JP3165953B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3165953B2
JP3165953B2 JP01722096A JP1722096A JP3165953B2 JP 3165953 B2 JP3165953 B2 JP 3165953B2 JP 01722096 A JP01722096 A JP 01722096A JP 1722096 A JP1722096 A JP 1722096A JP 3165953 B2 JP3165953 B2 JP 3165953B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
carbon
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01722096A
Other languages
Japanese (ja)
Other versions
JPH08273702A (en
Inventor
瀞士 武内
英利 本棒
武夫 山形
達雄 堀場
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01722096A priority Critical patent/JP3165953B2/en
Publication of JPH08273702A publication Critical patent/JPH08273702A/en
Application granted granted Critical
Publication of JP3165953B2 publication Critical patent/JP3165953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
にかかり、特に放電容量、出力密度が大であってサイク
ル特性に優れたリチウム二次電池用負極に関する。リチ
ウム二次電池は、電気自動車、メモリーバックアップ、
ポータブル機器駆動用電源として応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a negative electrode for a lithium secondary battery having a large discharge capacity and a high output density and excellent cycle characteristics. Lithium rechargeable batteries are used in electric vehicles, memory backup,
It is applied as a power supply for driving portable equipment.

【0002】[0002]

【従来の技術】リチウム二次電池の負極として、従来は
リチウム(Li)金属及びLi−Al、Li−Pb等の合
金が用いられてきたが、これらの電池は、樹脂状リチウ
ムの析出による正負両極の短絡やサイクル寿命が短く、
エネルギー密度が低いという欠点があった。最近ではこ
れらの問題点を解決するため炭素材を負極に用いる研究
が活発である。この種の負極は、例えば特開平5−29
9073号、特開平2−121258号の各公報に開示
されている。特開平5−299073号での構成は、芯
を形成する高結晶炭素粒子の表面をVIII族の金属元素を
含む膜で被覆し、さらにその上を炭素が被覆することよ
りなる炭素複合体を電極材料としており、これによって
表面の乱層構造を有する炭素材料がリチウムのインター
カレーションを助けると同時に、電極の表面積が大きい
ために充放電容量および充放電速度が著しく向上したと
している。一方、特開平2−121258号では、六方
晶でH/c<0.15、面間隔>3.37Å及びC軸方向
の結晶子の大きさLc<150Åである炭素物質とLi
と合金可能な金属との混合物とすることにより、充放電
サイクル寿命が長く、大電流における充放電特性も良好
であるとしている。しかし、いずれにおいても、負極炭
素材の合金の難しさや炭素の理論容量が引き出されてお
らず、出力密度が未だ十分とはいえなかった。したがっ
て、電気自動車、自動二輪車に搭載するにはエネルギー
密度及び出力密度が不十分であった。
2. Description of the Related Art Conventionally, lithium (Li) metal and alloys such as Li--Al and Li--Pb have been used as a negative electrode of a lithium secondary battery. Short circuit of both poles and short cycle life,
There was a disadvantage that the energy density was low. Recently, research on using a carbon material for a negative electrode has been actively conducted to solve these problems. This type of negative electrode is disclosed in, for example,
9073 and JP-A-2-121258. Japanese Patent Application Laid-Open No. 5-299073 discloses a method of forming a carbon composite by coating the surface of highly crystalline carbon particles forming a core with a film containing a metal element of group VIII, and further coating carbon thereon. According to the report, the carbon material having a turbostratic structure on the surface assists the intercalation of lithium, and the charge / discharge capacity and the charge / discharge rate are remarkably improved due to the large surface area of the electrode. On the other hand, in Japanese Patent Application Laid-Open No. 2-121258, a carbon material having a hexagonal structure of H / c <0.15, an interplanar spacing of> 3.37 °, and a crystallite size Lc <150 ° in the C-axis direction and Li
It is described that a charge / discharge cycle life is long and a charge / discharge characteristic at a large current is good by using a mixture of a metal and an alloyable metal. However, in each case, the difficulty of the alloy of the negative electrode carbon material and the theoretical capacity of carbon were not drawn out, and the output density was not yet sufficient. Therefore, the energy density and the power density were insufficient for mounting on electric vehicles and motorcycles.

【0003】[0003]

【発明が解決しようとする課題】前述したごとく、炭素
材及び複合材を負極として用いた場合、炭素の理論容量
を引き出せないことや電極製造の難しさという問題があ
る。
As described above, when a carbon material and a composite material are used as a negative electrode, there is a problem that the theoretical capacity of carbon cannot be drawn out and that it is difficult to manufacture an electrode.

【0004】本発明は、前述の問題点を解決するため、
リチウムと合金可能な金属の微細粒子を担持する炭素粒
子を集電体に保持させてなる負極を用いることにより、
高容量で充放電サイクル特性の優れたリチウム二次電池
を提供することを目的とする
The present invention solves the above-mentioned problems,
By using a negative electrode that holds a carbon particle carrying fine particles of a metal that can be alloyed with lithium in a current collector,
Aims to provide a lithium secondary battery with high capacity and excellent charge / discharge cycle characteristics

【0005】。[0005]

【課題を解決するための手段】本発明者らは、前述の問
題点を解決するため種々検討した結果、以下に述べる知
見を基に本発明を完成するに至った。
The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, have completed the present invention based on the following findings.

【0006】図1は、従来型負極と改良型負極のサイク
ル特性の測定結果を示す。用いた炭素は高純度化処理を
した天然黒鉛であり、粒径は約11μmである。この炭
素に結着剤としてエチレンプロピレンターポリマー(以
下EPDMと略記する)をジエチルベンゼンに溶解した
溶液を用い、炭素とEPDMが94:6の重量比になる
ようにしたペーストを集電体である厚さ20μmの銅箔
に塗布し、またこれとは別に該ペーストを集電体である
厚さ0.9mm、開孔率93%の三次元網目構造を有する
銅の発泡金属に充填した。ここで前者を従来型、後者を
改良型と呼ぶ。両者を風乾後、80℃で3時間真空乾燥
し、0.5 ton/cm2の圧力で成型したのち、さらに15
0℃で2時間真空乾燥し、それぞれ負極とした。これら
負極の一つを、セパレータであるポリプロピレン製微孔
膜を間に挟んで、リチウム金属の対極と組合せ、電解液
として1MLiPF6/エチレンカーボネット−ジメト
キシエタン(以下EC−DMEと略記する)、参照極とし
てリチウム金属を用いた試験セルを組立てた。従来型負
極、改良型負極についてそれぞれ、この試験セルを用い
て、充放電速度はカーボン1g当り120mA、充放電
の電位幅:0.01〜1.0Vでサイクル試験を行った。
FIG. 1 shows the measurement results of the cycle characteristics of the conventional negative electrode and the improved negative electrode. The carbon used was natural graphite that had been subjected to a high-purification treatment, and had a particle size of about 11 μm. Using a solution obtained by dissolving ethylene propylene terpolymer (hereinafter abbreviated as EPDM) in diethylbenzene as a binder on the carbon, a paste in which the weight ratio of the carbon and the EPDM was 94: 6 was converted to a thick current collector. Separately, the paste was applied to a copper foam metal having a three-dimensional network structure with a thickness of 0.9 mm and a porosity of 93%, which is a current collector. Here, the former is called a conventional type, and the latter is called an improved type. Both were air-dried, vacuum-dried at 80 ° C. for 3 hours, molded at a pressure of 0.5 ton / cm 2 , and
It vacuum-dried at 0 degreeC for 2 hours, and each was set as the negative electrode. One of these negative electrodes is combined with a lithium metal counter electrode with a polypropylene microporous membrane serving as a separator interposed therebetween, and 1M LiPF 6 / ethylene carbonate-dimethoxyethane (hereinafter abbreviated as EC-DME) as an electrolytic solution; A test cell using lithium metal as a reference electrode was assembled. Using this test cell, the conventional negative electrode and the improved negative electrode were subjected to a cycle test at a charging / discharging rate of 120 mA / g of carbon and a potential width of charging / discharging: 0.01 to 1.0 V.

【0007】試験の結果は、図1から明らかなように従
来型負極1を用いた場合は、サイクル毎に放電容量は低
下し、約500サイクル後には放電容量は初期容量の約
60%まで低下した。一方、改良型負極2を用いたは5
00サイクル後においても低下率は4.5%と非常に小
さく、集電体の改良の効果が認められた。この実験事実
は、炭素の粒子間の集電効果が充放電の繰返しによる体
積変化などに起因する電極の膨れのために低下するのを
三次元網目構造を有する改良型電極では抑制できたから
と考えられる。そこで次に前記の検証をするため以下の
実験をした。すなわち負極合剤中に金属繊維を添加した
ら同様の効果が得られるかを検討した。その結果を図2
に示す。図2の実験はおおむね図1と同じであるが、測
定条件の概要を以下に示す。用いた炭素は粒径が約3μ
mの人造黒鉛で、これに線径が10μmの銅繊維を9
0:10の重量比で混合した。この混合物に結着剤とし
てポリフッ化ビニリデン(以下、PVDFと略記する)
のN−メチルピロリドン溶液を用い、上記混合物とPV
DFを90:10の重量比になるようにしたペーストを
集電体である厚さ20μmの銅箔に塗布、風乾後、80
℃で3時間真空乾燥し、0.5t/cm2の圧力で成型した
のち、さらに120℃で2時間、真空乾燥し、負極とし
た。この負極を、ポリプロピレン製微孔膜を介在させ
て、リチウム金属の対極と組合せ、電解液に1MLiP
6/エチレンカーボネート+ジメチルカーボネート
(以下、EC+DMCと略記する)、参照極にリチウム
金属を用いた試験セルを組立てた。充放電速度は炭素1
g当たり120mA、充放電の上下限電位は、それぞれ
1.0Vと0.01Vとした。得られた結果を図2に示し
た。ちなみに図2には、銅粉末を添加しない負極の特性
も合わせて示した。図2の結果で明らかなように、銅粉
末を添加しない負極4に対し、添加した負極3は放電容
量が大きくサイクル毎の低下も極端に小さくなることが
判明した。なお、銅繊維の代りに銅粉末を用いた負極に
ついても、同様の結果が得られた。以上の結果から負極
合剤層の集電性を高めることは、放電容量やサイクル特
性の向上に重要な因子であり、更なる詳細検討の結果、
炭素と導電性繊維又は導電性粉末とを単に混合するので
はなく、炭素上にリチウムと合金を形成する金属の微細
粒子を担持することにより、炭素・導電性物の混合系に
比べて、添加(担持)量が少なくても同等の効果がある
と同時に、リチウムとの合金化容量が利用できる、又炭
素粒子間に金属を介在させることによる電気電導度や熱
伝導度の向上等が期待できるという新しい機能をもたら
すことを見出した。
[0007] As is clear from Fig. 1, when the conventional negative electrode 1 is used, the discharge capacity decreases every cycle, and after about 500 cycles, the discharge capacity decreases to about 60% of the initial capacity. did. On the other hand, 5
Even after the 00 cycle, the decrease rate was as small as 4.5%, and the effect of improving the current collector was recognized. This experimental fact is thought to be because the improved electrode with a three-dimensional network structure was able to prevent the current collection effect between carbon particles from decreasing due to electrode swelling due to volume changes due to repeated charge and discharge. Can be Then, the following experiment was conducted to verify the above. That is, it was examined whether the same effect can be obtained by adding metal fibers to the negative electrode mixture. Figure 2 shows the result.
Shown in The experiment of FIG. 2 is almost the same as that of FIG. 1, but the outline of the measurement conditions is shown below. The carbon used has a particle size of about 3μ
m artificial graphite, and a copper fiber with a wire diameter of 10 μm
The mixture was mixed at a weight ratio of 0:10. Polyvinylidene fluoride (hereinafter abbreviated as PVDF) is used as a binder in this mixture.
Of the above mixture and PV using an N-methylpyrrolidone solution of
A paste in which the weight ratio of DF was adjusted to 90:10 was applied to a copper foil having a thickness of 20 μm as a current collector, air-dried, and then dried.
After vacuum-drying at a temperature of 0.5 ° C. for 3 hours and molding at a pressure of 0.5 t / cm 2 , vacuum drying was performed at 120 ° C. for 2 hours to obtain a negative electrode. This negative electrode was combined with a lithium metal counter electrode via a polypropylene microporous membrane, and 1 M LiP
A test cell using F 6 / ethylene carbonate + dimethyl carbonate (hereinafter abbreviated as EC + DMC) and lithium metal as a reference electrode was assembled. The charge / discharge rate is carbon 1
120 mA per g, and the upper and lower limit electric potentials of charge and discharge were 1.0 V and 0.01 V, respectively. The results obtained are shown in FIG. FIG. 2 also shows the characteristics of the negative electrode to which no copper powder was added. As is clear from the results in FIG. 2, it was found that the negative electrode 3 to which the copper powder was added had a larger discharge capacity and the decrease in each cycle became extremely smaller than the negative electrode 4 to which the copper powder was not added. Similar results were obtained for a negative electrode using copper powder instead of copper fiber. From the above results, increasing the current collection performance of the negative electrode mixture layer is an important factor for improving the discharge capacity and cycle characteristics, and as a result of further detailed examination,
Rather than simply mixing carbon and conductive fibers or conductive powder, by supporting fine particles of a metal that forms an alloy with lithium on carbon, compared to a mixed system of carbon and conductive material, Even if the (supporting) amount is small, the same effect can be obtained, at the same time, the alloying capacity with lithium can be used, and the improvement of electric conductivity and thermal conductivity by interposing a metal between carbon particles can be expected. That it brings a new function.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】本発明の要旨を以下に記述する。本発明
、正極及び負極と、正負両極間に介在するセパレータ
と、正負両極及びセパレータを浸漬する電解液を備えた
リチウム二次電池であって、この電池の負極は、結晶性
炭素粒子にリチウムと合金を形成する金属を担持した粉
末からなり、結晶性炭素粒子は、平均粒径が1〜20μ
m、X線解析法による面間隔(d002)が3.354
〜3.369Åで、C軸方向の結晶の大きさ(Lc)が
300Å以上でかつ比表面積が0.1〜30m/gで
あり、さらにリチウムと合金を形成する金属は、粒径が
1000Å以下であることを特徴とする。
The gist of the present invention will be described below. The present invention includes a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, a lithium secondary battery including the electrolyte immersing the positive and negative electrodes and a separator, a negative electrode of this battery, crystalline
Powder that carries a metal that forms an alloy with lithium on carbon particles
Powder , and the crystalline carbon particles have an average particle size of 1 to 20 μm.
m, surface spacing (d002) by X-ray analysis is 3.354
The crystal size in the C-axis direction (Lc) is 300 ° or more, the specific surface area is 0.1 to 30 m 2 / g, and the metal forming an alloy with lithium has a particle size of 1000 °. It is characterized by the following.

【0012】本発明のリチウム二次電池は、モータによ
り駆動する電気自動車及びモータにより駆動する自動二
輪車の動力源として有用である。その際、このリチウム
二次電池は、その充放電速度が、電荷1クーロン(C)
以上で、電池容積1リットル当り300wh以上のエネ
ルギー密度であるものがよい
[0012] The lithium secondary battery of the present invention is an electric vehicle driven by a motor and an automatic vehicle driven by a motor.
Useful as a power source for wheels. At this time, this lithium secondary battery has a charge / discharge rate of 1 coulomb (C).
As described above, a battery having an energy density of 300 wh or more per liter of battery capacity is preferable .

【0013】また本発明のリチウム二次電池は、0.5
wh〜50kwhの容量を有し、電池重量1kg当りの
エネルギ密度350w以上の出力で15分以上の放電を
可能とするものが好ましい。
The lithium secondary battery of the present invention has a capacity of 0.5.
wh to 50 kwh, and the battery weight per 1 kg
Discharge for more than 15 minutes at an output with an energy density of 350w or more
Those that allow are preferred.

【0014】[0014]

【0015】本発明の炭素粒子としては、高結晶性炭素
粒子、例えば天然黒鉛、石油コークスあるいは石炭ピッ
チコークス等から得られる易黒鉛化材料を2500℃以
上の高温で熱処理して得られる。その平均粒径は50μ
m以下、好ましくは1〜20μmが好適である。また形
状は、球形、塊状、鱗片状、繊維状あるいはそれらの粉
砕品であって良い。
The carbon particles of the present invention can be obtained by heat-treating highly crystalline carbon particles, for example, a graphitizable material obtained from natural graphite, petroleum coke, coal pitch coke or the like at a temperature of 2500 ° C. or higher. The average particle size is 50μ
m or less, preferably 1 to 20 μm. The shape may be spherical, massive, scale-like, fibrous, or a crushed product thereof.

【0016】次に担持金属としては、Al,Sb,B,
Ba,Bi,Cd,Ca,Ga,In,Ir,Pb,H
g,Si,Ag,Sr,Te,Tl及びSnのうち少な
くとも1種類が選択されるが、以下の条件を満たす元素
が好ましい。
Next, as the supported metal, Al, Sb, B,
Ba, Bi, Cd, Ca, Ga, In, Ir, Pb, H
At least one of g, Si, Ag, Sr, Te, Tl and Sn is selected, but elements satisfying the following conditions are preferable.

【0017】(1)リチウム含有量が多い合金組成、
(2)原子量が比較的小さく、密度が比較的大きい、
(3)還元が容易、(4)リチウム合金の酸化還元電位
が低い、(5)廃棄上の問題が少ない、(6)比較的安
価である。
(1) an alloy composition having a high lithium content;
(2) relatively low atomic weight and relatively high density;
(3) Easy reduction, (4) Low oxidation-reduction potential of lithium alloy, (5) Less disposal problem, (6) Relatively inexpensive.

【0018】金属の担持方法としては、蒸着法、スパッ
タリング法、湿式還元法、電気化学的還元法、メッキ法
及び気相還元ガス処理法等の方法があるが、用いる金属
種に対応して最適な担持法を適用すればよい。また金属
の担持量としては、30wt%以下、好ましくは1〜1
0wt%が好適である。更に担持された金属の粒径は、
充放電におけるリチウム合金の析出・溶解速度を考慮し
たとき1000Å以下が望ましい。
As a method for supporting a metal, there are a vapor deposition method, a sputtering method, a wet reduction method, an electrochemical reduction method, a plating method, a gas phase reduction gas treatment method, and the like. Any suitable supporting method may be applied. The amount of metal carried is 30 wt% or less, preferably 1-1.
0 wt% is preferred. Further, the particle size of the supported metal is
Considering the deposition / dissolution rate of the lithium alloy in charging and discharging, the temperature is preferably 1000 ° or less.

【0019】以上で得られた金属担持炭素粒子を用いて
負極を作成するが、この場合に結着剤を用いる。結着剤
としては、例えばEPDM、PVDF、ポリテトラフル
オロエチレン等電解液と反応しないものであれば、特に
限定されない。結着剤の配合量は、カーボンに対し1〜
30wt%、好ましくは、5〜15wt%が好適であ
る。前述の合剤を用いた負極形状としては、シート状、
フィルム状、金属箔上にフィルム状或いは発泡金属に充
てんするなどして電池形状に適応させる事が可能であ
る。合剤層厚みは、10〜200μmの範囲が望まし
い。
A negative electrode is prepared using the metal-supported carbon particles obtained as described above. In this case, a binder is used. The binder is not particularly limited as long as it does not react with an electrolytic solution such as EPDM, PVDF, and polytetrafluoroethylene. The amount of the binder is 1 to carbon.
30 wt%, preferably 5 to 15 wt% is suitable. As the negative electrode shape using the aforementioned mixture, a sheet shape,
It is possible to adapt to the shape of the battery by filling the film or foamed metal on a film or metal foil. The thickness of the mixture layer is preferably in the range of 10 to 200 μm.

【0020】このようにして得られた負極は、通常用い
られる正極、セパレータおよび電解液と組合わせること
により最適なリチウム二次電池とすることが出来る。正
極に用いる活物質としては、LiCoO2,LiNiO2
やLiMn24等のリチウムを含有した複合酸化物が用
いられてよく、これに導電剤のカーボンブラックや炭素
および粘着剤を混合したものをAl箔等の集電体に塗布
して正極とする。
By combining the negative electrode thus obtained with a commonly used positive electrode, a separator and an electrolytic solution, an optimum lithium secondary battery can be obtained. As the active material used for the positive electrode, LiCoO 2 , LiNiO 2
Or a composite oxide containing lithium such as LiMn 2 O 4 may be used, and a mixture of a conductive agent such as carbon black or carbon and an adhesive is applied to a current collector such as an Al foil to form a positive electrode. I do.

【0021】セパレータとしては、ポリプロピレン、ポ
リエチレンやポリオレフィン系の多孔質膜が用いられて
いる。また電解液としては、プロピレンカーボネート
(PC)、エチレンカーボネイト(EC)、1,2−ジ
メトキシエタン(DME)、ジメチルカーボネイト(D
MC)、ジエチルカーボネート(DEC)、メチルエチ
ルカーボネート(MEC)などの2種類以上の混合溶媒
が用いられる。また電解質としては、LiPF6,Li
BF4,LiClO4等があり、上記溶媒に溶解したもの
が用いられる。
As the separator, a porous film of polypropylene, polyethylene or polyolefin is used. Examples of the electrolytic solution include propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), and dimethyl carbonate (D
Two or more types of mixed solvents such as MC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) are used. As the electrolyte, LiPF 6 , Li
There are BF 4 , LiClO 4 and the like, and those dissolved in the above solvents are used.

【0022】リチウム二次電池用炭素負極を改良し、放
電容量の増大、出力密度及びサイクル特性の向上を目指
して、リチウムと合金を形成する金属の微細粒子を担持
した炭素粒子を用いることにより、(1)放電容量の増
大、(2)電気電導性の向上、(3)出力密度の向上、
(4)サイクル特性の向上、(5)組電池における熱放
散性の向上及び(6)高速充放電が可能となった。
With the aim of improving the carbon negative electrode for lithium secondary batteries and increasing discharge capacity, power density and cycle characteristics, by using carbon particles carrying fine particles of a metal forming an alloy with lithium, (1) increase of discharge capacity, (2) improvement of electric conductivity, (3) improvement of output density,
(4) Improved cycle characteristics, (5) Improved heat dissipation in the assembled battery, and (6) High-speed charge / discharge were enabled.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施の形態1〕高純度化処理をした天然黒鉛(粒径1
1μm)の9.0gを25mlのエチルアルコールを含
む水450mlに懸濁させる。これを約60℃に加温
し、強撹拌しながら1.73の硝酸銀(AgNO3)を
添加し溶解させる。これに0.5重量%のテトラヒドリ
ドホウ酸ナトリウム(NaBH4)水溶液をマイクロチ
ューブポンプで滴下し、約3時間かけて還元反応を完結
させる。その後、ロ過・水洗して300℃で6時間真空
乾燥した。得られた粉末Aの担持量は、化学分析によれ
ば、仕込み量組成の10.0重量%に対して、9.9重量
%と良好な担持量であった。また、X線回折によりAg
の存在状態を調べたところ金属状態の銀の回折線のみが
検出された。次にエネルギー分散型電子プローブマイク
ロアナリシスによりAgの分散状態を観察したところ、
Ag粒子は黒鉛粒子の全面に分布しており、黒鉛粒子の
端面部に若干濃縮していた。さらに透過型電子顕微鏡で
Ag粒子の大きさを観察したところ、数100Åの粒子
がほぼ均一に分散していた。
[Embodiment 1] Natural graphite that has been subjected to a high-purification treatment (particle size 1)
(1 μm) are suspended in 450 ml of water containing 25 ml of ethyl alcohol. This is heated to about 60 ° C., and 1.73 silver nitrate (AgNO 3 ) is added and dissolved with vigorous stirring. A 0.5% by weight aqueous solution of sodium tetrahydride borate (NaBH 4 ) is dropped by a microtube pump, and the reduction reaction is completed in about 3 hours. Thereafter, the mixture was filtered, washed with water, and vacuum dried at 300 ° C. for 6 hours. According to the chemical analysis, the amount of the obtained powder A was 9.9% by weight with respect to 10.0% by weight of the charged composition, which was a good amount. Also, by X-ray diffraction, Ag
Inspection of the presence state revealed that only silver diffraction lines in the metallic state were detected. Next, when the dispersion state of Ag was observed by energy dispersive electron probe microanalysis,
The Ag particles were distributed over the entire surface of the graphite particles, and were slightly concentrated on the end surfaces of the graphite particles. Further, when the size of the Ag particles was observed with a transmission electron microscope, it was found that particles of several hundreds of degrees were substantially uniformly dispersed.

【0024】〔実施の形態2〕人造黒鉛(粒径3μm)
の9.0gを市販のスズメッキ液(高純度化学製、GL
S−500B)の500mlに懸濁させ、約65℃に加
温しながら、撹拌し炭素粉末上にスズを無電解メッキし
た。ロ過・水洗して300℃で6時間真空乾燥し、粉末
Bを得た。化学分析の結果Snの担持量は、4.6重量
%であった。
[Embodiment 2] Artificial graphite (particle size: 3 μm)
9.0 g of a commercially available tin plating solution (GL, manufactured by Kojundo Chemical Co., Ltd.)
S-500B), and the mixture was stirred while being heated to about 65 ° C., and electrolessly plated with tin on carbon powder. The mixture was filtered, washed with water, and vacuum-dried at 300 ° C. for 6 hours to obtain Powder B. As a result of chemical analysis, the amount of supported Sn was 4.6% by weight.

【0025】〔実施の形態3〕高純度化処理をした天然
黒鉛(粒径11μm)の9.0gを25mlのエチルア
ルコールを含む水450mlに懸濁させる。これを約6
0℃に加温し、強撹拌しながら2.32gの硝酸ビスマ
ス(Bi(NO33・xH2O)を添加し溶解させる。
これに(1:4)アンモニア水をマイクロチューブポン
プで液がアルカリ性になるまで滴下する。その後、ロ過
・水洗して300℃で6時間真空乾燥した。この粉末は
4体積%の水素を含むヘリウムガス気流中、600℃で
3時間加熱して還元処理をし、粉末Cを得た。粉末Cに
ついて化学分析をし、仕込み量組成の10.0重量%に
対して、9.6重量%の分析結果が得られた。
Embodiment 3 9.0 g of highly purified natural graphite (particle size 11 μm) is suspended in 450 ml of water containing 25 ml of ethyl alcohol. About 6
The mixture is heated to 0 ° C., and 2.32 g of bismuth nitrate (Bi (NO 3 ) 3 .xH 2 O) is added and dissolved with vigorous stirring.
To this, (1: 4) aqueous ammonia is dropped by a micro tube pump until the solution becomes alkaline. Thereafter, the mixture was filtered, washed with water, and vacuum dried at 300 ° C. for 6 hours. This powder was subjected to a reduction treatment by heating at 600 ° C. for 3 hours in a helium gas stream containing 4% by volume of hydrogen to obtain powder C. The powder C was subjected to a chemical analysis, and an analysis result of 9.6% by weight was obtained with respect to 10.0% by weight of the charged composition.

【0026】〔実施の形態4〕上記実施の形態1〜3で
得られた粉末A、粉末B、粉末Cに結着剤としてPVDFの
N−メチルピロリドン溶液を用い、各粉末とPVDFを
90:10の重量比になるようにしたペーストを集電体
である厚さ20μmの銅箔に塗布、風乾後、80℃で3
時間真空乾燥し、0.5t/cm2の圧力で成型したのち、
さらに120℃で2時間、真空乾燥し、負極A、負極
B、負極Cを得た。これらの負極をポリエステル製膜を
介してリチウム金属の対極と組合せ、電解液に1MLiPF6
/EC+DMC、参照極にリチウム金属を用いた試験セ
ルを組立てた。充放電速度は炭素1g当たり80mA、
充放電の上下限電位は、それぞれ1.0Vと0.01Vと
した。得られた結果を金属を担持しない炭素と比較して
表1にまとめて示した。ここで、比較例1の粉末は高純
度化処理をした天然黒鉛(粒径11μm)であり、比較
例2の粉末は人造黒鉛(粒径3μm)である。
[Embodiment 4] N-methylpyrrolidone solution of PVDF was used as a binder for powder A, powder B and powder C obtained in the above embodiments 1 to 3, and each powder was mixed with PVDF 90: A paste having a weight ratio of 10 was applied to a copper foil having a thickness of 20 μm as a current collector, air-dried, and then dried at 80 ° C. for 3 hours.
After vacuum drying for 0.5 hours and molding at a pressure of 0.5 t / cm 2 ,
Furthermore, it vacuum-dried at 120 degreeC for 2 hours, and obtained the negative electrode A, the negative electrode B, and the negative electrode C. These negative electrodes were combined with a lithium metal counter electrode through a polyester film, and 1 MLiPF 6
/ EC + DMC, a test cell using lithium metal for the reference electrode was assembled. The charge and discharge rate is 80 mA per g of carbon,
The upper and lower limit potentials of charge and discharge were set to 1.0 V and 0.01 V, respectively. The obtained results are summarized in Table 1 in comparison with carbon not supporting a metal. Here, the powder of Comparative Example 1 is natural graphite (particle diameter 11 μm) subjected to a high-purification treatment, and the powder of Comparative Example 2 is artificial graphite (particle diameter 3 μm).

【0027】[0027]

【表1】 [Table 1]

【0028】粉末A、B、Cは、黒鉛の理論容量密度の
372mAh/gを越えた値を発現しているが、これは
金属とリチウムの合金化容量が加わっているためであ
る。さらに、粉末Aの負極のサイクル試験結果が図3に
示してあるが、300サイクル後においても395mA
h/gの放電容量を維持している。
The powders A, B, and C exhibit values exceeding the theoretical capacity density of graphite of 372 mAh / g, because the alloying capacity of metal and lithium is added. Further, the results of the cycle test of the negative electrode of powder A are shown in FIG.
h / g discharge capacity is maintained.

【0029】〔実施の形態5〕実施の形態4で得られた
粉末Aの負極と、コバルト酸リチウム(LiCoO2)を
正極材として用いた正極、ポリエステル製膜のセパレー
タ、および1MLiPF6/EC+DMCの電解液を用
いて単三型電池を構成し、その評価をした。本電池は、
1サイクル目から350Wh/1の放電容量を示し、1
30サイクル後においてもその値は低下しなかった。
Fifth Embodiment A negative electrode of powder A obtained in the fourth embodiment, a positive electrode using lithium cobalt oxide (LiCoO 2 ) as a positive electrode material, a polyester film separator, and 1M LiPF 6 / EC + DMC AA batteries were constructed using the electrolytic solution and evaluated. This battery is
It shows a discharge capacity of 350 Wh / 1 from the first cycle.
The value did not decrease even after 30 cycles.

【0030】〔実施の形態6〕実施の形態1とほぼ同じ
ように、高純度化処理した天然黒鉛(粒径11μm)
を、硝酸銀(AgNO3)、テトラヒドリドホウ酸ナトリ
ウム(NaBH4)等で処理を行った。ただし、還元剤
(NaBH4)を添加する前にpHをコントロールする
意味で0.02mol/lのフタル酸水素カリウムを添加し
て、粉末Dを得た。Ag金属粒子径及び分散状態を調べ
たところ、粉末Dは、粉末Aに比しAg粒子径(100
〜200Å)は小さく分散状態は格段に改善された。
[Embodiment 6] In the same manner as in Embodiment 1, highly purified natural graphite (particle size: 11 μm)
Was treated with silver nitrate (AgNO 3 ), sodium tetrahydride borate (NaBH 4 ), and the like. However, powder D was obtained by adding 0.02 mol / l potassium hydrogen phthalate to control the pH before adding the reducing agent (NaBH 4 ). Examination of the Ag metal particle diameter and the dispersion state revealed that the powder D had a Ag particle diameter (100
Å200 °) is small and the dispersion state is remarkably improved.

【0031】〔実施の形態7〕人造黒鉛(面間隔(d0
02)=3.359Å,c軸方向の結晶の大きさLe=5
46Å,比表面積=10.5m2/g)を用いて実施の形
態1と同様の調製を行い、Ag粒子を担持する粉末Eを
得た。
[Embodiment 7] Artificial graphite (surface spacing (d0
02) = 3.359 °, crystal size Le = 5 in the c-axis direction
46 °, specific surface area = 10.5 m 2 / g), and the same preparation as in Embodiment 1 was carried out to obtain a powder E carrying Ag particles.

【0032】〔実施の形態8〕人造黒鉛(面間隔(d0
02)=3.359Å,c軸方向の結晶の大きさLe=5
46Å,比表面積=10.5m2/g)を用いて、実施の
形態6と同様の操作を行い、より粒径の小さいAg粒子
を担持する粉末Fを得た。
[Embodiment 8] Artificial graphite (surface spacing (d0
02) = 3.359 °, crystal size Le = 5 in the c-axis direction
46 °, specific surface area = 10.5 m 2 / g), and the same operation as in Embodiment 6 was performed to obtain a powder F carrying Ag particles having a smaller particle diameter.

【0033】〔実施の形態9〕人造黒鉛(面間隔(d00
2)=3.359Å,c軸方向の結晶の大きさLe=54
6Å,比表面積=10.5m2/g)の9.0gを25ml
のC256Hを含む水200mlに懸濁させる。これ
に、0.5mlのHClを含む水50mlに1.9gのS
ncl2・2H2Oを溶解させたものと水とを加え、全量
450mlとする。これを50〜60℃で加温・かく拌
しながら、0.5%のNaBH4水溶液をマイクロチュー
ブポンプを用いて滴下し、約3時間かけて還元反応を行
わせる。その後、濾過・水洗を行い、真空中350℃で
6時間以上加熱して乾燥する。ここで得られた粉末Gに
ついて、SnをICP分析したところ仕込み量10.0
wt%に対し9.76wt%と良好な値を示した。また
X線回折によりSn形態を調べたところ、X線的にSn
は完全に金属であることが確かめられた。
[Embodiment 9] Artificial graphite (surface spacing (d00
2) = 3.359 °, crystal size Le = 54 in the c-axis direction
6Å, 9.0 g of specific surface area = 10.5 m 2 / g) in 25 ml
Is suspended in 200 ml of water containing C 2 H 56 H. 1.9 g of S was added to 50 ml of water containing 0.5 ml of HCl.
ncl obtained by dissolving a 2 · 2H 2 O and water was added to a total volume of 450 ml. While heating and stirring the mixture at 50 to 60 ° C., a 0.5% NaBH 4 aqueous solution is added dropwise using a microtube pump, and a reduction reaction is performed for about 3 hours. Thereafter, filtration and water washing are performed, and drying is performed by heating at 350 ° C. in vacuum for 6 hours or more. The powder G obtained here was subjected to ICP analysis for Sn.
It showed a good value of 9.76 wt% to wt%. When the Sn form was examined by X-ray diffraction, it was found that the Sn form was
Was found to be completely metal.

【0034】〔実施の形態10〕粉末D,E,F及びG
に、それぞれ結着剤としてPVDFをN・メチルピロリ
ドンに溶解したものを加えて、PVDFが粉末に対して
10wt%になるよう添加し混練して各種のペーストを
作成した。このペーストを集電体である厚さ20μmの
銅箔に塗布・風乾後、真空中80℃で3時間乾燥した。
その後、0.5ton/cm2の圧力で成型した後、真空中
120℃で2時間乾燥して負極D,E,F及びGを作成
した。これらの負極とLi金属対極及びセパレータとし
てポリエチレン系多孔質膜を組合せ、電解液として1M
LiPF6/EC−DMC、参照極としLi金属を用
い、充放電速度はカーボン1g当り80mA,電位幅は
0.01V〜1.0Vでサイクル試験を行った。それらの
結果を金属を担持しない炭素を比較例として前述の表1
にまとめて示した。
[Embodiment 10] Powders D, E, F and G
Then, a solution obtained by dissolving PVDF in N-methylpyrrolidone as a binder was added, and the mixture was kneaded and mixed so that PVDF became 10 wt% with respect to the powder to prepare various pastes. This paste was applied to a copper foil having a thickness of 20 μm as a current collector, air-dried, and then dried in vacuum at 80 ° C. for 3 hours.
Then, after molding at a pressure of 0.5 ton / cm 2 , the negative electrodes D, E, F and G were prepared by drying at 120 ° C. for 2 hours in a vacuum. These negative electrodes were combined with a lithium metal counter electrode and a polyethylene-based porous membrane as a separator, and 1 M was used as an electrolyte.
LiPF 6 / EC-DMC, the reference electrode using Li metal, the charge and discharge rate of carbon 1g per 80 mA, the potential width cycled tested 0.01V~1.0V. The results are shown in Table 1 above, using carbon not supporting metal as a comparative example.
Are shown together.

【0035】粉末D,E及びFは、炭素の理論容量を越
えた値を発現しているが、これは金属とリチウムの合金
化の容量が加っているためである。
The powders D, E and F exhibit values exceeding the theoretical capacity of carbon, because the capacity of alloying metal and lithium is added.

【0036】ちなみに粉末Dの負極のサイクル試験結果
は、図3に示すとの同じ傾向を示し、300サイクル後
においても370mAh/gの放電容量を維持してい
る。
Incidentally, the cycle test result of the negative electrode of the powder D shows the same tendency as shown in FIG. 3, and the discharge capacity of 370 mAh / g is maintained even after 300 cycles.

【0037】〔実施の形態11〕厚さ20μmのアルミ
箔に、LiCoO2活物質と人造黒鉛とPVDFを重量
比で87:9:4とした合剤を片面90μm厚となるよ
うに両面に塗布し、乾燥・圧延した正極15と、厚さ2
0μmの銅箔に実施の形態6で得られた粉末Dを片面5
8μmとなるように両面塗布し、乾燥・圧延した負極1
7及び厚さ25μmのポリエチレン製多孔質膜セパレー
ター19を、図4に示すように捲回して外寸法14φ×
47mmの電池缶に収納し、電解液として1MLiPF
6/EC−DMCを用いて、その特性を評価した。
Embodiment 11 A mixture of LiCoO 2 active material, artificial graphite and PVDF in a weight ratio of 87: 9: 4 was applied to both sides of a 20 μm-thick aluminum foil to a thickness of 90 μm. And dried and rolled positive electrode 15 and thickness 2
Powder D obtained in Embodiment 6 on a copper foil of 0 μm on one side 5
Negative electrode 1 coated on both sides to a thickness of 8 μm, dried and rolled
7 and a 25 μm thick polyethylene porous membrane separator 19 were wound as shown in FIG.
Stored in a 47 mm battery can and used 1 M LiPF as electrolyte
The characteristics were evaluated using 6 / EC-DMC.

【0038】試験条件として、充放電速度:1C、充電
終止電圧4.2V、放電終止電圧:2.5Vとして行っ
た。その結果、300wh/l(電池容積)のエネルギ
ー密度が得られ、300サイクルまで安定した性能を示
している。
The test conditions were as follows: charge / discharge rate: 1 C, end-of-charge voltage: 4.2 V, end-of-discharge voltage: 2.5 V. As a result, an energy density of 300 wh / l (battery volume) was obtained, and stable performance was shown up to 300 cycles.

【0039】[0039]

【発明の効果】本発明により得られた負極、すなわち炭
素粒子にリチウムと合金を形成する金属の微細粒子を担
持した粉末を負極に用いることによる効果は以下のとお
りである。
The effect of using the negative electrode obtained by the present invention, that is, the powder in which fine particles of a metal forming an alloy with lithium are supported on carbon particles is used for the negative electrode.

【0040】まず、炭素粒子間に金属を介在させること
により(1)電気伝導性が向上し、充放電反応の速度が
向上する。(2)添加金属がリチウムと形成する合金の
充放電容量が利用できるので黒鉛の理論容量の372m
Ah/gを越える値が得られる。(3)不可逆容量を引
き起こす炭素粒子表面の反応サイトを担持金属が覆うの
で不可逆容量が低減される。(4)放電容量が大きくな
るので電池の出力密度も当然大きくなる。(5)(1)
に付随してサイクル特性も向上し、組電池における熱放
散性も向上させることができる。
First, by interposing a metal between carbon particles, (1) the electric conductivity is improved, and the speed of the charge / discharge reaction is improved. (2) Since the charge / discharge capacity of an alloy formed with lithium as an additional metal can be used, the theoretical capacity of graphite is 372 m.
A value exceeding Ah / g is obtained. (3) The irreversible capacity is reduced because the supported metal covers the reaction site on the surface of the carbon particles that causes the irreversible capacity. (4) Since the discharge capacity increases, the output density of the battery naturally increases. (5) (1)
As a result, the cycle characteristics are improved, and the heat dissipation of the assembled battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来型負極と改良型負極のサイクル特性図。FIG. 1 is a cycle characteristic diagram of a conventional negative electrode and an improved negative electrode.

【図2】銅繊維添加負極と無添加負極のサイクル特性
図。
FIG. 2 is a cycle characteristic diagram of a copper fiber-added negative electrode and a non-added negative electrode.

【図3】本発明よりなる負極のサイクル特性図。FIG. 3 is a cycle characteristic diagram of a negative electrode according to the present invention.

【図4】本発明の円筒形電池の構成図。FIG. 4 is a configuration diagram of a cylindrical battery of the present invention.

【符号の説明】[Explanation of symbols]

1 従来型負極のサイクル特性 2 改良型負極のサイクル特性 3 銅繊維添加負極のサイクル特性 4 無添加負極のサイクル特性 5 本発明になる負極のサイクル特性 15 正極 16 正極端子 17 負極 18 負極端子 19 セパレータ REFERENCE SIGNS LIST 1 Cycle characteristics of conventional negative electrode 2 Cycle characteristics of improved negative electrode 3 Cycle characteristics of copper fiber-added negative electrode 4 Cycle characteristics of non-added negative electrode 5 Cycle characteristics of negative electrode according to the present invention 15 Positive electrode 16 Positive terminal 17 Negative electrode 18 Negative terminal 19 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山形 武夫 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平5−286763(JP,A) 特開 平2−121258(JP,A) 特開 平6−318454(JP,A) 特開 平5−82171(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeo Yamagata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Tatsuo Horiba 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Ren Muranaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi Research Laboratory (56) References JP-A-5-286763 (JP, A) JP-A-2-121258 (JP, A) JP-A-6-318454 (JP, A) JP-A-5-82171 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極および負極と、正負両極間に介在す
るセパレータと、正負両極及びセパレータを浸漬する電
解液とを備えたリチウム二次電池において、前記負極
は、結晶性炭素粒子にリチウムと合金を形成する金属を
担持した粉末からなり、前記結晶性炭素粒子は、平均粒
径が1〜20μm、X線解析法による面間隔(d00
2)が3.354〜3.369Å、C軸方向の結晶の大
きさ(Lc)が300Å以上、比表面積が0.1〜30
/gであり、前記リチウムと合金を形成する金属
は、粒径が1000Å以下であることを特徴とするリチ
ウム二次電池。
1. A lithium secondary battery comprising a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, and an electrolyte for immersing the positive and negative electrodes and the separator, wherein the negative electrode comprises crystalline carbon particles and lithium and an alloy. The crystalline carbon particles have an average particle diameter of 1 to 20 μm, and have a plane spacing (d00) determined by X-ray analysis.
2) is 3.354 to 3.369 °, and the crystal size in the C-axis direction is large.
The size (Lc) is 300 ° or more, and the specific surface area is 0.1 to 30.
m 2 / g, and the metal forming an alloy with lithium has a particle size of 1000 ° or less.
【請求項2】 請求項記載のリチウム二次電池におい
て、前記リチウムと合金を形成する金属はAgであり、
粒径が100〜200Åであることを特徴とするリチウ
ム二次電池。
2. The lithium secondary battery according to claim 1 , wherein the metal forming an alloy with lithium is Ag,
A lithium secondary battery having a particle size of 100 to 200 °.
JP01722096A 1995-02-02 1996-02-02 Lithium secondary battery Expired - Fee Related JP3165953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01722096A JP3165953B2 (en) 1995-02-02 1996-02-02 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-15676 1995-02-02
JP1567695 1995-02-02
JP01722096A JP3165953B2 (en) 1995-02-02 1996-02-02 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08273702A JPH08273702A (en) 1996-10-18
JP3165953B2 true JP3165953B2 (en) 2001-05-14

Family

ID=26351862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01722096A Expired - Fee Related JP3165953B2 (en) 1995-02-02 1996-02-02 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3165953B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
JP3103357B1 (en) * 1999-09-28 2000-10-30 株式会社サムスン横浜研究所 Method for producing negative electrode material for lithium secondary battery
JP2002270170A (en) * 2001-03-07 2002-09-20 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JP4140222B2 (en) 2001-04-09 2008-08-27 ソニー株式会社 Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell

Also Published As

Publication number Publication date
JPH08273702A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US6030726A (en) Lithium secondary battery having negative electrode of carbon material which bears metals
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
US20030049529A1 (en) Active material for battery and method of preparing same
TWI482346B (en) Method of manufacturing cathode material for lithium secondary battery
US10177374B2 (en) Silicon-containing negative active material, method of preparing the same, negative electrode including the same, and lithium secondary battery including negative electrode
JPH087885A (en) Lithium secondary battery
JP2013084600A (en) Negative electrode active material and lithium battery employing the same material
CN108463910B (en) Negative electrode active material and method for producing same, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery and method for producing same
TWI586024B (en) A negative electrode active material for lithium secondary battery, and a lithium secondary battery
EP0729194B1 (en) Secondary battery using system and material for negative electrode of secondary battery
CN111564628A (en) Method of prelithiating an electroactive material and electrode comprising prelithiated electroactive material
EP3096380B1 (en) Electrode active material, electrode and energy storage device including the same, and method of preparing the electrode active material
JPH1040914A (en) Manufacture of nonaqueous secondary battery and negative pole active substance
KR20190101651A (en) Negative electrode slurry, negative electrode for lithium secondary battery and lithium secondary battery comprising the same
EP2104174A1 (en) Lithium-ion secondary battery
JP3200572B2 (en) Lithium secondary battery
JP3165953B2 (en) Lithium secondary battery
JP3188395B2 (en) Lithium secondary battery
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP3055892B2 (en) Lithium secondary battery
JPH10334889A (en) Lithium secondary battery, and portable electrical apparatus and electric vehicle and motorcycle and power storage device using the lithium secondary battery
CN116325234A (en) Negative electrode for secondary battery, negative electrode slurry, and method for producing negative electrode
JP2000058043A (en) Lithium secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees