JP2005025991A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005025991A
JP2005025991A JP2003187983A JP2003187983A JP2005025991A JP 2005025991 A JP2005025991 A JP 2005025991A JP 2003187983 A JP2003187983 A JP 2003187983A JP 2003187983 A JP2003187983 A JP 2003187983A JP 2005025991 A JP2005025991 A JP 2005025991A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
mass
substance
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003187983A
Other languages
Japanese (ja)
Inventor
Shigeki Yamate
山手  茂樹
Toru Tabuchi
田渕  徹
Katsushi Nishie
勝志 西江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003187983A priority Critical patent/JP2005025991A/en
Publication of JP2005025991A publication Critical patent/JP2005025991A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high energy density and capable of preventing the generation of expansion when it is left in the high-temperature condition. <P>SOLUTION: In this nonaqueous electrolyte secondary battery including a negative electrode provided with a negative mix layer and a negative electrode collector, the negative mix layer contains a negative electrode active material and a binder, and the negative electrode active material contains a material, which contains Si and O, and a carbon material. Atomic ratio x of O in relation to Si in the material, which contains si and O, satisfies an expression 0<x<2, and the binder contains SBR, and adhesion strength between the negative electrode mix layer and the negative electrode collector is 75 N/m or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、珪素酸化物を含む負極を備えた非水電解質二次電池の高温放置時に生じる電池膨れの抑制に関する。
【0002】
【従来の技術】
黒鉛質炭素材料を負極活物質にリチウム遷移金属酸化物を正極活物質にそれぞれ用いたリチウム二次電池は、ほかの二次電池に比べて高エネルギー密度であったので、各種携帯機器用電源の用途に用いられてきた。近年、それらの軽量化・小形化が急速に進行しているので、そこに内蔵される二次電池のエネルギー密度向上が急務である。現在、市販されているリチウム二次電池において、負極の可逆容量はその理論容量にきわめて近い。したがって、負極の利用率向上によるエネルギー密度の継続的向上はきわめて困難である。
【0003】
そのため、黒鉛質炭素材料よりも高容量の新規負極活物質を開発する必要がある。現在、新規負極活物質として、たとえば、珪素酸化物、スズ酸化物、銅酸化物、コバルト酸化物などの酸化物、リチウム合金、リチウム遷移金属窒化物などが提案されている。その中でも、珪素酸化物は特に高容量であるので、大きく期待されている。
【0004】
特許文献1で報告されているように、珪素酸化物とリチウム遷移金属窒化物との混合物を用いた負極を適用した電池は、そのクーロン効率が高いので一見実用可能かのように思える。しかしながら、この電池はとくに高温放置時に大きく膨れるので、ポータブルコンピュータ、電動工具などの電池温度上昇が予見される用途には適用困難であり、現在まで実用化にいたっていない。
【0005】
非水系二次電池の負極活物質にLixSiOy(0≦x、0<y<2)を用い、結着剤にスチレンブタジエンゴムを用いる技術が特許文献2に開示されている。また、SiOやSiOなどを炭素質物で被覆した負極活物質を用い、結着剤にスチレンブタジエンゴムを用いる技術が特許文献3に開示されているが、これらには密着強度についての記載がない。
【0006】
一方、非水系二次電池の負極活物質に炭素材料を用い、集電体に銅箔を用いた場合の、集電体との粗面度と密着強度との関係については特許文献4に開示されており、密着強度の測定方法は特許文献5に開示されているが、これらはいずれも結着剤にスチレンブタジエンゴムは用いられていない。
【0007】
【特許文献1】
特表2000−164207号公報
【特許文献2】
特開平10−270088号公報
【特許文献3】
特開2000−090916号公報
【特許文献4】
特開平06−260168公報
【特許文献5】
特開2000−294247号公報
【0008】
【発明が解決しようとする課題】
上述したように、珪素酸化物を負極に備えた電池は高温放置時に大きく膨れるという問題があった。本発明は、この電池の実用化を阻む上記問題を系統的実験により解決したものである。本発明の目的は、高温放置時に膨れを生じない高エネルギー密度非水電解質二次電池を提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、負極合剤層と負極集電体とを備えた負極を含む非水電解質二次電池において、前記負極合剤層が負極活物質と結着材とを含み、前記負極活物質がSiとOとを含む物質と炭素材料とを含み、前記SiとOとを含む物質におけるSiに対するOの原子比xが0<x<2を満たし、前記結着材がSBRを含有し、前記負極合剤層と負極集電体との密着強度が75N/m以上であることを特徴とする。
【0010】
請求項1の発明によれば、高温放置時に膨れを生じない、高エネルギー密度非水電解質二次電池を得ることができる。
【0011】
請求項2の発明は、請求項1記載の非水電解質二次電池において、負極合剤層中における結着材の含有率が0.5〜10.0質量%であることを特徴とする。
【0012】
請求項2の発明によれば、より高温放置時の膨れを抑制することができる。
【0013】
【発明実施の形態】
本発明は、負極活物質として、SiとOとを含む物質(以下、この物質を「物質(A)」とする、ただし、この物質をSiOxで表した時、0<x<2とする)と炭素材料とを含み、結着材としてスチレンブタジエン共重合体(以下「SBR」と略す)を用いた負極を備えた非水電解質二次電池において、負極合剤層と負極集電体との密着強度を特定することによって、非水電解質二次電池の高温放置時の膨れを抑制するものである。
【0014】
さらに、負極合剤層中のSBRの含有率を特定の範囲とすることによって、より高温放置時の膨れを抑制するものである。
【0015】
物質Aと炭素材料とを活物質として含む負極を備えた非水電解質二次電池は、従来のリチウムイオン二次電池に用いられている黒鉛質炭素材料を含む負極を備えた電池と比較した場合、高容量が期待できるが、一方では、高温下に放置した場合に大きな電池膨れを生じるという問題がある。このために、電池温度の上昇が予見される用途へ適用が非常に困難である。したがって、この電池の高温放置時の膨れを抑制することが最大の課題の一つになっている。
【0016】
そこで発明者は、この問題を解決するために、負極に用いる結着材としてSBRを用い、その含有量および負極合剤層と負極集電体との密着強度がさまざまに異なる電池を製作して、高温放置時の電池膨れに対する影響を系統的に解析した。その結果、SBRの負極活物質相中の含有量および負極合剤層と負極集電体との密着強度と、その負極を備えた電池の高温放置時の膨れとの間にきわめて大きな依存関係があることを見出した。
【0017】
そして、電池の高温放置時の膨れに与える影響を精査したところ、負極合剤層と負極集電体との密着強度が75N/m以上とした場合に、非水電解質二次電池の高温放置時の膨れが小さくなることを見出した。さらに、前記負極合剤層中におけるSBRの含有率が0.5〜10.0質量%とした場合に、非水電解質二次電池の高温放置時の膨れが著しく小さくなることを見出した。
【0018】
本発明の非水電解質二次電池において、負極活物質の1つであるSiとOとを含む物質(A)は、その組成がSiO(0<x<2)で表されるものであって、単相から構成されても、複数の相から構成されてもよい。
【0019】
Si単体(x=0の場合)は、充放電にともなう膨張収縮が大きいので、充放電サイクルを繰り返すと微粉化して大きな容量劣化を引き起こす。また、SiO(x=2の場合)は、電気化学的にほぼ不活性なので、充放電できない。したがって、0<x<2とする必要がある。
【0020】
SiOが複数の相から構成される場合は、Si相およびSiO相(1<y≦2)の両相を含むことが好ましく、この負極活物質のCukα線によるX線回折パターン中に見られるピークのうち、もっとも回折強度が強いSi(111)面または2番目に回折強度が強いSi(220)面に帰属されるものの半値幅のすくなくとも一方が3°以下であることがより好ましい。
【0021】
ここで述べたX線回折パターンのSi(hkl)面は、JCPDS No.271402記載のものをさすが、厳密には、それぞれ、2θ(Cukα)=28°±2°および47±2°に現れるピークをさすものとする。ここで、Si(111)面またはSi(220)面のすくなくとも一方とした理由は、Si(111)面のピークは黒鉛の2θ(Cukα)=26°のピークと重なって半値巾を求められなくなることがあるからである。
【0022】
また、物質(A)の構造は結晶性であってもアモルファスであってもよいが、アモルファスであることがより好ましい。
【0023】
本発明の電池において、負極活物質がSiとOとを含む物質(A)と炭素材料とを含まなければならない。その理由は、負極活物質が前者だけを含む場合、物質(A)は電子伝導性がきわめて小さいので充放電できないからであり、負極活物質が後者だけを含む場合、従来よりもエネルギー密度の高い電池を継続的に得ることがきわめて難しいからである。
【0024】
本発明の電池において、負極活物質の1つであるSiとOとを含む物質(A)は、添加元素として、B、P、S、Fなどの非金属元素やIn、Pb、Zn、Cu、Niなどの金属元素を任意量含むことができる。
【0025】
本発明の電池において、負極活物質の1つである炭素材料は、単一の材料であってもよいし、複数の材料の単純混合物や複合体などであってもよい。
【0026】
本発明の電池において、負極活物質として物質(A)と炭素材料とを混合したものを用いてもよいし、これらを複合化したものを用いてもよいが、後者の方が好ましい。負極活物質に物質(A)と炭素材料との混合物を用いる場合、物質(A)と炭素材料との合計質量に対する物質(A)の質量の割合が1〜20%であることが好ましく、3〜10%であることがさらに好ましい。
【0027】
本発明の電池において、負極活物質として物質(A)と炭素材料とを複合化したものを用いる場合、その複合化の形態はどのようなものであってもよく、その具体例としては、物質(A)表面のすくなくとも一部が炭素材料(B)で被覆された物質(C)、炭素材料(D)上に物質(A)が担持された物質(E)、物質(A)と炭素材料(F)とが混合されてなる物質(G)の表面の少なくとも一部が炭素材料(H)によって被覆された物質(I)、などが挙げられる。なお、負極活物質に物質(I)が含まれる場合、炭素材料(F)と炭素材料(H)とは、同一のものであっても、異なるものであってもよい。これらのものの中でも、負極活物質に物質(C)または物質(I)が含まれることがとくに好ましい。
【0028】
また、複合化の方法はどのようなものであってもよいが、その具体例としては、物質(A)とピッチなどの炭素材料(B)前駆体とを混合しこれを高温で焼成・解砕して物質(C)を得る方法、物質(A)と炭素材料(B)とを粉粒体処理によって機械的に結着して物質(C)を得る方法、物質(A)上に化学気相析出(CVD)法などで炭素材料(B)を担持して物質(C)を得る方法、物質(A)と炭素材料(F)とを粉粒体処理などにより複合化して物質(G)を得たのちに、これにCVD法などによって炭素材料(H)を担持して物質(I)を得る方法、などが挙げられる。
【0029】
CVD法によって複合化をおこなう場合、CVDの種類はどのようなものであってもよいが、たとえば、熱CVD、プラズマCVDなどがあげられる。また、CVDに用いる炭素源はどのようなものであってもよいが、たとえば、トルエン、ベンゼン、キシレン、メタン、アセチレンなどが挙げられる。これらの複合化方法の中でも、炭素材料を均一に被覆できるので、CVD法を用いることがとくに好ましい。
【0030】
本発明の電池において、物質(C)が負極活物質に含まれる場合、物質(C)の質量に対する炭素材料(B)の質量の比が、1〜30%であることが好ましく、10〜20%であることがさらに好ましい。この比が1〜30%であることが好ましい理由は、1%未満の場合は物質(C)の導電性を確保できないのでサイクル性能がきわめて低く、30%を超える場合は大きな放電容量を得られなくなるからである。
【0031】
また、物質(C)のレーザー回折法によって求められる数平均粒径(以後、単に数平均粒径と記す)は、0.1〜20μmであることが好ましい。数平均粒径がこの値よりも小さい場合、負極製造時の取り扱いが難しいので、歩留まりが著しく低下するなどの問題が生じる。また、数平均粒径がこの値よりも大きい場合、負極板の圧密化が困難になるので、結果的に高エネルギー密度電池を得られないなどの問題が生ずる。
【0032】
物質(C)は炭素材料(J)と混合して用いることが好ましい。その場合、物質(C)と炭素材料(J)との合計質量に対する物質(C)の質量の割合が1〜30%であることが好ましく、5〜10%であることがさらに好ましい。
【0033】
また、炭素材料(J)はどのようなものであってもよく、たとえば、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維などがあげられる。炭素材料(J)は、単独であるいは2種以上の炭素材料を混合したものであってもよい。
【0034】
また、炭素材料(J)に用いるものの形状はどのようであってもよく、たとえば、メソカーボンマイクロビーズなどの球状、メソカーボンファイバーなどの繊維状、鱗片状、塊状などが適宜使用できる。このとき、負極の導電性を確保する観点から、炭素材料(J)として数平均粒径が5〜25μmの鱗片状黒鉛が含まれることが好ましい。
【0035】
また、炭素材料(J)として、メソカーボンマイクロビーズやメソカーボンファイバーが含まれることが好ましい。このとき、メソカーボンマイクロビーズやメソカーボンファイバーにB元素が含まれていることがさらに好ましい。
【0036】
本発明の電池において、物質(I)が負極活物質に含まれる場合、物質(I)の質量に対する物質(A)の質量の割合が、20〜70%であることが好ましい。物質(I)に用いる炭素材料(F)はどのようなものであってもよいが、たとえば、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、コークス類、熱分解炭素、活性炭などを用いることができる。また、その形状はどのようなものでもよいが、たとえば、球状、繊維状、鱗片状、塊状などを適宜用いることができる。
【0037】
その中でも、充放電時の負極活物質内における導電性確保の観点から、数平均粒径が5〜25μmの鱗片状黒鉛であることが好ましい。物質(I)の質量に対する物質(F)の質量の割合が、15〜65%であることが好ましい。
【0038】
また、炭素材料(H)は高結晶性のものから低結晶性のものまでどのようなものでもよいが、充放電時に負極活物質のクラックを生じにくいことから、低結晶性のものが好ましい。
【0039】
物質(H)の数平均粒径は、1〜30μmであることが好ましい。数平均粒径がこの値よりも小さい場合、製造時の取り扱いが難しいので、歩留まりが著しく低下するなどの問題が生じる。また、数平均粒径がこの値よりも大きい場合、負極板の圧密化が困難になるので、結果的に高エネルギー密度電池を得られないなどの問題が生ずる。
【0040】
物質(I)の質量に対する炭素材料(H)の質量の割合が、1〜30%であることが好ましく、5〜20%であることがさらに好ましい。この比が1〜30%であることが好ましい理由は、1%未満の場合は物質(H)の導電性を確保できないのでサイクル性能がきわめて低く、30%を超える場合は大きな放電容量を得られなくなるからである。
【0041】
物質(I)は炭素材料(J)と混合して用いることが好ましい。その場合、物質(I)と炭素材料(J)との合計質量に対する物質(I)の質量の割合が、1〜50%であることが好ましく、5〜30%であることがさらに好ましい。
【0042】
また、炭素材料(J)はどのようなものであってもよく、たとえば、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維などがあげられる。炭素材料(J)は、単独であるいは2種以上の炭素材料を混合したものであってもよい。
【0043】
また、炭素材料(J)に用いるものの形状はどのようであってもよく、たとえば、メソカーボンマイクロビーズなどの球状、メソカーボンファイバーなどの繊維状、鱗片状、塊状などが適宜使用できる。このとき、負極の導電性を確保する観点から、炭素材料(J)として数平均粒径が5〜25μmの鱗片状黒鉛が含まれることが好ましい。
【0044】
炭素材料(J)として、メソカーボンマイクロビーズやメソカーボンファイバーが含まれることが好ましい。このとき、メソカーボンマイクロビーズやメソカーボンファイバーにB元素が含まれていることがさらに好ましい。
【0045】
本発明の電池において、負極合剤層には結着材としてのSBRが含まれなければならない。結着材としてPVdFなどのフッ素系樹脂を用いた場合に比べて負極への添加量を著しく低減できるので、電池の安全性が飛躍的に向上するからである。
【0046】
負極合剤層とは、負極から集電体を除いたものであって、負極活物質、炭素材料などの導電材、SBRやポリフッ化ビニリデン(PVdF)などの結着材、および、カルボキシメチルセルロース(CMC)などの粘結材、などをすべて合わせたものを意味する。
【0047】
負極合剤層中のSBRの含有率は0.5〜10.0質量%であることが好ましく、0.8〜3.2質量%であることが特に好ましい。この含有率が0.5質量%未満の場合、負極集電体からの負極合剤層の剥離が著しく起こりやすいという製造上の問題、および、高温放置時の電池膨れが著しく大きいという問題がある。また、この含有率が10.0質量%を超える場合、電池の内部抵抗が増大するので好ましくない。
【0048】
結着材として用いられるSBRは、CMC、PVdF、カルボキシ変成ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体フッ化ビニリデン−クロロトリフルオロエチレン共重合体などと混合して用いることができる。
【0049】
本発明の電池において、負極合剤層中のSBRの含有率と負極合剤層と負極集電体との密着強度とには大きな依存関係があるが、SBRのラテックス粒径やガラス転移点などが異なる場合には、SBRの含有率が同じであっても密着強度の値が大きく異なり、それによって高温放置時の電池膨れは著しく変化することを見出した。
【0050】
本発明の電池において、負極合剤層と負極集電体との密着強度は75N/m以上でなければならず、90N/m以上であることが好ましい。
【0051】
ただし、ここで述べる密着強度はつぎのようにして計測したものである。まず、負極を10cm×4cmの長方形に切り出したのちに、片面全体を両面テープで試料台に接着した。つぎに、幅18mm×長さ15cmにテープを切り出して、そのテープの一端から長さ5cm分を負極中央部に貼り付けた。テープのもう一端にひもを取り付けてこれをばねばかりのフックと結びつけた。テープが170〜180°に折れ曲がる方向に、ばねばかりを300mm/minの速さで引っ張り、負極合剤層が負極集電体から剥離し始めたときの引張荷重(N/m)を密着強度と定義した。
【0052】
ここでは、JIS Z1522で規定されている、粘着力294[N/m]で、幅18mmの粘着テープを使用した。
【0053】
なお、負極合剤層と負極集電体との密着強度は、集電体に使用する銅箔の表面粗さによって変化する。しかしながら、銅箔の表面粗さの定義には、例えばJIS B 0601−2001では、4種類もあり、表面粗さを数値化することは困難である。したがって、本発明では、集電体である銅箔として、電解銅箔や圧延銅箔のいずれを用いた場合でも、銅箔の表面粗さに関係なく、負極合剤層と負極集電体との密着強度が75N/m以上の場合に、優れた高温放置特性を示すものである。
【0054】
負極活物質および結着剤を混合するときに、溶媒または溶液を用いることができる。その溶媒または溶液は、結着材を分散または溶解できるものであれば、非水系のものでも水系のものでもよい。非水系のものを用いる場合は、たとえば、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどを用いることができる。
【0055】
一方、水系のものを用いる場合は、水、分散剤や増粘剤などを添加した水溶液などを用いることができる。負極の集電体としては、鉄、銅、ステンレス、ニッケルなどを用いることができる。また、その形状はどのようなものであってもよく、たとえば、面状体、発泡体、焼結多孔体、エキスパンド格子やこれらに任意の形状の孔を穿けたものなどが挙げられる。
【0056】
本発明の非水電解質二次電池において、非水電解質としては非水系液体電解質または固体電解質のいずれを用いてもよい。
【0057】
非水系液体電解質を用いる場合は、その溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネートなどの極性溶媒またはこれらを任意に含む混合溶媒を用いることができる。
【0058】
また、非水系液体電解質の溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiI、LiCl、LiBr、LiCFCO、LiCFSO、LiCSO、LiN(SOCF、LiN(SOCFCF、LiN(SOCF)(SOCFCFCFCF)、LiCF(CF、LiCF(CF)、 LiN(COCFおよびLiN(COCFCFなどのリチウム塩およびこれらを任意に含む混合物を用いることができる。また、非水電解液中にプロパンスルトンなどの添加剤を含有してもよい。
【0059】
固体電解質を用いる場合は、たとえば、Li含有カルコゲン化物などの無機固体電解質、Liを含む高分子からなるシングルイオン伝導体、高分子にリチウム塩を含有させた高分子電解質、などを用いることができる。高分子電解質は、非水系液体電解質を高分子に湿潤または膨潤させることによって、高分子にリチウム塩を含有させたものであってもよいし、リチウム塩のみを高分子中に溶解したものであってもよい。
【0060】
高分子電解質に含有させるリチウム塩としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiI、LiCl、LiBr、LiCFCO、LiCFSO、LiCSO、LiN(SOCF、LiN(SOCFCF、LiN(SOCF)(SOCFCFCFCF)、LiCF(CF、LiCF(CF)、 LiN(COCFおよびLiN(COCFCFなどのリチウム塩およびこれらを任意に含む混合物を用いることができる。さらに、固体電解質を用いる場合は、電池内に複数の電解質が含まれてもよい。たとえば、正極および負極においてそれぞれことなる電解質を用いることができる。
【0061】
高分子電解質に用いる高分子としては、非水系液体電解質によって湿潤または膨潤して良好なイオン伝導性を示すものが好ましく、たとえば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などのポリエーテル、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリアクリロニトリル、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレン、あるいはこれらの誘導体を、単独であるいは混合して用いることができる。また、上記高分子を構成する各単量体を共重合させたポリマー、たとえばビニリデンフルオライド/ヘキサフルオロプロピレンコポリマー(P(VdF/HFP))、スチレンブタジエンゴムなどを用いることもできる。
【0062】
これらの高分子電解質を用いる理由は、Liのイオン伝導度および易動度が高くなるために、電池の分極が低減できるからある。また、高分子電解質は形状変化可能なものが好ましい。この理由は、充放電による負極活物質の体積膨張収縮に追随できるので、負極の電子伝導性能およびイオン伝導性能を良好に維持できるからである。
【0063】
本発明の非水電解質二次電池において、負極が高分子電解質を含んでもよい。この高分子電解質はリチウムイオン伝導性および結着性を示すものが好ましい。この理由は、この負極における活物質―活物質間および活物質―高分子電解質間の結着性が良好であるため、ならびに、充放電を繰り返したあとの負極の電子伝導性能およびイオン伝導性能が良好に維持できるためである。特に、高分子電解質が有孔性であることが好ましい。この理由は、孔中に電解液を保持することにより、高分子電解質のイオン伝導性がさらに向上するからである。
【0064】
本発明の非水電解質二次電池において、正極活物質はLiを吸蔵放出するものであればどのようなものでもよく、種々の材料を適宜使用できる。たとえば、リチウム遷移金属複合酸化物LiMO2−δ(ただし、Mは、Co、NiまたはMnを表し、0.4≦x≦1.2、0≦δ≦0.5)、このリチウム遷移金属複合酸化物のMの一部をAl、Mn、Fe、Ni、Co、Cr、Ti、Znから選ばれる少なくとも一種の金属元素で置換したもの、このリチウム遷移金属複合酸化物にPやBなどの非金属元素を添加したもの、MnO、FeO、V、V13、TiO、TiS、NiOOH、FeOOH、FeSなどが挙げられる。また、上記各種活物質を任意に混合して用いてもよい。
【0065】
特に、リチウムニッケル複合酸化物LiNi 2―δ(ただし、M、MはAl、Mn、Fe、Ni、Co、Cr、Ti、Znから選ばれる少なくとも一種の元素を表し、0.4≦x≦1.2、0.8≦p+q+r≦1.2、0≦δ≦0.5)やこのリチウムニッケル複合酸化物にBやPなどの非金属元素を添加したもの、リチウムコバルト複合酸化物、および、リチウムコバルトニッケル複合酸化物を用いることが好ましい。
【0066】
なお、正極活物質としてMnO、FeO、V、V13、TiO、TiS、NiOOH、FeOOH、FeSなどのLiを含まないものを用いる場合は、正極あるいは負極にLiを化学的に吸蔵させたものを用いて電池を製作してもよい。たとえば、正極または負極と金属リチウムとをLiを含む非水電解質中で接触させたものを適用する方法、正極または負極の表面上に金属Liを貼り付ける方法などがあげられる。
【0067】
正極に用いられる結着剤はどのようなものであってもよく、公知の結着剤を適宜使用できるが、たとえば、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、エチレン−プロピレン−ジエン三元共重合体、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体を、単独でまたは2種以上を混合して用いることができる。
【0068】
また、本発明の非水電解質二次電池のセパレータとしては、織布、不織布、合成樹脂微多孔膜などを用いることができ、特に、合成樹脂微多孔膜がこのましい。その材質としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリプロピレン、ポリエチレン、ポリブテンなどのポリオレフィンがあげられる。なかでもポリエチレン、ポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などのポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗などの面で好ましい。
【0069】
また、電池の形状は特に限定されるものではなく、本発明は、角形、楕円形、コイン形、ボタン形、シート形、円筒型、長円筒型電池等の様々な形状の非水電解質二次電池に適用可能である。
【0070】
【実施例】
以下に、好適な実施例を用いて本発明を説明するが、本発明の適用範囲はこれに限定されない。
【0071】
[実施例1]
SiO粉末(SiOにおいて、x=1のもの)を1000℃で6時間熱処理することによって、SiおよびSiOの両相を含むSiO粉末(a1)を得た。このSiO粉末(a1)のX線回折測定をおこなった結果、2θ(Cukα)=28.4°および47.3°に、それぞれ、Si(111)面およびSi(220)面に帰属されるピークが見られた。両者のピークの半値幅はいずれも1.7°であった。(以降、Si(111)面に帰属されるピークの半値幅を、単に、「半値幅」と記す)
あらかじめメソカーボンマイクロビーズ(MCMB):天然黒鉛:人造黒鉛=40:40:20(質量比)の割合で混合して材料(j1)を作製しておき、SiO粉末(a1)5.0質量%と材料(j1)95.0質量%とを混合して、これを負極活物質とした。
【0072】
結着材としては、ラテックスの粒径が190nmでガラス転移点が−15℃であるSBR(s1)およびカルボキシメチルセルロース(CMC)を用いた。負極活物質、SBR(s1)、CMCを所定量秤取して、これらをイオン交換水中に分散させて負極合剤ペーストを得た。この負極合剤ペーストを厚さ15μmの電解銅箔の片面に塗布して150℃で乾燥したのちに、もう一方の面にも同様の塗布および乾燥をおこない、両面に負極合剤層を備えた銅箔を得た。さらに、これをロールプレスで圧縮成形して負極を得た。
【0073】
なお、負極合剤層中におけるSBR(s1)の含有率が0.5質量%、および、CMCの含有率が2.0質量%となるようにした。この負極における、負極合剤層と負極集電体との密着強度は76N/mであった。
【0074】
つぎに、コバルト酸リチウム90質量%と、アセチレンブラック5質量%と、ポリフッ化ビニリデン(PVdF)5質量%とをN−メチル−2−ピロリドン(NMP)中で分散させることによりペーストを製作した。このペーストを厚さ20μmのアルミニウム箔上に2.5mg・cm 、電池内に収納する正極活物質量が5.3gとなるように塗布し、つぎに、150℃で乾燥することにより、NMPを蒸発させた。以上の操作をアルミニウム箔の両面におこない、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に正極合剤層を備えた正極を製作した。
【0075】
正極および負極を、厚さ20μm、多孔度40%の連通多孔体であるポリエチレン製セパレータを両極間に位置するように巻回したのちに、これを高さ48mm、幅30mm、厚さ5.2mmの容器中に挿入した。さらに、この容器内部に非水系液体電解質を注入したのちに封口して、定格容量が700mAhの電池(A1)を作製した。なお、前記非水系液体電解質は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に1mol/lのLiPFを溶解したものである。
【0076】
[実施例2]
結着材として、SBR(s1)の代わりに、ラテックスの粒径が250nmでガラス転移点が−15℃であるSBR(s2)を用い、負極合剤層中におけるSBR(s2)の含有率を0.3質量%としたこと以外は、実施例1と同様にして、実施例2の電池(A2)を作製した。
【0077】
[実施例3]
結着材として、SBR(s1)の代わりにSBR(s2)を用い、負極合剤層中におけるSBR(s2)の含有率を0.5質量%としたこと以外は、実施例1と同様にして、実施例3の電池(A3)を作製した。
【0078】
[比較例1]
負極合剤層中におけるSBR(s1)の含有率を0.3質量%としたこと以外は、実施例1と同様にして、比較例1の電池(R1)を作製した。
【0079】
[比較例2]
結着材として、SBR(s1)の代わりにPVdFを用い、負極合剤層中におけるPVdFの含有率を0.5質量%としたこと以外は、実施例1と同様にして、比較例2の電池(R2)を作製した。
【0080】
[比較例3]
負極活物質として、SiO粉末(a1)を含まない材料(j1)100質量%のものを用いた以外は、実施例1と同様にして、比較例3の電池(R3)を作製した。
【0081】
実施例1〜3および比較例1〜3の電池に用いた負極ついて、前述の方法で負極合剤層と負極集電体との密着強度を測定した。これらの電池の内容を表1にまとめた。なお、表1における「組成」の単位は、いずれも「質量%」とした
【0082】
【表1】

Figure 2005025991
【0083】
[電池評価試験]
実施例1〜3および比較例1〜3の電池にについて、つぎのようにして、電池膨れ、高率放電性能、高温放置時の電池膨れを測定した。
【0084】
各電池の電池厚みt1(mm)を測定した後、25℃の恒温槽内で充放電試験をおこなった。この試験においては、35mAで4.2Vに達するまでの定電流およびそれに続く4.2Vにおける2時間の定電圧での充電と、140mAで2.7Vまでの定電流での放電とを行った。この時の放電容量をC1とする。つづいて、35mAで4.2Vに達するまでの定電流およびそれに続く4.2Vにおける2時間の定電圧での充電と、1400mAで2.7Vまでの定電流での放電とを行った。この時の放電容量をC2とする。ここで、高率放電性能をつぎの式から算出した。高率放電性能(%)=C2/C1×100
ポータブルコンピュータや電動工具などの用途に使用するためには、高率放電時に高容量を示さなければならない。したがって、高率放電性能は70%以上であることが好ましい。
【0085】
さらに、この電池を用いて、35mAで4.2Vに達するまでの定電流およびそれに続く4.2Vにおける2時間の定電圧での充電を行った。この電池を100℃の恒温槽内に3時間放置後、再び電池厚みt2(mm)を測定した。ここで、高温放置時の電池膨れをつぎの式から算出した。電池膨れ(mm)=t2(mm)−t1(mm)
電池膨れが1.50mmを超えるものをポータブルコンピュータや電動工具などの用途に用いることは、電池パックが壊れる危険性があるので不適である。したがって、電池膨れは1.50mm以下でなくてはならない。充放電を繰り返すことによって電池が若干膨れるものと予想されるため、電池膨れが1.40mm以下であることが望ましい。
【0086】
また、負極製造に必要な時間を比較した。実施例1の電池A1に用いた負極製造に要した時間を100とし、その他の電池に用いた負極製造に要した時間を相対的に表示した。
【0087】
実施例1〜3および比較例1〜3の電池についての測定結果を表2にまとめた。
【0088】
【表2】
Figure 2005025991
【0089】
表2からつぎのようなことが明らかとなった。比較例1、実施例1〜3の比較により、負極合剤層中のSBRの種類を適宜選択することにより、負極合剤層中のSBRの組成にかかわらず、密着強度を75N/m以上とすることができ、電池の膨れを1.50mm以下にし、放電容量C1や高率放電性能に優れた電池が得られた。ただし、負極の結着材としてSBR(s2)を用いた実施例2および3では、SBR(s2)の分散性がSBR(s1)よりも劣るため、均一な合剤ペーストを作製するためには長時間必要であることが示された。
【0090】
なお、比較例2の電池は負極合剤層中の結着材の占める割合が大きいため、また、比較例3の電池は、負極活物質がSiO(a1)を含まないため、いずれも初期の放電容量C1がかなり小さくなった。
【0091】
以上のように、本願の請求項1の条件を満たす負極を用いることにより、初期の放電容量C1が大きく、電池膨れが1.50mm以下で、高率放電性能に優れた電池が得られることが示された。
【0092】
[実施例4〜10]
負極合剤層中における負極活物質の含有率を97.0〜86.0質量%およびSBRの含有率を0.5〜12.0質量%としたこと以外は実施例1と同様にして、実施例4〜10の電池(A4)〜(A10)を製作した。
【0093】
[実施例11]
負極活物質および結着材としてのSBR(s1)を所定量秤取して、これらをNMPに分散させてペーストを得て、このペーストを厚さ15μmの銅箔の片面に塗布して150℃で乾燥したのちに、もう一方の面にも同様の塗布および乾燥をおこない、両面に負極合剤層を備えた銅箔を得たこと以外は実施例1と同様にして、実施例11の電池(A11)を製作した。なお、この負極合剤層には、負極活物質が98.0質量%およびSBR(s1)が2.0質量%含まれるようにした。
【0094】
実施例1、4〜11および比較例1の電池の内容を表3に示す。
【0095】
【表3】
Figure 2005025991
【0096】
[実施例12〜14、比較例4]
結着材としてのSBR(s1)の代わりに、前述のSBR(s2)、ラテックスの粒径が140nmでガラス転移点が−15℃でであるSBR(s3)、ラテックスの粒径が140nmでガラス転移点が−5℃でであるSBR(s4)を用いたこと以外は実施例4と同様にして実施例12〜14の電池(A12)〜(A14)を製作した。
【0097】
また、結着材としてのSBR(s1)の代わりに、ラテックスの粒径が80nmでガラス転移点が−15℃であるSBR(s5)を用いたこと以外は実施例4と同様にして比較例4の電池(R4)を製作した。実施例4、12〜14の電池(A4)、(A12)〜(A14)、および比較例4の電池(R4)の内容を表4に示す。
【0098】
【表4】
Figure 2005025991
【0099】
これらの電池についての測定結果を表5および表6に示した。
【0100】
【表5】
Figure 2005025991
【0101】
【表6】
Figure 2005025991
【0102】
ここで、表3および6から得られる負極合剤層中におけるSBRの含有率と電池膨れとの関係を図1に、負極合剤層中におけるSBRの含有率と高率放電性能との関係を図2に、それぞれ示す。また、表4および6から得られる負極合剤質層と負極集電体との密着強度と電池膨れとの関係を図3に示す。
【0103】
図1〜図3から、高温放置時に膨れが1.50mm以下と小さく、かつ、高率放電性能が70%以上と優れる電池を得るためには、負極合剤層中におけるSBRの含有率が0.5〜10.0質量%であって、かつ、負極合剤層−負極集電体間の密着強度が75N/m以上である必要があることが示された。
【0104】
[実施例15]
熱処理を行っていないSiO粉末(a0)(SiOにおいて、x=1のもの)を用いたこと以外は実施例4と同様にして、実施例15の電池(B1)を得た。
【0105】
[実施例16〜20]
SiOの熱処理温度を830℃〜1050℃として、SiO粉末(a2)〜(a6)を得た。これらを負極活物質に用いたこと以外は実施例4と同様にして、実施例16〜20の電池(B2)〜(B6)を得た。なお、SiO粉末(a2)〜(a6)は、いずれも、SiOと記した場合にx=1となるのものである。
【0106】
電池(A4)および(B1)〜(B6)の内容を表7に示す。なお、表7において、「Si(111)の半値幅」の単位は「°(2θ、Cukα)」とした。
【0107】
【表7】
Figure 2005025991
【0108】
実施例15〜20の電池(B1)〜(B6)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表8に示す。
【0109】
【表8】
Figure 2005025991
【0110】
半値幅と電池膨れとの関係を図4に示す。これより、半値幅が3.0以下の場合に、電池膨れが1.40mm以下と小さくなることが明らかである。したがって、本発明の非水電解質二次電池に用いるSiO粉末の半値幅は3.0以下であることが好ましい。
【0111】
[実施例21〜25]
負極活物質として、1.0〜50.0質量%のSiO粉末(a1)と、99.0〜50.0質量%の材料(j1)との混合物を用いたこと以外は実施例4と同様にして、実施例21〜25の電池(C1)〜(C5)を得た。電池(A4)および(C1)〜(C5)の内容を表9にまとめた。
【0112】
【表9】
Figure 2005025991
【0113】
実施例21〜25の電池(C1)〜(C5)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表10に示す。
【0114】
【表10】
Figure 2005025991
【0115】
これより、負極活物質の質量に対するSiO粉末の質量の割合が3.0〜10.0%である場合に、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高いことが明らかである。したがって、負極活物質の質量に対するSiO粉末の質量の割合は3.0〜10.0%であることが好ましい。
【0116】
[実施例26]
材料(j1)の代わりに、50質量%のメソカーボンマイクロビーズ(MCMB)と50質量%の天然黒鉛との混合物を用いたこと以外は実施例4と同様にして、実施例26の電池(D1)を得た。
【0117】
[実施例27]
材料(j1)の代わりに、天然黒鉛のみを用いたこと以外は実施例4と同様にして、実施例27の電池(D2)を得た。
【0118】
[実施例28]
材料(j1)の代わりに、50質量%の天然黒鉛と50質量%の人造黒鉛との混合物を用いたこと以外は実施例4と同様にして、実施例28の電池(D3)を得た。電池(A4)および(D1)〜(D3)の内容を表11にまとめた。
【0119】
【表11】
Figure 2005025991
【0120】
実施例26〜28の電池(D1)〜(D3)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表12に示す。
【0121】
【表12】
Figure 2005025991
【0122】
電池(A4)および(D1)〜(D3)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。これより、材料(j1)として用いる黒鉛は単一の種類のものを用いてもよいし、複数の種類のものを任意の割合で混合して用いてもよいことが明らかである。
【0123】
[実施例29]
SiO粉末(a1)を0.5mol/dm−3のフッ化水素酸中に中に浸漬してSiO相の一部を溶解させることによって、SiO0.8を得た。これをSiO粉末(a1)の代わりに用いたこと以外は実施例4と同様にして、実施例29の電池(E1)を得た。
【0124】
[実施例30]
SiO粉末(a1)を0.8mol/dm−3のフッ化水素酸中に中に浸漬してSiO相の一部を溶解させることによって、SiO0.5を得た。これをSiO粉末(a1)の代わりに用いたこと以外は実施例4と同様にして、実施例30の電池(E2)を得た。電池(E1)および(E2)の内容を表13に示す。
【0125】
【表13】
Figure 2005025991
【0126】
実施例29および30の電池(E1)および(E2)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表14に示す。
【0127】
【表14】
Figure 2005025991
【0128】
電池(A4)、(E1)および(E2)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。したがって、SiとOとを含む物質(A)におけるSiに対するOの原子比xは、0<x<2の任意の値をとることができる。
【0129】
[実施例31]
SiO粉末(a1)をホウ酸水溶液に浸漬したのちに800℃で焼成することで、SiO1.030.02を得た。これをSiO粉末(a1)の代わりに用いたこと以外は実施例4と同様にして、実施例31の電池(F1)を得た。
【0130】
[実施例32]
SiO粉末(a1)を[Cu(NH2+を含む水溶液に浸漬したのちに800℃で焼成することで、SiO1.01Cu0.01を得た。これをSiO粉末(a1)の代わりに用いたこと以外は実施例4と同様にして、実施例32の電池(F2)を得た。電池(F1)および(F2)の内容を表15に示す。
【0131】
【表15】
Figure 2005025991
【0132】
実施例31および32の電池(F1)および(F2)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表16に示す。
【0133】
【表16】
Figure 2005025991
【0134】
電池(F1)および(F2)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。したがって、SiとOとを含む物質(A)には、任意量の非金属元素や金属元素を添加することができることが明らかである。
【0135】
[実施例33〜36]
95〜70質量%のSiO粉末(a1)と、5〜30質量%のMCMBとを秤取して、これらをメカノフュージョン法(ホソカワミクロン製AMS−Labを使用)により機械的に複合化させて材料(m1)を得た。材料(m1)をSiO粉末(a1)の代わりに用いたこと以外は実施例4と同様にして、実施例33〜36の電池(G1)〜(G4)を得た。なお、材料(m1)のSEM観察の結果から、1個のMCMBの粒子上に複数のSiO粒子が担持されていることがわかった。
【0136】
[実施例37]
80質量%のSiO粉末(a1)と、20質量%の天然黒鉛とを秤取して、これらをメカノフュージョン法(ホソカワミクロン製AMS−Labを使用)により機械的に複合化させて材料(m2)を得た。これをSiO粉末(a1)の代わりに用いたこと以外は実施例4と同様にして、実施例37の電池(G5)を得た。なお、材料(m2)のSEM観察の結果から、複数の天然黒鉛の粒子と複数のSiO粒子とが複合化されていることがわかった。電池(G1)〜(G5)の内容を表17に示す。
【0137】
【表17】
Figure 2005025991
【0138】
実施例33〜37の電池(G1)〜(G5)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表18に示す。
【0139】
【表18】
Figure 2005025991
【0140】
電池(G1)〜(G5)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高く、加えて、電池(A4)より優れていた。したがって、SiとOとを含む物質(A)は、炭素材料と複合化されることが好ましい。
【0141】
[実施例38〜42]
SiO粉末と炭素材料(b1)との合計質量に対して炭素材料(b1)の質量が1〜30%となるように、SiO粉末の表面に炭素材料(b1)を化学気相蒸着(CVD)することによって、材料(c1)〜(c5)を得た。なお、上記CVDは、メタンを炭素源に用いて、Ar雰囲気下で1000℃の条件でおこなった。
【0142】
SiO粉末(a1)の代わりに材料(c1)〜(c5)を用いたこと、および、20質量%の材料(c1)〜(c5)と80質量%の材料(j1)とを混合して負極活物質としたこと以外は実施例4と同様にして、実施例38〜42の電池(H1)〜(H5)を製作した。電池(H1)〜(H5)の内容を表19に示す。
【0143】
【表19】
Figure 2005025991
【0144】
実施例37〜41の電池(H1)〜(H5)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表20に示す。
【0145】
【表20】
Figure 2005025991
【0146】
電池(H1)〜(H5)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。したがって、SiとOとを含む物質(A)に炭素材料をCVDした材料を負極活物質に適用することが好ましいことが明らかになった。
【0147】
[実施例43]
SiO粉末と炭素材料(b2)との合計質量に対して炭素材料(b2)の質量が5%となるように、SiO粉末の表面に炭素材料(b2)をプラズマCVDすることによって、材料(c6)を得た。なお、上記CVDは、トルエンを炭素源に用いて、Ar雰囲気下で1000℃の条件でおこなった。材料(c1)の代わりに材料(c6)を用いたこと以外は実施例39と同様にして、実施例43の電池(H6)を製作した。
【0148】
[実施例44]
SiO粉末と炭素材料(b3)との合計質量に対して炭素材料(b3)の質量が5%となるように、SiO粉末の表面に炭素材料(b3)を化学気相蒸着(CVD)することによって、材料(c7)を得た。なお、上記CVDは、ベンゼンを炭素源に用いて、Ar雰囲気下で1000℃の条件でおこなった。材料(c1)の代わりに材料(c7)を用いたこと以外は実施例39と同様にして、実施例44の電池(H7)を製作した。
【0149】
[実施例45]
SiO粉末と炭素材料(b4)との合計質量に対して炭素材料(b4)の質量が5%となるように、SiO粉末の表面に炭素材料(b4)をプラズマCVDすることによって、材料(c8)を得た。なお、上記CVDは、アセチレンを炭素源に用いて、Ar雰囲気下で1000℃の条件でおこなった。材料(c1)の代わりに材料(c8)を用いたこと以外は実施例39と同様にして、実施例45の電池(H8)を製作した。
【0150】
実施例43〜45の電池(H6)〜(H8)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表21に示す。
【0151】
【表21】
Figure 2005025991
【0152】
電池(H2)および(H6)〜(H8)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。したがって、SiとOとを含む物質(A)に炭素材料をCVDした材料を負極活物質に適用する場合には、炭素源として何を用いてもよいことが明らかである。
【0153】
[実施例46〜49]
負極活物質として、1.0〜20.0質量%の材料(c4)と、99.0〜80.0質量%の材料(j1)との混合物を用いたこと以外は実施例41と同様にして、実施例46〜49の電池(I1)〜(I4)を得た。電池(H4)および(I1)〜(I4)の内容を表22に示す。
【0154】
【表22】
Figure 2005025991
【0155】
実施例46〜49の電池(I1)〜(I4)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表23に示す。
【0156】
【表23】
Figure 2005025991
【0157】
電池(H4)および(I1)〜(I4)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。また、負極活物質中の材料(c4)の質量比率が20%以下であるとき、電池膨れが1.00mm以下ときわめて小さくなる。したがって、SiとOとを含む物質(A)に炭素材料をCVDした材料を負極活物質に適用する場合には、負極活物質中の材料(c4)の質量比率が20%以下であることが好ましい。
【0158】
[実施例50〜56、比較例6]
負極合剤層中における負極活物質の含有率を98.5〜86.0質量%およびSBRの含有率を0.5〜12.0質量%に変更したこと以外は、実施例41と同様にして実施例50〜56の電池(J1)〜(J6)を製作した。
【0159】
また、負極合剤層中における負極活物質の含有率を97.7質量%およびSBRの含有率を0.3質量%としたこと以外は、実施例41と同様にして比較例6の電池(R6)を製作した。
【0160】
実施例41および50〜56、ならびに、比較例6の電池の内容を表24に示す。
【0161】
【表24】
Figure 2005025991
【0162】
実施例50〜56の電池(J1)〜(J6)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表25に示す。
【0163】
【表25】
Figure 2005025991
【0164】
負極合剤層中におけるSBRの含有率と電池膨れとの関係を図5に示す。負極合剤層中におけるSBRの含有率と高率放電性能との関係を図6に示す。負極合剤層−負極集電体間の密着強度と電池膨れとの関係を図7に示す。
【0165】
図5〜図7から、高温放置時に膨れが1.50mm以下と小さく、かつ、高率放電性能が70%以上と優れる電池を得るためには、負極活物質に、SiとOとを含む物質(A)に炭素材料をCVDした材料を適用した場合であっても、さらに負極合剤層中におけるSBRの含有率が0.5質量%〜10.0質量%であって、かつ、負極合剤層と負極集電体との密着強度が75N/m以上であることが好ましい。
【0166】
[実施例57]
SiO粉末と天然黒鉛とを30:55の質量比で秤取して、これらをボールミル法(フリッチュ製遊星型MONOミルP−6を使用)により機械的に複合化させて材料(g1)を得た。
【0167】
この材料(g1)と炭素材料(h1)との合計質量に対して炭素材料(h1)の質量が15%となるように、材料(g1)の表面に炭素材料(h1)をCVDすることによって、材料(i1)を得た。なお、上記CVDは、トルエンを炭素源に用いて、Ar雰囲気下で1000℃の条件でおこなった。材料(c1)の代わりに材料(i1)を用いたこと以外は実施例38と同様にして、実施例57の電池(K1)を製作した。
[実施例58〜61]
材料(g1)を製造するときに秤取するSiO粉末と天然黒鉛との質量比、および、材料(i1)を製造するときにCVDする炭素材料(h1)の質量を変更したこと以外は、実施例55と同様にして実施例58〜61の電池(K2)〜(K5)を製作した。電池(K1)〜(K5)の内容を表26に示す。
【0168】
【表26】
Figure 2005025991
【0169】
実施例57〜61の電池(K1)〜(K5)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表27に示す。
【0170】
【表27】
Figure 2005025991
【0171】
電池(K1)〜(K5)は、いずれも、電池膨れが1.40mm以下と小さく、高率放電性能が80%以上と高かった。物質(A)と炭素材料(F)とが混合したものを物質(G)とし、その物質(G)の表面のすくなくとも一部を炭素材料(H)によって被覆したものを物質(I)とすると、電池(K1)〜(K5)の結果から、この物質(I)を負極活物質に適用することが好ましいことが明らかになった。
【0172】
[実施例62〜66]
負極活物質として、1.0〜20.0質量%の材料(g1)と、99.0〜80.0質量%の材料(j1)との混合物を用いたこと以外は実施例57と同様にして、実施例62〜66の電池(L1)〜(L5)を得た。電池(K1)および(L1)〜(L5)の内容を表28にまとめた。
【0173】
【表28】
Figure 2005025991
【0174】
実施例62〜66の電池(L1)〜(L5)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果を表29に示す。
【0175】
【表29】
Figure 2005025991
【0176】
これより、材料(g1)と材料(j1)との合計質量に対する材料(g1)の質量の割合が5〜30%である場合に、電池膨れが1.00mm以下と小さく、高率放電性能が90%以上と非常に高いことがわかった。したがって、材料(g1)と材料(j1)との合計質量に対する材料(g1)の質量の割合は5〜30%であることが好ましいことが明らかである。
【0177】
[実施例67]
負極集電体として、厚さ15μmの電解銅箔の代わりに、厚さ15μmの圧延銅箔を用いたこと以外は実施例4と同様にして、実施例67の電池(M)を作製した。電池(M)に用いた負極では、負極合剤層−集電体間の密着強度は98N/mであった。
【0178】
この電池(M)を用いて、実施例4の電池(A4)と同じ条件で、電池膨れおよび高率放電性能を測定した。その結果、電池膨れは1.33mmであり、高率放電性能は81%と良好であった。したがって、負極集電体として用いる金属箔としては、電解銅箔や圧延銅箔のいずれを用いた場合でも、優れた特性が得られることがわかった。
【0179】
【発明の効果】
本発明の非水電解質二次電池は、負極合剤層および負極集電体を備えた負極を備えており、前記負極合剤層が負極活物質および結着材を含み、前記負極活物質がSiとOとを含む物質と炭素材料とを含み、前記SiとOとを含む物質におけるSiに対するOの原子比xが0<x<2を満たし、前記結着材がSBRを含有し、前記負極合剤層と負極集電体との密着強度を75N/m以上とすることによって、珪素酸化物を含む負極を備えた非水電解質二次電池の高温放置時に生じる電池膨れを大幅に抑制し、加えて、常温における高率放電性能を従来から公知の電池と比較して同等以上とすることができた。さらに、前記負極合剤層中における結着材の含有率を0.5〜10.0質量%とすることにより、より高温放置時の膨れを抑制することができた。したがって、本発明の工業的価値はきわめて大である。
【図面の簡単な説明】
【図1】負極活物質にSiO粉末(a1)と材料(j1)との混合物を用いた場合の、負極合剤層中におけるSBRの含有率と電池膨れとの関係を示す図。
【図2】負極活物質にSiO粉末(a1)と材料(j1)との混合物を用いた場合の、負極合剤層中におけるSBRの含有率と高率放電性能との関係を示す図。
【図3】負極活物質にSiO粉末(a1)と材料(j1)との混合物を用いた場合の、密着強度と電池膨れとの関係を示す図。
【図4】半値幅と電池膨れの関係を示す図。
【図5】負極活物質に材料(c4)と材料(j1)との混合物を用いた場合の、負極合剤層中におけるSBRの含有率と電池膨れとの関係を示す図。
【図6】負極活物質にSiO粉末(c4)と材料(j1)との混合物を用いた場合の、負極合剤層中におけるSBRの含有率と高率放電性能との関係を示す図。
【図7】負極活物質にSiO粉末(c4)と材料(j1)との混合物を用いた場合の、密着強度と電池膨れとの関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to suppression of battery swelling that occurs when a nonaqueous electrolyte secondary battery including a negative electrode containing silicon oxide is left at a high temperature.
[0002]
[Prior art]
Lithium secondary batteries using graphite carbon material as the negative electrode active material and lithium transition metal oxide as the positive electrode active material each had higher energy density than other secondary batteries. It has been used for applications. In recent years, since the weight reduction and miniaturization thereof are progressing rapidly, there is an urgent need to improve the energy density of the secondary battery incorporated therein. Currently, in a commercially available lithium secondary battery, the reversible capacity of the negative electrode is very close to its theoretical capacity. Therefore, it is very difficult to continuously improve the energy density by improving the utilization rate of the negative electrode.
[0003]
Therefore, it is necessary to develop a new negative electrode active material having a capacity higher than that of the graphitic carbon material. Currently, for example, oxides such as silicon oxide, tin oxide, copper oxide, and cobalt oxide, lithium alloys, lithium transition metal nitrides, and the like have been proposed as novel negative electrode active materials. Among them, silicon oxide is particularly expected because it has a particularly high capacity.
[0004]
As reported in Patent Document 1, it seems that a battery to which a negative electrode using a mixture of silicon oxide and lithium transition metal nitride is applied is practical because it has high Coulomb efficiency. However, since this battery swells particularly when left at high temperatures, it is difficult to apply it to applications such as portable computers and electric tools where an increase in battery temperature is predicted, and it has not been put into practical use until now.
[0005]
Patent Document 2 discloses a technique in which LixSiOy (0 ≦ x, 0 <y <2) is used as a negative electrode active material of a non-aqueous secondary battery and styrene butadiene rubber is used as a binder. Also, SiO and SiO2A technique using a negative electrode active material coated with a carbonaceous material and using styrene butadiene rubber as a binder is disclosed in Patent Document 3, but there is no description about adhesion strength.
[0006]
On the other hand, Patent Document 4 discloses the relationship between the roughness and the adhesion strength with a current collector when a carbon material is used as the negative electrode active material of the non-aqueous secondary battery and a copper foil is used as the current collector. However, although a method for measuring adhesion strength is disclosed in Patent Document 5, none of these uses styrene butadiene rubber as a binder.
[0007]
[Patent Document 1]
Special Table 2000-164207
[Patent Document 2]
JP-A-10-270088
[Patent Document 3]
JP 2000-090916 A
[Patent Document 4]
Japanese Patent Laid-Open No. 06-260168
[Patent Document 5]
JP 2000-294247 A
[0008]
[Problems to be solved by the invention]
As described above, a battery provided with a silicon oxide on the negative electrode has a problem that it greatly swells when left at a high temperature. The present invention solves the above-mentioned problems that impede the practical application of this battery by systematic experiments. An object of the present invention is to provide a high energy density non-aqueous electrolyte secondary battery that does not swell when left at high temperatures.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a nonaqueous electrolyte secondary battery including a negative electrode including a negative electrode mixture layer and a negative electrode current collector, wherein the negative electrode mixture layer includes a negative electrode active material and a binder, and the negative electrode The active material contains a substance containing Si and O and a carbon material, the atomic ratio x of O to Si in the substance containing Si and O satisfies 0 <x <2, and the binder contains SBR. The adhesion strength between the negative electrode mixture layer and the negative electrode current collector is 75 N / m or more.
[0010]
According to the first aspect of the present invention, it is possible to obtain a high energy density non-aqueous electrolyte secondary battery that does not swell when left at high temperatures.
[0011]
According to a second aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the first aspect, the content of the binder in the negative electrode mixture layer is 0.5 to 10.0% by mass.
[0012]
According to the second aspect of the present invention, it is possible to suppress swelling when left at a higher temperature.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a material containing Si and O as a negative electrode active material (hereinafter, this material is referred to as “substance (A)”, where 0 <x <2 when this material is represented by SiOx). And a carbon material, and a non-aqueous electrolyte secondary battery including a negative electrode using a styrene butadiene copolymer (hereinafter abbreviated as “SBR”) as a binder, a negative electrode mixture layer and a negative electrode current collector, By specifying the adhesion strength, the swelling of the nonaqueous electrolyte secondary battery when left at high temperature is suppressed.
[0014]
Furthermore, by setting the content of SBR in the negative electrode mixture layer within a specific range, swelling at higher temperatures is suppressed.
[0015]
When the nonaqueous electrolyte secondary battery provided with the negative electrode containing the substance A and the carbon material as active materials is compared with the battery provided with the negative electrode containing the graphitic carbon material used in the conventional lithium ion secondary battery Although high capacity can be expected, on the other hand, there is a problem that large battery swelling occurs when left at high temperatures. For this reason, it is very difficult to apply to applications where an increase in battery temperature is foreseen. Therefore, suppressing the swelling of the battery when it is left at high temperature is one of the biggest problems.
[0016]
In order to solve this problem, the inventor used SBR as a binder used for the negative electrode, and manufactured batteries with different contents and adhesion strengths between the negative electrode mixture layer and the negative electrode current collector. In addition, we systematically analyzed the effect on battery swelling when left at high temperature. As a result, there is an extremely large dependency between the content of SBR in the negative electrode active material phase and the adhesion strength between the negative electrode mixture layer and the negative electrode current collector and the swelling of the battery equipped with the negative electrode when left at high temperature. I found out.
[0017]
Then, when the influence on the swelling of the battery at high temperature was closely examined, when the adhesion strength between the negative electrode mixture layer and the negative electrode current collector was 75 N / m or more, the nonaqueous electrolyte secondary battery was left at high temperature. It was found that the swelling of the water becomes smaller. Furthermore, it has been found that when the SBR content in the negative electrode mixture layer is 0.5 to 10.0% by mass, the swelling of the nonaqueous electrolyte secondary battery when left at high temperature is significantly reduced.
[0018]
In the nonaqueous electrolyte secondary battery of the present invention, the substance (A) containing Si and O, which is one of the negative electrode active materials, has a composition of SiO.xIt is represented by (0 <x <2), and may be composed of a single phase or a plurality of phases.
[0019]
Since the simple substance of Si (in the case of x = 0) has a large expansion / contraction due to charging / discharging, it is pulverized when the charging / discharging cycle is repeated, resulting in a large capacity deterioration. In addition, SiO2In the case of x = 2, since it is almost inert electrochemically, charging and discharging cannot be performed. Therefore, it is necessary to satisfy 0 <x <2.
[0020]
SiOxIs composed of a plurality of phases, Si phase and SiOyIt is preferable to include both phases (1 <y ≦ 2), and this negative electrode active material Cukα1Among the peaks observed in the X-ray diffraction pattern by the line, at least one of the half-value widths of the Si (111) plane having the strongest diffraction intensity or the Si (220) plane having the second highest diffraction intensity is 3 °. The following is more preferable.
[0021]
The Si (hkl) plane of the X-ray diffraction pattern described here is JCPDS No. Although it is the one described in 271402, strictly speaking, the peaks appear at 2θ (Cukα) = 28 ° ± 2 ° and 47 ± 2 °, respectively. Here, the reason for using at least one of the Si (111) plane and the Si (220) plane is that the peak of the Si (111) plane overlaps the peak of 2θ (Cukα) = 26 ° of graphite, and the half-width cannot be obtained. Because there are things.
[0022]
Further, the structure of the substance (A) may be crystalline or amorphous, but is more preferably amorphous.
[0023]
In the battery of the present invention, the negative electrode active material must contain a substance (A) containing Si and O and a carbon material. The reason is that when the negative electrode active material contains only the former, the substance (A) has a very low electron conductivity and cannot be charged / discharged. When the negative electrode active material contains only the latter, the energy density is higher than in the prior art. This is because it is extremely difficult to obtain a battery continuously.
[0024]
In the battery of the present invention, the substance (A) containing Si and O, which is one of the negative electrode active materials, contains, as additive elements, nonmetallic elements such as B, P, S, and F, and In, Pb, Zn, and Cu. Any amount of a metal element such as Ni can be included.
[0025]
In the battery of the present invention, the carbon material that is one of the negative electrode active materials may be a single material or a simple mixture or a composite of a plurality of materials.
[0026]
In the battery of the present invention, a mixture of the substance (A) and the carbon material may be used as the negative electrode active material, or a composite of these may be used, but the latter is preferred. When a mixture of the substance (A) and the carbon material is used for the negative electrode active material, the ratio of the mass of the substance (A) to the total mass of the substance (A) and the carbon material is preferably 1 to 20%. More preferably, it is 10%.
[0027]
In the battery of the present invention, when a composite of the substance (A) and the carbon material is used as the negative electrode active material, any form of the composite may be used. (A) Substance (C) whose surface is at least partially coated with carbon material (B), substance (E) on which substance (A) is supported on carbon material (D), substance (A) and carbon material And a substance (I) in which at least a part of the surface of the substance (G) mixed with (F) is coated with the carbon material (H). When the negative electrode active material contains the substance (I), the carbon material (F) and the carbon material (H) may be the same or different. Among these, it is particularly preferable that the negative electrode active material contains the substance (C) or the substance (I).
[0028]
Any composite method may be used. As a specific example, a substance (A) and a carbon material (B) precursor such as pitch are mixed and fired at a high temperature. A method for obtaining a substance (C) by crushing, a method for obtaining a substance (C) by mechanically binding the substance (A) and the carbon material (B) by powder treatment, and a chemical on the substance (A). A method of obtaining the substance (C) by supporting the carbon material (B) by a vapor deposition (CVD) method or the like, and a substance (G) by combining the substance (A) and the carbon material (F) by a granular treatment or the like. And the like, and a method of obtaining the substance (I) by supporting the carbon material (H) by a CVD method or the like.
[0029]
When compounding is performed by the CVD method, any type of CVD may be used, and examples thereof include thermal CVD and plasma CVD. Further, any carbon source may be used for CVD, and examples thereof include toluene, benzene, xylene, methane, acetylene, and the like. Among these composite methods, it is particularly preferable to use the CVD method because the carbon material can be uniformly coated.
[0030]
In the battery of the present invention, when the substance (C) is contained in the negative electrode active material, the ratio of the mass of the carbon material (B) to the mass of the substance (C) is preferably 1 to 30%, and 10 to 20 % Is more preferable. The reason why this ratio is preferably 1 to 30% is that if it is less than 1%, the conductivity of the substance (C) cannot be secured, so the cycle performance is extremely low, and if it exceeds 30%, a large discharge capacity can be obtained. Because it disappears.
[0031]
Moreover, it is preferable that the number average particle diameter (henceforth only described as a number average particle diameter) calculated | required by the laser diffraction method of a substance (C) is 0.1-20 micrometers. When the number average particle size is smaller than this value, it is difficult to handle at the time of producing the negative electrode, so that problems such as a significant decrease in yield occur. Further, when the number average particle size is larger than this value, it becomes difficult to consolidate the negative electrode plate, resulting in problems such as failure to obtain a high energy density battery.
[0032]
The substance (C) is preferably used by mixing with the carbon material (J). In that case, the ratio of the mass of the substance (C) to the total mass of the substance (C) and the carbon material (J) is preferably 1 to 30%, and more preferably 5 to 10%.
[0033]
The carbon material (J) may be any material, and examples thereof include natural graphite, artificial graphite, acetylene black, ketjen black, and vapor grown carbon fiber. The carbon material (J) may be a single material or a mixture of two or more carbon materials.
[0034]
Moreover, what kind of shape of what is used for carbon material (J) may be used, for example, spherical shape, such as mesocarbon microbead, fibrous shape, such as mesocarbon fiber, scale shape, lump shape, etc. can be used suitably. At this time, from the viewpoint of ensuring the conductivity of the negative electrode, it is preferable that scaly graphite having a number average particle diameter of 5 to 25 μm is included as the carbon material (J).
[0035]
The carbon material (J) preferably includes mesocarbon microbeads and mesocarbon fibers. At this time, it is more preferable that the B element is contained in the mesocarbon microbead or the mesocarbon fiber.
[0036]
In the battery of the present invention, when the substance (I) is contained in the negative electrode active material, the mass ratio of the substance (A) to the mass of the substance (I) is preferably 20 to 70%. The carbon material (F) used for the substance (I) may be any material. For example, natural graphite, artificial graphite, acetylene black, ketjen black, vapor grown carbon fiber, coke, pyrolytic carbon Activated carbon or the like can be used. The shape may be any shape, and for example, a spherical shape, a fiber shape, a scale shape, a lump shape, or the like can be used as appropriate.
[0037]
Among these, from the viewpoint of ensuring conductivity in the negative electrode active material during charge and discharge, it is preferably a flaky graphite having a number average particle diameter of 5 to 25 μm. The mass ratio of the substance (F) to the mass of the substance (I) is preferably 15 to 65%.
[0038]
Further, the carbon material (H) may be any material from a high crystalline material to a low crystalline material, but a low crystalline material is preferable since cracks of the negative electrode active material are unlikely to occur during charging and discharging.
[0039]
The number average particle diameter of the substance (H) is preferably 1 to 30 μm. When the number average particle size is smaller than this value, it is difficult to handle at the time of production, and thus problems such as a significant decrease in yield occur. Further, when the number average particle size is larger than this value, it becomes difficult to consolidate the negative electrode plate, resulting in problems such as failure to obtain a high energy density battery.
[0040]
The ratio of the mass of the carbon material (H) to the mass of the substance (I) is preferably 1 to 30%, and more preferably 5 to 20%. The reason why this ratio is preferably 1 to 30% is that if it is less than 1%, the conductivity of the substance (H) cannot be ensured, so the cycle performance is extremely low, and if it exceeds 30%, a large discharge capacity can be obtained. Because it disappears.
[0041]
The substance (I) is preferably used by mixing with the carbon material (J). In that case, the ratio of the mass of the substance (I) to the total mass of the substance (I) and the carbon material (J) is preferably 1 to 50%, and more preferably 5 to 30%.
[0042]
The carbon material (J) may be any material, and examples thereof include natural graphite, artificial graphite, acetylene black, ketjen black, and vapor grown carbon fiber. The carbon material (J) may be a single material or a mixture of two or more carbon materials.
[0043]
Moreover, what kind of shape of what is used for carbon material (J) may be used, for example, spherical shape, such as mesocarbon microbead, fibrous shape, such as mesocarbon fiber, scale shape, lump shape, etc. can be used suitably. At this time, from the viewpoint of ensuring the conductivity of the negative electrode, it is preferable that scaly graphite having a number average particle diameter of 5 to 25 μm is included as the carbon material (J).
[0044]
The carbon material (J) preferably includes mesocarbon microbeads and mesocarbon fibers. At this time, it is more preferable that the B element is contained in the mesocarbon microbead or the mesocarbon fiber.
[0045]
In the battery of the present invention, the negative electrode mixture layer must contain SBR as a binder. This is because the amount of addition to the negative electrode can be remarkably reduced as compared with the case where a fluorine-based resin such as PVdF is used as the binder, and the safety of the battery is greatly improved.
[0046]
The negative electrode mixture layer is obtained by removing the current collector from the negative electrode, and includes a negative electrode active material, a conductive material such as a carbon material, a binder such as SBR or polyvinylidene fluoride (PVdF), and carboxymethyl cellulose ( CMC) means a combination of all binders.
[0047]
The content of SBR in the negative electrode mixture layer is preferably 0.5 to 10.0% by mass, and particularly preferably 0.8 to 3.2% by mass. When this content is less than 0.5% by mass, there is a problem in manufacturing that the negative electrode mixture layer is remarkably easily peeled off from the negative electrode current collector, and a problem that the battery swells when left at high temperature is extremely large. . Moreover, when this content rate exceeds 10.0 mass%, since the internal resistance of a battery increases, it is unpreferable.
[0048]
SBR used as a binder is CMC, PVdF, carboxy-modified polyvinylidene fluoride, polyethylene, polypropylene, polytetrafluoroethylene, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer fluoride. It can be used by mixing with vinylidene chloride-chlorotrifluoroethylene copolymer or the like.
[0049]
In the battery of the present invention, the SBR content in the negative electrode mixture layer and the adhesion strength between the negative electrode mixture layer and the negative electrode current collector have a large dependency, but the SBR latex particle size, glass transition point, etc. In the case where the SBR content is the same, the adhesion strength value is greatly different even when the SBR content is the same, and the battery swelling when left at high temperature is remarkably changed.
[0050]
In the battery of the present invention, the adhesion strength between the negative electrode mixture layer and the negative electrode current collector must be 75 N / m or more, and preferably 90 N / m or more.
[0051]
However, the adhesion strength described here is measured as follows. First, the negative electrode was cut into a 10 cm × 4 cm rectangle, and then the entire surface of one side was adhered to the sample table with double-sided tape. Next, a tape was cut into a width of 18 mm and a length of 15 cm, and a length of 5 cm from one end of the tape was attached to the center of the negative electrode. A string was attached to the other end of the tape and tied to a spring-loaded hook. In the direction in which the tape bends at 170 to 180 °, the spring alone is pulled at a speed of 300 mm / min, and the tensile load (N / m) when the negative electrode mixture layer starts to peel from the negative electrode current collector is determined as the adhesion strength. Defined.
[0052]
Here, an adhesive tape having an adhesive strength of 294 [N / m] and a width of 18 mm, as defined in JIS Z1522, was used.
[0053]
The adhesion strength between the negative electrode mixture layer and the negative electrode current collector varies depending on the surface roughness of the copper foil used for the current collector. However, there are four types of definition of the surface roughness of the copper foil, for example, in JIS B 0601-2001, and it is difficult to quantify the surface roughness. Therefore, in the present invention, as the copper foil that is the current collector, regardless of the surface roughness of the copper foil, regardless of the surface roughness of the copper foil, the negative electrode mixture layer and the negative electrode current collector are used. When the adhesion strength is 75 N / m or more, excellent high temperature storage characteristics are exhibited.
[0054]
A solvent or a solution can be used when mixing the negative electrode active material and the binder. The solvent or solution may be non-aqueous or aqueous as long as it can disperse or dissolve the binder. When using a non-aqueous system, for example, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, Tetrahydrofuran or the like can be used.
[0055]
On the other hand, when an aqueous type is used, an aqueous solution to which water, a dispersant, a thickener, or the like is added can be used. As the negative electrode current collector, iron, copper, stainless steel, nickel, or the like can be used. The shape may be any shape, and examples thereof include a planar body, a foamed body, a sintered porous body, an expanded lattice, and those in which holes having an arbitrary shape are formed.
[0056]
In the nonaqueous electrolyte secondary battery of the present invention, either a nonaqueous liquid electrolyte or a solid electrolyte may be used as the nonaqueous electrolyte.
[0057]
When a non-aqueous liquid electrolyte is used, as its solvent, ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, A polar solvent such as dipropyl carbonate and methylpropyl carbonate or a mixed solvent optionally containing them can be used.
[0058]
In addition, as a solute of the non-aqueous liquid electrolyte, LiPF6, LiBF4, LiAsF6LiClO4, LiSCN, LiI, LiCl, LiBr, LiCF3CO2, LiCF3SO3, LiC4F9SO3, LiN (SO2CF3)2, LiN (SO2CF2CF3)2, LiN (SO2CF3) (SO2CF2CF2CF2CF3), LiCF4(CF3)2, LiCF5(CF3), LiN (COCF3)2And LiN (COCF2CF3)2Lithium salts such as and mixtures containing these optionally can be used. Moreover, you may contain additives, such as a propane sultone, in nonaqueous electrolyte solution.
[0059]
When a solid electrolyte is used, for example, an inorganic solid electrolyte such as a Li-containing chalcogenide, Li+A single ion conductor made of a polymer containing a polymer, a polymer electrolyte containing a lithium salt in the polymer, and the like can be used. The polymer electrolyte may be one in which a lithium salt is contained in the polymer by wetting or swelling the non-aqueous liquid electrolyte into the polymer, or only the lithium salt is dissolved in the polymer. May be.
[0060]
The lithium salt contained in the polymer electrolyte is LiPF.6, LiBF4, LiAsF6LiClO4, LiSCN, LiI, LiCl, LiBr, LiCF3CO2, LiCF3SO3, LiC4F9SO3, LiN (SO2CF3)2, LiN (SO2CF2CF3)2, LiN (SO2CF3) (SO2CF2CF2CF2CF3), LiCF4(CF3)2, LiCF5(CF3), LiN (COCF3)2And LiN (COCF2CF3)2Lithium salts such as and mixtures containing these optionally can be used. Furthermore, when a solid electrolyte is used, a plurality of electrolytes may be included in the battery. For example, different electrolytes can be used for the positive electrode and the negative electrode, respectively.
[0061]
The polymer used for the polymer electrolyte is preferably a polymer that exhibits good ionic conductivity when wetted or swollen by a non-aqueous liquid electrolyte. For example, polyethers such as polyethylene oxide (PEO) and polypropylene oxide (PPO), Vinylidene chloride (PVdF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polyacrylonitrile, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethyleneimine Polybutadiene, polystyrene, polyisoprene, or derivatives thereof can be used alone or in combination. In addition, a polymer obtained by copolymerizing each monomer constituting the polymer, for example, vinylidene fluoride / hexafluoropropylene copolymer (P (VdF / HFP)), styrene butadiene rubber, or the like may be used.
[0062]
The reason for using these polymer electrolytes is that Li+This is because the ionic conductivity and mobility of the battery increase, so that the polarization of the battery can be reduced. The polymer electrolyte is preferably one that can change its shape. This is because the negative electrode active material can follow the volume expansion and contraction due to charge / discharge, so that the electronic conductivity and ionic conductivity of the negative electrode can be maintained well.
[0063]
In the nonaqueous electrolyte secondary battery of the present invention, the negative electrode may contain a polymer electrolyte. The polymer electrolyte preferably exhibits lithium ion conductivity and binding properties. This is because the negative electrode has good binding properties between the active material and the active material and between the active material and the polymer electrolyte, and the negative electrode's electronic and ionic conduction performance after repeated charge and discharge. This is because it can be maintained well. In particular, the polymer electrolyte is preferably porous. This is because the ionic conductivity of the polymer electrolyte is further improved by holding the electrolytic solution in the pores.
[0064]
In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material may be any material as long as it absorbs and releases Li, and various materials can be appropriately used. For example, lithium transition metal composite oxide LixMO2-δ(Wherein M represents Co, Ni or Mn, 0.4 ≦ x ≦ 1.2, 0 ≦ δ ≦ 0.5), a part of M of this lithium transition metal composite oxide is Al, Mn, One substituted with at least one metal element selected from Fe, Ni, Co, Cr, Ti, Zn, one obtained by adding a nonmetallic element such as P or B to this lithium transition metal composite oxide, MnO2, FeO2, V2O5, V6O13TiO2TiS2, NiOOH, FeOOH, FeS and the like. Moreover, you may mix and use the said various active materials arbitrarily.
[0065]
In particular, lithium nickel composite oxide LixNipM1 qM2 rO2-δ(However, M1, M2Represents at least one element selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, 0.4 ≦ x ≦ 1.2, 0.8 ≦ p + q + r ≦ 1.2, 0 ≦ δ ≦ 0.5) or a lithium nickel composite oxide to which a nonmetallic element such as B or P is added, a lithium cobalt composite oxide, or a lithium cobalt nickel composite oxide is preferably used.
[0066]
As the positive electrode active material, MnO2, FeO2, V2O5, V6O13TiO2TiS2In the case of using a material that does not contain Li, such as NiOOH, FeOOH, or FeS, a battery may be manufactured using a material in which Li is chemically occluded in the positive electrode or the negative electrode. For example, the positive electrode or negative electrode and metallic lithium+And a method of applying a material in contact with a non-aqueous electrolyte containing metal, a method of attaching metal Li on the surface of a positive electrode or a negative electrode, and the like.
[0067]
Any binder may be used for the positive electrode, and a known binder can be used as appropriate. For example, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene , Fluorinated polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or derivatives thereof, These can be used alone or in admixture of two or more.
[0068]
Moreover, as a separator of the nonaqueous electrolyte secondary battery of the present invention, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane or the like can be used, and a synthetic resin microporous membrane is particularly preferable. Examples of the material include nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, and polyolefins such as polypropylene, polyethylene, and polybutene. Of these, polyolefin microporous membranes such as polyethylene, polypropylene microporous membranes, and microporous membranes composed of these are preferred in terms of thickness, membrane strength, membrane resistance, and the like.
[0069]
In addition, the shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte secondary batteries having various shapes such as a square, an ellipse, a coin, a button, a sheet, a cylinder, and a long cylinder. Applicable to batteries.
[0070]
【Example】
Hereinafter, the present invention will be described using preferred embodiments, but the scope of the present invention is not limited thereto.
[0071]
[Example 1]
SiO powder (SiOxIn which x = 1) is heat-treated at 1000 ° C. for 6 hours to obtain Si and SiO.2SiO powder (a1) containing both phases was obtained. As a result of X-ray diffraction measurement of this SiO powder (a1), peaks attributable to the Si (111) plane and the Si (220) plane at 2θ (Cukα) = 28.4 ° and 47.3 °, respectively. It was observed. The full width at half maximum of both peaks was 1.7 °. (Hereinafter, the full width at half maximum of the peak attributed to the Si (111) plane is simply referred to as “half width”).
A material (j1) was prepared by mixing in advance at a ratio of mesocarbon microbeads (MCMB): natural graphite: artificial graphite = 40: 40: 20 (mass ratio), and SiO powder (a1) 5.0 mass%. And 95.0% by mass of material (j1) were mixed to make a negative electrode active material.
[0072]
As the binder, SBR (s1) and carboxymethyl cellulose (CMC) having a latex particle size of 190 nm and a glass transition point of −15 ° C. were used. A predetermined amount of the negative electrode active material, SBR (s1), and CMC was weighed and dispersed in ion-exchanged water to obtain a negative electrode mixture paste. This negative electrode mixture paste was applied on one side of an electrolytic copper foil having a thickness of 15 μm and dried at 150 ° C., and then the other side was coated and dried in the same manner, and a negative electrode mixture layer was provided on both sides. A copper foil was obtained. Further, this was compression molded by a roll press to obtain a negative electrode.
[0073]
In addition, it was made for the content rate of SBR (s1) in a negative mix layer to be 0.5 mass%, and the content rate of CMC to be 2.0 mass%. In this negative electrode, the adhesion strength between the negative electrode mixture layer and the negative electrode current collector was 76 N / m.
[0074]
Next, 90% by mass of lithium cobaltate, 5% by mass of acetylene black, and 5% by mass of polyvinylidene fluoride (PVdF) were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a paste. This paste was applied to an aluminum foil having a thickness of 20 μm at 2.5 mg · cm. 2Then, the NMP was evaporated by applying the positive electrode active material contained in the battery so that the amount of the positive electrode active material was 5.3 g, and then drying at 150 ° C. The above operation was performed on both sides of the aluminum foil, and both sides were compression molded with a roll press. Thus, the positive electrode provided with the positive mix layer on both surfaces was manufactured.
[0075]
After winding a positive electrode and a negative electrode so that a polyethylene separator, which is a continuous porous body having a thickness of 20 μm and a porosity of 40%, is positioned between both electrodes, this is 48 mm in height, 30 mm in width, and 5.2 mm in thickness. Inserted into a container. Further, a non-aqueous liquid electrolyte was injected into the container and then sealed to prepare a battery (A1) having a rated capacity of 700 mAh. The non-aqueous liquid electrolyte is composed of 1 mol / l LiPF in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1.6Is dissolved.
[0076]
[Example 2]
Instead of SBR (s1), SBR (s2) having a latex particle size of 250 nm and a glass transition point of −15 ° C. was used as the binder, and the content of SBR (s2) in the negative electrode mixture layer was determined. A battery (A2) of Example 2 was made in the same manner as Example 1 except that the content was 0.3% by mass.
[0077]
[Example 3]
As in Example 1, except that SBR (s2) was used instead of SBR (s1) as the binder, and the content of SBR (s2) in the negative electrode mixture layer was 0.5 mass%. Thus, a battery (A3) of Example 3 was produced.
[0078]
[Comparative Example 1]
A battery (R1) of Comparative Example 1 was produced in the same manner as in Example 1, except that the content of SBR (s1) in the negative electrode mixture layer was 0.3% by mass.
[0079]
[Comparative Example 2]
As a binder, PVdF was used in place of SBR (s1), and the content of PVdF in the negative electrode mixture layer was 0.5 mass%, in the same manner as in Example 1, except for Comparative Example 2. A battery (R2) was produced.
[0080]
[Comparative Example 3]
A battery (R3) of Comparative Example 3 was produced in the same manner as in Example 1 except that the negative electrode active material was 100% by mass of the material (j1) not containing the SiO powder (a1).
[0081]
About the negative electrode used for the battery of Examples 1-3 and Comparative Examples 1-3, the adhesive strength of a negative mix layer and a negative electrode electrical power collector was measured by the above-mentioned method. The contents of these batteries are summarized in Table 1. The unit of “composition” in Table 1 is “mass%”.
[0082]
[Table 1]
Figure 2005025991
[0083]
[Battery evaluation test]
The batteries of Examples 1 to 3 and Comparative Examples 1 to 3 were measured for battery swelling, high rate discharge performance, and battery swelling when left at high temperature as follows.
[0084]
After measuring the battery thickness t1 (mm) of each battery, a charge / discharge test was performed in a thermostatic chamber at 25 ° C. In this test, a constant current to reach 4.2 V at 35 mA, followed by charging at a constant voltage of 4.2 V for 2 hours, and discharging at a constant current of up to 2.7 V at 140 mA were performed. The discharge capacity at this time is C1. Subsequently, a constant current until reaching 4.2 V at 35 mA, followed by charging at a constant voltage of 2 hours at 4.2 V, and discharging at a constant current of up to 2.7 V at 1400 mA were performed. The discharge capacity at this time is C2. Here, the high rate discharge performance was calculated from the following equation. High rate discharge performance (%) = C2 / C1 × 100
In order to be used in applications such as portable computers and power tools, high capacity must be exhibited during high rate discharge. Therefore, the high rate discharge performance is preferably 70% or more.
[0085]
Further, using this battery, a constant current until reaching 4.2 V at 35 mA and subsequent charging at a constant voltage of 4.2 V for 2 hours were performed. The battery was left in a constant temperature bath at 100 ° C. for 3 hours, and then the battery thickness t2 (mm) was measured again. Here, the swelling of the battery when left at high temperature was calculated from the following equation. Battery swelling (mm) = t2 (mm) -t1 (mm)
It is unsuitable to use a battery with a battery swelling exceeding 1.50 mm for applications such as portable computers and electric tools because the battery pack may be broken. Therefore, the battery bulge must be 1.50 mm or less. Since the battery is expected to swell slightly due to repeated charge and discharge, the battery swell is preferably 1.40 mm or less.
[0086]
Moreover, the time required for negative electrode manufacture was compared. The time required for manufacturing the negative electrode used for the battery A1 of Example 1 was set as 100, and the time required for manufacturing the negative electrode used for other batteries was relatively displayed.
[0087]
The measurement results for the batteries of Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 2.
[0088]
[Table 2]
Figure 2005025991
[0089]
From Table 2, the following became clear. By comparing the comparative example 1 and the examples 1 to 3 with the appropriate selection of the type of SBR in the negative electrode mixture layer, the adhesion strength is 75 N / m or more regardless of the composition of the SBR in the negative electrode mixture layer. As a result, the swelling of the battery was 1.50 mm or less, and a battery excellent in discharge capacity C1 and high rate discharge performance was obtained. However, in Examples 2 and 3 using SBR (s2) as the binder for the negative electrode, the dispersibility of SBR (s2) is inferior to that of SBR (s1). It was shown to be necessary for a long time.
[0090]
In addition, since the battery of Comparative Example 2 has a large proportion of the binder in the negative electrode mixture layer, and the battery of Comparative Example 3 does not contain SiO (a1), both of the batteries are initial. The discharge capacity C1 has become considerably small.
[0091]
As described above, by using the negative electrode satisfying the condition of claim 1 of the present application, it is possible to obtain a battery having a high initial discharge capacity C1, a battery swelling of 1.50 mm or less, and excellent high-rate discharge performance. Indicated.
[0092]
[Examples 4 to 10]
In the same manner as in Example 1, except that the content of the negative electrode active material in the negative electrode mixture layer was 97.0 to 86.0 mass% and the content of SBR was 0.5 to 12.0 mass%, Batteries (A4) to (A10) of Examples 4 to 10 were produced.
[0093]
[Example 11]
A predetermined amount of SBR (s1) as a negative electrode active material and a binder is weighed and dispersed in NMP to obtain a paste. This paste is applied to one side of a 15 μm thick copper foil at 150 ° C. The battery of Example 11 was made in the same manner as in Example 1 except that the same application and drying were performed on the other surface after drying, and a copper foil provided with a negative electrode mixture layer on both sides was obtained. (A11) was manufactured. The negative electrode mixture layer contained 98.0% by mass of the negative electrode active material and 2.0% by mass of SBR (s1).
[0094]
The contents of the batteries of Examples 1, 4 to 11 and Comparative Example 1 are shown in Table 3.
[0095]
[Table 3]
Figure 2005025991
[0096]
[Examples 12 to 14, Comparative Example 4]
Instead of SBR (s1) as a binder, SBR (s2) described above, SBR (s3) having a latex particle size of 140 nm and a glass transition point of −15 ° C., latex having a particle size of 140 nm and glass Batteries (A12) to (A14) of Examples 12 to 14 were produced in the same manner as in Example 4 except that SBR (s4) having a transition point of −5 ° C. was used.
[0097]
Further, instead of SBR (s1) as a binder, a comparative example was made in the same manner as in Example 4 except that SBR (s5) having a latex particle size of 80 nm and a glass transition point of −15 ° C. was used. 4 batteries (R4) were produced. Table 4 shows the contents of the batteries (A4), (A12) to (A14) of Example 4, and 12 to 14 and the battery (R4) of Comparative Example 4.
[0098]
[Table 4]
Figure 2005025991
[0099]
The measurement results for these batteries are shown in Tables 5 and 6.
[0100]
[Table 5]
Figure 2005025991
[0101]
[Table 6]
Figure 2005025991
[0102]
Here, the relationship between the SBR content and the battery swelling in the negative electrode mixture layer obtained from Tables 3 and 6 is shown in FIG. 1, and the relationship between the SBR content in the negative electrode mixture layer and the high rate discharge performance is shown in FIG. Each is shown in FIG. FIG. 3 shows the relationship between the adhesion strength between the negative electrode mixture layer obtained from Tables 4 and 6 and the negative electrode current collector and the battery swelling.
[0103]
From FIG. 1 to FIG. 3, in order to obtain a battery having a low swelling of 1.50 mm or less when left at high temperature and an excellent high-rate discharge performance of 70% or more, the SBR content in the negative electrode mixture layer is 0. It was 0.5-10.0 mass%, and it was shown that the adhesive strength between a negative mix layer and a negative electrode collector needs to be 75 N / m or more.
[0104]
[Example 15]
Non-heat treated SiO powder (a0) (SiOxThe battery (B1) of Example 15 was obtained in the same manner as in Example 4 except that x = 1) was used.
[0105]
[Examples 16 to 20]
SiO powders (a2) to (a6) were obtained by setting the heat treatment temperature of SiO to 830 ° C to 1050 ° C. Batteries (B2) to (B6) of Examples 16 to 20 were obtained in the same manner as Example 4 except that these were used for the negative electrode active material. The SiO powders (a2) to (a6) are all made of SiO.xWhere x = 1.
[0106]
Table 7 shows the contents of the batteries (A4) and (B1) to (B6). In Table 7, the unit of “half width of Si (111)” is “° (2θ, Cukα)”.
[0107]
[Table 7]
Figure 2005025991
[0108]
Using the batteries (B1) to (B6) of Examples 15 to 20, battery swell and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 8.
[0109]
[Table 8]
Figure 2005025991
[0110]
FIG. 4 shows the relationship between the full width at half maximum and battery swelling. From this, it is clear that the battery swelling is as small as 1.40 mm or less when the half-value width is 3.0 or less. Therefore, it is preferable that the half width of the SiO powder used for the nonaqueous electrolyte secondary battery of the present invention is 3.0 or less.
[0111]
[Examples 21 to 25]
As Example 4, except that a mixture of 1.0 to 50.0% by mass of SiO powder (a1) and 99.0 to 50.0% by mass of material (j1) was used as the negative electrode active material. Thus, the batteries (C1) to (C5) of Examples 21 to 25 were obtained. The contents of the batteries (A4) and (C1) to (C5) are summarized in Table 9.
[0112]
[Table 9]
Figure 2005025991
[0113]
Using the batteries (C1) to (C5) of Examples 21 to 25, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 10.
[0114]
[Table 10]
Figure 2005025991
[0115]
From this, when the ratio of the mass of the SiO powder to the mass of the negative electrode active material is 3.0 to 10.0%, the battery swelling is as small as 1.40 mm or less and the high rate discharge performance is as high as 80% or more. Is clear. Therefore, the ratio of the mass of the SiO powder to the mass of the negative electrode active material is preferably 3.0 to 10.0%.
[0116]
[Example 26]
The battery of Example 26 (D1) was prepared in the same manner as in Example 4 except that a mixture of 50% by mass of mesocarbon microbeads (MCMB) and 50% by mass of natural graphite was used instead of the material (j1). )
[0117]
[Example 27]
A battery (D2) of Example 27 was obtained in the same manner as in Example 4 except that only natural graphite was used instead of the material (j1).
[0118]
[Example 28]
A battery (D3) of Example 28 was obtained in the same manner as in Example 4 except that a mixture of 50% by mass of natural graphite and 50% by mass of artificial graphite was used instead of the material (j1). The contents of the batteries (A4) and (D1) to (D3) are summarized in Table 11.
[0119]
[Table 11]
Figure 2005025991
[0120]
Using the batteries (D1) to (D3) of Examples 26 to 28, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 12.
[0121]
[Table 12]
Figure 2005025991
[0122]
In each of the batteries (A4) and (D1) to (D3), the battery swelling was as small as 1.40 mm or less, and the high rate discharge performance was as high as 80% or more. From this, it is clear that the graphite used as the material (j1) may be a single type, or a plurality of types may be mixed at an arbitrary ratio.
[0123]
[Example 29]
SiO powder (a1) 0.5 mol / dm-3Soaked in hydrofluoric acid in SiO2By dissolving a part of the phase, SiO0.8Got. A battery (E1) of Example 29 was obtained in the same manner as in Example 4 except that this was used instead of the SiO powder (a1).
[0124]
[Example 30]
SiO powder (a1) 0.8 mol / dm-3Soaked in hydrofluoric acid in SiO2By dissolving a part of the phase, SiO0.5Got. A battery (E2) of Example 30 was obtained in the same manner as in Example 4 except that this was used instead of the SiO powder (a1). Table 13 shows the contents of the batteries (E1) and (E2).
[0125]
[Table 13]
Figure 2005025991
[0126]
Using the batteries (E1) and (E2) of Examples 29 and 30, battery swell and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 14.
[0127]
[Table 14]
Figure 2005025991
[0128]
The batteries (A4), (E1), and (E2) all had a battery bulge as small as 1.40 mm or less and a high rate discharge performance as high as 80% or more. Therefore, the atomic ratio x of O to Si in the substance (A) containing Si and O can take an arbitrary value of 0 <x <2.
[0129]
[Example 31]
After immersing the SiO powder (a1) in an aqueous boric acid solution and firing at 800 ° C., SiO1.03B0.02Got. A battery (F1) of Example 31 was obtained in the same manner as in Example 4 except that this was used instead of the SiO powder (a1).
[0130]
[Example 32]
SiO powder (a1) [Cu (NH3)4]2+After being immersed in the aqueous solution containing1.01Cu0.01Got. A battery (F2) of Example 32 was obtained in the same manner as in Example 4 except that this was used instead of the SiO powder (a1). Table 15 shows the contents of the batteries (F1) and (F2).
[0131]
[Table 15]
Figure 2005025991
[0132]
Using the batteries (F1) and (F2) of Examples 31 and 32, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 16.
[0133]
[Table 16]
Figure 2005025991
[0134]
In each of the batteries (F1) and (F2), the battery swelling was as small as 1.40 mm or less, and the high rate discharge performance was as high as 80% or more. Therefore, it is clear that an arbitrary amount of a nonmetallic element or a metallic element can be added to the substance (A) containing Si and O.
[0135]
[Examples 33 to 36]
95 to 70% by mass of SiO powder (a1) and 5 to 30% by mass of MCMB are weighed and mechanically combined by a mechano-fusion method (using AMS-Lab manufactured by Hosokawa Micron). (M1) was obtained. Batteries (G1) to (G4) of Examples 33 to 36 were obtained in the same manner as in Example 4 except that the material (m1) was used instead of the SiO powder (a1). From the result of SEM observation of the material (m1), it was found that a plurality of SiO particles were supported on one MCMB particle.
[0136]
[Example 37]
80% by mass of SiO powder (a1) and 20% by mass of natural graphite were weighed and mechanically combined by the mechano-fusion method (using AMS-Lab manufactured by Hosokawa Micron). Got. A battery (G5) of Example 37 was obtained in the same manner as in Example 4 except that this was used instead of the SiO powder (a1). From the result of SEM observation of the material (m2), it was found that a plurality of natural graphite particles and a plurality of SiO particles were combined. Table 17 shows the contents of the batteries (G1) to (G5).
[0137]
[Table 17]
Figure 2005025991
[0138]
Using the batteries (G1) to (G5) of Examples 33 to 37, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 18.
[0139]
[Table 18]
Figure 2005025991
[0140]
In each of the batteries (G1) to (G5), the battery swelling was as small as 1.40 mm or less, the high rate discharge performance was as high as 80% or more, and in addition, the batteries (A4) were superior. Therefore, the substance (A) containing Si and O is preferably compounded with the carbon material.
[0141]
[Examples 38 to 42]
Chemical vapor deposition (CVD) of the carbon material (b1) on the surface of the SiO powder so that the mass of the carbon material (b1) is 1 to 30% with respect to the total mass of the SiO powder and the carbon material (b1). Thus, materials (c1) to (c5) were obtained. The CVD was performed under conditions of 1000 ° C. in an Ar atmosphere using methane as a carbon source.
[0142]
The materials (c1) to (c5) were used instead of the SiO powder (a1), and 20% by mass of the materials (c1) to (c5) and 80% by mass of the material (j1) were mixed to form a negative electrode Batteries (H1) to (H5) of Examples 38 to 42 were produced in the same manner as Example 4 except that the active material was used. Table 19 shows the contents of the batteries (H1) to (H5).
[0143]
[Table 19]
Figure 2005025991
[0144]
Using the batteries (H1) to (H5) of Examples 37 to 41, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 20.
[0145]
[Table 20]
Figure 2005025991
[0146]
In all of the batteries (H1) to (H5), the battery swelling was as small as 1.40 mm or less, and the high rate discharge performance was as high as 80% or more. Therefore, it became clear that it is preferable to apply a material obtained by CVD of a carbon material to the substance (A) containing Si and O as the negative electrode active material.
[0147]
[Example 43]
By subjecting the carbon material (b2) to plasma CVD on the surface of the SiO powder such that the mass of the carbon material (b2) is 5% with respect to the total mass of the SiO powder and the carbon material (b2), the material (c6 ) The CVD was performed under conditions of 1000 ° C. in an Ar atmosphere using toluene as a carbon source. A battery (H6) of Example 43 was produced in the same manner as in Example 39 except that the material (c6) was used instead of the material (c1).
[0148]
[Example 44]
Chemical vapor deposition (CVD) of the carbon material (b3) on the surface of the SiO powder so that the mass of the carbon material (b3) is 5% with respect to the total mass of the SiO powder and the carbon material (b3). Gave material (c7). The CVD was performed under conditions of 1000 ° C. in an Ar atmosphere using benzene as a carbon source. A battery (H7) of Example 44 was made in the same manner as Example 39 except that the material (c7) was used instead of the material (c1).
[0149]
[Example 45]
By subjecting the carbon material (b4) to plasma CVD on the surface of the SiO powder such that the mass of the carbon material (b4) is 5% with respect to the total mass of the SiO powder and the carbon material (b4), the material (c8 ) The CVD was performed under the condition of 1000 ° C. in an Ar atmosphere using acetylene as a carbon source. A battery (H8) of Example 45 was produced in the same manner as in Example 39 except that the material (c8) was used instead of the material (c1).
[0150]
Using the batteries (H6) to (H8) of Examples 43 to 45, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 21.
[0151]
[Table 21]
Figure 2005025991
[0152]
In each of the batteries (H2) and (H6) to (H8), the battery swelling was as small as 1.40 mm or less and the high rate discharge performance was as high as 80% or more. Therefore, when a material obtained by CVD of a carbon material to the substance (A) containing Si and O is applied to the negative electrode active material, it is clear that any carbon source may be used.
[0153]
[Examples 46 to 49]
Except having used the mixture of 1.0-20.0 mass% material (c4) and 99.0-80.0 mass% material (j1) as a negative electrode active material, it is the same as that of Example 41. Thus, batteries (I1) to (I4) of Examples 46 to 49 were obtained. Table 22 shows the contents of the batteries (H4) and (I1) to (I4).
[0154]
[Table 22]
Figure 2005025991
[0155]
Using the batteries (I1) to (I4) of Examples 46 to 49, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 23.
[0156]
[Table 23]
Figure 2005025991
[0157]
In each of the batteries (H4) and (I1) to (I4), the battery swelling was as small as 1.40 mm or less, and the high rate discharge performance was as high as 80% or more. Further, when the mass ratio of the material (c4) in the negative electrode active material is 20% or less, the battery swelling is extremely small as 1.00 mm or less. Therefore, when a material obtained by CVD of a carbon material to the substance (A) containing Si and O is applied to the negative electrode active material, the mass ratio of the material (c4) in the negative electrode active material may be 20% or less. preferable.
[0158]
[Examples 50 to 56, Comparative Example 6]
Except having changed the content rate of the negative electrode active material in a negative electrode mixture layer into 98.5-86.0 mass%, and changing the content rate of SBR into 0.5-12.0 mass%, it carried out similarly to Example 41, and. Thus, batteries (J1) to (J6) of Examples 50 to 56 were manufactured.
[0159]
Further, the battery of Comparative Example 6 was prepared in the same manner as in Example 41 except that the content of the negative electrode active material in the negative electrode mixture layer was 97.7% by mass and the content of SBR was 0.3% by mass. R6) was produced.
[0160]
Table 24 shows the contents of the batteries of Examples 41 and 50 to 56 and Comparative Example 6.
[0161]
[Table 24]
Figure 2005025991
[0162]
Using the batteries (J1) to (J6) of Examples 50 to 56, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 25.
[0163]
[Table 25]
Figure 2005025991
[0164]
FIG. 5 shows the relationship between the SBR content in the negative electrode mixture layer and battery swelling. FIG. 6 shows the relationship between the SBR content in the negative electrode mixture layer and the high rate discharge performance. FIG. 7 shows the relationship between the adhesion strength between the negative electrode mixture layer and the negative electrode current collector and battery swelling.
[0165]
From FIG. 5 to FIG. 7, in order to obtain a battery having a small swelling of 1.50 mm or less when left at high temperature and an excellent high rate discharge performance of 70% or more, a material containing Si and O in the negative electrode active material Even when a material obtained by CVD of a carbon material is applied to (A), the content of SBR in the negative electrode mixture layer is 0.5 mass% to 10.0 mass%, and the negative electrode composite The adhesion strength between the agent layer and the negative electrode current collector is preferably 75 N / m or more.
[0166]
[Example 57]
SiO powder and natural graphite are weighed at a mass ratio of 30:55, and these are mechanically combined by a ball mill method (using a planetary MONO mill P-6 manufactured by Fritsch) to obtain a material (g1). It was.
[0167]
By CVD of the carbon material (h1) on the surface of the material (g1) so that the mass of the carbon material (h1) is 15% with respect to the total mass of the material (g1) and the carbon material (h1). Material (i1) was obtained. The CVD was performed under conditions of 1000 ° C. in an Ar atmosphere using toluene as a carbon source. A battery (K1) of Example 57 was made in the same manner as Example 38 except that the material (i1) was used instead of the material (c1).
[Examples 58 to 61]
Except that the mass ratio of the SiO powder and natural graphite weighed when producing the material (g1) and the mass of the carbon material (h1) to be CVDed when producing the material (i1) were changed. In the same manner as in Example 55, batteries (K2) to (K5) of Examples 58 to 61 were manufactured. Table 26 shows the contents of the batteries (K1) to (K5).
[0168]
[Table 26]
Figure 2005025991
[0169]
Using the batteries (K1) to (K5) of Examples 57 to 61, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 27.
[0170]
[Table 27]
Figure 2005025991
[0171]
In all of the batteries (K1) to (K5), the battery swelling was as small as 1.40 mm or less, and the high rate discharge performance was as high as 80% or more. A mixture of the substance (A) and the carbon material (F) is defined as a substance (G), and at least a part of the surface of the substance (G) is covered with the carbon material (H) as a substance (I). From the results of the batteries (K1) to (K5), it was revealed that the substance (I) is preferably applied to the negative electrode active material.
[0172]
[Examples 62 to 66]
Example 57 was used except that a mixture of 1.0 to 20.0% by mass of material (g1) and 99.0 to 80.0% by mass of material (j1) was used as the negative electrode active material. Thus, batteries (L1) to (L5) of Examples 62 to 66 were obtained. The contents of the batteries (K1) and (L1) to (L5) are summarized in Table 28.
[0173]
[Table 28]
Figure 2005025991
[0174]
Using the batteries (L1) to (L5) of Examples 62 to 66, battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. The results are shown in Table 29.
[0175]
[Table 29]
Figure 2005025991
[0176]
From this, when the ratio of the mass of the material (g1) to the total mass of the material (g1) and the material (j1) is 5 to 30%, the battery swelling is as small as 1.00 mm or less, and the high rate discharge performance is high. It was found to be very high at 90% or more. Therefore, it is clear that the ratio of the mass of the material (g1) to the total mass of the material (g1) and the material (j1) is preferably 5 to 30%.
[0177]
[Example 67]
A battery (M) of Example 67 was made in the same manner as Example 4 except that a rolled copper foil having a thickness of 15 μm was used instead of the electrolytic copper foil having a thickness of 15 μm as the negative electrode current collector. In the negative electrode used for the battery (M), the adhesion strength between the negative electrode mixture layer and the current collector was 98 N / m.
[0178]
Using this battery (M), battery swelling and high rate discharge performance were measured under the same conditions as the battery (A4) of Example 4. As a result, the battery swelling was 1.33 mm, and the high rate discharge performance was as good as 81%. Therefore, it has been found that excellent characteristics can be obtained regardless of whether an electrolytic copper foil or a rolled copper foil is used as the metal foil used as the negative electrode current collector.
[0179]
【The invention's effect】
The nonaqueous electrolyte secondary battery of the present invention includes a negative electrode including a negative electrode mixture layer and a negative electrode current collector, the negative electrode mixture layer includes a negative electrode active material and a binder, and the negative electrode active material includes A substance containing Si and O and a carbon material, wherein an atomic ratio x of O to Si in the substance containing Si and O satisfies 0 <x <2, and the binder contains SBR; By setting the adhesion strength between the negative electrode mixture layer and the negative electrode current collector to 75 N / m or more, battery swelling that occurs when a nonaqueous electrolyte secondary battery including a negative electrode containing silicon oxide is left at high temperature is greatly suppressed. In addition, the high rate discharge performance at room temperature could be equal to or higher than that of conventionally known batteries. Furthermore, by setting the content of the binder in the negative electrode mixture layer to 0.5 to 10.0% by mass, it was possible to suppress swelling when left at a higher temperature. Therefore, the industrial value of the present invention is extremely great.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the SBR content in a negative electrode mixture layer and battery swelling when a mixture of SiO powder (a1) and material (j1) is used as a negative electrode active material.
FIG. 2 is a diagram showing the relationship between the SBR content in the negative electrode mixture layer and the high rate discharge performance when a mixture of SiO powder (a1) and material (j1) is used as the negative electrode active material.
FIG. 3 is a graph showing the relationship between adhesion strength and battery swelling when a mixture of SiO powder (a1) and material (j1) is used as the negative electrode active material.
FIG. 4 is a diagram showing a relationship between a half-value width and battery swelling.
FIG. 5 is a graph showing the relationship between the SBR content in the negative electrode mixture layer and battery swelling when a mixture of the material (c4) and the material (j1) is used as the negative electrode active material.
FIG. 6 is a diagram showing the relationship between the SBR content in the negative electrode mixture layer and the high rate discharge performance when a mixture of SiO powder (c4) and material (j1) is used as the negative electrode active material.
FIG. 7 is a diagram showing the relationship between adhesion strength and battery swelling when a mixture of SiO powder (c4) and material (j1) is used as the negative electrode active material.

Claims (2)

負極合剤層と負極集電体とを備えた負極を含む非水電解質二次電池において、前記負極合剤層が負極活物質と結着材とを含み、前記負極活物質がSiとOとを含む物質と炭素材料とを含み、前記SiとOとを含む物質におけるSiに対するOの原子比xが0<x<2を満たし、前記結着材がSBRを含有し、前記負極合剤層と負極集電体との密着強度が75N/m以上であることを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a negative electrode including a negative electrode mixture layer and a negative electrode current collector, the negative electrode mixture layer includes a negative electrode active material and a binder, and the negative electrode active material includes Si and O. And a carbon material, wherein the atomic ratio x of O to Si in the substance containing Si and O satisfies 0 <x <2, the binder contains SBR, and the negative electrode mixture layer A nonaqueous electrolyte secondary battery, wherein the adhesion strength between the electrode and the negative electrode current collector is 75 N / m or more. 負極合剤層中における結着材の含有率が0.5〜10.0質量%であることを特徴とする請求項1記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein the content of the binder in the negative electrode mixture layer is 0.5 to 10.0% by mass.
JP2003187983A 2003-06-30 2003-06-30 Nonaqueous electrolyte secondary battery Pending JP2005025991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187983A JP2005025991A (en) 2003-06-30 2003-06-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187983A JP2005025991A (en) 2003-06-30 2003-06-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005025991A true JP2005025991A (en) 2005-01-27

Family

ID=34186664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187983A Pending JP2005025991A (en) 2003-06-30 2003-06-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005025991A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010103065A (en) * 2008-10-27 2010-05-06 Central Res Inst Of Electric Power Ind Nonaqueous electrolyte lithium secondary battery
JP2011051844A (en) * 2009-09-02 2011-03-17 Osaka Titanium Technologies Co Ltd METHOD FOR PRODUCING SiOx
WO2012001814A1 (en) * 2010-07-02 2012-01-05 トヨタ自動車株式会社 Lithium secondary battery
JP2013004241A (en) * 2011-06-14 2013-01-07 Toyota Motor Corp Lithium-ion secondary battery
WO2015064464A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20150122072A (en) * 2014-04-22 2015-10-30 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolytic secondary battery and method for making the same, negative electrode active material layer for nonaqueous electrolytic secondary battery, negative electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
WO2016056155A1 (en) * 2014-10-08 2016-04-14 信越化学工業株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell, negative electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing negative electrode material for nonaqueous electrolyte secondary cell
KR20160100830A (en) * 2015-02-16 2016-08-24 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery
KR20160104560A (en) * 2015-02-26 2016-09-05 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery
KR20190138302A (en) * 2017-04-28 2019-12-12 세키스이가가쿠 고교가부시키가이샤 Negative Electrode Active Material for Lithium Ion Battery
WO2021241751A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Composite particles, method for producing same and use of same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4519592B2 (en) * 2004-09-24 2010-08-04 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010103065A (en) * 2008-10-27 2010-05-06 Central Res Inst Of Electric Power Ind Nonaqueous electrolyte lithium secondary battery
JP2011051844A (en) * 2009-09-02 2011-03-17 Osaka Titanium Technologies Co Ltd METHOD FOR PRODUCING SiOx
WO2012001814A1 (en) * 2010-07-02 2012-01-05 トヨタ自動車株式会社 Lithium secondary battery
JP2013004241A (en) * 2011-06-14 2013-01-07 Toyota Motor Corp Lithium-ion secondary battery
WO2015064464A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN105637683A (en) * 2013-10-28 2016-06-01 日本瑞翁株式会社 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2015064464A1 (en) * 2013-10-28 2017-03-09 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150122072A (en) * 2014-04-22 2015-10-30 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolytic secondary battery and method for making the same, negative electrode active material layer for nonaqueous electrolytic secondary battery, negative electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
KR102343726B1 (en) * 2014-04-22 2021-12-27 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolytic secondary battery and method for making the same, negative electrode active material layer for nonaqueous electrolytic secondary battery, negative electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
WO2016056155A1 (en) * 2014-10-08 2016-04-14 信越化学工業株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell, negative electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing negative electrode material for nonaqueous electrolyte secondary cell
KR102413870B1 (en) * 2014-10-08 2022-06-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active substance for nonaqueous electrolyte secondary cell, negative electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing negative electrode material for nonaqueous electrolyte secondary cell
KR20170057309A (en) * 2014-10-08 2017-05-24 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active substance for nonaqueous electrolyte secondary cell, negative electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing negative electrode material for nonaqueous electrolyte secondary cell
US10396353B2 (en) 2014-10-08 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
KR20160100830A (en) * 2015-02-16 2016-08-24 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery
KR102560936B1 (en) * 2015-02-16 2023-07-31 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery
KR20160104560A (en) * 2015-02-26 2016-09-05 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery
KR102608582B1 (en) * 2015-02-26 2023-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, and producing method of negative electrode material for non-aqueous electrolyte secondary battery
KR20190138302A (en) * 2017-04-28 2019-12-12 세키스이가가쿠 고교가부시키가이샤 Negative Electrode Active Material for Lithium Ion Battery
KR102556592B1 (en) * 2017-04-28 2023-07-18 세키스이가가쿠 고교가부시키가이샤 Negative electrode active material for lithium ion battery
WO2021241751A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Composite particles, method for producing same and use of same
JPWO2021241751A1 (en) * 2020-05-28 2021-12-02

Similar Documents

Publication Publication Date Title
US10164240B2 (en) Composite anode active material, anode including the composite anode active material, and lithium secondary battery including the anode
JP4965790B2 (en) Nonaqueous electrolyte secondary battery
US8748036B2 (en) Non-aqueous secondary battery
US7892677B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
JP4985524B2 (en) Lithium secondary battery
JP4837614B2 (en) Lithium secondary battery
JP5614307B2 (en) Nonaqueous electrolyte secondary battery
EP3117474B1 (en) Cathode for lithium batteries
US20050130040A1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
CN111183538B (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
KR102065256B1 (en) Silicone based negative active material, preparing method of the same and lithium ion secondary battery including the same
EP3683872B1 (en) Silicon-carbon composite and lithium secondary battery comprising same
JP3985143B2 (en) Electrode material and lithium battery using the same
KR101968733B1 (en) Composite anode active material, a method of preparing the composite anode material, and Lithium secondary battery comprising the composite anode active material
US20240097107A1 (en) Method of Preparing Positive Electrode
US20230387384A1 (en) Method for Manufacturing Positive Electrode for Lithium Secondary Battery and Positive Electrode for Lithium Secondary Battery Manufactured Thereby
JP2005025991A (en) Nonaqueous electrolyte secondary battery
EP3968409A1 (en) Composite anode active material, manufacturing method of same, anode comprising same, and secondary battery
JP3975481B2 (en) Electrode material and lithium battery using the same
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP3972454B2 (en) Lithium secondary battery
WO2023181949A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP4207362A2 (en) Negative electrode for secondary battery and secondary battery including the same
WO2010082240A1 (en) Composite oxide, process for production thereof, and non-aqueous electrolyte secondary battery using the composite oxide
EP3951941A1 (en) Method for preparing anode active material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421