JPH08273702A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08273702A
JPH08273702A JP8017220A JP1722096A JPH08273702A JP H08273702 A JPH08273702 A JP H08273702A JP 8017220 A JP8017220 A JP 8017220A JP 1722096 A JP1722096 A JP 1722096A JP H08273702 A JPH08273702 A JP H08273702A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
lithium secondary
lithium
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8017220A
Other languages
Japanese (ja)
Other versions
JP3165953B2 (en
Inventor
Seiji Takeuchi
瀞士 武内
Hidetoshi Honbou
英利 本棒
Takeo Yamagata
武夫 山形
Tatsuo Horiba
達雄 堀場
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01722096A priority Critical patent/JP3165953B2/en
Publication of JPH08273702A publication Critical patent/JPH08273702A/en
Application granted granted Critical
Publication of JP3165953B2 publication Critical patent/JP3165953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery with high discharge capacity, high output density, and excellent cycle characteristics by constituting a negative electrode of a unit cell by holding carbon particles on which a metal forming an alloy with lithium is carried in a current collector. CONSTITUTION: A lithium secondary battery having a capacity of 0.5wh-50kwh is obtained by winding a negative electrode 17 and a positive electrode 15 using LiCoO2 or the like as an active material around a positive terminal 16 through a separator 19. The negative electrode 17 is formed by applying carbon particles such as artificial graphite on which a metal capable of alloying with lithium, such as silver is carried to a current collector such as a copper foil. The carbon particles are preferable to have a spacing of planes (d002) as determined by X-ray diffraction of 3.354-3.369Å, a crystalline size in the direction of c axis (Lc) of 300Å or more, and a specific surface area of 0.1-30m<2> /g or more. Particle size of the metal is preferable to be 1000Å or less, and the metal is fixed on the carbon particle for carrying. Energy density of 350w/kg of more and energy density of 30w/l at a charge/discharge rate of 1C or more can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
にかかり、特に放電容量、出力密度が大であってサイク
ル特性に優れたリチウム二次電池用負極に関する。リチ
ウム二次電池は、電気自動車、メモリーバックアップ、
ポータブル機器駆動用電源として応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a negative electrode for a lithium secondary battery which has a large discharge capacity and output density and is excellent in cycle characteristics. Lithium secondary batteries are used for electric vehicles, memory backup,
It is used as a power source for driving portable equipment.

【0002】[0002]

【従来の技術】リチウム二次電池の負極として、従来は
リチウム(Li)金属及びLi−Al、Li−Pb等の合
金が用いられてきたが、これらの電池は、樹脂状リチウ
ムの析出による正負両極の短絡やサイクル寿命が短く、
エネルギー密度が低いという欠点があった。最近ではこ
れらの問題点を解決するため炭素材を負極に用いる研究
が活発である。この種の負極は、例えば特開平5−29
9073号、特開平2−121258号の各公報に開示
されている。特開平5−299073号での構成は、芯
を形成する高結晶炭素粒子の表面をVIII族の金属元素を
含む膜で被覆し、さらにその上を炭素が被覆することよ
りなる炭素複合体を電極材料としており、これによって
表面の乱層構造を有する炭素材料がリチウムのインター
カレーションを助けると同時に、電極の表面積が大きい
ために充放電容量および充放電速度が著しく向上したと
している。一方、特開平2−121258号では、六方
晶でH/c<0.15、面間隔>3.37Å及びC軸方向
の結晶子の大きさLc<150Åである炭素物質とLi
と合金可能な金属との混合物とすることにより、充放電
サイクル寿命が長く、大電流における充放電特性も良好
であるとしている。しかし、いずれにおいても、負極炭
素材の合金の難しさや炭素の理論容量が引き出されてお
らず、出力密度が未だ十分とはいえなかった。したがっ
て、電気自動車、自動二輪車に搭載するにはエネルギー
密度及び出力密度が不十分であった。
2. Description of the Related Art Conventionally, lithium (Li) metal and alloys such as Li-Al and Li-Pb have been used as the negative electrode of a lithium secondary battery. However, these batteries are positive and negative due to precipitation of resinous lithium. Short circuit of both poles and short cycle life,
It had the drawback of low energy density. Recently, in order to solve these problems, research using a carbon material for the negative electrode is active. This type of negative electrode is disclosed, for example, in JP-A-5-29.
No. 9073 and Japanese Patent Application Laid-Open No. 2-121258. The structure disclosed in JP-A-5-299073 is such that the surface of the highly crystalline carbon particles forming the core is coated with a film containing a Group VIII metal element, and the carbon is further coated on the surface of the carbon composite electrode. As a material, it is said that the carbon material having a disordered layer structure on the surface assists the intercalation of lithium and, at the same time, the charge and discharge capacity and the charge and discharge rate are remarkably improved due to the large surface area of the electrode. On the other hand, in Japanese Unexamined Patent Publication (Kokai) No. 2-121258, a carbon material and a Li having a hexagonal crystal structure with H / c <0.15, a plane spacing> 3.37Å, and a crystallite size Lc <150Å in the C-axis direction
By using a mixture of a metal that can be alloyed with, the charge and discharge cycle life is long, and the charge and discharge characteristics at large currents are also good. However, in each case, the difficulty of the alloy of the negative electrode carbon material and the theoretical capacity of carbon were not taken out, and the output density was not sufficient yet. Therefore, the energy density and output density were insufficient for mounting on electric vehicles and motorcycles.

【0003】[0003]

【発明が解決しようとする課題】前述したごとく、炭素
材及び複合材を負極として用いた場合、炭素の理論容量
を引き出せないことや電極製造の難しさという問題があ
る。
As described above, when a carbon material and a composite material are used as the negative electrode, there are problems that the theoretical capacity of carbon cannot be derived and that electrode manufacturing is difficult.

【0004】本発明は、前述の問題点を解決するため、
リチウムと合金可能な金属の微細粒子を担持する炭素粒
子を集電体に保持させてなる負極を用いることにより、
高容量で充放電サイクル特性の優れたリチウム二次電池
を提供することを目的とする
The present invention solves the above-mentioned problems by
By using a negative electrode in which carbon particles supporting fine particles of a metal capable of alloying with lithium are held by a current collector,
Aiming to provide a lithium secondary battery with high capacity and excellent charge / discharge cycle characteristics

【0005】。[0005]

【課題を解決するための手段】本発明者らは、前述の問
題点を解決するため種々検討した結果、以下に述べる知
見を基に本発明を完成するに至った。
As a result of various studies to solve the above problems, the inventors of the present invention have completed the present invention based on the following knowledge.

【0006】図1は、従来型負極と改良型負極のサイク
ル特性の測定結果を示す。用いた炭素は高純度化処理を
した天然黒鉛であり、粒径は約11μmである。この炭
素に結着剤としてエチレンプロピレンターポリマー(以
下EPDMと略記する)をジエチルベンゼンに溶解した
溶液を用い、炭素とEPDMが94:6の重量比になる
ようにしたペーストを集電体である厚さ20μmの銅箔
に塗布し、またこれとは別に該ペーストを集電体である
厚さ0.9mm、開孔率93%の三次元網目構造を有する
銅の発泡金属に充填した。ここで前者を従来型、後者を
改良型と呼ぶ。両者を風乾後、80℃で3時間真空乾燥
し、0.5 ton/cm2の圧力で成型したのち、さらに15
0℃で2時間真空乾燥し、それぞれ負極とした。これら
負極の一つを、セパレータであるポリプロピレン製微孔
膜を間に挟んで、リチウム金属の対極と組合せ、電解液
として1MLiPF6/エチレンカーボネット−ジメト
キシエタン(以下EC−DMEと略記する)、参照極とし
てリチウム金属を用いた試験セルを組立てた。従来型負
極、改良型負極についてそれぞれ、この試験セルを用い
て、充放電速度はカーボン1g当り120mA、充放電
の電位幅:0.01〜1.0Vでサイクル試験を行った。
FIG. 1 shows the measurement results of the cycle characteristics of the conventional negative electrode and the improved negative electrode. The carbon used is highly purified natural graphite and has a particle size of about 11 μm. A solution prepared by dissolving ethylene propylene terpolymer (hereinafter abbreviated as EPDM) in diethylbenzene as a binder to carbon and using carbon and EPDM in a weight ratio of 94: 6 as a current collector was prepared. A 20 μm thick copper foil was applied, and separately from this, the paste was filled in a copper foam metal having a three-dimensional network structure with a thickness of 0.9 mm and a porosity of 93% as a current collector. The former is called the conventional type and the latter is called the improved type. Both were air dried, then vacuum dried at 80 ° C for 3 hours and molded at a pressure of 0.5 ton / cm 2 and then for another 15
It was vacuum dried at 0 ° C. for 2 hours and used as a negative electrode. One of these negative electrodes is sandwiched by a polypropylene microporous membrane that is a separator, and is combined with a lithium metal counter electrode, and 1 M LiPF 6 / ethylene carbonate-dimethoxyethane (hereinafter abbreviated as EC-DME) as an electrolytic solution, A test cell using lithium metal as a reference electrode was assembled. Using this test cell, a conventional negative electrode and an improved negative electrode were each subjected to a cycle test at a charge / discharge rate of 120 mA / g of carbon and a charge / discharge potential width of 0.01 to 1.0 V.

【0007】試験の結果は、図1から明らかなように従
来型負極1を用いた場合は、サイクル毎に放電容量は低
下し、約500サイクル後には放電容量は初期容量の約
60%まで低下した。一方、改良型負極2を用いたは5
00サイクル後においても低下率は4.5%と非常に小
さく、集電体の改良の効果が認められた。この実験事実
は、炭素の粒子間の集電効果が充放電の繰返しによる体
積変化などに起因する電極の膨れのために低下するのを
三次元網目構造を有する改良型電極では抑制できたから
と考えられる。そこで次に前記の検証をするため以下の
実験をした。すなわち負極合剤中に金属繊維を添加した
ら同様の効果が得られるかを検討した。その結果を図2
に示す。図2の実験はおおむね図1と同じであるが、測
定条件の概要を以下に示す。用いた炭素は粒径が約3μ
mの人造黒鉛で、これに線径が10μmの銅繊維を9
0:10の重量比で混合した。この混合物に結着剤とし
てポリフッ化ビニリデン(以下、PVDFと略記する)
のN−メチルピロリドン溶液を用い、上記混合物とPV
DFを90:10の重量比になるようにしたペーストを
集電体である厚さ20μmの銅箔に塗布、風乾後、80
℃で3時間真空乾燥し、0.5t/cm2の圧力で成型した
のち、さらに120℃で2時間、真空乾燥し、負極とし
た。この負極を、ポリプロピレン製微孔膜を介在させ
て、リチウム金属の対極と組合せ、電解液に1MLiP
6/エチレンカーボネート+ジメチルカーボネート
(以下、EC+DMCと略記する)、参照極にリチウム
金属を用いた試験セルを組立てた。充放電速度は炭素1
g当たり120mA、充放電の上下限電位は、それぞれ
1.0Vと0.01Vとした。得られた結果を図2に示し
た。ちなみに図2には、銅粉末を添加しない負極の特性
も合わせて示した。図2の結果で明らかなように、銅粉
末を添加しない負極4に対し、添加した負極3は放電容
量が大きくサイクル毎の低下も極端に小さくなることが
判明した。なお、銅繊維の代りに銅粉末を用いた負極に
ついても、同様の結果が得られた。以上の結果から負極
合剤層の集電性を高めることは、放電容量やサイクル特
性の向上に重要な因子であり、更なる詳細検討の結果、
炭素と導電性繊維又は導電性粉末とを単に混合するので
はなく、炭素上にリチウムと合金を形成する金属の微細
粒子を担持することにより、炭素・導電性物の混合系に
比べて、添加(担持)量が少なくても同等の効果がある
と同時に、リチウムとの合金化容量が利用できる、又炭
素粒子間に金属を介在させることによる電気電導度や熱
伝導度の向上等が期待できるという新しい機能をもたら
すことを見出した。
As is apparent from FIG. 1, the results of the test show that when the conventional negative electrode 1 is used, the discharge capacity decreases with each cycle, and after about 500 cycles, the discharge capacity drops to about 60% of the initial capacity. did. On the other hand, when the improved negative electrode 2 is used, it is 5
Even after 00 cycles, the reduction rate was very small at 4.5%, and the effect of improving the current collector was confirmed. This experimental fact is considered to be because the improved electrode having a three-dimensional network structure was able to suppress the reduction of the current collecting effect between carbon particles due to the swelling of the electrode due to the volume change due to repeated charging and discharging. To be Then, the following experiment was conducted to verify the above. That is, it was examined whether the same effect can be obtained by adding metal fibers to the negative electrode mixture. The result is shown in Figure 2.
Shown in The experiment of FIG. 2 is almost the same as that of FIG. 1, but the outline of the measurement conditions is shown below. The carbon used has a particle size of about 3μ.
m artificial graphite to which 9 μm diameter copper fiber
Mixed in a weight ratio of 0:10. Polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder in this mixture
N-methylpyrrolidone solution of
The paste containing DF in a weight ratio of 90:10 was applied to a copper foil having a thickness of 20 μm as a current collector, air-dried, and then 80
After vacuum drying at 3 ° C. for 3 hours and molding at a pressure of 0.5 t / cm 2 , vacuum drying was further performed at 120 ° C. for 2 hours to obtain a negative electrode. This negative electrode is combined with a counter electrode of lithium metal with a polypropylene microporous film interposed, and 1 M LiP is added to the electrolytic solution.
A test cell using F 6 / ethylene carbonate + dimethyl carbonate (hereinafter abbreviated as EC + DMC) and lithium metal as a reference electrode was assembled. Charge / discharge speed is carbon 1
120 mA per gram, and the upper and lower limit potentials of charge and discharge were 1.0 V and 0.01 V, respectively. The obtained results are shown in FIG. Incidentally, FIG. 2 also shows the characteristics of the negative electrode to which no copper powder was added. As is clear from the results of FIG. 2, it was found that the negative electrode 3 with the copper powder added had a large discharge capacity and the decrease with each cycle was extremely small as compared with the negative electrode 4 without the copper powder. Similar results were obtained for the negative electrode using copper powder instead of copper fiber. From the above results, increasing the current collecting property of the negative electrode mixture layer is an important factor for improving the discharge capacity and cycle characteristics, and as a result of further detailed study,
Compared to a mixed system of carbon and conductive material, by adding fine particles of metal that forms an alloy with lithium on carbon, rather than simply mixing carbon with conductive fiber or conductive powder, Even if the amount of (supported) is small, the same effect can be obtained, and at the same time, the alloying capacity with lithium can be utilized, and the electrical conductivity and thermal conductivity can be expected to be improved by interposing a metal between carbon particles. I found that it brings a new function.

【0008】本発明の要旨を以下に記述する。すなわ
ち、第1の発明は、0.5wh〜50kwhの容量を有
するリチウム二次電池であって、この二次電池を構成す
る単電池の負極として、リチウムと合金を形成する金属
を担持する炭素粒子を保持させた集電体を用い、この二
次電池が電池重量1kg当りのエネルギ密度350w以
上の出力で15分以上の放電を可能とするものである。
The gist of the present invention will be described below. That is, the first invention is a lithium secondary battery having a capacity of 0.5 wh to 50 kwh, wherein carbon particles carrying a metal forming an alloy with lithium are used as a negative electrode of a single battery constituting the secondary battery. This secondary battery is capable of discharging for 15 minutes or more at an output of energy density of 350 w or more per 1 kg of battery weight by using a current collector holding

【0009】第2の発明は、上記同様に、正極、負極、
セパレータおよび電解液を備えたリチウム二次電池であ
って、この電池の負極は、リチウムと合金を形成する金
属を担持した炭素粒子を保持する集電体からなり、そし
て炭素粒子は、X線回折法による面間隔(d002)が
3.354〜3.369Åで、C軸方向の結晶の大きさ
(Lc)が300Å以上であることを特徴とする。
A second aspect of the present invention is, in the same manner as described above, a positive electrode, a negative electrode,
A lithium secondary battery comprising a separator and an electrolytic solution, the negative electrode of the battery comprising a current collector holding carbon particles carrying a metal forming an alloy with lithium, and the carbon particles having an X-ray diffraction pattern. The interplanar spacing (d002) by the method is 3.354 to 3.369Å, and the crystal size (Lc) in the C-axis direction is 300Å or more.

【0010】第3の発明は、上記同様に、正極、負極、
セパレータおよび電解液を備えたリチウム二次電池であ
って、この電池の負極は、リチウムと合金を形成する金
属を担持した炭素粒子を担持した炭素粒子を保持する集
電体からなり、そして炭素粒子は、比表面積が0.1〜
30m2/g以上であることを特徴とする。
A third aspect of the present invention is to provide a positive electrode, a negative electrode, and
A lithium secondary battery comprising a separator and an electrolyte, wherein the negative electrode of the battery comprises a current collector holding carbon particles carrying carbon particles carrying a metal forming an alloy with lithium, and carbon particles Has a specific surface area of 0.1 to
It is characterized by being 30 m 2 / g or more.

【0011】第4の発明は、上記同様に、正極、負極、
セパレータおよび電解液を備えたリチウム二次電池であ
って、この電池の負極は、リチウムと合金を形成する金
属を担持した炭素粒子を担持した炭素粒子を保持する集
電体からなり、炭素粒子は、X線回折法による面間隔
(d002)が3.354〜3.369Åで、C軸方向の
結晶の大きさ(Lc)が300Å以上でかつ比表面積が
0.1〜30m2/g以上であり、さらにリチウムと合金
を形成する金属は、粒径が1000Å以下であることを
特徴とする。
A fourth aspect of the present invention is similar to the above, in which a positive electrode, a negative electrode,
A lithium secondary battery provided with a separator and an electrolytic solution, wherein the negative electrode of the battery is composed of a current collector holding carbon particles carrying carbon particles carrying a metal forming an alloy with lithium, and the carbon particles are , The interplanar spacing (d002) by X-ray diffraction method is 3.354 to 3.369Å, the crystal size (Lc) in the C-axis direction is 300Å or more, and the specific surface area is 0.1 to 30 m 2 / g or more. In addition, the metal that forms an alloy with lithium is characterized by having a particle size of 1000 Å or less.

【0012】第5の発明は、第2〜第4の発明いずれか
のリチウム二次電池を、動力源とするモータにより駆動
する電気自動車である。このリチウム二次電池は、その
充放電速度が、電荷1クーロン(C)以上で、電池容積
1リットル当り300wh以上のエネルギー密度である
ものとする。
A fifth invention is an electric vehicle in which the lithium secondary battery according to any one of the second to fourth inventions is driven by a motor as a power source. This lithium secondary battery is assumed to have a charge / discharge rate of 1 coulomb (C) or more and an energy density of 300 wh or more per liter of battery volume.

【0013】第6の発明は、第2〜第4の発明いずれか
のリチウム二次電池を、動力源とするモータにより駆動
する自動二輪車である。このリチウム二次電池は、その
充放電速度が、電荷1C以上で、電池容積1リットル当
り300wh以上のエネルギー密度であるものとする。
A sixth invention is a motorcycle in which the lithium secondary battery according to any of the second to fourth inventions is driven by a motor as a power source. This lithium secondary battery is assumed to have a charge / discharge rate of 1 C or more in charge and an energy density of 300 wh or more per liter of battery volume.

【0014】即ち本発明は、上記のようなリチウムと合
金を形成する金属の微細粒子を担持させた炭素粒子をリ
チウム二次電池用負極に用いることにより高性能のリチ
ウム二次電池を提供することにある。
That is, the present invention provides a high-performance lithium secondary battery by using carbon particles carrying fine particles of a metal forming an alloy with lithium as described above in a negative electrode for a lithium secondary battery. It is in.

【0015】本発明の炭素粒子としては、高結晶性炭素
粒子、例えば天然黒鉛、石油コークスあるいは石炭ピッ
チコークス等から得られる易黒鉛化材料を2500℃以
上の高温で熱処理して得られる。その平均粒径は50μ
m以下、好ましくは1〜20μmが好適である。また形
状は、球形、塊状、鱗片状、繊維状あるいはそれらの粉
砕品であって良い。
The carbon particles of the present invention can be obtained by heat-treating highly crystalline carbon particles such as natural graphite, petroleum coke or coal pitch coke at a high temperature of 2500 ° C. or higher. The average particle size is 50μ
m or less, preferably 1 to 20 μm. The shape may be spherical, lumpy, scale-like, fibrous or a crushed product thereof.

【0016】次に担持金属としては、Al,Sb,B,
Ba,Bi,Cd,Ca,Ga,In,Ir,Pb,H
g,Si,Ag,Sr,Te,Tl及びSnのうち少な
くとも1種類が選択されるが、以下の条件を満たす元素
が好ましい。
Next, as the supported metal, Al, Sb, B,
Ba, Bi, Cd, Ca, Ga, In, Ir, Pb, H
At least one of g, Si, Ag, Sr, Te, Tl, and Sn is selected, but elements satisfying the following conditions are preferable.

【0017】(1)リチウム含有量が多い合金組成、
(2)原子量が比較的小さく、密度が比較的大きい、
(3)還元が容易、(4)リチウム合金の酸化還元電位
が低い、(5)廃棄上の問題が少ない、(6)比較的安
価である。
(1) Alloy composition having a high lithium content,
(2) The atomic weight is relatively small and the density is relatively large,
(3) Easy reduction, (4) low oxidation-reduction potential of lithium alloy, (5) few problems in disposal, (6) relatively inexpensive.

【0018】金属の担持方法としては、蒸着法、スパッ
タリング法、湿式還元法、電気化学的還元法、メッキ法
及び気相還元ガス処理法等の方法があるが、用いる金属
種に対応して最適な担持法を適用すればよい。また金属
の担持量としては、30wt%以下、好ましくは1〜1
0wt%が好適である。更に担持された金属の粒径は、
充放電におけるリチウム合金の析出・溶解速度を考慮し
たとき1000Å以下が望ましい。
As a method of supporting the metal, there are methods such as a vapor deposition method, a sputtering method, a wet reduction method, an electrochemical reduction method, a plating method and a vapor phase reducing gas treatment method, which are most suitable for the metal species used. Any supporting method may be applied. The amount of metal supported is 30 wt% or less, preferably 1 to 1
0 wt% is suitable. Further, the particle size of the supported metal is
Considering the precipitation / dissolution rate of the lithium alloy during charging / discharging, it is preferably 1000 Å or less.

【0019】以上で得られた金属担持炭素粒子を用いて
負極を作成するが、この場合に結着剤を用いる。結着剤
としては、例えばEPDM、PVDF、ポリテトラフル
オロエチレン等電解液と反応しないものであれば、特に
限定されない。結着剤の配合量は、カーボンに対し1〜
30wt%、好ましくは、5〜15wt%が好適であ
る。前述の合剤を用いた負極形状としては、シート状、
フィルム状、金属箔上にフィルム状或いは発泡金属に充
てんするなどして電池形状に適応させる事が可能であ
る。合剤層厚みは、10〜200μmの範囲が望まし
い。
A negative electrode is prepared using the metal-supported carbon particles obtained above, and in this case, a binder is used. The binder is not particularly limited as long as it does not react with the electrolytic solution such as EPDM, PVDF, and polytetrafluoroethylene. The binder content is 1 to carbon.
30 wt%, preferably 5 to 15 wt% is suitable. As the negative electrode shape using the above mixture, a sheet shape,
It is possible to adapt to the shape of the battery by filling it with a film, a film on a metal foil or a foam metal. The mixture layer thickness is preferably in the range of 10 to 200 μm.

【0020】このようにして得られた負極は、通常用い
られる正極、セパレータおよび電解液と組合わせること
により最適なリチウム二次電池とすることが出来る。正
極に用いる活物質としては、LiCoO2,LiNiO2
やLiMn24等のリチウムを含有した複合酸化物が用
いられてよく、これに導電剤のカーボンブラックや炭素
および粘着剤を混合したものをAl箔等の集電体に塗布
して正極とする。
The thus obtained negative electrode can be used as an optimum lithium secondary battery by combining it with a commonly used positive electrode, separator and electrolytic solution. As the active material used for the positive electrode, LiCoO 2 , LiNiO 2
A composite oxide containing lithium such as LiMn 2 O 4 or LiMn 2 O 4 may be used, and a mixture of carbon black as a conductive agent or carbon and an adhesive agent is applied to a current collector such as an Al foil to form a positive electrode. To do.

【0021】セパレータとしては、ポリプロピレン、ポ
リエチレンやポリオレフィン系の多孔質膜が用いられて
いる。また電解液としては、プロピレンカーボネート
(PC)、エチレンカーボネイト(EC)、1,2−ジ
メトキシエタン(DME)、ジメチルカーボネイト(D
MC)、ジエチルカーボネート(DEC)、メチルエチ
ルカーボネート(MEC)などの2種類以上の混合溶媒
が用いられる。また電解質としては、LiPF6,Li
BF4,LiClO4等があり、上記溶媒に溶解したもの
が用いられる。
As the separator, a polypropylene, polyethylene or polyolefin type porous film is used. Further, as the electrolytic solution, propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), dimethyl carbonate (D)
Two or more kinds of mixed solvents such as MC), diethyl carbonate (DEC) and methyl ethyl carbonate (MEC) are used. Further, as the electrolyte, LiPF 6 , Li
There are BF 4 , LiClO 4, etc., and those dissolved in the above solvent are used.

【0022】リチウム二次電池用炭素負極を改良し、放
電容量の増大、出力密度及びサイクル特性の向上を目指
して、リチウムと合金を形成する金属の微細粒子を担持
した炭素粒子を用いることにより、(1)放電容量の増
大、(2)電気電導性の向上、(3)出力密度の向上、
(4)サイクル特性の向上、(5)組電池における熱放
散性の向上及び(6)高速充放電が可能となった。
In order to improve the carbon negative electrode for a lithium secondary battery and to improve the discharge capacity, power density and cycle characteristics, by using carbon particles carrying fine metal particles forming an alloy with lithium, (1) increase of discharge capacity, (2) improvement of electric conductivity, (3) improvement of output density,
(4) Improvement of cycle characteristics, (5) Improvement of heat dissipation in assembled battery, and (6) High-speed charge / discharge are possible.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施の形態1〕高純度化処理をした天然黒鉛(粒径1
1μm)の9.0gを25mlのエチルアルコールを含
む水450mlに懸濁させる。これを約60℃に加温
し、強撹拌しながら1.73の硝酸銀(AgNO3)を
添加し溶解させる。これに0.5重量%のテトラヒドリ
ドホウ酸ナトリウム(NaBH4)水溶液をマイクロチ
ューブポンプで滴下し、約3時間かけて還元反応を完結
させる。その後、ロ過・水洗して300℃で6時間真空
乾燥した。得られた粉末Aの担持量は、化学分析によれ
ば、仕込み量組成の10.0重量%に対して、9.9重量
%と良好な担持量であった。また、X線回折によりAg
の存在状態を調べたところ金属状態の銀の回折線のみが
検出された。次にエネルギー分散型電子プローブマイク
ロアナリシスによりAgの分散状態を観察したところ、
Ag粒子は黒鉛粒子の全面に分布しており、黒鉛粒子の
端面部に若干濃縮していた。さらに透過型電子顕微鏡で
Ag粒子の大きさを観察したところ、数100Åの粒子
がほぼ均一に分散していた。
[Embodiment 1] Natural graphite (particle size 1
1 μm) is suspended in 450 ml of water containing 25 ml of ethyl alcohol. This is heated to about 60 ° C., and 1.73 of silver nitrate (AgNO 3 ) is added and dissolved with vigorous stirring. A 0.5 wt% sodium tetrahydridoborate (NaBH 4 ) aqueous solution is added dropwise to this with a microtube pump, and the reduction reaction is completed in about 3 hours. Then, it was filtered, washed with water, and vacuum dried at 300 ° C. for 6 hours. According to a chemical analysis, the carried amount of the obtained powder A was 9.9 wt% with respect to 10.0 wt% of the composition of the charged amount, which was a good carried amount. In addition, by X-ray diffraction, Ag
As a result of examining the existence state of, only the diffraction line of silver in the metallic state was detected. Next, when the dispersed state of Ag was observed by energy dispersive electron probe microanalysis,
The Ag particles were distributed over the entire surface of the graphite particles, and were slightly concentrated on the end faces of the graphite particles. Furthermore, when the size of the Ag particles was observed with a transmission electron microscope, particles of several 100 Å were dispersed almost uniformly.

【0024】〔実施の形態2〕人造黒鉛(粒径3μm)
の9.0gを市販のスズメッキ液(高純度化学製、GL
S−500B)の500mlに懸濁させ、約65℃に加
温しながら、撹拌し炭素粉末上にスズを無電解メッキし
た。ロ過・水洗して300℃で6時間真空乾燥し、粉末
Bを得た。化学分析の結果Snの担持量は、4.6重量
%であった。
[Embodiment 2] Artificial graphite (particle size: 3 μm)
9.0g of a commercially available tin plating solution (manufactured by Kojundo Chemical Co., GL
S-500B) was suspended in 500 ml and stirred while being heated to about 65 ° C. to electrolessly plate tin on carbon powder. It was filtered, washed with water, and vacuum dried at 300 ° C. for 6 hours to obtain powder B. As a result of chemical analysis, the supported amount of Sn was 4.6% by weight.

【0025】〔実施の形態3〕高純度化処理をした天然
黒鉛(粒径11μm)の9.0gを25mlのエチルア
ルコールを含む水450mlに懸濁させる。これを約6
0℃に加温し、強撹拌しながら2.32gの硝酸ビスマ
ス(Bi(NO33・xH2O)を添加し溶解させる。
これに(1:4)アンモニア水をマイクロチューブポン
プで液がアルカリ性になるまで滴下する。その後、ロ過
・水洗して300℃で6時間真空乾燥した。この粉末は
4体積%の水素を含むヘリウムガス気流中、600℃で
3時間加熱して還元処理をし、粉末Cを得た。粉末Cに
ついて化学分析をし、仕込み量組成の10.0重量%に
対して、9.6重量%の分析結果が得られた。
[Embodiment 3] 9.0 g of highly purified natural graphite (particle size: 11 μm) is suspended in 450 ml of water containing 25 ml of ethyl alcohol. About 6
The mixture is heated to 0 ° C., and 2.32 g of bismuth nitrate (Bi (NO 3 ) 3 .xH 2 O) is added and dissolved with vigorous stirring.
Ammonia water (1: 4) is added dropwise thereto by a microtube pump until the liquid becomes alkaline. Then, it was filtered, washed with water, and vacuum dried at 300 ° C. for 6 hours. This powder was heated at 600 ° C. for 3 hours in a helium gas stream containing 4% by volume of hydrogen for reduction treatment to obtain powder C. The powder C was chemically analyzed, and an analysis result of 9.6% by weight was obtained with respect to 10.0% by weight of the composition of the charged amount.

【0026】〔実施の形態4〕上記実施の形態1〜3で
得られた粉末A、粉末B、粉末Cに結着剤としてPVDFの
N−メチルピロリドン溶液を用い、各粉末とPVDFを
90:10の重量比になるようにしたペーストを集電体
である厚さ20μmの銅箔に塗布、風乾後、80℃で3
時間真空乾燥し、0.5t/cm2の圧力で成型したのち、
さらに120℃で2時間、真空乾燥し、負極A、負極
B、負極Cを得た。これらの負極をポリエステル製膜を
介してリチウム金属の対極と組合せ、電解液に1MLiPF6
/EC+DMC、参照極にリチウム金属を用いた試験セ
ルを組立てた。充放電速度は炭素1g当たり80mA、
充放電の上下限電位は、それぞれ1.0Vと0.01Vと
した。得られた結果を金属を担持しない炭素と比較して
表1にまとめて示した。ここで、比較例1の粉末は高純
度化処理をした天然黒鉛(粒径11μm)であり、比較
例2の粉末は人造黒鉛(粒径3μm)である。
[Embodiment 4] An N-methylpyrrolidone solution of PVDF is used as a binder in the powder A, the powder B, and the powder C obtained in the first to third embodiments, and each powder and PVDF are mixed with 90: The paste having a weight ratio of 10 was applied to a copper foil having a thickness of 20 μm, which is a current collector, air-dried, and then 3 at 80 ° C.
After vacuum drying for a period of time and molding at a pressure of 0.5 t / cm 2 ,
Furthermore, it vacuum-dried at 120 degreeC for 2 hours, and obtained the negative electrode A, the negative electrode B, and the negative electrode C. These negative electrodes were combined with a lithium metal counter electrode through a polyester film, and 1 M LiPF 6 was added to the electrolytic solution.
/ EC + DMC, and a test cell using lithium metal as a reference electrode was assembled. Charge / discharge rate is 80mA / g carbon,
The upper and lower limit potentials of charge and discharge were set to 1.0 V and 0.01 V, respectively. The results obtained are summarized in Table 1 in comparison with carbon that does not carry metal. Here, the powder of Comparative Example 1 is a highly purified natural graphite (particle size 11 μm), and the powder of Comparative Example 2 is artificial graphite (particle size 3 μm).

【0027】[0027]

【表1】 [Table 1]

【0028】粉末A、B、Cは、黒鉛の理論容量密度の
372mAh/gを越えた値を発現しているが、これは
金属とリチウムの合金化容量が加わっているためであ
る。さらに、粉末Aの負極のサイクル試験結果が図3に
示してあるが、300サイクル後においても395mA
h/gの放電容量を維持している。
The powders A, B, and C express values exceeding the theoretical capacity density of graphite of 372 mAh / g, which is because the alloying capacity of metal and lithium is added. Further, the result of the cycle test of the negative electrode of powder A is shown in FIG.
The discharge capacity of h / g is maintained.

【0029】〔実施の形態5〕実施の形態4で得られた
粉末Aの負極と、コバルト酸リチウム(LiCoO2)を
正極材として用いた正極、ポリエステル製膜のセパレー
タ、および1MLiPF6/EC+DMCの電解液を用
いて単三型電池を構成し、その評価をした。本電池は、
1サイクル目から350Wh/1の放電容量を示し、1
30サイクル後においてもその値は低下しなかった。
[Fifth Embodiment] The negative electrode of the powder A obtained in the fourth embodiment, a positive electrode using lithium cobalt oxide (LiCoO 2 ) as a positive electrode material, a separator made of a polyester film, and 1M LiPF 6 / EC + DMC are used. An AA battery was constructed using the electrolytic solution and evaluated. This battery is
From the first cycle, it shows a discharge capacity of 350 Wh / 1, 1
The value did not decrease even after 30 cycles.

【0030】〔実施の形態6〕実施の形態1とほぼ同じ
ように、高純度化処理した天然黒鉛(粒径11μm)
を、硝酸銀(AgNO3)、テトラヒドリドホウ酸ナトリ
ウム(NaBH4)等で処理を行った。ただし、還元剤
(NaBH4)を添加する前にpHをコントロールする
意味で0.02mol/lのフタル酸水素カリウムを添加し
て、粉末Dを得た。Ag金属粒子径及び分散状態を調べ
たところ、粉末Dは、粉末Aに比しAg粒子径(100
〜200Å)は小さく分散状態は格段に改善された。
[Embodiment 6] Almost the same as in Embodiment 1, a highly purified natural graphite (particle size: 11 μm)
The silver nitrate (AgNO 3), tetra-hydride sodium borate (NaBH 4) treatment was carried out in the like. However, before adding the reducing agent (NaBH 4 ), 0.02 mol / l potassium hydrogen phthalate was added to control the pH, and powder D was obtained. When the particle size of Ag metal and the dispersion state were examined, it was found that the powder D had a Ag particle size (100
~ 200Å) is small and the dispersion state has been improved significantly.

【0031】〔実施の形態7〕人造黒鉛(面間隔(d0
02)=3.359Å,c軸方向の結晶の大きさLe=5
46Å,比表面積=10.5m2/g)を用いて実施の形
態1と同様の調製を行い、Ag粒子を担持する粉末Eを
得た。
[Embodiment 7] Artificial graphite (plane spacing (d0
02) = 3.359Å, the crystal size in the c-axis direction Le = 5
The same preparation as in Embodiment 1 was carried out using 46Å and specific surface area = 10.5 m 2 / g) to obtain a powder E carrying Ag particles.

【0032】〔実施の形態8〕人造黒鉛(面間隔(d0
02)=3.359Å,c軸方向の結晶の大きさLe=5
46Å,比表面積=10.5m2/g)を用いて、実施の
形態6と同様の操作を行い、より粒径の小さいAg粒子
を担持する粉末Fを得た。
[Embodiment 8] Artificial graphite (plane spacing (d0
02) = 3.359Å, the crystal size in the c-axis direction Le = 5
46Å, specific surface area = 10.5 m 2 / g) and the same operation as in Embodiment 6 was carried out to obtain a powder F carrying Ag particles having a smaller particle diameter.

【0033】〔実施の形態9〕人造黒鉛(面間隔(d00
2)=3.359Å,c軸方向の結晶の大きさLe=54
6Å,比表面積=10.5m2/g)の9.0gを25ml
のC256Hを含む水200mlに懸濁させる。これ
に、0.5mlのHClを含む水50mlに1.9gのS
ncl2・2H2Oを溶解させたものと水とを加え、全量
450mlとする。これを50〜60℃で加温・かく拌
しながら、0.5%のNaBH4水溶液をマイクロチュー
ブポンプを用いて滴下し、約3時間かけて還元反応を行
わせる。その後、濾過・水洗を行い、真空中350℃で
6時間以上加熱して乾燥する。ここで得られた粉末Gに
ついて、SnをICP分析したところ仕込み量10.0
wt%に対し9.76wt%と良好な値を示した。また
X線回折によりSn形態を調べたところ、X線的にSn
は完全に金属であることが確かめられた。
[Embodiment 9] Artificial graphite (plane spacing (d00
2) = 3.359Å, crystal size in the c-axis direction Le = 54
6Å, specific surface area = 10.5m 2 / g) 9.0g 25ml
Suspended in 200 ml of water containing C 2 H 56 H. Add 1.9 g of S to 50 ml of water containing 0.5 ml of HCl.
What dissolved ncl 2 .2H 2 O and water were added to make a total volume of 450 ml. While heating and stirring this at 50 to 60 ° C., a 0.5% NaBH 4 aqueous solution is dropped using a microtube pump, and the reduction reaction is carried out for about 3 hours. After that, filtration and washing are performed, and heating is performed in vacuum at 350 ° C. for 6 hours or more to dry. Regarding the powder G obtained here, Sn was subjected to ICP analysis, and the charged amount was 10.0.
It showed a good value of 9.76 wt% with respect to wt%. In addition, when the Sn morphology was examined by X-ray diffraction, Sn
Was confirmed to be completely metallic.

【0034】〔実施の形態10〕粉末D,E,F及びG
に、それぞれ結着剤としてPVDFをN・メチルピロリ
ドンに溶解したものを加えて、PVDFが粉末に対して
10wt%になるよう添加し混練して各種のペーストを
作成した。このペーストを集電体である厚さ20μmの
銅箔に塗布・風乾後、真空中80℃で3時間乾燥した。
その後、0.5ton/cm2の圧力で成型した後、真空中
120℃で2時間乾燥して負極D,E,F及びGを作成
した。これらの負極とLi金属対極及びセパレータとし
てポリエチレン系多孔質膜を組合せ、電解液として1M
LiPF6/EC−DMC、参照極としLi金属を用
い、充放電速度はカーボン1g当り80mA,電位幅は
0.01V〜1.0Vでサイクル試験を行った。それらの
結果を金属を担持しない炭素を比較例として前述の表1
にまとめて示した。
[Embodiment 10] Powders D, E, F and G
To each of these, PVDF dissolved in N.methylpyrrolidone was added as a binder, and PVDF was added to the powder in an amount of 10 wt% and kneaded to prepare various pastes. This paste was applied on a copper foil having a thickness of 20 μm as a current collector, air-dried, and then dried in vacuum at 80 ° C. for 3 hours.
Then, after molding at a pressure of 0.5 ton / cm 2 , it was dried in vacuum at 120 ° C. for 2 hours to prepare negative electrodes D, E, F and G. These negative electrodes are combined with a Li metal counter electrode and a polyethylene-based porous membrane as a separator, and the electrolyte is 1M.
A cycle test was performed using LiPF 6 / EC-DMC, Li metal as a reference electrode, a charge / discharge rate of 80 mA / g of carbon, and a potential width of 0.01 V to 1.0 V. The results are shown in Table 1 above using carbon that does not carry a metal as a comparative example.
Are summarized in.

【0035】粉末D,E及びFは、炭素の理論容量を越
えた値を発現しているが、これは金属とリチウムの合金
化の容量が加っているためである。
The powders D, E and F develop a value exceeding the theoretical capacity of carbon because the capacity for alloying metal and lithium is added.

【0036】ちなみに粉末Dの負極のサイクル試験結果
は、図3に示すとの同じ傾向を示し、300サイクル後
においても370mAh/gの放電容量を維持してい
る。
By the way, the cycle test result of the negative electrode of the powder D shows the same tendency as shown in FIG. 3, and the discharge capacity of 370 mAh / g is maintained even after 300 cycles.

【0037】〔実施の形態11〕厚さ20μmのアルミ
箔に、LiCoO2活物質と人造黒鉛とPVDFを重量
比で87:9:4とした合剤を片面90μm厚となるよ
うに両面に塗布し、乾燥・圧延した正極15と、厚さ2
0μmの銅箔に実施の形態6で得られた粉末Dを片面5
8μmとなるように両面塗布し、乾燥・圧延した負極1
7及び厚さ25μmのポリエチレン製多孔質膜セパレー
ター19を、図4に示すように捲回して外寸法14φ×
47mmの電池缶に収納し、電解液として1MLiPF
6/EC−DMCを用いて、その特性を評価した。
[Embodiment 11] An aluminum foil having a thickness of 20 μm is coated with a mixture of LiCoO 2 active material, artificial graphite and PVDF at a weight ratio of 87: 9: 4 on both sides so as to have a thickness of 90 μm on one side. Dried and rolled positive electrode 15 and thickness 2
The powder D obtained in Embodiment 6 was applied to a copper foil of 0 μm on one side 5
Negative electrode 1 coated on both sides to a thickness of 8 μm, dried and rolled
7 and a polyethylene porous membrane separator 19 having a thickness of 25 μm are wound as shown in FIG.
It is stored in a 47 mm battery can and 1 M LiPF 6 is used as the electrolyte.
Its properties were evaluated using 6 / EC-DMC.

【0038】試験条件として、充放電速度:1C、充電
終止電圧4.2V、放電終止電圧:2.5Vとして行っ
た。その結果、300wh/l(電池容積)のエネルギ
ー密度が得られ、300サイクルまで安定した性能を示
している。
The test conditions were as follows: charge / discharge rate: 1 C, charge end voltage: 4.2 V, discharge end voltage: 2.5 V. As a result, an energy density of 300 wh / l (battery volume) was obtained, showing stable performance up to 300 cycles.

【0039】[0039]

【発明の効果】本発明により得られた負極、すなわち炭
素粒子にリチウムと合金を形成する金属の微細粒子を担
持した粉末を負極に用いることによる効果は以下のとお
りである。
The effects obtained by using the negative electrode obtained by the present invention, that is, the powder in which the fine particles of the metal forming the alloy with lithium on the carbon particles are carried in the negative electrode are as follows.

【0040】まず、炭素粒子間に金属を介在させること
により(1)電気伝導性が向上し、充放電反応の速度が
向上する。(2)添加金属がリチウムと形成する合金の
充放電容量が利用できるので黒鉛の理論容量の372m
Ah/gを越える値が得られる。(3)不可逆容量を引
き起こす炭素粒子表面の反応サイトを担持金属が覆うの
で不可逆容量が低減される。(4)放電容量が大きくな
るので電池の出力密度も当然大きくなる。(5)(1)
に付随してサイクル特性も向上し、組電池における熱放
散性も向上させることができる。
First, by interposing a metal between the carbon particles, (1) the electric conductivity is improved and the charge / discharge reaction speed is improved. (2) Since the charge / discharge capacity of the alloy formed with lithium as the additive metal can be used, the theoretical capacity of graphite is 372 m.
Values exceeding Ah / g are obtained. (3) Since the supporting metal covers the reaction site on the surface of the carbon particles that causes the irreversible capacity, the irreversible capacity is reduced. (4) Since the discharge capacity is increased, the output density of the battery is naturally increased. (5) (1)
In addition, the cycle characteristics are improved, and the heat dissipation property of the assembled battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来型負極と改良型負極のサイクル特性図。FIG. 1 is a cycle characteristic diagram of a conventional negative electrode and an improved negative electrode.

【図2】銅繊維添加負極と無添加負極のサイクル特性
図。
FIG. 2 is a cycle characteristic diagram of a copper fiber-added negative electrode and a non-added negative electrode.

【図3】本発明よりなる負極のサイクル特性図。FIG. 3 is a cycle characteristic diagram of a negative electrode according to the present invention.

【図4】本発明の円筒形電池の構成図。FIG. 4 is a configuration diagram of a cylindrical battery of the present invention.

【符号の説明】[Explanation of symbols]

1 従来型負極のサイクル特性 2 改良型負極のサイクル特性 3 銅繊維添加負極のサイクル特性 4 無添加負極のサイクル特性 5 本発明になる負極のサイクル特性 15 正極 16 正極端子 17 負極 18 負極端子 19 セパレータ 1 Cycle characteristics of conventional negative electrode 2 Cycle characteristics of improved negative electrode 3 Cycle characteristics of copper fiber-added negative electrode 4 Cycle characteristics of non-added negative electrode 5 Cycle characteristics of negative electrode according to the present invention 15 Positive electrode 16 Positive electrode terminal 17 Negative electrode 18 Negative electrode terminal 19 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Horiba 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Ren Muranaka 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 in Hitachi, Ltd. Hitachi Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 0.5wh以上50kwh以下の容量を
有するリチウム二次電池において、該二次電池を構成す
る単電池の負極が、リチウムと合金を形成する金属を担
持した炭素粒子を集電体に保持させてなり、該二次電池
がエネルギ密度350w/kg(電池重量)以上の出力
で15分以上の放電が可能であることを特徴とするリチ
ウム二次電池。
1. In a lithium secondary battery having a capacity of 0.5 wh or more and 50 kwh or less, a negative electrode of a single battery constituting the secondary battery has a current collector of carbon particles carrying a metal forming an alloy with lithium. The lithium secondary battery is capable of being discharged for 15 minutes or more at an output of energy density of 350 w / kg (battery weight) or more.
【請求項2】 一対の正極および負極と、正負両極間に
介在するセパレータと、正負両極及びセパレータを浸漬
する電解液とを備えたリチウム二次電池において、前記
負極は、リチウムと合金を形成する金属を担持した炭素
粒子を集電体に保持させてなり、前記炭素粒子は、X線
回折法による面間隔(d002)が3.354〜3.36
9Åで、C軸方向の結晶の大きさ(Lc)が300Å以
上であることを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising a pair of a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, and an electrolyte solution in which the positive and negative electrodes and the separator are immersed, wherein the negative electrode forms an alloy with lithium. The carbon particles supporting the metal are held by a current collector, and the carbon particles have a surface spacing (d002) of 3.354 to 3.36 by an X-ray diffraction method.
A lithium secondary battery having a size of 9Å and a crystal size (Lc) in the C-axis direction of 300Å or more.
【請求項3】 一対の正極および負極と、正負両極間に
介在するセパレータと、正負両極及びセパレータを浸漬
する電解液とを備えたリチウム二次電池において、前記
負極は、リチウムと合金を形成する金属を担持した炭素
粒子を集電体に保持させてなり、前記炭素粒子は、比表
面積が0.1〜30m2/g以上であることを特徴とする
リチウム二次電池。
3. A lithium secondary battery comprising a pair of a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, and an electrolyte solution in which the positive and negative electrodes and the separator are immersed, wherein the negative electrode forms an alloy with lithium. A lithium secondary battery characterized in that carbon particles supporting a metal are held by a current collector, and the carbon particles have a specific surface area of 0.1 to 30 m 2 / g or more.
【請求項4】 一対の正極および負極と、正負両極間に
介在するセパレータと、正負両極及びセパレータを浸漬
する電解液とを備えたリチウム二次電池において、前記
負極は、リチウムと合金を形成する金属を担持した炭素
粒子を集電体に保持させてなり、前記炭素粒子は、X線
回折法による面間隔(d002)が3.354〜3.36
9Åで、C軸方向の結晶の大きさ(Lc)が300Å以
上で、かつ比表面積が0.1〜30m2/g以上であり、
前記リチウムと合金を形成する金属は、粒径が1000
Å以下であることを特徴とするリチウム二次電池。
4. A lithium secondary battery comprising a pair of a positive electrode and a negative electrode, a separator interposed between the positive and negative electrodes, and an electrolyte solution in which the positive and negative electrodes and the separator are immersed, wherein the negative electrode forms an alloy with lithium. The carbon particles supporting the metal are held by a current collector, and the carbon particles have a surface spacing (d002) of 3.354 to 3.36 by an X-ray diffraction method.
9Å, the crystal size (Lc) in the C-axis direction is 300Å or more, and the specific surface area is 0.1 to 30 m 2 / g or more,
The metal forming an alloy with lithium has a particle size of 1000.
Lithium secondary battery characterized by being Å or less.
【請求項5】 請求項2ないし4いずれかに記載のリチ
ウム二次電池を動力源とするモータにより駆動すること
を特徴とする電気自動車。
5. An electric vehicle, which is driven by a motor having the lithium secondary battery according to claim 2 as a power source.
【請求項6】 前記リチウム二次電池の充放電速度が、
1C以上で、300wh/l(電池容積)以上のエネル
ギー密度であることを特徴とする請求項5記載の電気自
動車。
6. The charge / discharge rate of the lithium secondary battery is
The electric vehicle according to claim 5, which has an energy density of 1 C or more and 300 wh / l (battery volume) or more.
【請求項7】 請求項1ないし4いずれかに記載のリチ
ウム二次電池を動力源とするモータにより駆動すること
を特徴とする自動二輪車。
7. A motorcycle, which is driven by a motor using the lithium secondary battery according to claim 1 as a power source.
【請求項8】 前記リチウム二次電池の充放電速度が、
1C以上で、300wh/l(電池容積)以上のエネル
ギー密度である請求項7記載の自動二輪車。
8. The charge / discharge rate of the lithium secondary battery is
The motorcycle according to claim 7, which has an energy density of 1 Wh or more and 300 wh / l (battery volume) or more.
JP01722096A 1995-02-02 1996-02-02 Lithium secondary battery Expired - Fee Related JP3165953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01722096A JP3165953B2 (en) 1995-02-02 1996-02-02 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-15676 1995-02-02
JP1567695 1995-02-02
JP01722096A JP3165953B2 (en) 1995-02-02 1996-02-02 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08273702A true JPH08273702A (en) 1996-10-18
JP3165953B2 JP3165953B2 (en) 2001-05-14

Family

ID=26351862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01722096A Expired - Fee Related JP3165953B2 (en) 1995-02-02 1996-02-02 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3165953B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
JP2002270170A (en) * 2001-03-07 2002-09-20 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
KR100373837B1 (en) * 1999-09-28 2003-02-26 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method of preparing negative active materia for lithium secondary battery
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
US9450245B2 (en) 2001-04-09 2016-09-20 Sony Corporation Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
KR100373837B1 (en) * 1999-09-28 2003-02-26 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method of preparing negative active materia for lithium secondary battery
JP2002270170A (en) * 2001-03-07 2002-09-20 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
US9450245B2 (en) 2001-04-09 2016-09-20 Sony Corporation Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
US9972831B2 (en) 2001-04-09 2018-05-15 Murata Manufacturing Co., Ltd Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JPWO2005013408A1 (en) * 2003-07-31 2007-09-27 日本電気株式会社 Lithium ion secondary battery
JP4605389B2 (en) * 2003-07-31 2011-01-05 日本電気株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP3165953B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US6030726A (en) Lithium secondary battery having negative electrode of carbon material which bears metals
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
US8465874B2 (en) Lithium-ion secondary battery and manufacturing method thereof
US20030049529A1 (en) Active material for battery and method of preparing same
JP3994238B2 (en) Nonaqueous electrolyte lithium secondary battery
EP0729194B1 (en) Secondary battery using system and material for negative electrode of secondary battery
JP3430691B2 (en) Lithium secondary battery
JP3200572B2 (en) Lithium secondary battery
JP2023538082A (en) Negative electrode and secondary battery containing the same
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
US20240038991A1 (en) Metal-carbon composite anode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
JPH10321225A (en) Lithium secondary battery, and portable electric equipment, electronic equipment, electric vehicle and power storing device using this lithium semiconductor battery
WO2022099561A1 (en) Silicon-based material, preparation method therefor and secondary battery, battery module, battery pack and apparatus related thereto
JP4013327B2 (en) Non-aqueous secondary battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP2021103684A (en) Negative electrode active material, negative electrode, and secondary battery
JP3188395B2 (en) Lithium secondary battery
JP2000268879A (en) Lithium secondary battery
WO2024098370A1 (en) Positive electrode material composition, positive electrode sheet and preparation method therefor, battery, and electrical device
JP3165953B2 (en) Lithium secondary battery
JPH10334889A (en) Lithium secondary battery, and portable electrical apparatus and electric vehicle and motorcycle and power storage device using the lithium secondary battery
JP3055892B2 (en) Lithium secondary battery
CN112204779B (en) Positive electrode for lithium secondary battery containing goethite and lithium secondary battery comprising same
CN116325234A (en) Negative electrode for secondary battery, negative electrode slurry, and method for producing negative electrode

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees