JP5994688B2 - Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material - Google Patents
Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material Download PDFInfo
- Publication number
- JP5994688B2 JP5994688B2 JP2013051818A JP2013051818A JP5994688B2 JP 5994688 B2 JP5994688 B2 JP 5994688B2 JP 2013051818 A JP2013051818 A JP 2013051818A JP 2013051818 A JP2013051818 A JP 2013051818A JP 5994688 B2 JP5994688 B2 JP 5994688B2
- Authority
- JP
- Japan
- Prior art keywords
- tin
- cobalt
- negative electrode
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、高容量かつサイクル特性に優れた負極活物質と、この負極活物質を用いたリチウムイオン二次電池と、上記負極活物質を製造する方法に関するものである。 The present invention relates to a negative electrode active material having a high capacity and excellent cycle characteristics, a lithium ion secondary battery using the negative electrode active material, and a method for producing the negative electrode active material.
近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池として、正極材料にLiCoO2等の含リチウム複合酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン電池が商品化されている。この炭素系材料を負極に使用した場合、その理論容量は372mAh/gと金属リチウムの約1/10の容量しかなく、また理論密度が2.2g/ccと低く、実際に負極シートとした場合には、更に密度が低下する。そのため、体積当たりでより高容量な材料を負極として利用することが電池の高容量化の面から望まれている。 In recent years, along with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size and light weight and high capacity have been required. Currently, lithium ion batteries using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and a carbon-based material as a negative electrode active material are commercialized as high-capacity secondary batteries that meet this requirement. When this carbon material is used for the negative electrode, its theoretical capacity is 372 mAh / g, which is only about 1/10 the capacity of metallic lithium, and its theoretical density is as low as 2.2 g / cc. In addition, the density further decreases. For this reason, it is desired to use a material having a higher capacity per volume as the negative electrode from the viewpoint of increasing the capacity of the battery.
一方、Al、Ge、Si、Sn、Zn、Pb等の金属又は半金属は、リチウムと合金化することが知られており、これらの金属又は半金属を負極活物質に用いた二次電池が検討されている。これらの材料は、高容量かつ高エネルギー密度であり、炭素系材料を用いた負極よりも多くのリチウムイオンを吸蔵、脱離できるため、これらの材料を使用することで高容量、高エネルギー密度な電池を作製することができると考えられている。例えば、純粋なスズは993mAh/gの高い理論容量を示すことが知られている。 On the other hand, metals or metalloids such as Al, Ge, Si, Sn, Zn, and Pb are known to be alloyed with lithium, and secondary batteries using these metals or metalloids as negative electrode active materials are known. It is being considered. These materials have a high capacity and a high energy density, and can absorb and desorb more lithium ions than a negative electrode using a carbon-based material. Therefore, by using these materials, a high capacity and a high energy density can be obtained. It is believed that a battery can be made. For example, pure tin is known to exhibit a high theoretical capacity of 993 mAh / g.
しかし、炭素系材料に比べてサイクル特性に劣るため未だ実用化には至っていない。その理由としては、スズをそのままリチウムイオン二次電池の負極活物質に用いると、充放電に伴う大きな体積変化により微粉化し、集電板から剥離したり、導電助剤との接触が失われたりするため、十分なサイクル特性を得ることができないという問題が生じる。 However, since the cycle characteristics are inferior to those of carbon-based materials, it has not yet been put into practical use. The reason for this is that if tin is used as a negative electrode active material for a lithium ion secondary battery as it is, it will be pulverized due to a large volume change associated with charge and discharge, and may be peeled off from the current collector plate or lost contact with the conductive auxiliary agent. Therefore, there arises a problem that sufficient cycle characteristics cannot be obtained.
このような上記問題点を解決する技術として、シリコンやスズ等の無機質の粒子に他の物質を添加させることで、体積変化の少ない負極材料が研究、開発されている。具体的には、リチウムと合金化する金属としてスズを、リチウムと合金化しない金属としてコバルトを使用し、これらの合金薄膜を負極活物質層とした技術等が研究、開発されている。例えば、本発明者らは先の出願において、従来よりも高容量でサイクル特性等に優れた長寿命のリチウムイオン二次電池を製造できる負極活物質として、スズとコバルトを所定の割合で含む複合粒子からなる負極活物質であって、複合粒子の表面に連通する複数のポアを有し、この複合粒子の外面及びポアの内面にコバルトが偏在した構造を有する負極活物質を提案している(例えば、特許文献1参照)。この負極活物質では、ポアによる複合粒子の体積膨張の緩和、或いはスズの外面又はポアの内面に硬度及び導電率が比較的高いコバルトが偏在する構造によって、従来よりも高容量でサイクル特性等に優れたリチウムイオン二次電池を製造できるとされている。 As a technique for solving such a problem, a negative electrode material having a small volume change has been researched and developed by adding other substances to inorganic particles such as silicon and tin. Specifically, a technique has been studied and developed in which tin is used as a metal alloying with lithium, cobalt is used as a metal not alloying with lithium, and these alloy thin films are used as a negative electrode active material layer. For example, in the previous application, the present inventors have disclosed a composite containing tin and cobalt at a predetermined ratio as a negative electrode active material capable of producing a long-life lithium ion secondary battery having a higher capacity and superior cycle characteristics than the conventional application. A negative electrode active material composed of particles, which has a plurality of pores communicating with the surface of the composite particles, and has a structure in which cobalt is unevenly distributed on the outer surface of the composite particles and the inner surface of the pores. For example, see Patent Document 1). In this negative electrode active material, the volume expansion of composite particles due to pores, or the structure in which cobalt having relatively high hardness and conductivity is unevenly distributed on the outer surface of tin or the inner surface of pores, the capacity and cycle characteristics, etc. are higher than before. It is said that an excellent lithium ion secondary battery can be manufactured.
そして、本発明者らは鋭意研究を重ねた結果、上記従来の特許文献1に示された負極活物質等に更に改良を加えることで、リチウムイオン二次電池の容量やサイクル特性等をより向上させ得る負極材料等の開発に成功した。 As a result of intensive studies, the inventors have further improved the capacity and cycle characteristics of the lithium ion secondary battery by further improving the negative electrode active material and the like disclosed in the above-mentioned conventional Patent Document 1. We have succeeded in developing negative electrode materials that can be used.
本発明の目的は、高容量でサイクル特性及び出力特性に優れた長寿命のリチウムイオン二次電池を製造できる負極活物質を提供することにある。 An object of the present invention is to provide a negative electrode active material capable of producing a long-life lithium ion secondary battery having high capacity and excellent cycle characteristics and output characteristics.
本発明の別の目的は、高容量であり、かつサイクル特性に優れた長寿命のリチウムイオン二次電池を提供することにある。 Another object of the present invention is to provide a long-life lithium ion secondary battery having a high capacity and excellent cycle characteristics.
本発明の第1の観点は、スズ(Sn)とコバルト(Co)を含む複合粒子からなり、複合粒子がスズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造であるか、又は複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつコバルト(Co)が複合粒子の外面及びポアの内面に偏在する構造であるリチウムイオン二次電池用負極活物質であって、複合粒子が構成元素としてビスマスを更に含み、ビスマスの含有量がスズ(Sn)の含有量100原子%対して0.05〜1.2原子%含まれることを特徴とするリチウムイオン二次電池用負極活物質であることを特徴とする。 A first aspect of the present invention is composed of composite particles containing tin (Sn) and cobalt (Co), the composite particles are arranged centering on tin (Sn), and cobalt (Co) is present on the outer surface of the tin (Sn). Lithium ion two-dimensional structure in which the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. A negative electrode active material for a secondary battery, wherein the composite particles further include bismuth as a constituent element, and the content of bismuth is 0.05 to 1.2 atomic% relative to 100 atomic% of tin (Sn) content It is the negative electrode active material for lithium ion secondary batteries characterized by these.
本発明の第2の観点は、第1の観点に基づく発明であって、更にスズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%であることを特徴とする。 The second aspect of the present invention is the invention based on the first aspect, and further, the ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) is 5 to 40 atomic%. Features.
本発明の第3の観点は、負極活物質を有する負極と、正極活物質を有する正極と、非水電解質とを備えたリチウムイオン二次電池において、負極活物質が、スズ(Sn)とコバルト(Co)を含む複合粒子からなり、複合粒子がスズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造であるか、又は複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつコバルト(Co)が複合粒子の外面及びポアの内面に偏在する構造であり、複合粒子が構成元素としてビスマスを更に含み、ビスマスの含有量がスズ(Sn)の含有量100原子%対して0.05〜1.2原子%含まれることを特徴とする。 According to a third aspect of the present invention, in a lithium ion secondary battery including a negative electrode having a negative electrode active material, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte, the negative electrode active material includes tin (Sn) and cobalt. It is composed of composite particles containing (Co), and the composite particles have a structure in which tin (Sn) is arranged in the center and cobalt (Co) is unevenly distributed on the outer surface of the tin (Sn), or the composite particles are combined at the cut surface. The structure has a plurality of pores communicating with the surface of the particle, and cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. The composite particle further contains bismuth as a constituent element, and the content of bismuth is tin. It is characterized by being contained in an amount of 0.05 to 1.2 atomic% with respect to a content of (Sn) of 100 atomic%.
本発明の第4の観点は、第3の観点に基づく発明であって、更にスズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%であることを特徴とする。 4th viewpoint of this invention is invention based on 3rd viewpoint, Comprising: The ratio of cobalt (Co) with respect to the total amount of tin (Sn) and cobalt (Co) is 5-40 atomic%. Features.
本発明の第1の観点の負極活物質は、スズ(Sn)とコバルト(Co)を含む複合粒子からなり、複合粒子がスズを中心に配置しかつこのスズ外面にコバルトが偏在する構造であれば、母材でありかつ硬度及び導電率の比較的低いスズの外面に、硬度及び導電率の比較的高いコバルトの偏在したスズ層が形成されるので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。また、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつコバルト(Co)が複合粒子の外面及びポアの内面に偏在する構造であれば、この負極活物質を用いたリチウムイオン二次電池が充放電を繰り返したときに、複合粒子内のポアが充電時の複合粒子の体積膨張を吸収して緩和でき、またコバルトが複合粒子の外面及びポアの内面に偏在することにより、複数のポアを有する母材でありかつ硬度及び導電率の比較的低いスズの外面又はポア内面に、硬度及び導電率の比較的高いコバルトの偏在したスズ層が形成されるので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。この結果、スズがリチウムと効率良く反応するというスズ本来の性能を引き出すことができる。このため、本発明の負極活物質では、例えばリチウムと合金化しないコバルトをスズとほぼ均一組成で合金化して負極を作製したリチウムイオン二次電池と比較して、サイクル特性及び出力特性に優れ、寿命が長く、かつ容量が高いリチウムイオン二次電池を製造することができる。更に、本発明の負極活物質は、複合粒子に構成元素としてスズ(Sn)、コバルト(Co)以外に更にビスマスが所定の割合で含まれる。即ち、複合粒子を析出させる還元反応において、粒子の核を形成するビスマスイオンが、析出後の複合粒子におけるビスマス含有量が所定の割合になるように添加され、このビスマスイオンによって複数の核が形成されることにより非常に小さい粒径に制御される。これにより、従来の複合粒子からなる負極活物質に比べて、特にリチウムイオン二次電池のサイクル特性をより向上させることができる。また、この複合粒子が非常に小さい粒径に制御されることで、これを負極活物質として用いた負極では該負極活物質表面に存在する導電助剤の量を多くすることができるため、より良好な導電パスが確保される。また、小さい粒径に制御されることで、充放電に伴う負極活物質の割れを防ぐ効果が得られる。 The negative electrode active material according to the first aspect of the present invention is composed of composite particles containing tin (Sn) and cobalt (Co), and the composite particles are arranged centering on tin, and cobalt is unevenly distributed on the outer surface of tin. For example, an unevenly distributed tin layer of cobalt having a relatively high hardness and conductivity is formed on the outer surface of tin, which is a base material and has a relatively low hardness and conductivity, so that stress due to volume expansion / contraction during charge / discharge Can be relaxed and conductivity can be secured. Further, when the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, this negative electrode active material was used. When the lithium ion secondary battery is repeatedly charged and discharged, the pores in the composite particles can absorb and relax the volume expansion of the composite particles during charging, and cobalt is unevenly distributed on the outer surface of the composite particles and the inner surface of the pores. Thus, a tin layer with a relatively high hardness and conductivity is formed on the outer surface or the inner surface of the tin having a plurality of pores and a relatively low hardness and conductivity. The stress due to volume expansion / contraction at the time can be relieved and conductivity can be secured. As a result, the original performance of tin that tin reacts efficiently with lithium can be brought out. Therefore, in the negative electrode active material of the present invention, for example, compared with a lithium ion secondary battery in which cobalt that is not alloyed with lithium is alloyed with tin with a substantially uniform composition to produce a negative electrode, the cycle characteristics and the output characteristics are excellent. A lithium ion secondary battery having a long life and a high capacity can be produced. Furthermore, in the negative electrode active material of the present invention, bismuth is further contained in the composite particles in a predetermined ratio in addition to tin (Sn) and cobalt (Co) as constituent elements. That is, in the reduction reaction for precipitating the composite particles, bismuth ions that form the nuclei of the particles are added so that the bismuth content in the composite particles after the precipitation becomes a predetermined ratio, and the bismuth ions form a plurality of nuclei. Is controlled to a very small particle size. Thereby, compared with the negative electrode active material which consists of a conventional composite particle, the cycling characteristics of a lithium ion secondary battery can be improved more especially. In addition, since the composite particles are controlled to have a very small particle size, the negative electrode using the composite particles as a negative electrode active material can increase the amount of the conductive auxiliary agent present on the surface of the negative electrode active material. A good conductive path is ensured. Moreover, the effect which prevents the crack of the negative electrode active material accompanying charging / discharging is acquired by controlling to a small particle size.
本発明の第2の観点の負極活物質は、スズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%である。このように、硬度及び導電率の比較的高いコバルトが所望の割合で存在することで、充放電時の体積膨張・収縮による応力を緩和する効果及び導電性を確保する効果がより高められる。 In the negative electrode active material according to the second aspect of the present invention, the ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) is 5 to 40 atomic%. Thus, the presence of cobalt having a relatively high hardness and electrical conductivity in a desired ratio further enhances the effect of relieving stress due to volume expansion / contraction during charge / discharge and the effect of ensuring conductivity.
本発明の第3の観点のリチウムイオン二次電池は、負極活物質として、上述のスズ(Sn)とコバルト(Co)を含み、スズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造であるか、又は切断面において表面に連通する複数のポアを有しかつコバルト(Co)が外面及びポアの内面に偏在する構造の複合粒子が用いられる。そのため、上記理由から、リチウムと合金化しないコバルトをスズとほぼ均一組成で合金化して負極を作製したリチウムイオン二次電池と比較して、サイクル特性及び出力特性に優れ、寿命が長く、かつ容量が高い。また、負極活物質として用いられる複合粒子が、構成元素として更にビスマスを所定の割合で含み、非常に小さい所望の粒径に制御されているため、従来の複合粒子を負極活物質として用いたリチウムイオン二次電池に比べて、充放電に伴う負極活物質の割れが抑制され、特にサイクル特性に優れる。また、負極において良好な導電パスが得られるため、電池容量を大きくすることができる。 A lithium ion secondary battery according to a third aspect of the present invention includes the above-described tin (Sn) and cobalt (Co) as a negative electrode active material, and is arranged around tin (Sn) and the tin (Sn) outer surface. In this case, composite particles having a structure in which cobalt (Co) is unevenly distributed or having a plurality of pores communicating with the surface at the cut surface and having a structure in which cobalt (Co) is unevenly distributed on the outer surface and the inner surface of the pore are used. Therefore, for the reasons described above, compared with a lithium ion secondary battery in which cobalt that is not alloyed with lithium is alloyed with tin with a substantially uniform composition to produce a negative electrode, it has excellent cycle characteristics and output characteristics, has a long life, and has a capacity. Is expensive. Further, since the composite particles used as the negative electrode active material further contain bismuth as a constituent element at a predetermined ratio and are controlled to have a very small desired particle size, lithium using conventional composite particles as the negative electrode active material Compared to an ion secondary battery, cracking of the negative electrode active material accompanying charge / discharge is suppressed, and in particular, cycle characteristics are excellent. Moreover, since a favorable conductive path is obtained in the negative electrode, the battery capacity can be increased.
本発明の第4の観点のリチウムイオン二次電池は、負極活物質として上記複合粒子が含まれ、更にこの複合粒子のスズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合が5〜40原子%である。このように、硬度及び導電率の比較的高いコバルトが所望の割合で存在するため、負極において充放電時の体積膨張・収縮による応力を緩和する効果及び導電性を確保する効果がより高められる。 The lithium ion secondary battery according to the fourth aspect of the present invention includes the composite particles as a negative electrode active material, and the ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) in the composite particles. Is 5 to 40 atomic%. Thus, since cobalt with comparatively high hardness and electrical conductivity exists in a desired ratio, the effect of relieving stress due to volume expansion / contraction during charge / discharge and the effect of ensuring conductivity are further enhanced in the negative electrode.
次に本発明を実施するための形態を図面に基づいて説明する。 Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
本発明のリチウムイオン二次電池用負極活物質は、スズ(Sn)とコバルト(Co)を含む複合粒子からなる。スズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合は5〜40原子%であることが好ましい。ここで、複合粒子中のコバルトの割合を上記範囲とするのが好ましい理由は、コバルトの割合が5原子%を下回ると、硬度の比較的低いスズの外面等に形成された硬度の比較的高いコバルトの偏在したスズ層が薄くなって、この負極活物質を用いた二次電池の充放電時の体積膨張・収縮による応力を緩和する効果が得られにくく、二次電池のサイクル特性が低下する傾向があるからである。一方、コバルトの割合が40原子%を上回っても、この負極活物質を用いた二次電池のサイクル特性は良好であるけれども、コバルト量が増大し、相対的にリチウムと反応するスズ量が減少してしまい、初回放電容量が小さくなる傾向がみられるからである。このうち、スズ(Sn)とコバルト(Co)の合計量に対するコバルト(Co)の割合は、10〜30原子%であることが特に好ましい。
また、上記複合粒子は、スズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造であるか、又は複合粒子の切断面において複合粒子の表面に連通する複数のポアを有しかつコバルト(Co)が複合粒子の外面及びポアの内面に偏在する構造である。これにより本発明の負極活物質は、従来より知られているような、粒子の中心部と外周部とでスズ−コバルトの組成の偏りがない、略均一に合金化した形態はとらない。
The negative electrode active material for a lithium ion secondary battery of the present invention is composed of composite particles containing tin (Sn) and cobalt (Co). The ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) is preferably 5 to 40 atomic%. Here, the reason why the ratio of cobalt in the composite particles is preferably within the above range is that, when the ratio of cobalt is less than 5 atomic%, the hardness formed on the outer surface of tin having a relatively low hardness is relatively high. The tin layer in which cobalt is unevenly distributed becomes thin, and it is difficult to obtain the effect of relieving the stress due to volume expansion / contraction at the time of charging / discharging of the secondary battery using this negative electrode active material, and the cycle characteristics of the secondary battery are deteriorated. This is because there is a tendency. On the other hand, even if the proportion of cobalt exceeds 40 atomic%, the secondary battery using this negative electrode active material has good cycle characteristics, but the amount of cobalt increases and the amount of tin that reacts with lithium relatively decreases. This is because the initial discharge capacity tends to be small. Of these, the ratio of cobalt (Co) to the total amount of tin (Sn) and cobalt (Co) is particularly preferably 10 to 30 atomic%.
Further, the composite particle has a structure in which tin (Sn) is arranged at the center and cobalt (Co) is unevenly distributed on the outer surface of the tin (Sn), or communicates with the surface of the composite particle at the cut surface of the composite particle. The structure has a plurality of pores and cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. As a result, the negative electrode active material of the present invention does not take an almost uniform alloyed form in which there is no bias in the composition of tin-cobalt between the central part and the outer peripheral part of the particles as conventionally known.
複合粒子がスズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造である場合、母材でありかつ硬度及び導電率の比較的低いスズの外面に、硬度及び導電率の比較的高いコバルトの偏在したスズ層が形成されるので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。 When the composite particles are arranged around tin (Sn) and have a structure in which cobalt (Co) is unevenly distributed on the outer surface of tin (Sn), the outer surface of tin, which is a base material and has relatively low hardness and conductivity, Since a cobalt-distributed tin layer having relatively high hardness and conductivity is formed, stress due to volume expansion / contraction during charge / discharge can be relieved and conductivity can be ensured.
一方、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつコバルト(Co)が複合粒子の外面及びポアの内面に偏在する構造である場合、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有することにより、この負極活物質を用いたリチウムイオン二次電池が充放電を繰り返したときに、複合粒子内のポアが充電時の複合粒子の体積膨張を吸収して緩和でき、またコバルトが複合粒子の外面及びポアの内面に偏在することにより、複数のポアを有する母材でありかつ硬度及び導電率の比較的低いスズの外面又はポア内面に、硬度及び導電率の比較的高いコバルトの偏在したスズ層が形成されるので、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。
この結果、スズがリチウムと効率良く反応するというスズ本来の性能を引き出すことができる。従って、本発明の負極活物質を用いたリチウムイオン二次電池は、サイクル特性及び出力特性に優れ、寿命が長くなり、かつ容量が高くなる。
On the other hand, when the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, the composite particle is combined at the cut surface. By having a plurality of pores communicating with the surface of the particle, when the lithium ion secondary battery using this negative electrode active material is repeatedly charged and discharged, the pore in the composite particle expands the volume of the composite particle during charging. It can be absorbed and relaxed, and cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, so that the hardness of the outer surface of the tin or the inner surface of the tin is relatively low in hardness and conductivity. In addition, since a tin layer in which cobalt having a relatively high conductivity is unevenly distributed is formed, stress due to volume expansion / contraction during charge / discharge can be relieved and conductivity can be ensured.
As a result, the original performance of tin that tin reacts efficiently with lithium can be brought out. Therefore, the lithium ion secondary battery using the negative electrode active material of the present invention is excellent in cycle characteristics and output characteristics, has a long life, and has a high capacity.
そして、本発明の負極活物質には、複合粒子の構成元素としてスズ(Sn)、コバルト(Co)以外に更にビスマスが所定の割合で含まれる。このビスマスは、後述する複合粒子の製造工程において、還元反応等により複合粒子を析出させる際に添加されるビスマスイオンが還元されて、製造後の複合粒子中に構成元素として残留したものである。このように、製造後の複合粒子にビスマスが所定の割合で残留するように、スズイオン及びコバルトイオンを還元する際にビスマスイオンを添加することで、この還元反応において先ずビスマスイオンが還元され、次いでこれを粒子の核として、スズイオン、コバルトイオンを還元析出させることができる。ビスマスイオンの酸化還元電位は、スズイオン、コバルトイオンのそれより貴であるため、ビスマスイオンがスズイオンやコバルトイオンに先立って還元される。即ち、このとき添加するビスマスイオンの量を多くすれば、核の数が多くなり、一つの核に対して還元析出され得るスズイオン、コバルトイオンの数が少なくなり、より微細な粒径に制御できる。一方、ビスマスの量を少なくすれば、このスズイオン、コバルトイオンの数が多くなり、より大きな粒径に制御される。なお、上記ビスマスは、現段階では複合粒子のどこの位置に残留するかは解明されていないが、スズイオン、コバルトイオンを還元する際に添加したビスマスイオンが還元されたものであるため、複合粒子を製造した後に別途添加混合されたものではなく、少なくとも粒子内部に構成元素として含まれる。 The negative electrode active material of the present invention further contains bismuth as a constituent element of the composite particles in addition to tin (Sn) and cobalt (Co) at a predetermined ratio. This bismuth is obtained by reducing the bismuth ions added when the composite particles are deposited by a reduction reaction or the like in the composite particle manufacturing process described later and remaining as a constituent element in the manufactured composite particles. Thus, bismuth ions are first reduced in this reduction reaction by adding bismuth ions when reducing tin ions and cobalt ions so that bismuth remains in a predetermined ratio in the composite particles after production. With this as the core of the particle, tin ions and cobalt ions can be reduced and deposited. Since the oxidation-reduction potential of bismuth ions is more noble than that of tin ions and cobalt ions, bismuth ions are reduced prior to tin ions and cobalt ions. That is, if the amount of bismuth ions added at this time is increased, the number of nuclei is increased, and the number of tin ions and cobalt ions that can be reduced and precipitated with respect to one nucleus is decreased, so that a finer particle size can be controlled. . On the other hand, if the amount of bismuth is reduced, the number of tin ions and cobalt ions increases and the particle size is controlled to be larger. It is not yet clear where the bismuth remains in the composite particles at this stage, but the bismuth ions added when reducing tin ions and cobalt ions are reduced. Are not added and mixed separately after the production of the slag, but are contained as constituent elements at least inside the particles.
本発明の負極活物質は、上述のスズイオン、コバルトイオンを還元する際にビスマスイオンを所定の割合で添加することで、製造後の複合粒子において構成元素としてスズ(Sn)の含有量100原子%に対して0.05〜1.2原子%の割合でビスマスが含まれる。即ち、スズとビスマスの原子比が100:0.05〜1.2(スズ:ビスマス)になるように含まれる。これにより、負極活物質を構成する複合粒子は平均粒径が、好ましくは0.05〜10μm、更に好ましくは0.1〜5μmの範囲にある非常に微細な粒径に制御される。そのため、従来の複合粒子からなる負極活物質に比べて、特にリチウムイオン二次電池のサイクル特性をより向上させることができる。負極活物質を構成する複合粒子を微細な粒径に制御することによって特にサイクル特性を向上させることができる理由は、小さい粒径に制御されることで、充放電に伴う負極活物質の割れが抑制されるからである。また、複合粒子の粒径が小さくなれば比表面積が増大するため、これを負極活物質として用いた負極では該負極活物質表面に存在する導電助剤の量を多くすることができ、より良好な導電パスが確保される。ここで、複合粒子に構成元素として含まれるビスマス量を上記範囲に限定したのは、複合粒子中に含まれるビスマスの割合が下限値に満たない、即ちスズイオン、コバルトイオンを還元する際に添加されるビスマスイオンの量が少なすぎると、上述の理由から複合粒子の平均粒径が10μmを超えてしまい、上述の効果が得られないからである。一方、複合粒子中に含まれるビスマスの割合が上限値を超える、即ちスズイオン、コバルトイオンを還元する際に添加されるビスマスイオンの量が多すぎると複合粒子の平均粒径が0.1μm未満になり、スラリー化が困難となって、既存のリチウムイオン二次電池の製造プロセスに適用できないという不具合が生じるからである。このうち、複合粒子に構成元素として含まれるビスマスの量は0.1〜1.1原子%の範囲とするのが好ましい。なお、複合粒子の平均粒径とは、粒度分布測定装置(堀場製作所製LA−950)を用いて測定した体積基準の平均粒径D50をいう。また、本発明の負極活物質を構成する複合粒子中のスズ、コバルト、ビスマス、クロム、亜鉛等の各含有量はICP(誘導結合プラズマ)を用いた定量分析により求めることができる。また、この複合粒子は所望の範囲に粒径制御された粉末であり、負極活物質をスラリー化して負極集電板に塗工することができるので、従来と同様のリチウムイオン二次電池の製造プロセスを適用できる。 The negative electrode active material of the present invention has a content of tin (Sn) of 100 atomic% as a constituent element in the composite particles after production by adding bismuth ions at a predetermined ratio when reducing the above-described tin ions and cobalt ions. Bismuth is contained at a ratio of 0.05 to 1.2 atomic% with respect to the above. That is, it is included so that the atomic ratio of tin and bismuth is 100: 0.05 to 1.2 (tin: bismuth). Thereby, the composite particle which comprises a negative electrode active material is controlled by the very fine particle diameter which has an average particle diameter in the range of preferably 0.05-10 micrometers, More preferably 0.1-5 micrometers. Therefore, in particular, the cycle characteristics of the lithium ion secondary battery can be further improved as compared with the negative electrode active material made of conventional composite particles. The reason why the cycle characteristics can be particularly improved by controlling the composite particles constituting the negative electrode active material to a fine particle size is that the negative electrode active material cracks due to charge / discharge due to being controlled to a small particle size. It is because it is suppressed. In addition, since the specific surface area increases as the particle size of the composite particles decreases, the negative electrode using this as the negative electrode active material can increase the amount of the conductive auxiliary agent present on the surface of the negative electrode active material. A conductive path is ensured. Here, the amount of bismuth contained as a constituent element in the composite particles is limited to the above range because the proportion of bismuth contained in the composite particles is less than the lower limit, that is, added when reducing tin ions and cobalt ions. This is because if the amount of bismuth ions is too small, the average particle size of the composite particles exceeds 10 μm for the reasons described above, and the above-described effects cannot be obtained. On the other hand, if the proportion of bismuth contained in the composite particles exceeds the upper limit, that is, if the amount of bismuth ions added when reducing tin ions and cobalt ions is too large, the average particle size of the composite particles will be less than 0.1 μm. This is because it becomes difficult to make a slurry and cannot be applied to the manufacturing process of an existing lithium ion secondary battery. Among these, the amount of bismuth contained as a constituent element in the composite particles is preferably in the range of 0.1 to 1.1 atomic%. The average particle size of the composite particles means a volume-based average particle size D 50 measured using a particle size distribution measuring device (LA-950 manufactured by Horiba, Ltd.). The contents of tin, cobalt, bismuth, chromium, zinc, etc. in the composite particles constituting the negative electrode active material of the present invention can be determined by quantitative analysis using ICP (inductively coupled plasma). In addition, this composite particle is a powder whose particle size is controlled within a desired range, and the negative electrode active material can be slurried and applied to the negative electrode current collector plate. The process can be applied.
また、負極活物質は、不可避成分として含まれるクロム(Cr)の含有量が負極活物質の全質量に対して質量比で1.0%以下、亜鉛(Zn)含有量が質量比で50ppm以下であることが好ましい。クロムの含有量が1%又は亜鉛の含有量が50ppmを上回ると、コバルトの偏在したスズ層の強度が低下することで保護効果が低下し、サイクル特性が低下する傾向がみられるからである。また、リチウムイオンの複合粒子中への拡散が不十分となり、初回放電容量も低下する傾向がみられるからである。このうち、クロム(Cr)の含有量は質量比で0.001%未満、亜鉛(Zn)含有量は質量比でが2ppm未満であることが更に好ましい。 The negative electrode active material has a chromium (Cr) content of unavoidable components of 1.0% or less by mass ratio with respect to the total mass of the negative electrode active material, and a zinc (Zn) content of 50 ppm or less by mass ratio. It is preferable that This is because if the chromium content is 1% or the zinc content exceeds 50 ppm, the strength of the tin layer in which cobalt is unevenly distributed is reduced, so that the protective effect is lowered and the cycle characteristics tend to be lowered. Moreover, the diffusion of lithium ions into the composite particles becomes insufficient, and the initial discharge capacity tends to decrease. Among these, it is more preferable that the content of chromium (Cr) is less than 0.001% by mass, and the content of zinc (Zn) is less than 2 ppm by mass.
また、負極活物質は、ポリアクリル酸、水溶性セルロース及びポリビニルピロリドンからなる群より選ばれた少なくとも1種の分散剤を更に含むことが好適である。上記種類の分散剤を含ませることで、分散剤が粒子を覆うことになり、コバルトの偏在したスズ層による膨張収縮抑制効果を増強し、サイクル特性を向上させることができる。更に、負極活物質には、カーボンナノファイバー(CNF)からなる導電性助剤を添加することが好適である。この導電性助剤を添加することで、導電性助剤が粒子を覆うことになり、負極全体に網目状に導電性パスを形成することができるので、サイクル特性を更に向上させることができる。 The negative electrode active material preferably further includes at least one dispersant selected from the group consisting of polyacrylic acid, water-soluble cellulose, and polyvinylpyrrolidone. By including the above type of dispersant, the dispersant covers the particles, thereby enhancing the expansion and contraction suppressing effect by the tin layer in which cobalt is unevenly distributed, and improving the cycle characteristics. Furthermore, it is preferable to add a conductive auxiliary agent made of carbon nanofiber (CNF) to the negative electrode active material. By adding this conductive auxiliary agent, the conductive auxiliary agent covers the particles, and a conductive path can be formed in a network form on the entire negative electrode, so that the cycle characteristics can be further improved.
次に、上記リチウムイオン二次電池用負極活物質の製造方法を説明する。先ず、スズイオン及びコバルトイオンを含む水溶液と、ビスマスイオンを含む溶液とをそれぞれ調製し、これらを混合した後に、更に2価クロムイオンを含む還元剤水溶液を撹拌混合することにより、この混合液中でスズイオン、コバルトイオン及びビスマスイオンを還元させる。スズイオン及びコバルトイオンを含む水溶液の調製は、イオン交換水等の溶媒に、塩化スズ(II)等の錫化合物と、塩化コバルト(II)等のコバルト化合物を溶解させることにより行う。また、ビスマスイオンを含む溶液の調製は、塩酸等の溶媒に塩化ビスマス(III)等のビスマス化合物を溶解させることにより行う。 Next, the manufacturing method of the said negative electrode active material for lithium ion secondary batteries is demonstrated. First, an aqueous solution containing tin ions and cobalt ions and a solution containing bismuth ions are prepared, mixed, and further mixed with a reducing agent aqueous solution containing divalent chromium ions. Tin ions, cobalt ions and bismuth ions are reduced. The aqueous solution containing tin ions and cobalt ions is prepared by dissolving a tin compound such as tin (II) chloride and a cobalt compound such as cobalt (II) chloride in a solvent such as ion-exchanged water. The solution containing bismuth ions is prepared by dissolving a bismuth compound such as bismuth (III) chloride in a solvent such as hydrochloric acid.
スズイオン及びコバルトイオンを含む水溶液には、得られる複合粒子の凝集を抑制する分散剤を含ませることが好ましい。分散剤としては、ポリアクリル酸、水溶性セルロース及びポリビニルピロリドンから選ばれた少なくとも1種が挙げられる。これら、スズイオン及びコバルトイオンを含む水溶液を調整する際の各成分の割合は、合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が5〜40原子%、好ましくは10〜30原子%の範囲内になるように調整する。そして、スズイオン及びコバルトイオンを含む水溶液と、ビスマスイオンを含む溶液とを、上述のように、スズ(Sn)の含有量100原子%に対してビスマスの含有量が0.05〜1.2原子%、好ましくは0.1〜1.1原子%の範囲内になるように混合し、スズイオン、コバルトイオン及びビスマスイオンを含む溶液を調製する。 The aqueous solution containing tin ions and cobalt ions preferably contains a dispersant that suppresses aggregation of the resulting composite particles. Examples of the dispersant include at least one selected from polyacrylic acid, water-soluble cellulose, and polyvinyl pyrrolidone. The ratio of each component when adjusting the aqueous solution containing tin ions and cobalt ions is such that the cobalt ratio with respect to the total of tin and cobalt in the composite particles obtained by synthesis is 5 to 40 atomic%, preferably 10 to 30 atomic%. Adjust so that it is within the range. And as above-mentioned, the content of bismuth is 0.05-1.2 atom with respect to 100 atomic% of tin (Sn) content as for the aqueous solution containing a tin ion and cobalt ion, and the solution containing a bismuth ion. %, Preferably 0.1 to 1.1 atomic%, to prepare a solution containing tin ions, cobalt ions and bismuth ions.
還元剤水溶液に含まれる2価クロムイオンは、還元剤としての機能を有する。この2価クロムイオンは不安定であるため、還元剤水溶液はスズイオン、コバルトイオン及びビスマスイオンを含む溶液と混合する際にその都度調製することが好ましい。具体的には、例えば、塩化第2クロム溶液を非酸化性雰囲気下、好ましくは窒素ガス雰囲気下で金属亜鉛に接触させるか、或いは電気化学的にクロムを還元し、塩化第1クロム溶液としたものを用いるとよい。塩化第2クロム溶液はpH0〜2に調整することが好ましい。それはpHが上限値を越えると、3価クロムイオンが水酸化物として沈殿するという不具合が生じ易いからである。 The divalent chromium ion contained in the reducing agent aqueous solution has a function as a reducing agent. Since the divalent chromium ions are unstable, the reducing agent aqueous solution is preferably prepared each time when it is mixed with a solution containing tin ions, cobalt ions and bismuth ions. Specifically, for example, the second chromium chloride solution is brought into contact with metallic zinc in a non-oxidizing atmosphere, preferably a nitrogen gas atmosphere, or the chromium is electrochemically reduced to obtain a first chromium chloride solution. Use a good one. The second chromium chloride solution is preferably adjusted to pH 0-2. This is because when the pH exceeds the upper limit value, a problem that trivalent chromium ions precipitate as hydroxides easily occurs.
スズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する2層構造の複合粒子を得るには、スズイオン、コバルトイオン及びビスマスイオンを含む溶液と2価クロムイオンを含む還元剤水溶液とを混合し、この混合液の温度を15〜50℃、好ましくは25〜40℃に設定し、pHは0〜4、好ましくは0〜2に制御することが好適である。ここで、混合液の温度を上記範囲に限定したのは、下限値未満では冷却装置の導入にコストが掛かり、一方、上限値を越えると、析出した複合粒子の溶解が促進するからである。また、混合液のpHを上記範囲に限定したのは、pHが0未満では、スズの溶出が促進されて、サイクル特性が良好であるけれども、スズの量が少なくなって初回放電容量が小さくなってしまい、pHが4を越えると、サイクル特性を低下させる不具合が生じるからである。 In order to obtain a composite particle having a two-layer structure in which tin (Sn) is arranged at the center and cobalt (Co) is unevenly distributed on the outer surface of tin (Sn), a solution containing tin ion, cobalt ion and bismuth ion and divalent chromium ion are used. It is suitable that the temperature of the mixed solution is set to 15 to 50 ° C., preferably 25 to 40 ° C., and the pH is controlled to 0 to 4, preferably 0 to 2. . Here, the reason why the temperature of the mixed solution is limited to the above range is that if the temperature is less than the lower limit, the introduction of the cooling device is costly, whereas if the upper limit is exceeded, dissolution of the precipitated composite particles is promoted. In addition, the pH of the mixed solution was limited to the above range. If the pH is less than 0, elution of tin is promoted and the cycle characteristics are good, but the amount of tin is reduced and the initial discharge capacity is reduced. This is because if the pH exceeds 4, there is a problem that the cycle characteristics are deteriorated.
また、混合液の処理時間は、6〜48時間、更に好ましくは12〜24時間であり、撹拌速度は0.2〜1.5m/秒、好ましくは0.4〜1.0m/秒に設定される。上記混合液の処理時間は、混合液の撹拌保持時間をいう。撹拌保持時間が6時間未満では、スズの溶出が不十分であり、充電時の複合粒子の体積膨張を吸収して緩和する効果が低下するという不具合が生じる場合がある。一方、48時間を越えると製造効率を低下させる場合がある。また、混合液の撹拌速度を上記範囲に限定したのは、下限値未満では溶液の混合が不十分となり、所定の形状の複合粒子を再現性良く得られず、一方、上限値を越えると、スケールアップ時の実現性に困難を伴うという不具合が生じるからである。なお、撹拌速度とは、撹拌羽根の回転により混合液が流動したときの混合液の平均流速をいう。 The treatment time of the mixed solution is 6 to 48 hours, more preferably 12 to 24 hours, and the stirring speed is set to 0.2 to 1.5 m / second, preferably 0.4 to 1.0 m / second. Is done. The processing time of the mixed solution refers to the stirring and holding time of the mixed solution. When the stirring and holding time is less than 6 hours, elution of tin is insufficient, and there may be a problem that the effect of absorbing and relaxing the volume expansion of the composite particles during charging is reduced. On the other hand, if it exceeds 48 hours, the production efficiency may be reduced. In addition, the stirring speed of the mixed solution is limited to the above range because the mixing of the solution is insufficient when the amount is less than the lower limit, and the composite particles having a predetermined shape cannot be obtained with good reproducibility. This is because there is a problem that the realization at the time of scale-up involves difficulty. The stirring speed refers to the average flow rate of the mixed liquid when the mixed liquid flows due to the rotation of the stirring blade.
上記混合液を撹拌混合し、混合液中でスズイオン、コバルトイオン及びビスマスイオンを還元反応させると、先ず、酸化還元電位がスズイオン、コバルトイオンのそれより貴であるビスマスが還元され、次いでこれを核としてスズイオンが還元して均一なスズ粒子が生じ、このスズ粒子が一定の粒径まで成長する。続いて、コバルトイオンが還元し、一定の粒径にまで成長したスズ粒子を母材として、この母材の周囲に上記コバルトが進入し、スズ粒子の外面にコバルトが偏在した複合粒子となる。これにより、スズからなる母材と、この母材の外面にコバルトが偏在したスズ層とを有する複合粒子が析出する。 When the above mixture is stirred and mixed, and tin ions, cobalt ions, and bismuth ions are reduced in the mixture, bismuth having an oxidation-reduction potential nobler than that of tin ions and cobalt ions is first reduced, and then this is converted into nuclei. As a result, tin ions are reduced to produce uniform tin particles, and the tin particles grow to a certain particle size. Subsequently, cobalt ions are reduced and tin particles grown to a certain particle size are used as a base material, and the cobalt enters the periphery of the base material, resulting in composite particles in which cobalt is unevenly distributed on the outer surface of the tin particles. Thereby, composite particles having a base material made of tin and a tin layer in which cobalt is unevenly distributed on the outer surface of the base material are deposited.
一方、上記還元反応の際の上記混合液の温度、pH、処理時間又は撹拌速度の少なくとも1つの条件を調整すると、上記複合粒子にこの粒子の表面に連通する複数のポアが形成されるとともに、コバルトが複合粒子の外面及びポアの内面に偏在して、複合粒子の外面及びポアの内面にコバルトの偏在したスズ層が形成される。このコバルトの偏在したスズ層におけるコバルト濃度は複合粒子の外面及びポアの内面からスズ母材内方に向うに従って次第に低くなり、スズ濃度は複合粒子の外面及びポアの内面からスズ母材内方に向うに従って次第に高くなるように形成される(図1)。なお、上記複合粒子に複数のポアが形成されるのは次の理由によると推察される。スズの水素過電圧は高いため、スズの溶解反応は起こり難い。一方、コバルトの水素過電圧はスズの水素過電圧より低いため、スズとコバルトが接することによってコバルト側から水素が発生する。この結果、複合粒子内部のスズが非常に溶け易くなるので、複合粒子に複数のポアが形成される。 On the other hand, when adjusting at least one of the temperature, pH, treatment time or stirring speed of the mixed solution during the reduction reaction, a plurality of pores communicating with the surface of the particles are formed in the composite particles, Cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, and a tin layer in which cobalt is unevenly distributed is formed on the outer surface of the composite particle and the inner surface of the pore. The cobalt concentration in this unevenly distributed tin layer gradually decreases from the outer surface of the composite particle and the inner surface of the pore toward the inner side of the tin base material, and the tin concentration decreases from the outer surface of the composite particle and the inner surface of the pore to the inner side of the tin base material. It is formed so as to gradually become higher as it goes (FIG. 1). In addition, it is guessed that a several pore is formed in the said composite particle for the following reason. Since the hydrogen overvoltage of tin is high, the dissolution reaction of tin hardly occurs. On the other hand, since the hydrogen overvoltage of cobalt is lower than that of tin, hydrogen is generated from the cobalt side when tin and cobalt come into contact with each other. As a result, tin inside the composite particle is very easily dissolved, and a plurality of pores are formed in the composite particle.
該構造の複合粒子を得るには、上記スズイオン、コバルトイオン及びビスマスイオンを含む溶液と2価クロムイオンを含む還元剤水溶液とを混合した混合液の温度を15〜50℃、好ましくは25〜40℃に設定し、混合液のpHは0〜4、好ましくは0〜2に設定する。また上記混合液の処理時間は1〜40時間、好ましくは3〜30時間に設定し、混合液の撹拌速度は0.2〜1.5m/秒、好ましくは0.4〜1.0m/秒に設定する。ここで、混合液の温度を上記範囲に限定したのは、15℃未満では、スズが溶け難くなり、複合粒子に複数のポアが形成され難くなるため、充電時の複合粒子の体積膨張を吸収して緩和する効果が低下してしまい、50℃を越えると、スズの溶出が促進され、サイクル特性は良好であるけれども、スズの量が少なくなって初回放電容量が小さくなってしまうからである。また、混合液のpHを上記範囲に限定したのは、pHが0未満では、スズの溶出が促進されて、サイクル特性が良好であるけれども、スズの量が少なくなって初回放電容量が小さくなってしまい、pHが4を越えると、スズとコバルトが接することによるコバルト側からの水素発生が生じ難くなって、複合粒子内部のスズが溶け難くなるので、複合粒子に複数のポアが形成され難くなり、これにより充電時の複合粒子の体積膨張を吸収して緩和する効果が低下してしまうからである。また、混合液の処理時間を上記範囲に限定したのは、1時間未満では、複合粒子に形成されるポアの数が少なくなるため、充電時の複合粒子の体積膨張を吸収して緩和する効果が低下してしまい、40時間を越えると、目的の負極活物質を得るための時間が掛かり過ぎ、これにより製造コストが増大し、生産効率が低下してしまうからである。更に混合液の撹拌速度を上記範囲に限定したのは、0.2m/秒未満では、混合液の組成を均一に保つことができなくなって、所望の負極活物質を得ることができず、1.5m/秒を越えると、所望の負極活物質を得るために過剰のエネルギーを投入することになり、エネルギーコストの無駄が発生してしまうからである。なお、混合液の温度は高くなるに従って複合粒子の比表面積が大きくなる、即ち粒径が小さくなり、混合液のpHは小さくなるに従って複合粒子の比表面積が大きくなる傾向にある。また、混合液の処理時間は長くなるに従って複合粒子の比表面積が大きくなり、混合液の撹拌速度は速くなるに従って複合粒子の比表面積が大きくなる傾向にある。 In order to obtain composite particles having this structure, the temperature of the mixed solution obtained by mixing the solution containing tin ions, cobalt ions and bismuth ions with the reducing agent aqueous solution containing divalent chromium ions is 15 to 50 ° C., preferably 25 to 40 ° C. The temperature of the mixed solution is set to 0 to 4, preferably 0 to 2. The processing time of the above mixed solution is set to 1 to 40 hours, preferably 3 to 30 hours, and the stirring speed of the mixed solution is 0.2 to 1.5 m / second, preferably 0.4 to 1.0 m / second. Set to. Here, the temperature of the mixed solution is limited to the above range. If the temperature is lower than 15 ° C., tin hardly dissolves and a plurality of pores are hardly formed in the composite particle, so that the volume expansion of the composite particle during charging is absorbed. When the temperature exceeds 50 ° C., elution of tin is promoted and the cycle characteristics are good, but the amount of tin is reduced and the initial discharge capacity is reduced. . In addition, the pH of the mixed solution was limited to the above range. If the pH is less than 0, elution of tin is promoted and the cycle characteristics are good, but the amount of tin is reduced and the initial discharge capacity is reduced. If the pH exceeds 4, the generation of hydrogen from the cobalt side due to the contact between tin and cobalt is difficult to occur, and the tin inside the composite particle is difficult to dissolve, so that it is difficult to form a plurality of pores in the composite particle. This is because the effect of absorbing and relaxing the volume expansion of the composite particles during charging is reduced. In addition, the treatment time of the mixed solution is limited to the above range because the number of pores formed in the composite particle is reduced if it is less than 1 hour, and therefore the effect of absorbing and relaxing the volume expansion of the composite particle during charging. This is because, if it exceeds 40 hours, it takes too much time to obtain the target negative electrode active material, which increases the manufacturing cost and decreases the production efficiency. Furthermore, the stirring speed of the mixed solution is limited to the above range because if it is less than 0.2 m / second, the composition of the mixed solution cannot be kept uniform, and a desired negative electrode active material cannot be obtained. If it exceeds 0.5 m / sec, excessive energy will be input to obtain the desired negative electrode active material, resulting in wasted energy costs. Note that the specific surface area of the composite particles increases as the temperature of the mixed solution increases, that is, the particle size decreases, and the specific surface area of the composite particles tends to increase as the pH of the mixed solution decreases. In addition, the specific surface area of the composite particles increases as the treatment time of the mixed solution increases, and the specific surface area of the composite particles tends to increase as the stirring speed of the mixed solution increases.
このように本発明の製造方法は湿式法であり、水溶液調製や還元反応がともに室温程度の温度で実施可能であるため、イニシャルコストが多大にかかる特殊な装置類も不要となり、製造コストを抑制できる。 As described above, the manufacturing method of the present invention is a wet method, and both the aqueous solution preparation and the reduction reaction can be performed at a temperature of about room temperature. Therefore, special equipment that requires a large initial cost is not required, and the manufacturing cost is suppressed. it can.
なお、負極活物質中のクロム(Cr)及び亜鉛(Zn)の含有量は、スズイオン、コバルトイオン及びビスマスイオンを含む溶液と還元剤水溶液との混合割合を増減させる、還元剤水溶液を調製する際に使用する金属亜鉛量を増減させる、塩化亜鉛をスズイオン及びコバルトイオンを含む水溶液や還元剤水溶液に加える等の手法により、クロムや亜鉛の含有量を制御することができる。 In addition, the content of chromium (Cr) and zinc (Zn) in the negative electrode active material is used when preparing a reducing agent aqueous solution that increases or decreases the mixing ratio of a solution containing tin ions, cobalt ions, and bismuth ions and a reducing agent aqueous solution. The content of chromium and zinc can be controlled by techniques such as increasing or decreasing the amount of metallic zinc used in the process, or adding zinc chloride to an aqueous solution containing tin ions and cobalt ions or an aqueous reducing agent solution.
続いて、上記本発明の負極活物質を用いて、リチウムイオン二次電池を製造する方法について説明する。具体的には、先ず、上記負極活物質と導電助剤と結着剤とを所定の割合で混合した後、この混合物に所定の割合(例えば、負極活物質、導電助剤及び結着剤の合計量100質量%に対して35〜60質量%)で溶媒を混合することにより、負極用組成物のスラリーを調製する。次に上記負極用組成物のスラリーを負極集電体上に、ドクターブレード法等の手法により塗布した後に乾燥して負極を作製する。
負極の作製に使用した導電助剤、結着剤、溶媒及び負極集電体は、特に限定されるものではなく、従来より一般的に用いられるものを使用することができる。例えば、導電助剤としてはアセチレンブラック、ケッチェンブラック等のカーボンブラック、VGCF或いは銅やチタン等のリチウムと合金化し難い金属粉末等が挙げられる。そして導電助剤は、複合粒子の外面、又は複合粒子の外面及びポアの内面に網目状に付着するように構成される。また、結着剤としてはポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等が挙げられる。溶媒としてはN−メチルピロリドン、水等が挙げられる。負極集電体としては銅箔、ステンレス箔、ニッケル箔等が挙げられる。
Next, a method for producing a lithium ion secondary battery using the negative electrode active material of the present invention will be described. Specifically, first, the negative electrode active material, the conductive auxiliary agent, and the binder are mixed in a predetermined ratio, and then a predetermined ratio (for example, the negative electrode active material, the conductive auxiliary agent, and the binder is added to the mixture). The slurry of the composition for negative electrodes is prepared by mixing a solvent in 35-60 mass%) with respect to 100 mass% of total amounts. Next, the slurry for the negative electrode composition is applied onto the negative electrode current collector by a technique such as a doctor blade method and then dried to prepare a negative electrode.
The conductive additive, binder, solvent, and negative electrode current collector used for the production of the negative electrode are not particularly limited, and those generally used conventionally can be used. For example, examples of the conductive assistant include carbon black such as acetylene black and ketjen black, VGCF, or metal powder that is difficult to alloy with lithium such as copper and titanium. The conductive additive is configured to adhere to the outer surface of the composite particle, or the outer surface of the composite particle and the inner surface of the pore in a mesh shape. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). Examples of the solvent include N-methylpyrrolidone and water. Examples of the negative electrode current collector include copper foil, stainless steel foil, and nickel foil.
このようして得られた負極を用いてリチウムイオン二次電池を作製する。正極活物質をバインダ及び導電助剤と所定の割合で混合して正極用組成物のスラリーを調製する。次に、上記正極用組成物のスラリーを正極集電体上に、ドクターブレード法等の手法により塗布した後に乾燥して正極を作製する。 A lithium ion secondary battery is produced using the negative electrode thus obtained. A positive electrode active material is mixed with a binder and a conductive additive at a predetermined ratio to prepare a slurry of the positive electrode composition. Next, the slurry for the positive electrode composition is applied onto the positive electrode current collector by a technique such as a doctor blade method, and then dried to produce a positive electrode.
なお、正極の作製に使用した正極活物質、バインダ、導電助剤及び正極集電体は、特に限定されるものではなく、従来より一般的に用いられるものを使用することができる。例えば、正極活物質としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO2、LiFePO4などが挙げられる。導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、VGCF、黒鉛等が挙げられる。また、バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等が挙げられる。正極集電体としては、アルミニウム箔、ステンレス鋼箔、ニッケル箔等が挙げられる。 In addition, the positive electrode active material, the binder, the conductive auxiliary agent, and the positive electrode current collector used for the production of the positive electrode are not particularly limited, and those conventionally used can be used. For example, examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , and LiFePO 4 . Examples of the conductive assistant include carbon black such as acetylene black and ketjen black, VGCF, graphite and the like. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). Examples of the positive electrode current collector include aluminum foil, stainless steel foil, and nickel foil.
次に、負極集電体上に負極活物質層を形成して得られた負極と、セパレータと、正極集電体上に正極活物質層を形成して得られた正極とを正極と負極の活物質面をそれぞれ対向させた状態で積層し、積層体を形成する。セパレータは合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等から形成される。 Next, the negative electrode obtained by forming the negative electrode active material layer on the negative electrode current collector, the separator, and the positive electrode obtained by forming the positive electrode active material layer on the positive electrode current collector are combined into the positive electrode and the negative electrode. Lamination is performed with the active material surfaces facing each other to form a laminate. The separator is formed from a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or the like.
そして、上記積層体の正極側裏面及び負極側裏面にそれぞれメッシュ材の一端を接続し、袋状に作製したアルミラミネート材にメッシュ材の他端がはみ出るように積層体を装填する。次に、ラミネート材の開口部から非水電解液を加え、真空引きしながら、ラミネート材の開口部を熱融着させることより、リチウムイオン二次電池が得られる。 Then, one end of the mesh material is connected to each of the positive electrode-side back surface and the negative electrode-side back surface of the laminate, and the laminate is loaded so that the other end of the mesh material protrudes into the bag-shaped aluminum laminate material. Next, a lithium ion secondary battery is obtained by adding a non-aqueous electrolyte from the opening of the laminate and heat-sealing the opening of the laminate while evacuating.
正極側裏面に接続したメッシュ材としてはアルミメッシュ材が、負極側裏面に接続したメッシュ材としてはニッケルメッシュ材が使用される。 An aluminum mesh material is used as the mesh material connected to the back surface on the positive electrode side, and a nickel mesh material is used as the mesh material connected to the back surface on the negative electrode side.
また、非水電解液には、非水溶媒に電解質を溶解させた溶媒が使用される。非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の鎖状カーボネート、ジメトキシエタン、ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテルや、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル、クラウンエーテル、γ−ブチロラクトン等の脂肪酸エステル、アセトニトリル等の窒素化合物、スルホラン、ジメチルスルホキシド等の硫化物等が例示される。上記非水電解液は単独で使用しても、2種以上混合した混合溶媒として使用してもよい。電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ほうフッ化リチウム(LiBF4)、六フッ化ヒ素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルフォニルイミドリチウム[LiN(CF3SO2)2]等のリチウム塩が例示される。
このように製造されたリチウムイオン二次電池では、複合粒子がスズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造である場合、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。一方、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有しかつコバルト(Co)が複合粒子の外面及びポアの内面に偏在する構造である場合、複合粒子が切断面において複合粒子の表面に連通する複数のポアを有することにより、リチウムイオン二次電池が充放電を繰り返したときに、複合粒子内のポアが充電時の複合粒子の体積膨張を吸収して緩和でき、またコバルトが複合粒子の外面及びポアの内面に偏在することにより、充放電時の体積膨張・収縮による応力を緩和できるとともに導電性を確保できる。
For the non-aqueous electrolyte, a solvent in which an electrolyte is dissolved in a non-aqueous solvent is used. Non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), dimethoxyethane, Chain ethers such as ethoxyethane and ethoxymethoxyethane, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, fatty acid esters such as crown ether and γ-butyrolactone, nitrogen compounds such as acetonitrile, sulfides such as sulfolane and dimethyl sulfoxide, etc. Is exemplified. The non-aqueous electrolyte may be used alone or as a mixed solvent in which two or more kinds are mixed. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluorometasulfonate ( Examples thereof include lithium salts such as LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ].
In the lithium ion secondary battery manufactured as described above, when the composite particles have a structure in which tin (Sn) is arranged at the center and cobalt (Co) is unevenly distributed on the outer surface of the tin (Sn), the volume during charge / discharge It is possible to relieve stress due to expansion and contraction and secure conductivity. On the other hand, when the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface and cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, the composite particle is combined at the cut surface. By having a plurality of pores communicating with the surface of the particles, when the lithium ion secondary battery is repeatedly charged and discharged, the pores in the composite particles can absorb and relax the volume expansion of the composite particles during charging, and When cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore, stress due to volume expansion / contraction during charging / discharging can be relieved and conductivity can be secured.
この結果、スズがリチウムと効率良く反応するというスズ本来の性能を引き出すことができるので、本発明のリチウムイオン二次電池は、サイクル特性及び出力特性に優れ、寿命が長くなり、かつ容量が高くなる。そして、ビスマスを所定の割合で含むことで負極活物質を構成する複合粒子が非常に微細な粒径に制御されているため、特にサイクル特性等に優れる。また、負極活物質にカーボンナノファイバー(CNF)からなる導電性助剤を添加すると、この導電性助剤が粒子を覆うことになり、負極全体に網目状に導電性パスを形成することができるので、活物質当りの初回放電容量及びサイクル特性を更に向上させることができる。 As a result, the original performance of tin that tin reacts efficiently with lithium can be brought out, so the lithium ion secondary battery of the present invention has excellent cycle characteristics and output characteristics, has a long life, and has a high capacity. Become. And since the composite particle which comprises a negative electrode active material is controlled by the very fine particle diameter by containing bismuth in a predetermined | prescribed ratio, it is excellent in cycling characteristics etc. especially. In addition, when a conductive auxiliary agent made of carbon nanofiber (CNF) is added to the negative electrode active material, the conductive auxiliary agent covers the particles, and a conductive path can be formed in a net shape throughout the negative electrode. Therefore, the initial discharge capacity and cycle characteristics per active material can be further improved.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
<実施例1−1>
先ず、イオン交換水に分散剤、塩化スズ(II)及び塩化コバルト(II)を、合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が20原子%となる割合で加え、撹拌溶解させた。なお、分散剤にはポリアクリル酸を用いた。また、これとは別に塩化ビスマス(III)を塩酸に溶解させたビスマスイオンを含む塩酸溶液を用意し、これをビスマスの含有量がスズの含有量100原子%に対して0.5原子%(原子比でスズ:ビスマス=100:0.5)となるように、上記スズイオン及びコバルトイオンを含む水溶液に添加して混合した後、35質量%濃度の塩酸を更に加えてpHを0.8に調整した。
<Example 1-1>
First, a dispersant, tin (II) chloride and cobalt (II) chloride are added to ion-exchanged water at a ratio such that the cobalt ratio with respect to the total of tin and cobalt in the composite particles obtained by synthesis is 20 atomic%, and stirred and dissolved. I let you. Polyacrylic acid was used as the dispersant. Separately, a hydrochloric acid solution containing bismuth ions in which bismuth (III) chloride is dissolved in hydrochloric acid is prepared, and the bismuth content is 0.5 atomic% with respect to 100 atomic% of tin ( After adding and mixing in the aqueous solution containing tin ions and cobalt ions so that the atomic ratio of tin: bismuth = 100: 0.5), 35% by mass hydrochloric acid was further added to adjust the pH to 0.8. It was adjusted.
一方、イオン交換水に塩化クロム(III)を加えて撹拌溶解し、これに金属亜鉛(Zn)を投入することでクロムイオンを3価から2価に還元し、全クロムイオン中の2価のクロム比が70%以上となるように調製した。これを還元剤水溶液とした。 On the other hand, chromium (III) chloride is added to ion-exchanged water and dissolved by stirring. By adding metal zinc (Zn) to this, chromium ions are reduced from trivalent to divalent, and divalent in all chromium ions. The chromium ratio was adjusted to 70% or more. This was designated as a reducing agent aqueous solution.
次に、スズイオン、コバルトイオン及びビスマスイオンを含む水溶液と還元剤水溶液とを所定の割合で混合し、24時間撹拌保持してスズイオン、コバルトイオン及びビスマスイオンを還元反応させた。この混合液の温度は30℃であり、pHは0.9であり、撹拌速度は1.4m/秒であった。 Next, an aqueous solution containing tin ions, cobalt ions, and bismuth ions and a reducing agent aqueous solution were mixed at a predetermined ratio, and stirred and held for 24 hours to cause a reduction reaction of tin ions, cobalt ions, and bismuth ions. The temperature of this liquid mixture was 30 degreeC, pH was 0.9, and the stirring speed was 1.4 m / sec.
その後、撹拌混合した液を静置し、合成した粒子を沈降させ、上澄み液を除去した。続いて、沈降物にイオン交換水を加えて撹拌洗浄、静置沈降及び上澄み液除去の操作を数回繰り返し、最後にエタノールで撹拌洗浄、静置沈降及び上澄み液除去を行った。得られた沈降物を真空乾燥することで、スズとコバルトの合計量に対するコバルトの割合が20原子%であり、スズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在した構造の複合粒子であって、更にビスマスが0.5原子%含まれる負極活物質を得た。 Then, the liquid which was stirred and mixed was left still, the synthesized particle | grains were settled, and the supernatant liquid was removed. Subsequently, ion-exchanged water was added to the precipitate, and the operations of stirring and washing, standing sedimentation and supernatant removal were repeated several times, and finally stirring and washing with ethanol, standing sedimentation and supernatant removal were performed. The obtained precipitate is vacuum-dried so that the ratio of cobalt to the total amount of tin and cobalt is 20 atomic%, tin (Sn) is arranged at the center, and cobalt (Co) is disposed on the outer surface of tin (Sn). Were obtained, and a negative electrode active material containing 0.5 atomic% of bismuth was obtained.
<実施例1−2〜1−4及び比較例1−1,1−2>
スズイオン及びコバルトイオンを含む水溶液にビスマスイオンを含む塩酸溶液を添加する際に、合成して得られる複合粒子のビスマス含有量が、以下の表1に示す割合となるように、ビスマスイオンを含む塩酸溶液の添加量を調整したこと以外は実施例1−1と同様にして負極活物質を得た。
<Examples 1-2 to 1-4 and Comparative Examples 1-1 and 1-2>
Hydrochloric acid containing bismuth ions so that the bismuth content of the composite particles obtained by synthesis when adding a hydrochloric acid solution containing bismuth ions to an aqueous solution containing tin ions and cobalt ions is the ratio shown in Table 1 below. A negative electrode active material was obtained in the same manner as in Example 1-1 except that the addition amount of the solution was adjusted.
<実施例2−1〜2−7>
合成して得られる複合粒子のスズとコバルトの合計に対するコバルト割合が、以下の表2に示す割合となるように塩化スズ(II)及び塩化コバルト(II)を加えて、スズイオン及びコバルトイオンを含む水溶液を調製したこと以外は実施例1−3と同様にして負極活物質を得た。なお、比較のため、上記実施例1−3を実施例2−3として表2に記載した。
<Examples 2-1 to 2-7>
Add tin (II) chloride and cobalt (II) chloride so that the ratio of cobalt to the total of tin and cobalt in the composite particles obtained by synthesis is the ratio shown in Table 2 below, and contain tin ions and cobalt ions. A negative electrode active material was obtained in the same manner as in Example 1-3 except that an aqueous solution was prepared. For comparison, Example 1-3 is shown in Table 2 as Example 2-3.
<実施例3−1〜3−8>
負極活物質中のクロム及び亜鉛の濃度が、以下の表3に示す割合となるように、スズイオン、コバルトイオン及びビスマスイオンを含む水溶液と還元剤水溶液との混合割合を調整したこと以外は実施例1−3と同様にして負極活物質を得た。
<Examples 3-1 to 3-8>
Examples except that the mixing ratio of the aqueous solution containing tin ions, cobalt ions and bismuth ions and the reducing agent aqueous solution was adjusted so that the concentrations of chromium and zinc in the negative electrode active material were the ratios shown in Table 3 below. A negative electrode active material was obtained in the same manner as in 1-3.
<実施例4>
上記混合液の温度、pH、処理時間又は撹拌速度のうち、処理時間の条件を変更したこと以外は、実施例1−3と同様にして負極活物質を得た。これにより、スズとコバルトの合計量に対するコバルトの割合が20原子%であり、この複合粒子が切断面において複合粒子の表面に連通する複数のポアを有し(図1)、コバルトが複合粒子の外面及びポアの内面に偏在した構造の複合粒子であって、更にビスマスがスズの含有量100原子%に対して0.5原子%含まれる負極活物質を得た。
<Example 4>
A negative electrode active material was obtained in the same manner as in Example 1-3, except that the conditions of the treatment time were changed among the temperature, pH, treatment time or stirring speed of the mixed solution. Thereby, the ratio of cobalt to the total amount of tin and cobalt is 20 atomic%, and this composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface (FIG. 1). A composite particle having a structure unevenly distributed on the outer surface and the inner surface of the pore was obtained, and further, a negative electrode active material containing 0.5 atomic% of bismuth with respect to a tin content of 100 atomic% was obtained.
<比較例2−1>
スズとコバルトの合計に対するコバルト割合が20原子%であり、粒子の中心部と外周部とで偏りのない略均一な組成の粒子であって、更にビスマスがスズの含有量100原子%に対して0.5原子%含まれる負極活物質を比較例2−1とした。
<Comparative Example 2-1>
The proportion of cobalt with respect to the total of tin and cobalt is 20 atomic%, and the particles have a substantially uniform composition with no deviation between the central portion and the outer peripheral portion of the particles, and the bismuth has a tin content of 100 atomic percent. The negative electrode active material contained in 0.5 atomic% was set as Comparative Example 2-1.
<比較例2−2>
ビスマスイオンを含む塩酸溶液を添加しなかったこと以外は、実施例4と同様にして負極活物質を得た。
<Comparative Example 2-2>
A negative electrode active material was obtained in the same manner as in Example 4 except that the hydrochloric acid solution containing bismuth ions was not added.
<比較試験及び評価>
実施例1−1〜4及び比較例1−1〜2−2の負極活物質について、ICP定量分析を行い、複合粒子中のスズ、コバルト、ビスマスの各含有量、及び負極活物質粉末に含まれるクロム及び亜鉛の濃度を求めた。これらの結果を次の表1〜表4に示す。なお、表中の「<0.001」及び「<2」は、ICPの検出限界以下の測定値であったことを示す。また、表中、「複合粒子の構造」において、「2層」はスズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造を示す。また、表中、「複合粒子の構造」の「ポア」において、「有」は負極活物質を構成する複合粒子が複数のポアを有することを示し、「複合粒子の構造」の「Co位置」において、「偏在」はコバルトが複合粒子の外面及びポアの内面に偏在することを示す。上記複数のポアの存在やコバルトの偏在は、複合粒子の電子顕微鏡写真や、この複合粒子の断面における電子顕微鏡写真により確認した。
<Comparison test and evaluation>
The negative electrode active materials of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 2-2 were subjected to ICP quantitative analysis, and included in each content of tin, cobalt, and bismuth in the composite particles, and the negative electrode active material powder. The concentration of chromium and zinc was determined. These results are shown in the following Tables 1 to 4. In the table, “<0.001” and “<2” indicate that the measured values were below the detection limit of ICP. In the table, “composite particle structure”, “two layers” indicates a structure in which tin (Sn) is arranged at the center and cobalt (Co) is unevenly distributed on the outer surface of the tin (Sn). Further, in the table, in the “pore” of “composite particle structure”, “present” indicates that the composite particle constituting the negative electrode active material has a plurality of pores, and “Co position” in “composite particle structure”. In the graph, “uneven distribution” indicates that cobalt is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. The presence of the plurality of pores and the uneven distribution of cobalt were confirmed by an electron micrograph of the composite particle and an electron micrograph of a cross section of the composite particle.
また実施例1−1〜4及び比較例1−1〜2−2の負極活物質を構成する複合粒子の平均粒径を測定した。なお、平均粒径とは、粒度分布測定装置(堀場製作所製LA−950)を用いて測定した体積基準の平均粒径である。 Moreover, the average particle diameter of the composite particle which comprises the negative electrode active material of Examples 1-1 to 4 and Comparative Examples 1-1 to 2-2 was measured. The average particle size is a volume-based average particle size measured using a particle size distribution measuring device (LA-950 manufactured by Horiba, Ltd.).
また実施例1−1〜4及び比較例1−1〜2−2の負極活物質を用い、負極活物質粉末を導電助剤、結着剤、溶媒と混合しスラリーをそれぞれ調製した。即ち、合成した負極活物質粉末、アセチレンブラック、カーボンナノファイバー(CNF)、ポリフッ化ビニリデン(PVdF)及びn−メチルピロリジノン(NMP)を質量比で80:5:5:10:100の割合となるように秤量し、混練機を用いて混練することでスラリーを作製した。 Moreover, using the negative electrode active materials of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 2-2, the negative electrode active material powder was mixed with a conductive additive, a binder, and a solvent to prepare slurries. That is, the synthesized negative electrode active material powder, acetylene black, carbon nanofiber (CNF), polyvinylidene fluoride (PVdF) and n-methylpyrrolidinone (NMP) have a mass ratio of 80: 5: 5: 10: 100. Thus, the slurry was prepared by weighing and kneading using a kneader.
次に、得られたスラリーをアプリケータを用いて銅箔上に活物質密度が5mg/cm2となるように塗布し、乾燥、圧延し、幅3cm長さ3cmに切断することで負極電極を作製した。 Next, the obtained slurry was applied on a copper foil using an applicator so that the active material density was 5 mg / cm 2 , dried, rolled, and cut into a width of 3 cm and a length of 3 cm to form a negative electrode. Produced.
上記作製した負極を用いて半電池を組み、充放電サイクル試験を行った。対極及び参照極にはリチウム金属を用い、電解液には1M濃度で六フッ化リン酸リチウム(LiPF6)を溶解した炭酸エチレン(EC)と炭酸ジエチル(DEC)の等体積溶媒を用いた。充電は電圧が5mVとなるまで0.5mA/cm2の定電流条件で実施し、その後、電流が0.01mA/cm2になるまで5mVの定電圧条件で実施した。 A half battery was assembled using the produced negative electrode, and a charge / discharge cycle test was conducted. Lithium metal was used for the counter electrode and the reference electrode, and equal volume solvents of ethylene carbonate (EC) and diethyl carbonate (DEC) in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 M were used for the electrolyte. Charging was performed under a constant current condition of 0.5 mA / cm 2 until the voltage reached 5 mV, and then under a constant voltage condition of 5 mV until the current reached 0.01 mA / cm 2 .
放電は電圧が1Vになるまで0.5mA/cm2の定電流条件で実施した。充電と放電を各1回実施した状態を1サイクルとし、50サイクルまでの充放電試験を行い、初回の活物質重量あたりの放電容量と、50サイクル目の放電容量の初回放電容量に対する割合を寿命特性として性能評価した。得られた評価結果を次の表1〜表4に示す。 The discharge was carried out under a constant current condition of 0.5 mA / cm 2 until the voltage reached 1V. The state in which charging and discharging are performed once is defined as one cycle, and a charge / discharge test is performed up to 50 cycles. The discharge capacity per active material weight for the first time and the ratio of the discharge capacity at the 50th cycle to the initial discharge capacity Performance was evaluated as a characteristic. The obtained evaluation results are shown in the following Tables 1 to 4.
表1から明らかなように、実施例1−1〜1−4及び比較例1−1,1−2を比較すると、ビスマスの含有量が0.05原子%に満たない比較例1−1では、初回放電容量は高い値を示したものの、実施例1−1〜1−4に比べて寿命特性が低下した。一方、ビスマスの含有量が1.2原子%を超える比較例1−2では、初回放電容量及び寿命特性が実施例1−1〜1−4に比べて低下した。これに対して、実施例1−1〜1−4では、充放電サイクル試験において、いずれも初回放電容量が高い値を示し、更に寿命特性が非常に優れる結果となった。このことから、実施例1−1〜1−4の負極活物質では、リチウムイオン二次電池の出力特性及びサイクル特性を向上させることができることが確認された。 As is clear from Table 1, when Examples 1-1 to 1-4 and Comparative Examples 1-1 and 1-2 are compared, in Comparative Example 1-1, the bismuth content is less than 0.05 atomic%. Although the initial discharge capacity showed a high value, the life characteristics deteriorated as compared with Examples 1-1 to 1-4. On the other hand, in Comparative Example 1-2 in which the bismuth content exceeds 1.2 atomic%, the initial discharge capacity and the life characteristics are lower than those in Examples 1-1 to 1-4. On the other hand, in Examples 1-1 to 1-4, in the charge / discharge cycle test, all showed a high initial discharge capacity, and the life characteristics were very excellent. From this, it was confirmed that the negative electrode active materials of Examples 1-1 to 1-4 can improve the output characteristics and cycle characteristics of the lithium ion secondary battery.
表2から明らかなように、実施例2−1〜2−5及び実施例2−6,2−7を比較すると、コバルトの含有量が5原子%に満たない実施例2−6では、初回放電容量は比較的高い値を示したものの、実施例2−1〜2−4に比べて寿命特性の低下がみられた。一方、コバルトの含有量が40原子%を超える実施例2−7では、寿命特性は高い評価が得られたものの、初回放電容量が実施例2−1〜2−4に比べて低下した。一方、実施例2−1〜2−4では、充放電サイクル試験において、いずれも初回放電容量が高い値を示し、更に寿命特性が非常に優れる結果となった。このことから、実施例2−1〜2−4の負極活物質では、リチウムイオン二次電池の出力特性及びサイクル特性を向上させることができることが確認された。 As is clear from Table 2, when Examples 2-1 to 2-5 and Examples 2-6 and 2-7 are compared, in Example 2-6 in which the cobalt content is less than 5 atomic%, Although the discharge capacity showed a relatively high value, the life characteristics were deteriorated as compared with Examples 2-1 to 2-4. On the other hand, in Example 2-7 in which the cobalt content exceeds 40 atomic%, although the life characteristics were highly evaluated, the initial discharge capacity was lower than those in Examples 2-1 to 2-4. On the other hand, in Examples 2-1 to 2-4, in the charge / discharge cycle test, all showed a high initial discharge capacity, and the life characteristics were very excellent. From this, it was confirmed that the negative electrode active materials of Examples 2-1 to 2-4 can improve the output characteristics and cycle characteristics of the lithium ion secondary battery.
表3から明らかなように、実施例3−1〜3−3と実施例3−7とを比較すると、クロムの濃度が1.0質量%を超える実施例3−7では、実施例3−1〜3−3に比べて、初回放電容量及び寿命特性が若干低下することが分かる。また、実施例3−4〜3−6と実施例3−8とを比較すると、亜鉛の濃度が50ppmを超える実施例3−8では、実施例3−4〜3−6に比べて、初回放電容量及び寿命特性が若干低下することが分かる。このことから、負極活物質中に含まれるクロムの濃度は1.0質量%以下、亜鉛の濃度は50ppm以下が望ましいことが分かる。 As is apparent from Table 3, when Examples 3-1 to 3-3 and Example 3-7 are compared, Example 3-7, in which the chromium concentration exceeds 1.0 mass%, shows Example 3- It can be seen that the initial discharge capacity and the life characteristics are slightly lowered as compared with 1-3. Moreover, when Examples 3-4 to 3-6 and Example 3-8 are compared, in Example 3-8 in which the concentration of zinc exceeds 50 ppm, compared to Examples 3-4 to 3-6, the first time It can be seen that the discharge capacity and life characteristics are slightly reduced. This shows that the chromium concentration contained in the negative electrode active material is preferably 1.0% by mass or less and the zinc concentration is preferably 50 ppm or less.
表4から明らかなように、粒子の中心部と外周部とでコバルトとスズの組成に偏りのない略均一な組成の粒子を負極活物質とした比較例2−1では、初回放電容量が低い値を示し、また寿命特性も大幅に低下した。また、ビスマスを添加していない比較例2−2では、複合粒子の平均粒径が増大し、寿命特性の低下がみられた。これに対し、実施例4では、充放電サイクル試験において、初回放電容量が高い値を示し、更に寿命特性が非常に優れる結果となった。このことから、実施例4の負極活物質では、リチウムイオン二次電池の出力特性及びサイクル特性を向上させることができることが確認された。 As is apparent from Table 4, in Comparative Example 2-1, in which the particles having a substantially uniform composition with no bias in the composition of cobalt and tin at the center and the outer periphery of the particles were used as the negative electrode active material, the initial discharge capacity was low. Value, and the life characteristics were significantly reduced. Moreover, in Comparative Example 2-2 to which bismuth was not added, the average particle size of the composite particles increased and the life characteristics were deteriorated. On the other hand, in Example 4, in the charge / discharge cycle test, the initial discharge capacity showed a high value, and the life characteristics were very excellent. From this, it was confirmed that the negative electrode active material of Example 4 can improve the output characteristics and cycle characteristics of the lithium ion secondary battery.
Claims (4)
前記複合粒子が構成元素としてビスマスを更に含み、前記ビスマスの含有量がスズ(Sn)の含有量100原子%に対して0.05〜1.2原子%含まれることを特徴とするリチウムイオン二次電池用負極活物質。 It is composed of composite particles containing tin (Sn) and cobalt (Co), the composite particles are arranged around the tin (Sn), and cobalt (Co) is unevenly distributed on the outer surface of the tin (Sn), Alternatively, the lithium ion secondary battery has a structure in which the composite particle has a plurality of pores communicating with the surface of the composite particle at a cut surface and the cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. Negative electrode active material for
The composite particles further include bismuth as a constituent element, and the content of the bismuth is 0.05 to 1.2 atomic% with respect to 100 atomic% of tin (Sn). Negative electrode active material for secondary battery.
前記負極活物質が、スズ(Sn)とコバルト(Co)を含む複合粒子からなり、前記複合粒子が前記スズ(Sn)を中心に配置しかつこのスズ(Sn)外面にコバルト(Co)が偏在する構造であるか、又は前記複合粒子が切断面において前記複合粒子の表面に連通する複数のポアを有しかつ前記コバルト(Co)が前記複合粒子の外面及び前記ポアの内面に偏在する構造であり、
前記複合粒子が構成元素としてビスマスを更に含み、前記ビスマスの含有量がスズ(Sn)の含有量100原子%に対して0.05〜1.2原子%含まれることを特徴とするリチウムイオン二次電池。 In a lithium ion secondary battery comprising a negative electrode having a negative electrode active material, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte,
The negative electrode active material is composed of composite particles containing tin (Sn) and cobalt (Co), the composite particles are arranged around the tin (Sn), and cobalt (Co) is unevenly distributed on the outer surface of the tin (Sn). Or a structure in which the composite particle has a plurality of pores communicating with the surface of the composite particle at the cut surface, and the cobalt (Co) is unevenly distributed on the outer surface of the composite particle and the inner surface of the pore. Yes,
The composite particles further include bismuth as a constituent element, and the content of the bismuth is 0.05 to 1.2 atomic% with respect to 100 atomic% of tin (Sn). Next battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013051818A JP5994688B2 (en) | 2013-03-14 | 2013-03-14 | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013051818A JP5994688B2 (en) | 2013-03-14 | 2013-03-14 | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014179216A JP2014179216A (en) | 2014-09-25 |
JP5994688B2 true JP5994688B2 (en) | 2016-09-21 |
Family
ID=51698967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013051818A Active JP5994688B2 (en) | 2013-03-14 | 2013-03-14 | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5994688B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4056183B2 (en) * | 1999-09-24 | 2008-03-05 | 松下電器産業株式会社 | Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5652366B2 (en) * | 2011-01-20 | 2015-01-14 | 三菱マテリアル株式会社 | Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same |
JP2013041756A (en) * | 2011-08-17 | 2013-02-28 | Sony Corp | Negative electrode active material, method for manufacturing negative electrode active material, and nonaqueous electrolyte battery, and battery pack, electronic device, electric vehicle, power storage device, and electric power system using nonaqueous electrolyte battery |
-
2013
- 2013-03-14 JP JP2013051818A patent/JP5994688B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014179216A (en) | 2014-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6589856B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2015115051A1 (en) | Nonaqueous-electrolyte secondary-battery negative electrode | |
JPWO2015098021A1 (en) | Anode for non-aqueous electrolyte secondary battery | |
JP2011086405A (en) | Nonaqueous electrolyte type lithium ion secondary battery | |
JP4270894B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP2009245940A (en) | Nonaqueous electrolyte secondary battery | |
JP5145994B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP5754383B2 (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery | |
JP5754382B2 (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery | |
KR101278832B1 (en) | Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same | |
JP5682411B2 (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing the negative electrode active material | |
JP5472952B1 (en) | Non-aqueous secondary battery | |
JP5863631B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP6056685B2 (en) | Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5811857B2 (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery | |
JP6201843B2 (en) | Method for producing negative electrode active material for lithium ion secondary battery | |
WO2014115322A1 (en) | Negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell obtained using same | |
JP2012164642A (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery comprising the negative electrode active material, and method for manufacturing negative electrode active material for lithium ion secondary battery | |
JP5994688B2 (en) | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material | |
JP2010218855A (en) | Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery | |
JP6303710B2 (en) | Method for producing negative electrode active material for lithium ion secondary battery | |
JP2012164650A (en) | Negative electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery comprising the negative electrode active material | |
WO2023210232A1 (en) | Lithium sulfur battery positive electrode, lithium sulfur battery, and charging/discharging method for same | |
JP5861464B2 (en) | Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same | |
JP2015179607A (en) | Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5994688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |