discharge capacity,
(2) improvement in electrical conductivity, (3) increase in power density,
(4) Improvement of cycle characteristics, (5) Improvement of heat dissipation in the assembled battery, (6) High-speed discharge, and (7) Reduction of supporting metal.

【手続補正16】[Procedure amendment 16]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0059[Correction target item name] 0059

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0059】このため、図4の放電容量維持率特性から
明らかなようにAgを含まない従来の特性Bでは5重
量(%)以下になると、放電容量維持率が急激に低下し
て電池として使用できない。
[0059] Therefore, when equal to or less than conventional characteristics 1 B in 5 weight not including Ag as is clear from the discharge capacity maintenance rate characteristics of FIG. 4 (%), as a battery discharge capacity retention ratio rapidly decreases I can not use it.

【手続補正17】[Procedure amendment 17]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0062[Correction target item name] 0062

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0062】即ち、図5は本発明のリチウム2次電池の
充電放電を行うサイクル数(回)と放電容量(mAh/
cm3)との関係を示す特性図である。本発明と従来の
リチウム2次電池の負極は、本発明では上述の負荷を使
用したが、従来例では黒鉛と炭素とを混合したものを使
用した。図5の試験条件として充放電速度:1C、充電
終止電圧:4.2V,放電終止電圧:2.5Vとして行
った。
FIG. 5 shows the number of charge / discharge cycles (times) and discharge capacity (mAh / mAh) of the lithium secondary battery of the present invention.
FIG. 3 is a characteristic diagram showing a relationship with cm 3 ). The negative electrode of the present invention and the conventional lithium secondary battery use the load described above in the present invention, but the conventional example uses a mixture of graphite and carbon. Charge / discharge speed: 1C, charge as test conditions in FIG.
The end voltage was set to 4.2 V, and the discharge end voltage was set to 2.5 V.

【手続補正18】[Procedure amendment 18]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0065[Correction target item name] 0065

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0065】[0065]

【発明の効果】以上のように本発明により得られた負
荷、即ち炭素粒子にリチウムと合金を形成する金属の微
細粒子を坦持した導電助材と黒鉛と非晶質炭素とを混合
して負荷に用いれば、炭素粒子間に金属を介在させるこ
とにより、(1)電気伝導性が向上し、充放電反応の速
度が向上する。(2)放電容量が大きくなるので、電池
の出力密度も当然大きくなる。(3)(1)に付随して
サイクル特性も向上し、組電池における熱放散性も向上
させることができる。(4)坦持金属使用量を低減えき
る。 ─────────────────────────────────────────────────────
Load obtained by the present invention as described above, according to the present invention, i.e., a conductive additive that carrying the fine particles of the metal forming the lithium and alloy carbon particles and graphite and amorphous carbon mixture Then, when used for a load, by interposing a metal between carbon particles, (1) the electric conductivity is improved, and the speed of the charge / discharge reaction is improved. (2) Since the discharge capacity increases, the output density of the battery naturally increases. (3) The cycle characteristics are improved in association with (1), and the heat dissipation of the assembled battery can be improved. (4) Reduce the amount of supported metal used. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月20日(1999.12.
20)
[Submission date] December 20, 1999 (1999.12.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【請求項】 正極および負極と、正極と負極との間に
介在するセパレータと、正極及び負極とセパレータ
漬する電解液とを備えたリチウム二次電池において、前
記負は、リチウムと合金を形成する金属を担持した炭
素粒子の導電助材とインターカレート、デインターカレ
ートができる黒鉛との混合系であると共に、金属粒子を
担持した炭素粒子の粒径が黒鉛の粒径より小さいことを
特徴とするリチウム二次電池。
And 1. A positive electrode and a negative electrode, a separator interposed between the positive electrode and the negative electrode, a lithium secondary battery comprising an electrolytic solution for <br/> immersed the positive electrode and the negative electrode and the separator, the negative electrode the conductive auxiliary material and the intercalated carbon particles carrying a metal which forms an alloy with lithium, as well as a mixed system of graphite as possible out deintercalated, particle size of the carbon particles carrying metallic particles A lithium secondary battery having a particle size smaller than that of graphite.

【請求項】 前記負は、リチウムと合金を形成する
金属を担持した炭素粒子の導電助材と非晶質炭素との混
合系であることを特徴とする請求項1に記載のリチウム
二次電池。
Wherein said negative electrode, the lithium secondary according to claim 1, characterized in that a mixed system of conductive agent and the amorphous carbon in the carbon particles carrying a metal which forms an alloy with lithium Next battery.

【請求項】 請求項1又は2において、導電助材に担
持する金属は、Al,Sb,B,Ba,Bi,Cd,C
a,Ga,In,Ir,Pd,Pb,Hg,Si,A
g,Sr,Te,Tl及びSnのうち少なくとも一種類
を用いることを特徴とするリチウム二次電池。
3. The method according to claim 1, wherein the metal carried on the conductive additive is Al, Sb, B, Ba, Bi , Cd, C
a, Ga, In, Ir, Pd, Pb, Hg, Si, A
A lithium secondary battery using at least one of g, Sr, Te, Tl and Sn.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】本発明の要旨を以下に記載する。即ち、第
1の発明は、正極および負極と、正極と負極との間に介
在するセパレータと、正極及び負極とセパレータ浸漬
する電解液とを備え、前記負は、リチウムと合金を形
成する金属を担持した炭素粒子の導電助材とインターカ
レート、デインターカレートができる黒鉛との混合系で
あると共に、金属粒子を担持した炭素粒子の粒径が黒鉛
の粒径より小さいことを特徴とするリチウム二次電池。
The gist of the present invention will be described below. That is, the first invention includes a positive electrode and a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte immersing the positive electrode and the negative electrode and the separator, the negative electrode is alloyed with lithium conductive additive to intercalate metal supported carbon particles, as well as a mixed system of graphite as possible out deintercalating, the particle size of the carbon particles carrying metal particles are smaller than the particle size of the graphite Characteristic lithium secondary battery.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】第2の発明の前記負は、リチウムと合金
を形成する金属を担持した炭素粒子の導電助材と非晶質
炭素との混合系であることを特徴とする請求項1に記載
のリチウム二次電池。
[0017] The negative electrode of the second invention, according to claim 1, characterized in that a mixed system of conductive agent and the amorphous carbon in the carbon particles carrying a metal which forms an alloy with lithium Lithium secondary battery.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】第3の発明は、請求項1又は2において、
導電助材に担持する金属は、Al,Sb,B,Ba,
,Cd,Ca,Ga,In,Ir,Pd,Pb,H
g,Si,Ag,Sr,Te,Tl及びSnのうち少な
くとも一種類を用いることを特徴とするリチウム二次電
池。
According to a third aspect of the present invention, in the first or second aspect,
The metals supported on the conductive additive are Al, Sb, B, Ba, B
i , Cd, Ca, Ga, In, Ir, Pd, Pb, H
A lithium secondary battery using at least one of g, Si, Ag, Sr, Te, Tl and Sn.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】このようにして得られた負は、通常用い
られる正極、セパレータおよび電解液と組み合せること
により、最適なリチウム二次電池とすることができる。
正極に用いる活物質としては、一般式LiXO2又はL
iX24(XはCo,Ni,Mnなどの遷移金属の一種
又は複数種)で表わされる複合酸化物、例えばLiCo
2,LiNiO2,LiMnO2,Li(Ni 1-x
x )O2,LiMn24のリチウムを含有した複合
酸化物、及びLi1Mn24化合物のストイキオ組成に
対し、Liが過剰のものが用いられてよく、これに導電
剤のカーボンブラックや炭素および結着剤を混合したも
のをAl箔等の集電体に塗布して正極とする。ここで、
ストイキオ組成とは例えば元素Mnを用いた場合、Li
含有Mnスピンネル化合物のストイキオ組成とはLi1
Mn24であり、ストイキオ組成からずれるということ
はLi 1-x Mn2-x 4組成を言う。
The negative electrode thus obtained is usually a positive electrode used, by combining a separator and an electrolyte, can be optimized lithium secondary battery.
As the active material used for the positive electrode, a general formula LiXO 2 or L
a composite oxide represented by iX 2 O 4 (X is one or a plurality of transition metals such as Co, Ni and Mn), for example, LiCo
O 2 , LiNiO 2 , LiMnO 2 , Li (Ni 1-x C
o x) O 2, LiMn 2 O 4 , etc. composite oxide containing lithium, and to a stoichiometric composition of Li 1 Mn 2 O 4 compound may Li is used an excess of things, a conductive agent thereto A mixture of carbon black or carbon and a binder is applied to a current collector such as an Al foil to form a positive electrode. here,
The stoichiometric composition is, for example, when the element Mn is used, Li
The stoichiometric composition of the contained Mn spinel compound is Li 1
Mn 2 O 4 , deviating from the stoichiometric composition refers to the Li 1 -x Mn 2 -x O 4 composition.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】以上の構成によるリチウム二次電池におい
て、炭素負をリチウムと合金を形成する金属を担持し
た炭素粒子の導電助材とLiイオンをインターカレー
ト、デインターカレートできる黒鉛及び非晶質炭素と
の混合系に改良することにより、(1)放電容量の増
大、(2)電気伝導性の向上、(3)出力密度の増大、
(4)サイクル特性の向上、(5)組電池における熱放
散性の向上、(6)高速充放電、(7)担持金属量の低
減が可能になった。
[0034] In the lithium secondary battery structured as above, conductive agent and Li ion intercalated carbon particles carrying a metal which forms an alloy with lithium carbon anode, graphite may deintercalating and non By improving the mixed system with crystalline carbon, (1) increase in discharge capacity, (2) increase in electric conductivity, (3) increase in output density,
(4) Improvement of cycle characteristics, (5) Improvement of heat dissipation of the assembled battery, (6) High-speed charge / discharge, and (7) Reduction of the amount of supported metal became possible.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0062[Correction target item name] 0062

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0062】即ち、図5は本発明のリチウム2次電池の
充電放電を行うサイクル数(回)と放電容量(mAh/
cm3)との関係を示す特性図である。本発明と従来の
リチウム2次電池の負極は、本発明では上述の負を使
用したが、従来例では黒鉛と炭素とを混合したものを使
用した。図5の試験条件として充放電速度:1C、充電
終止電圧:4.2V、放電終止電圧:2.5Vとして行
った。
FIG. 5 shows the number of charge / discharge cycles (times) and discharge capacity (mAh / mAh) of the lithium secondary battery of the present invention.
FIG. 3 is a characteristic diagram showing a relationship with cm 3 ). In the present invention, the above-described negative electrode was used as the negative electrode of the present invention and the conventional lithium secondary battery. In the conventional example, a mixture of graphite and carbon was used. The test conditions in FIG. 5 were as follows: charge / discharge rate: 1 C, charge end voltage: 4.2 V, discharge end voltage: 2.5 V.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0065[Correction target item name] 0065

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0065】[0065]

【発明の効果】以上のように本発明により得られた負
、即ち炭素粒子にリチウムと合金を形成する金属の微
細粒子を担持した導電助材と黒鉛と非晶質炭素とを混合
して負に用いれば、炭素粒子間に金属を介在させるこ
とにより、(1)電気伝導性が向上し、充放電反応の速
度が向上する。(2)放電容量が大きくなるので、電池
の出力密度も当然大きくなる。(3)(1)に付随して
サイクル特性も向上し、組電池における熱放散性も向上
させることができる。(4)担持金属使用量を低減がで
きる。
As described above, the negative voltage obtained by the present invention is obtained.
If the electrode , that is, a graphite and amorphous carbon are mixed with a conductive auxiliary material carrying fine particles of a metal that forms an alloy with lithium on carbon particles and used as a negative electrode , by interposing a metal between carbon particles, (1) The electric conductivity is improved, and the speed of the charge / discharge reaction is improved. (2) Since the discharge capacity increases, the output density of the battery naturally increases. (3) The cycle characteristics are improved in association with (1), and the heat dissipation of the assembled battery can be improved. (4) Kill <br/> the supported metal usage in reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金田 潤也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H029 AK03 AL07 AL12 AL19 AM04 AM05 BJ02 BJ03 BJ14 DJ16 DJ18 EJ04 HJ01 HJ02 HJ05 HJ07 HJ13  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Junya Kaneda 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ren Muranaka 7, Omikacho, Hitachi City, Ibaraki No. 1-1 F-term in Hitachi Research Laboratory, Hitachi Ltd. (Reference) 5H029 AK03 AL07 AL12 AL19 AM04 AM05 BJ02 BJ03 BJ14 DJ16 DJ18 EJ04 HJ01 HJ02 HJ05 HJ07 HJ13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 正極および負極と、正負両極間に介在す
るセパレータと、正負両極及びセパレータを浸漬する電
解液とを備えたリチウム二次電池において、前記負極
は、リチウム原子1に対し7以下の原子比で合金を形成
する金属を担持した炭素粒子が導電助材であることを特
徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, and an electrolyte for immersing the positive and negative electrodes and the separator, wherein the negative electrode has a lithium atom of 7 or less per 1 lithium atom. A lithium secondary battery, wherein carbon particles supporting a metal forming an alloy in an atomic ratio are conductive additives.
【請求項2】 正極および負極と、正負両極間に介在す
るセパレータと、正負両極及びセパレータを浸漬する電
解液とを備えたリチウム二次電池において、前記負極
は、リチウム原子1に対し7以下の原子比で合金を形成
する金属を担持した炭素粒子の導電助材とLiイオンを
インターカレート,デインターカレートできる黒鉛との
混合系であることを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, and an electrolyte for immersing the positive and negative electrodes and the separator, wherein the negative electrode has a lithium atom of 7 or less per 1 lithium atom. A lithium secondary battery characterized in that it is a mixed system of a conductive additive of carbon particles carrying a metal forming an alloy in an atomic ratio and graphite capable of intercalating and deintercalating Li ions.
【請求項3】 前記負極は、リチウム原子1に対し7以
下の原子比で合金を形成する金属を担持した炭素粒子導
電助材と非晶質炭素との混合系であることを特徴とする
請求項1又は2記載のリチウム二次電池。
3. The negative electrode according to claim 1, wherein the negative electrode is a mixed system of a carbon particle conductive assistant supporting a metal forming an alloy at an atomic ratio of 7 or less to 1 lithium atom and amorphous carbon. Item 3. The lithium secondary battery according to Item 1 or 2.
【請求項4】 請求項1又は2において、導電助材に担
持する金属はAl,Sb,B,Ba,Bi,Cd,C
a,Ga,In,Ir,Pd,Pb,Hg,Si,A
g,Sr,Te,Tl及びSnのうち少なくとも一種類
を用いることを特徴とするリチウム二次電池。
4. The method according to claim 1, wherein the metal supported on the conductive additive is Al, Sb, B, Ba, Bi, Cd, C
a, Ga, In, Ir, Pd, Pb, Hg, Si, A
A lithium secondary battery using at least one of g, Sr, Te, Tl and Sn.
【請求項5】 前記炭素粒子の比表面積が1〜1000
2/gであり、担持金属粒子の粒径が500nm以下
であることを特徴とする請求項1又は2記載のリチウム
二次電池。
5. The carbon particles have a specific surface area of 1 to 1000.
The lithium secondary battery according to claim 1, wherein m 2 / g, and the particle size of the supported metal particles is 500 nm or less.
【請求項6】 前記黒鉛の粒子は、X線回折法による面
間隔(d002)が0.3354〜0.3369nm
で、C軸方向の結晶の大きさ(Lc)が30nm以上
で、かつ比表面積が0.1〜30m2/gであることを
特徴とする請求項2記載のリチウム二次電池。
6. The graphite particles have a plane distance (d002) of 0.3354 to 0.3369 nm as determined by X-ray diffraction.
In lithium secondary battery according to claim 2, wherein the size of the C-axis direction of crystal (Lc) is at 30nm or more and a specific surface area of 0.1~30m 2 / g.
【請求項7】 前記負極は、リチウム原子1に対し7以
下の原子比で合金を形成する金属を担持した炭素粒子導
電助材と非晶質炭素粒子との混合系を集電体に保持させ
てなり、前記非晶質炭素粒子は、X線回折法による面間
隔(d002)が0.337nm以上であることを特徴
とする請求項1又は2記載のリチウム二次電池。
7. The current collector comprises a negative electrode, wherein a current collector contains a mixed system of carbon particle conductive aids supporting a metal forming an alloy at an atomic ratio of 7 or less to lithium atoms and amorphous carbon particles. The lithium secondary battery according to claim 1, wherein the amorphous carbon particles have a plane distance (d002) of 0.337 nm or more determined by an X-ray diffraction method.
【請求項8】 請求項1ないし3いずれか1項記載の負
極と正極及び電解液を組み合わせた単電池において、正
極材はLiXO2又はLiX24(XはCo,Ni,M
nなどの遷移金属の一種又は複数種)であり、LiMn
24組成比はストイキオ組成に対してLiが過剰である
ことを特徴とするリチウム二次電池。
8. The unit cell according to claim 1, wherein the cathode material is LiXO 2 or LiX 2 O 4 (X is Co, Ni, M
n or one or more kinds of transition metals), and LiMn
A lithium secondary battery wherein the composition ratio of 2 O 4 is such that Li is excessive relative to the stoichiometric composition.
【請求項9】 請求項8において、電解液層はポリビニ
リデンフルオライドとヘキサフルオロプロピレン等のコ
ーポリマー電解質であることを特徴とするリチウム二次
電池。
9. The lithium secondary battery according to claim 8, wherein the electrolyte layer is a copolymer electrolyte such as polyvinylidene fluoride and hexafluoropropylene.
【請求項10】 正極と負極との間にセパレータを介在
し、正負両極及びセパレータを電解液で浸漬するリチウ
ム二次電池において、前記負極は導電部材に混合層を被
覆し、Liイオンをインターカレート,デインターカレ
ートできる黒鉛と、Liと合金を形成する金属粒子を有
する炭素粒子とから成り、この混合層中の金属粒子量は
1重量(%)以上であることを特徴とするリチウム二次
電池。
10. A lithium secondary battery in which a separator is interposed between a positive electrode and a negative electrode, and the positive and negative electrodes and the separator are immersed in an electrolytic solution, wherein the negative electrode covers a conductive material with a mixed layer, and intercalates Li ions. And carbon particles having metal particles forming an alloy with Li. The amount of metal particles in this mixed layer is 1% by weight or more (%). Next battery.
【請求項11】 上記混合層中のLiと合金を形成する
金属粒子量は1〜5重量(%)有することを特徴とする
請求項10記載のリチウム二次電池。
11. The lithium secondary battery according to claim 10, wherein the amount of metal particles forming an alloy with Li in the mixed layer is 1 to 5% by weight (%).
【請求項12】 金属粒子を担持した炭素粒子の粒径を
黒鉛の粒径より小さいもので構成することを特徴とする
請求項10記載のリチウム二次電池。
12. The lithium secondary battery according to claim 10, wherein the particle size of the carbon particles carrying the metal particles is smaller than that of graphite.
JP10285449A 1998-10-07 1998-10-07 Lithium secondary battery Expired - Fee Related JP3055892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10285449A JP3055892B2 (en) 1998-10-07 1998-10-07 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10285449A JP3055892B2 (en) 1998-10-07 1998-10-07 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000113877A true JP2000113877A (en) 2000-04-21
JP3055892B2 JP3055892B2 (en) 2000-06-26

Family

ID=17691672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10285449A Expired - Fee Related JP3055892B2 (en) 1998-10-07 1998-10-07 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3055892B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045465A2 (en) * 1999-04-14 2000-10-18 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
WO2000079620A1 (en) * 1999-06-23 2000-12-28 Matsushita Electric Industrial Co., Ltd. Rechargeable nonaqueous electrolytic battery
JP2002270170A (en) * 2001-03-07 2002-09-20 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JP2010282901A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
EP3371845A4 (en) * 2015-10-28 2018-09-12 Samsung Electronics Co., Ltd. Electrode, battery, and method for manufacturing electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045465A2 (en) * 1999-04-14 2000-10-18 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
EP1045465A3 (en) * 1999-04-14 2004-07-21 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
WO2000079620A1 (en) * 1999-06-23 2000-12-28 Matsushita Electric Industrial Co., Ltd. Rechargeable nonaqueous electrolytic battery
US7122278B1 (en) 1999-06-23 2006-10-17 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2002270170A (en) * 2001-03-07 2002-09-20 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JP2010282901A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
EP3371845A4 (en) * 2015-10-28 2018-09-12 Samsung Electronics Co., Ltd. Electrode, battery, and method for manufacturing electrode

Also Published As

Publication number Publication date
JP3055892B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US6555268B1 (en) Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP2003303585A (en) Battery
WO2000033402A1 (en) Non-aqueous electrolyte secondary cell and its charging method
EP0729194B1 (en) Secondary battery using system and material for negative electrode of secondary battery
CN112313817A (en) Positive electrode material and secondary battery
JP5992198B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
JP3200572B2 (en) Lithium secondary battery
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2000173587A (en) Non-aqueous electrolyte secondary battery
JP3055892B2 (en) Lithium secondary battery
KR20150063265A (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
KR20150116702A (en) Positive electrode for lithium air battery, method of preparing the same and lithium air battery including the same
JPH10334889A (en) Lithium secondary battery, and portable electrical apparatus and electric vehicle and motorcycle and power storage device using the lithium secondary battery
JP3165953B2 (en) Lithium secondary battery
JP3720959B2 (en) Secondary battery electrode material
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JPH103907A (en) Lithium secondary battery
KR101466397B1 (en) Anode for lithium secondary battery, method for manufacturing thereof, and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees