JP6735060B2 - Si-based alloy negative electrode material for power storage device and electrode using the same - Google Patents

Si-based alloy negative electrode material for power storage device and electrode using the same Download PDF

Info

Publication number
JP6735060B2
JP6735060B2 JP2014187238A JP2014187238A JP6735060B2 JP 6735060 B2 JP6735060 B2 JP 6735060B2 JP 2014187238 A JP2014187238 A JP 2014187238A JP 2014187238 A JP2014187238 A JP 2014187238A JP 6735060 B2 JP6735060 B2 JP 6735060B2
Authority
JP
Japan
Prior art keywords
phase
negative electrode
based alloy
crystallite size
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014187238A
Other languages
Japanese (ja)
Other versions
JP2016062660A (en
Inventor
友紀 廣野
友紀 廣野
哲嗣 久世
哲嗣 久世
哲朗 仮屋
哲朗 仮屋
澤田 俊之
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014187238A priority Critical patent/JP6735060B2/en
Priority to KR1020177004242A priority patent/KR20170057235A/en
Priority to PCT/JP2015/075119 priority patent/WO2016043061A1/en
Priority to CN201580046199.4A priority patent/CN106605322A/en
Priority to TW104130302A priority patent/TW201616707A/en
Publication of JP2016062660A publication Critical patent/JP2016062660A/en
Application granted granted Critical
Publication of JP6735060B2 publication Critical patent/JP6735060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、リチウムイオン二次電池やハイブリットキャパシタ、全固体リチウムイオン二次電池など、充放電時にリチウムイオンの移動を伴う蓄電デバイスの導電性に優れるSi系合金負極材料およびそれを用いた電極に関するものである。 The present invention relates to a Si-based alloy negative electrode material having excellent conductivity in an electricity storage device such as a lithium-ion secondary battery, a hybrid capacitor, and an all-solid-state lithium-ion secondary battery that moves lithium ions during charging and discharging, and an electrode using the same. It is a thing.

近年、携帯機器の普及に伴い、リチウムイオン電池を中心とした高性能二次電池の開発が盛んに行われている。さらに、自動車用や家庭用定置用蓄電デバイスとしてリチウムイオン二次電池やその反応機構を負極に適用したハイブリットキャパシタの開発も盛んになっている。それらの蓄電デバイスの負極材料としては、リチウムイオンを吸蔵及び放出することができる、天然黒鉛や人造黒鉛、コークスなどの炭素質材料が用いられている。しかし、これらの炭素質材料はリチウムイオンを炭素面間に挿入するため、負極に用いた際の理論容量は372mAh/gが限界であり、高容量化を目的とした炭素質材料に代わる新規材料の探索が盛んに行われている。 2. Description of the Related Art In recent years, with the spread of mobile devices, high-performance secondary batteries centering on lithium-ion batteries have been actively developed. Further, a lithium-ion secondary battery and a hybrid capacitor in which its reaction mechanism is applied to the negative electrode have been actively developed as a stationary electric storage device for automobiles and homes. As a negative electrode material of such an electricity storage device, a carbonaceous material capable of inserting and extracting lithium ions, such as natural graphite, artificial graphite, or coke is used. However, since these carbonaceous materials intercalate lithium ions between the carbon faces, the theoretical capacity when used for the negative electrode is limited to 372 mAh/g, which is a new material replacing the carbonaceous material for the purpose of increasing the capacity. Is being actively explored.

一方、炭素質材料に代わる材料として、Siが注目されている。その理由は、SiはLi22Si5で表される化合物を形成して、大量のリチウムを吸蔵することができるため、炭素質材料を使用した場合に比較して負極の容量を大幅に増大でき、結果としてリチウムイオン二次電池やハイブリットキャパシタ、全固体電池の蓄電容量を増大することができる可能性を持っているためである。 On the other hand, Si has attracted attention as a material replacing carbonaceous materials. The reason is that Si can form a compound represented by Li22Si5 and can occlude a large amount of lithium, so that the capacity of the negative electrode can be significantly increased as compared with the case of using a carbonaceous material, and as a result, This is because it has the potential to increase the storage capacity of lithium-ion secondary batteries, hybrid capacitors, and all-solid-state batteries.

しかし、Siを単独で負極材として使用した場合には、充電時にリチウムと合金化する際の膨張と、放電時にリチウムと脱合金化する際の収縮との繰返しによって、Si相が微粉化されて、使用中に電極基板からSi相が脱落したり、Si相間の電気伝導性が取れなくなるなどの不具合が生じるために、蓄電デバイスとしての寿命が極めて短いといった課題があった。 However, when Si is used alone as the negative electrode material, the Si phase is pulverized due to repeated expansion during alloying with lithium during charging and contraction during dealloying with lithium during discharging. However, there is a problem that the life of the electricity storage device is extremely short due to problems such as the loss of Si phase from the electrode substrate during use and the loss of electrical conductivity between Si phases.

また、Siは炭素質材料や金属系材料に比べて電気伝導性が悪く、充放電に伴う電子の効率的な移動が制限されているため、負極材としては炭素質材料など導電性を補う材料と組合せて使用されるが、その場合でも特に初期の充放電や高効率での充放電特性も課題となっている。 Further, Si has poor electric conductivity as compared with carbonaceous materials and metal-based materials, and efficient movement of electrons due to charge/discharge is limited. Therefore, as a negative electrode material, a material that supplements conductivity such as carbonaceous material. However, even in that case, the initial charge/discharge and charge/discharge characteristics with high efficiency are still problems.

このようなSi相を負極として利用する際の欠点を解決する方法として、Siなどの親リチウム相の少なくとも一部を、Siと遷移金属に代表される金属との金属間化合物で包囲した材料やその製造方法が、例えば、特開2001−297757号公報(特許文献1)や特開平10−312804号公報(特許文献2)に提案されている。 As a method of solving such a drawback when using the Si phase as a negative electrode, a material in which at least a part of a parent lithium phase such as Si is surrounded by an intermetallic compound of Si and a metal represented by a transition metal, A manufacturing method thereof has been proposed, for example, in Japanese Patent Laid-Open No. 2001-297757 (Patent Document 1) and Japanese Patent Laid-Open No. 10-31804 (Patent Document 2).

また、別の解決方法として、Si相を含む活物質の相をリチウムと合金化しないCuなどの導電性材料で被覆した電極やその製造方法が、例えば、特開2004−228059号公報(特許文献3)や特開2005−44672号公報(特許文献4)に提案されている。 Further, as another solution, an electrode in which a phase of an active material containing a Si phase is coated with a conductive material such as Cu that does not alloy with lithium and a method for manufacturing the electrode are disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-228059. 3) and Japanese Patent Laid-Open No. 2005-44672 (Patent Document 4).

特開2001−297757号公報JP 2001-297757 A 特開平10−312804号公報JP, 10-31804, A 特開2004−228059号公報JP, 2004-228059, A 特開2005−44672号公報JP, 2005-44672, A

しかしながら、上述した活物質の相をCuなどの導電性材料で被覆する方法では、Si相を含む活物質を電極に形成する工程の前または後に、Cuめっきなどの方法で被覆する必要があり、また、被覆膜厚の制御など工業的に手間がかかるという問題がある。
また、Siなどの親リチウム相の少なくとも一部を金属間化合物で包囲した材料は、溶融後の凝固プロセス中に親リチウム相と金属間化合物が形成されるため、工業的に好ましいプロセスといえるが、それだけでは十分な充放電サイクル特性が得られないといった問題がある。
However, in the above method of coating the active material phase with a conductive material such as Cu, it is necessary to coat the active material containing the Si phase by a method such as Cu plating before or after the step of forming the active material containing the Si phase on the electrode. In addition, there is a problem in that it takes a lot of time and effort to control the coating film thickness industrially.
A material in which at least a part of the parent lithium phase such as Si is surrounded by the intermetallic compound is an industrially preferable process because the parent lithium phase and the intermetallic compound are formed during the solidification process after melting. However, there is a problem in that sufficient charge/discharge cycle characteristics cannot be obtained by itself.

そこで、本発明が解決しようとする課題は、Si系合金中のSi相や金属間化合物相の化学組成、構造、組織の大きさ等を高位に制御することで、リチウムイオン二次電池やハイブリットキャパシタ、全固体電池など、充放電時にリチウムイオンの移動を伴う蓄電デバイスに関し、充放電特性に優れるSi系合金負極材料を提案することである。 Therefore, the problem to be solved by the present invention is to control the chemical composition, the structure, the size of the structure, etc. of the Si phase and the intermetallic compound phase in the Si-based alloy to a high level, thereby achieving a lithium ion secondary battery and a hybrid. It is an object of the present invention to propose a Si-based alloy negative electrode material having excellent charge/discharge characteristics for an electricity storage device such as a capacitor or an all-solid-state battery in which lithium ions move during charge/discharge.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、組織の微細化、優れたイオン伝導性と電子伝導性、応力緩和効果を高める成分系の制御とSi相や金属間化合物相の結晶子サイズを制御することで、優れた電池特性が得られるSi系合金負極材料を見出した。 In order to solve the above problems, as a result of intensive development by the inventors, as a result, the fineness of the structure, excellent ionic and electronic conductivity, control of the component system for enhancing the stress relaxation effect, and Si phase and By controlling the crystallite size of the intermetallic compound phase, the inventors have found a Si-based alloy negative electrode material that provides excellent battery characteristics.

そこで、本発明の課題を解決するための手段として、
請求項1の手段では、充放電時にリチウムイオンの移動が伴う蓄電デバイス用Si系合金からなる負極材料であって、前記Si系合金からなる負極材料が、SiからなるSi主要相とSiとSi以外の一種以上の元素からなる化合物相を有し、前記化合物相が、SiとCr、あるいはSiとCrとTiからなる相を含んでなる相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつ、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下であること、CrとTiの合計含有量が21.1〜40at.%含み、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲であることを特徴とする蓄電デバイス用Si系合金からなる負極材料である。
Therefore, as a means for solving the problems of the present invention,
According to the means of claim 1, a negative electrode material made of a Si-based alloy for a power storage device, in which lithium ions move during charge and discharge, wherein the negative electrode material made of the Si-based alloy is a Si main phase made of Si and Si and Si. Other than the above, a compound phase composed of one or more elements other than the above, the compound phase having a phase containing a phase composed of Si and Cr, or Si, Cr and Ti, and the Si crystallite size of the Si main phase. Is 30 nm or less, and the crystallite size of the compound phase consisting of Si and Cr or Si, Cr and Ti is 40 nm or less, and the total content of Cr and Ti is 21.1 to 40 at. %, and Cr%/(Cr%+Ti%), which is the ratio of Cr to Ti, is in the range of 0.15 to 1.00, which is a negative electrode material made of a Si-based alloy for an electricity storage device.

請求項2の手段では、請求項1に記載した蓄電デバイス用Si系合金からなる負極材料
の前記化合物相に、Cu、V、Mn、Fe、Ni、Nb、Zn、Alからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料である。
According to a second aspect of the present invention, the compound phase of the negative electrode material comprising the Si-based alloy for an electricity storage device according to the first aspect is selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn and Al. At least one element or more, and the total content is 0.05 at. % To 5 at. % Is a negative electrode material composed of a Si-based alloy for an electricity storage device.

請求項3の手段では、請求項1〜2のいずれか1項に記載した蓄電デバイス用Si系合
金からなる負極材料の前記化合物相に、Mg、B、P、Gaからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。
According to a third aspect of the present invention, the compound phase of the negative electrode material comprising the Si-based alloy for an electricity storage device according to any one of the first and second aspects is selected from the group consisting of Mg, B, P and Ga. At least one element is contained, and the total content is 0.05 at. % To 5 at. %, a negative electrode material made of a Si-based alloy for a power storage device.

請求項4の手段では、請求項1〜3のいずれか1項に記載した蓄電デバイス用Si系合
金からなる負極材料を用いた電極において、特にポリイミド系バインダーを含むことを特徴とする蓄電デバイス用Si系合金からなる負極である。
According to a fourth aspect of the present invention, in an electrode using the negative electrode material made of the Si-based alloy for an electricity storage device according to any one of claims 1 to 3, particularly for a electricity storage device, a polyimide binder is included. It is a negative electrode made of a Si-based alloy.

本発明合金においてCrはSi相と微細共晶組織の形成に有効なSi2 Crを生成する
必須元素であり、TiはCrに置換しSi2 Crの格子定数を増加させ、リチウムイオン伝導性を高めると推測される。さらに、Si相が結晶子サイズ30nm以下に、またSiとCrの化合物相、SiとCrとTiの化合物相の結晶子サイズが、40nm以下とすることで、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力の緩和、Siの微粉化による電気的孤立を防ぐ役割を果たし、優れた充放電サイクル特性が得られる。
In the alloy of the present invention, Cr is an essential element that produces Si 2 Cr that is effective in forming a fine eutectic structure with the Si phase, and Ti is replaced with Cr to increase the lattice constant of Si 2 Cr and increase the lithium ion conductivity. It is supposed to increase. Furthermore, when the Si phase has a crystallite size of 30 nm or less, and the crystallite size of the compound phase of Si and Cr, or the compound phase of Si, Cr, and Ti is 40 nm or less, when lithium is absorbed or released into Si. It plays the role of relaxing the stress caused by the volume expansion of Si and preventing the electrical isolation due to the pulverization of Si, and excellent charge/discharge cycle characteristics can be obtained.

また、前記蓄電デバイス用Si系合金負極材料の化学成分の制御することで、優れた充放電サイクル特性が得られる。SiとCr、あるいはSiとCrとTiからなる相のCrとTiの合計含有量が21.1〜40at.%含み、Cr%/(Cr%+Ti%)が0.15〜1.00の範囲に制御した場合に、その効果が大きい。 Further, by controlling the chemical composition of the Si-based alloy negative electrode material for the electricity storage device, excellent charge/discharge cycle characteristics can be obtained. The total content of Cr and Ti in the phase composed of Si and Cr or Si, Cr and Ti is 21.1 to 40 at. %, and when Cr%/(Cr%+Ti%) is controlled in the range of 0.15 to 1.00, the effect is large.

また、蓄電デバイス用Si系合金負極材料のSiとCr、SiとCrとTi試料にCu
、V、Mn、Fe、Ni、Nb、Pd、Zn、Alといった添加元素を一種以上、合計量が0.05at.%〜5at.%含有し、結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。これらの蓄電デバイス用Si系合金負極材料を用いた電極において、特に結合力の高いポリイミドバインダーを含んだ場合、優れた電池特性が提供される。
In addition, Si and Cr of Si-based alloy negative electrode materials for power storage devices, and Si and Cr and Ti samples were Cu.
, V, Mn, Fe, Ni, Nb, Pd, Zn, Al, one or more additive elements in a total amount of 0.05 at. % To 5 at. %, and by controlling the crystallite size, the compound phase surrounds the periphery of the fine Si phase, relieves the stress caused by the pulverization of Si, the volume expansion when lithium is occluded and released into Si, and the electrode It plays a role in preventing collapse and electrical isolation of Si. In an electrode using these Si-based alloy negative electrode materials for power storage devices, particularly when a polyimide binder having a high binding force is included, excellent battery characteristics are provided.

また、蓄電デバイス用Si系合金負極材料のSiとCr、SiとCrとTi試料に、M
g、B、P、Gaといった添加元素を一種以上、合計量が0.05at.%〜5at.%含有し、結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。また、B添加によるP型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。P添加によるN型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。これらの蓄電デバイス用Si系合金負極材料を用いた電極において、特に結合力の高いポリイミドバインダーを含んだ場合、優れた電池特性が提供される。
In addition, Si and Cr or Si, Cr and Ti samples of the Si-based alloy negative electrode material for power storage devices were tested with M
g, B, P, Ga, one or more additive elements, with a total amount of 0.05 at. % To 5 at. %, and by controlling the crystallite size, the compound phase surrounds the periphery of the fine Si phase, relieves the stress caused by the pulverization of Si, the volume expansion when lithium is occluded and released into Si, and the electrode It plays a role in preventing collapse and electrical isolation of Si. Further, by taking a P-type semiconductor structure by adding B, it plays a role of improving the electric conductivity of Si. By taking an N-type semiconductor structure by adding P, it plays a role of improving the electric conductivity of Si. In an electrode using these Si-based alloy negative electrode materials for power storage devices, particularly when a polyimide binder having a high binding force is included, excellent battery characteristics are provided.

以上述べたように、本発明は高容量かつ繰り返し充放電時のサイクル特性に優れた蓄電
デバイス用Si系合金負極材料を提供できる極めて優れた効果を奏するものである。
As described above, the present invention has an extremely excellent effect of providing a Si-based alloy negative electrode material for an electricity storage device, which has a high capacity and excellent cycle characteristics during repeated charge and discharge.

Si−Si2 Cr共晶合金の断面のSEM画像を示す図である。Cross-sectional SEM image of the Si-Si 2 Cr eutectic alloy is a diagram showing a. Cr/Ti比を変化させたSi−Si2 Cr共晶合金のXRDである。It is an XRD of Cr / Ti ratio Si-Si 2 Cr eutectic alloy with varying.

以下に、本発明について詳細に説明する。
リチウムイオン二次電池の充放電容量はリチウムの移動量で決まってくる。リチウムを多量に吸蔵・放出できる物質が求められている。そこで、負極材料にはリチウム金属を使用すれば一番効率が良いのだが、充放電に伴うデンドライドの形成により引き起こされる電池の発火など安全性に問題がある。そこで、現在はリチウムをより多く吸蔵・放出できる合金の研究が進んでおり、それら合金の中でもSiは多量にリチウムを吸蔵・放出できる物質として有望視されている。そのため、合金相の主要相としてSiを採用する。
The present invention will be described in detail below.
The charge/discharge capacity of the lithium-ion secondary battery is determined by the amount of transferred lithium. There is a need for a substance that can store and release a large amount of lithium. Therefore, it is most efficient to use lithium metal as the negative electrode material, but there is a problem in safety such as ignition of the battery caused by the formation of dendride due to charge and discharge. Therefore, research on alloys capable of absorbing and releasing a larger amount of lithium is currently underway, and among these alloys, Si is regarded as a promising substance capable of absorbing and releasing a large amount of lithium. Therefore, Si is adopted as the main phase of the alloy phase.

しかし、Siはリチウムの吸蔵・放出時に約400%もの体積膨張を引き起こすため、電極からSiが剥離・脱落したり、Siが集電体との接触を保てなくなることで、サイクルに伴う充放電容量の急激な低下が起こる。また、SiはSi相サイズが大きすぎると、内部のSi相までリチウムと反応せずに、Siのリチウムと反応しやすい表層から膨張し、亀裂が生じ、次に内部の未反応Si相が膨張し、また亀裂が生じるといったことを繰り返すSiの微粉化が引き起こされる。これにより、電極からSiが剥離・脱落したり、Siが集電体との接触を保てなくなることで、サイクルに伴う充放電容量の急激な低下が起こる。 However, Si causes a volume expansion of about 400% when absorbing and releasing lithium, so that Si is separated and dropped from the electrode, and Si cannot maintain contact with the current collector, which results in charge and discharge accompanying the cycle. A sudden drop in capacity occurs. Also, if the Si phase size is too large, Si does not react with lithium up to the internal Si phase, but expands from the surface layer of Si that easily reacts with lithium, cracks occur, and then the unreacted Si phase inside expands. In addition, Si is repeatedly pulverized, which causes cracks. As a result, Si peels off/falls off from the electrode, or Si cannot maintain contact with the current collector, so that the charge/discharge capacity rapidly decreases with the cycle.

本発明における特徴は、共晶合金を得るための添加元素としてCrを用いたことである。図1は、本発明に係るSi−Si2 Crの共晶合金の走査型電子顕微鏡写真による断面組織図で、黒い相がSi相、白い相がSi2 Cr相である。この図1に示す通り、Si相およびCrSi2 相ともに極めて微細である。なお、FeやVなど他の元素と比較し、Cr添加が極端に微細な共晶組織となり、充放電特性にも優れる原因については、以下のことが推測される。 A feature of the present invention is that Cr is used as an additional element for obtaining a eutectic alloy. FIG. 1 is a cross-sectional structural diagram of a eutectic alloy of Si—Si 2 Cr according to the present invention, which is a scanning electron micrograph, and a black phase is a Si phase and a white phase is a Si 2 Cr phase. As shown in FIG. 1, both the Si phase and the CrSi 2 phase are extremely fine. In addition, as compared with other elements such as Fe and V, the reason why the addition of Cr has an extremely fine eutectic structure and is excellent in charge and discharge characteristics is presumed as follows.

Si相と珪化物の共晶を得るために必要な添加元素量は元素の種類により決まっており、例えばFeの場合は26.5%、Vの場合は3%の添加が必要である。なお、これらはいずれもSiと添加元素の状態図から読み取ることができる。ここで、共晶を得るためにFeのように比較的多くの添加量が必要な場合は必然的に珪化物の量が多くなり粗大化しやすく、Liを吸蔵・放出するSi相の割合が低下し、高い放電容量が得られない。 The amount of the additional element required to obtain the eutectic of the Si phase and the silicide is determined by the kind of the element. For example, in the case of Fe, the addition amount is 26.5%, and in the case of V, the addition amount is 3%. All of these can be read from the phase diagram of Si and the additional element. Here, when a relatively large addition amount such as Fe is necessary to obtain a eutectic, the amount of silicide is inevitably increased and coarsens easily, and the ratio of the Si phase that absorbs and releases Li decreases. However, a high discharge capacity cannot be obtained.

一方、Vのように極端に少ない添加量で共晶となる場合、共晶組織中の珪化物の割合が少なく、必然的にSi相が粗大化しやすくなり、充放電時のSi相の体積変化を制御する珪化物の効果が得られない。一方、Crは共晶となる添加量がこれらの中間であり、Si相および珪化物の両者が微細になると考えられる。したがって、Si−Si2 Cr共晶合金は高い放電容量と優れたサイクル寿命を兼備することができる。 On the other hand, in the case of forming an eutectic crystal with an extremely small addition amount such as V, the ratio of the silicide in the eutectic structure is small and the Si phase is inevitably coarsened, and the volume change of the Si phase at the time of charging and discharging. The effect of the silicide that controls the temperature cannot be obtained. On the other hand, the addition amount of Cr which becomes a eutectic is intermediate between these, and it is considered that both the Si phase and the silicide are fine. Therefore, Si-Si 2 Cr eutectic alloy can combine a high discharge capacity and excellent cycle life.

また、Crの一部をTiで置換することにより、さらに、充放電特性を改善できる。発明者は、Si−Si2 Cr共晶合金において、CrをTiに置換する検討を詳細に行った結果、TiはSi2 CrのCrに置換され、その結晶構造を変化させることなく格子定数を増加させると考えられた。 Further, by substituting a part of Cr with Ti, the charge/discharge characteristics can be further improved. The inventor has conducted a detailed study of substituting Cr for Ti in a Si—Si 2 Cr eutectic alloy, and as a result, Ti is replaced by Cr of Si 2 Cr, and the lattice constant is changed without changing its crystal structure. It was thought to increase.

図2は、Cr/Ti比を変化させたSi−Si2 Cr共晶合金のX線回折を示す図である。この図に示すように、Crの一部をTiに置換することにより、Si2 Crは結晶構造を変化させることなく回折ピーク位置が低角度側にシフトしており、格子定数が増加しているものと考えられる。 FIG. 2 is a diagram showing X-ray diffraction of a Si—Si 2 Cr eutectic alloy having a changed Cr/Ti ratio. As shown in this figure, by replacing a part of Cr with Ti, the diffraction peak position of Si 2 Cr is shifted to the lower angle side without changing the crystal structure, and the lattice constant is increased. Thought to be a thing.

本発明におけるCrへのTi置換によるSi2 Crの格子定数増加は、珪化物中のLiの通過をスムーズにし、これに伴う体積変化を軽減する役割を果たしている可能性が推測される。このように、Siと珪化物の共晶系合金をリチウムイオン電池負極活物質に利用する検討で、珪化物の構造にまで踏み込んだ研究はこれまでにほとんど見られない。 It is speculated that the increase in the lattice constant of Si 2 Cr due to the substitution of Ti for Cr in the present invention may serve to smooth the passage of Li in the silicide and reduce the accompanying volume change. As described above, in the study of utilizing a eutectic alloy of Si and a silicide as a negative electrode active material for a lithium ion battery, almost no studies have been made to the structure of a silicide.

上記SiとCr、SiとCrとTiの共晶組織に加えて、結晶子サイズを制御すること
で、さらにリチウムイオン二次電池特性の改善が見込まれる。SiはSi相サイズが大きすぎると、内部のSi相までリチウムと反応せずに、Siのリチウムと反応しやすい表層から膨張し、亀裂が生じ、次に内部の未反応Si相が膨張し、また亀裂が生じるといったことを繰り返すSiの微粉化が引き起こされる。これにより、電極からSiが剥離・脱落したり、Siが集電体との接触を保てなくなることで、サイクルに伴う充放電容量の急激な低下が起こる。このことから、微分化が起こらないサイズまで微細組織にする必要があり、前記リチウムイオン二次電池用負極材料のSi相の結晶子サイズを30nm以下に制御するのが好ましい。より好ましくは、25nm以下であることが望ましい。特に、好ましくは10nm以下であることが望ましい。
By controlling the crystallite size in addition to the eutectic structure of Si and Cr and Si, Cr and Ti, further improvement of lithium ion secondary battery characteristics is expected. If the Si phase size is too large, Si does not react with lithium up to the internal Si phase, and expands from the surface layer of Si that easily reacts with lithium, cracks occur, and then the unreacted Si phase inside expands. Further, Si is repeatedly pulverized, causing cracks to occur. As a result, Si peels off/falls off from the electrode, or Si cannot maintain contact with the current collector, so that the charge/discharge capacity rapidly decreases with the cycle. From this, it is necessary to form a fine structure to a size at which differentiation does not occur, and it is preferable to control the crystallite size of the Si phase of the lithium ion secondary battery negative electrode material to 30 nm or less. More preferably, the thickness is 25 nm or less. Particularly, it is preferable that the thickness is 10 nm or less.

Si相の結晶子サイズの制御については、上記に定めた成分の制御に加えて、原料粉末を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、水アトマイズ、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法、遠心アトマイズ等があるが、この限りではない。また、上記プロセスで冷却効果が不十分な場合、メカニカルミリング等を行うことも可能である。ミリング方法としては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等があるが、この限りではない。 The crystallite size of the Si phase can be controlled not only by controlling the components defined above, but also by controlling the cooling rate during solidification after melting the raw material powder. Examples of the manufacturing method include, but not limited to, water atomization, single roll quenching method, twin roll quenching method, gas atomizing method, disc atomizing method, and centrifugal atomizing method. If the cooling effect is insufficient in the above process, mechanical milling or the like can be performed. Milling methods include, but are not limited to, ball mills, bead mills, planetary ball mills, attritors, and vibrating ball mills.

また、Si主要相のSi結晶子サイズは、透過型電子顕微鏡(TEM)により直接観察
できる。または、粉末X線回折を用いることによって確認することができる。X線源として波長1.54059ÅのCuKα線を用い、2θ=20度〜80度の範囲で測定を行う。得られる回折スペクトルにおいては、結晶子サイズが小さくなるにつれて、比較的ブロードな回折ピークが観測される。粉末X線回折分析で得られるピークの半値幅から、Scherrerの式を用いて求めることができる(D(Å)=(K×λ)/(β×cosθ)D:結晶子の大きさ、K:Scherrerの定数、λ:使用X線管球の波長、β:結晶子の大きさによる回折線の拡がり、θ:回折角)。
Further, the Si crystallite size of the Si main phase can be directly observed by a transmission electron microscope (TEM). Alternatively, it can be confirmed by using powder X-ray diffraction. A CuKα ray having a wavelength of 1.54059Å is used as an X-ray source, and measurement is performed in the range of 2θ=20° to 80°. In the obtained diffraction spectrum, a relatively broad diffraction peak is observed as the crystallite size becomes smaller. From the full width at half maximum of the peak obtained by powder X-ray diffraction analysis, it can be obtained using Scherrer's formula (D(Å)=(K×λ)/(β×cos θ) D: crystallite size, K : Scherrer's constant, λ: wavelength of X-ray tube used, β: spread of diffraction line due to size of crystallite, θ: diffraction angle).

結晶子サイズにおいて、Si主要相のみならず、金属間化合物相の結晶子サイズも重要
になる。SiとCr、SiとCrとTi等の金属間化合物の結晶子サイズを小さくすることで、金属間化合物の降伏応力を高めることや延性、靭性の向上が期待ができるため、膨張等の影響を受けた際に、亀裂の発生等を抑制し、良好なイオン伝導性、電子伝導性を確保できる。また、金属間化合物の結晶子サイズが小さくなることで大きな粒子よりもSi相とより大きな比表面積で接触し、Si相の体積膨張収縮による応力を効率良く吸収・緩和することが可能になる。さらに、Si相とより大きな比表面積で接触することで、リチウムイオン伝導性や電子伝導性パスが増え、よりスムーズな充放電反応を行うことが期待される。そのため、結晶子サイズを40nm以下に制御するのが好ましい。より好ましくは、20nm以下であることが望ましい。特に、好ましくは10nm以下であることが望ましい。
Regarding the crystallite size, not only the Si main phase but also the crystallite size of the intermetallic compound phase is important. By reducing the crystallite size of intermetallic compounds such as Si and Cr and Si, Cr and Ti, it is expected that the yield stress of the intermetallic compounds can be increased and the ductility and toughness can be improved. When received, it is possible to suppress the occurrence of cracks and the like, and ensure good ionic conductivity and electronic conductivity. Further, since the crystallite size of the intermetallic compound becomes smaller, the crystal particles come into contact with the Si phase with a larger specific surface area than that of large particles, and it is possible to efficiently absorb and relax the stress due to the volume expansion and contraction of the Si phase. Furthermore, by contacting the Si phase with a larger specific surface area, it is expected that lithium ion conductivity and electron conductivity paths will increase, and a smoother charge/discharge reaction will be performed. Therefore, it is preferable to control the crystallite size to 40 nm or less. More preferably, it is 20 nm or less. Particularly, it is preferable that the thickness is 10 nm or less.

金属間化合物の結晶子サイズにおいても、透過型電子顕微鏡(TEM)により直接観察
できる。または、粉末X線回折を用いることによって確認することができる。X線源として波長1.54059ÅのCuKα線を用い、2θ=20度〜80度の範囲で測定を行う。得られる回折スペクトルにおいては、結晶子サイズが小さくなるにつれて、比較的ブロードな回折ピークが観測される。粉末X線回折分析で得られるピークの半値幅から、Scherrerの式を用いて求めることができる(D(Å)=(K×λ)/(β×cosθ)D:結晶子の大きさ、K:Scherrerの定数、λ:使用X線管球の波長、β:結晶子の大きさによる回折線の拡がり、θ:回折角)。金属間化合物の結晶子サイズの制御については、原料粉末を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、水アトマイズ、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法、遠心アトマイズ等があるが、この限りではない。また、上記プロセスで冷却効果が不十分な場合、メカニカルミリング等を行うことも可能である。ミリング方法としては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等があるが、この限りではない。
The crystallite size of the intermetallic compound can also be directly observed by a transmission electron microscope (TEM). Alternatively, it can be confirmed by using powder X-ray diffraction. A CuKα ray having a wavelength of 1.54059Å is used as an X-ray source, and measurement is performed in the range of 2θ=20° to 80°. In the obtained diffraction spectrum, a relatively broad diffraction peak is observed as the crystallite size becomes smaller. From the full width at half maximum of the peak obtained by powder X-ray diffraction analysis, it can be obtained using Scherrer's formula (D(Å)=(K×λ)/(β×cos θ) D: crystallite size, K : Scherrer's constant, λ: wavelength of X-ray tube used, β: spread of diffraction line due to size of crystallite, θ: diffraction angle). The crystallite size of the intermetallic compound can be controlled by controlling the cooling rate during solidification after melting the raw material powder. Examples of the manufacturing method include, but not limited to, water atomization, single roll quenching method, twin roll quenching method, gas atomizing method, disc atomizing method, and centrifugal atomizing method. If the cooling effect is insufficient in the above process, mechanical milling or the like can be performed. Milling methods include, but are not limited to, ball mills, bead mills, planetary ball mills, attritors, and vibrating ball mills.

CrとTiを合計21.1〜40%含み(ただしTiが0at.%の場合を含む)、Cr%/(Cr%+Ti%)が0.15〜1.00の範囲とした理由は、本発明合金においてCrはSi相と共晶組織を形成するSi2 Crを生成する必須元素であり、TiはCrに置換しSi2 Crの格子定数を増加させる有効な元素である。また、Siの乏しい電気電子導電性をSi化合物相が補い、かつCrやTiによる初期容量可逆率の向上が認められる。21.1%未満では、充放電時のSiの体積膨張収縮をSi化合物相が緩和することが不可能であり、電極内での活物質の電気電子的孤立化が生じ、サイクル特性が顕著に劣化する。一方、40%以上では、Liを吸蔵・放出するSi相の割合が低下し、高い放電容量が得られない。したがって、CrとTiを合計21.1〜40%とすることで、電極の電気電子伝導性を高め、充放電時のSi相の体積膨張収縮による応力を抑制可能な量のSi化合物相を確保することが可能となる。CrとTiの合計において、好ましい範囲は22〜35、より好ましくは23〜30とした。また、Cr%/(Cr%+Ti%)の好ましい範囲は、0.15〜0.90、より好ましくは0.20〜0.80とした。 The reason why the total content of Cr and Ti is 21.1 to 40% (including the case where Ti is 0 at. %) and Cr%/(Cr%+Ti%) is within the range of 0.15 to 1.00 is In the invention alloy, Cr is an essential element that forms Si 2 Cr that forms a eutectic structure with the Si phase, and Ti is an effective element that substitutes Cr and increases the lattice constant of Si 2 Cr. Further, it is recognized that the Si compound phase compensates for the poor electrical and electronic conductivity of Si, and that the initial capacity reversibility is improved by Cr or Ti. If it is less than 21.1%, it is impossible for the Si compound phase to alleviate the volume expansion and contraction of Si during charge and discharge, resulting in electrical and electronic isolation of the active material in the electrode, resulting in remarkable cycle characteristics. to degrade. On the other hand, if it is 40% or more, the proportion of the Si phase that absorbs and releases Li decreases, and a high discharge capacity cannot be obtained. Therefore, by setting Cr and Ti to a total of 21.1 to 40%, the electric and electronic conductivity of the electrode is enhanced, and the amount of the Si compound phase that can suppress the stress due to the volume expansion and contraction of the Si phase during charge and discharge is secured. It becomes possible to do. In the total of Cr and Ti, the preferable range is 22 to 35, and more preferably 23 to 30. The preferable range of Cr%/(Cr%+Ti%) is 0.15 to 0.90, more preferably 0.20 to 0.80.

さらに、Siと金属間化合物を形成するCrとの合金であるSixCry合金、Cr、Tiとの合金であるSix(Cr、Ti)y合金において、Six(Cr、Ti)y相の組成がx>yであることが必要である。高容量に欠かせないSi主要相が晶出するのがx>yの時であり、好ましくはx=2、y=1とする。 Further, in a SixCry alloy which is an alloy of Si and Cr forming an intermetallic compound and a Six(Cr,Ti)y alloy which is an alloy of Cr and Ti, the composition of the Six(Cr,Ti)y phase is x> It must be y. It is when x>y that the Si main phase, which is essential for high capacity, crystallizes out, and preferably x=2 and y=1.

また、請求項1に記載したリチウムイオン二次電池用負極材料に関して、Cr、Ti以
外にもSiと共晶合金を形成し微細Si相が得られること、Siよりも導電性がよく柔軟な金属間化合物を形成するCu、V、Mn、Fe、Ni、Nb、Zn、Alといった添加元素を一種以上を更に含有させることができる。これらの添加により金属間化合物の結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。
In addition, regarding the negative electrode material for a lithium ion secondary battery according to claim 1, a eutectic alloy is formed with Si in addition to Cr and Ti to obtain a fine Si phase, and a metal having better conductivity and flexibility than Si. One or more additive elements such as Cu, V, Mn, Fe, Ni, Nb, Zn, and Al that form an intermetallic compound can be further contained. By controlling the crystallite size of the intermetallic compound by adding these, the compound phase surrounds the periphery of the fine Si phase, and the stress caused by the pulverization of Si and the volume expansion at the time of inserting and extracting lithium into Si is relaxed. In addition, it plays a role of preventing the collapse of the electrode and the electrical isolation of Si.

また、請求項1に記載したリチウムイオン二次電池用負極材料に関して、Cr、Ti以外にもSiと共晶合金を形成し微細Si相が得られること、Siよりも導電性がよく柔軟な金属間化合物を形成するMg、B、P、Gaといった添加元素を一種以上、合計量が0.05at.%〜5at.%含有し、結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。また、B添加によるP型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。P添加によるN型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。 Further, in the negative electrode material for a lithium ion secondary battery according to claim 1, a eutectic alloy is formed with Si other than Cr and Ti to obtain a fine Si phase, and a metal having better conductivity and flexibility than Si. One or more additive elements such as Mg, B, P, and Ga that form intermetallic compounds, and the total amount is 0.05 at. % To 5 at. %, and by controlling the crystallite size, the compound phase surrounds the periphery of the fine Si phase, relieves the stress caused by the pulverization of Si, the volume expansion when lithium is occluded and released into Si, and the electrode It plays a role in preventing collapse and electrical isolation of Si. Further, by taking a P-type semiconductor structure by adding B, it plays a role of improving the electric conductivity of Si. By taking an N-type semiconductor structure by adding P, it plays a role of improving the electric conductivity of Si.

Siの体積膨張収縮により生じる応力緩和等の効果が小さくする効果を付与するには、Cu、V、Mn、Fe、Ni、Nb、Pd、Zn、Alの合計含有量が0.05at.%以上必要であるが、一方、5at.%超えであるとリチウム不活性元素量が増えるため、充放電容量の低下を引き起こす。このため、Cu、V、Mn、Fe、Ni、Nb、Pd、Zn、Alから少なくとも一種以上含まれる添加元素の合計含有量が0.05at.%〜5at.%が望ましい。より好ましくは0.1at.%〜3at.%である。他にも同様の効果を狙った、Co、Zr、Pd、Bi、In、Sb、Sn、Moについても、少なくとも一種以上含まれる添加元素の合計含有量を0.05at.%〜5at.%とすることが望ましい。 In order to impart the effect of reducing the stress relaxation effect caused by the volume expansion and contraction of Si, the total content of Cu, V, Mn, Fe, Ni, Nb, Pd, Zn, and Al is 0.05 at. % Or more, but 5 at. If it exceeds %, the amount of lithium inactive element increases, which causes a decrease in charge/discharge capacity. Therefore, the total content of the additive elements contained in at least one of Cu, V, Mn, Fe, Ni, Nb, Pd, Zn, and Al is 0.05 at. % To 5 at. % Is desirable. More preferably 0.1 at. %-3 at. %. In addition, for Co, Zr, Pd, Bi, In, Sb, Sn, and Mo aiming at the same effect, the total content of at least one additive element contained is 0.05 at. % To 5 at. It is desirable to set it as %.

Siの体積膨張収縮により生じる応力緩和等の効果が小さくする効果を付与するには、Mg、B、P、Gaの合計含有量が0.05at.%以上必要であるが、一方、5at.%超えであるとリチウム不活性元素量が増えるため、充放電容量の低下を引き起こす。このため、Mg、B、P、Gaから少なくとも一種以上含まれる添加元素の合計含有量が0.05at.%〜5at.%が望ましい。より好ましくは0.1at.%〜3at.%である。他にも同様の効果を狙ったCo、Zr、Pd、Bi、In、Sb、Sn、Moについても、少なくとも一種以上含まれる添加元素の合計含有量を0.05at.%〜5at.%とすることが望ましい。 In order to impart the effect of reducing the effect such as stress relaxation caused by the volume expansion and contraction of Si, the total content of Mg, B, P and Ga is 0.05 at. % Or more, but 5 at. If it exceeds %, the amount of lithium inactive element increases, which causes a decrease in charge/discharge capacity. Therefore, the total content of the additive elements contained in at least one of Mg, B, P, and Ga is 0.05 at. % To 5 at. % Is desirable. More preferably 0.1 at. %-3 at. %. In addition, for Co, Zr, Pd, Bi, In, Sb, Sn, and Mo aiming for the same effect, the total content of at least one additive element is 0.05 at. % To 5 at. It is desirable to set it as %.

上記リチウムイオン二次電池負極材料を用いることにより、高容量かつ繰り返し充放電時のサイクル特性に優れ、またサイクル初期の充放電効率に優れた電池特性を示す。
また、上記リチウムイオン二次電池負極材料を用いた電極において、結合性に優れるポリイミド系バインダーを含むことで、Cu等の集電体との密着性を高め、高容量を保持したまま、充放電サイクル特性を改善する効果が期待される。
By using the above-mentioned lithium ion secondary battery negative electrode material, a battery having high capacity and excellent cycle characteristics upon repeated charge/discharge and excellent charge/discharge efficiency at the beginning of the cycle is exhibited.
In addition, in the electrode using the lithium ion secondary battery negative electrode material, by including a polyimide-based binder having excellent binding properties, the adhesiveness with a current collector such as Cu is enhanced, and charging/discharging while maintaining a high capacity. An effect of improving cycle characteristics is expected.

以下、本発明について、実施例により具体的に説明する。
表1〜2に示す組成のリチウムイオン二次電池用負極材料粉末を、以下に述べる単ロール急冷法、ガスアトマイズ法等により作製した。単ロール急冷法である液体急冷法については、所定組成の原料を底部に細孔を設けた石英管内に入れ、Ar雰囲気中で高周波溶解して溶湯を形成し、この溶湯を回転する銅ロールの表面に出湯した後、銅ロールによる急冷効果によりSi相の結晶子サイズの微細化を図った急冷リボンを作製した。その後、作製した急冷リボンをジルコニア製あるいはSUS304製、SUJ2製のポット容器内にジルコニアボールあるいはSUS304ボール、SUJ2ボールとともにAr雰囲気中にて密閉し、粒子状に加工することを目的としたミリングを行った。ミリングに関しては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等が挙げられる。
Hereinafter, the present invention will be specifically described with reference to examples.
Negative electrode material powders for lithium-ion secondary batteries having the compositions shown in Tables 1 and 2 were produced by the single-roll quenching method, the gas atomizing method, etc. described below. Regarding the liquid quenching method which is a single roll quenching method, a raw material having a predetermined composition is placed in a quartz tube having a pore at the bottom, high frequency melting is performed in an Ar atmosphere to form a molten metal, and the molten metal of a rotating copper roll is rotated. After tapping on the surface, a quenching ribbon was produced in which the crystallite size of the Si phase was miniaturized by the quenching effect of the copper roll. Then, the quenched ribbon was sealed in a zirconia, SUS304, or SUJ2 pot container together with zirconia balls, SUS304 balls, or SUJ2 balls in an Ar atmosphere, and milled for the purpose of processing into particles. It was Examples of the milling include a ball mill, a bead mill, a planetary ball mill, an attritor, a vibrating ball mill and the like.

ガスアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、ガス噴射させるとともに出湯させて、急冷凝固することでガスアトマイズ微粉末を得た。ディスクアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、40000〜60000r.p.m.の回転ディスク上に出湯させて、急冷凝固することでディスクアトマイズ微粉末を得た。その後、作製したアトマイズ微粉末をジルコニア製あるいはSUS304製、SUJ2製のポット容器内にジルコニアボールあるいはSUS304ボール、SUJ2ボールとともにAr雰囲気中にて密閉し、メカニカルミリングにより粉末化し、結晶子サイズの制御を行った。メカニカルミリングに関しては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等が挙げられる。メカニカルミリングによる処理では、ミリング時間や回転数等を設定することで、急冷凝固を利用したアトマイズ粉末のSi結晶子サイズや金属間化合物の結晶子サイズを制御することができる。 Regarding the gas atomizing method, a raw material of a predetermined composition is placed in a quartz crucible having a pore in the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then gas is sprayed and tapped in an Ar gas atmosphere. Then, the gas atomized fine powder was obtained by rapid solidification. Regarding the disk atomization method, a raw material having a predetermined composition is put in a quartz crucible having a pore in the bottom, and is heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then in an Ar gas atmosphere at 40,000 to 60,000 r. p. m. The molten metal was poured onto the rotating disk of No. 3 and rapidly solidified to obtain a disk atomized fine powder. Thereafter, the atomized fine powder produced was sealed in an Ar atmosphere together with zirconia balls or SUS304 balls and SUJ2 balls in a pot container made of zirconia or SUS304, SUJ2, and powdered by mechanical milling to control the crystallite size. went. Examples of mechanical milling include ball mills, bead mills, planetary ball mills, attritors, and vibration ball mills. In the processing by mechanical milling, the Si crystallite size of the atomized powder and the crystallite size of the intermetallic compound that utilize rapid solidification can be controlled by setting the milling time, the rotation speed, and the like.

以下、具体的な負極作製方法について述べる。
上記負極の単極での電極性能を評価するために、対極にリチウム金属を用いた、いわゆる二極式コイン型セルを用いた。まず、負極活物質(Si−Cr−Tiなど)、導電材料(アセチレンブラック)、結着材料(ポリイミド、ポリフッ化ビニリデン等)を電子天秤で秤量し、分散液(N−メチルピロリドン)と共に混合スラリー状態とした後、集電体(Cu等)上に均一に塗布した。塗布後、真空乾燥機で減圧乾燥し溶媒を蒸発させた後、必要に応じてロールプレスした後、コインセルにあった形状に打ち抜いた。対極のリチウムも同様に金属リチウム箔をコインセルにあった形状に打ち抜いた。前記スラリー塗布電極の真空乾燥において、ポリイミド結着材料使用時は性能を十分に発揮するため200℃以上の温度で乾燥した。ポリフッ化ビニリデン等使用時は約160℃の温度で乾燥した。
Hereinafter, a specific method for producing a negative electrode will be described.
In order to evaluate the electrode performance of the above negative electrode in a single electrode, a so-called bipolar coin-type cell in which lithium metal was used as a counter electrode was used. First, a negative electrode active material (Si-Cr-Ti, etc.), a conductive material (acetylene black), a binder material (polyimide, polyvinylidene fluoride, etc.) are weighed by an electronic balance, and mixed slurry with a dispersion liquid (N-methylpyrrolidone). After the state, it was evenly applied onto a current collector (such as Cu). After application, the solvent was evaporated under reduced pressure with a vacuum drier to evaporate the solvent, followed by roll pressing if necessary, and then punching into a shape suitable for the coin cell. Similarly, for the lithium of the counter electrode, a metal lithium foil was punched into a shape suitable for the coin cell. In the vacuum drying of the slurry-coated electrode, when the polyimide binder material was used, it was dried at a temperature of 200° C. or higher in order to exert its performance sufficiently. When using polyvinylidene fluoride or the like, it was dried at a temperature of about 160°C.

リチウムイオン電池に使用する電解液はエチレンカーボネートとジメチルカーボネートの3:7混合溶媒を用い、支持電解質にはLiPF6 (六フッ化リン酸リチウム)を用い、電解液に対して1モル溶解した。その電解液は露点管理された不活性雰囲気中で取り扱う必要があるため、セルの組立ては、全て不活性雰囲気のグローブボックス内で行った。セパレータはコインセルにあった形状に切り抜いた後セパレータ内に電解液を十分浸透させるために、減圧下で数時間電解液中に保持した。その後、前工程で打ち抜いた負極、セパレータ、対極リチウムの順に組合せ、電池内部を電解液で十分満たした形で構築した。 The electrolyte used for the lithium ion battery was a 3:7 mixed solvent of ethylene carbonate and dimethyl carbonate, and LiPF 6 (lithium hexafluorophosphate) was used as the supporting electrolyte, and 1 mol was dissolved in the electrolyte. Since the electrolytic solution needs to be handled in an inert atmosphere with dew point control, all the cells were assembled in a glove box in an inert atmosphere. The separator was cut into a shape suitable for the coin cell and then kept in the electrolytic solution under reduced pressure for several hours in order to allow the electrolytic solution to sufficiently penetrate into the separator. After that, the negative electrode punched out in the previous step, the separator, and the counter electrode lithium were assembled in this order, and the inside of the battery was sufficiently filled with the electrolytic solution.

充電容量、放電容量の測定として、上記二極式セルを用い、温度25℃、充電は0.50mA/cm2 の電流密度で、金属リチウム極と同等の電位(0V)になるまで行い、同じ電流値(0.50mA/cm2 )で、放電を1.5Vまで行い、この充電−放電を1サイクルとした。また、サイクル寿命としては、上記測定を繰返し行うことを実施した。 To measure the charge capacity and the discharge capacity, the bipolar cell was used, the temperature was 25° C., the charge was performed at a current density of 0.50 mA/cm 2 until the potential (0 V) equivalent to that of the metal lithium electrode was obtained, and the same. At a current value (0.50 mA/cm 2 ), discharging was performed up to 1.5 V, and this charging-discharging was set as one cycle. As the cycle life, the above measurement was repeated.

Figure 0006735060
Figure 0006735060

Figure 0006735060
Figure 0006735060

Figure 0006735060
Figure 0006735060

Figure 0006735060
Figure 0006735060

Figure 0006735060
Figure 0006735060

本発明例のNo.1〜12はSi主要相とSiとCrとTiからなる相を含み、Siの結晶子サイズが30nm以下であり、SiとCrとTiからなる化合物相の結晶子サイズが40nm以下の条件を満足している。 No. 1 of the present invention example. 1 to 12 include a Si main phase and a phase composed of Si, Cr and Ti, the crystallite size of Si is 30 nm or less, and the crystallite size of the compound phase composed of Si, Cr and Ti satisfies 40 nm or less. doing.

本発明例No.4では、Si主要相とSiとCrとTiを含み、Siの結晶子サイズは
3nmであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrとTiからなる化合物相の結晶子サイズが31nmであり、SiとCrとTiからなる化合物相の結晶子サイズ40nm以下の条件を満足している。また、上記のように本発明条件を満たし、初期放電容量が789mAh/g、50サイクル後の放電容量維持率が92%と充放電容量とサイクル寿命のいずれも良好な特性を示した。
Inventive Example No. In No. 4, the main phase of Si, Si, Cr, and Ti are included, the crystallite size of Si is 3 nm, and the condition that the crystallite size of Si is 30 nm or less is satisfied. In addition, the crystallite size of the compound phase composed of Si, Cr and Ti is 31 nm, and the condition that the crystallite size of the compound phase composed of Si, Cr and Ti is 40 nm or less is satisfied. Further, as described above, the conditions of the present invention were satisfied, the initial discharge capacity was 789 mAh/g, the discharge capacity retention ratio after 50 cycles was 92%, and both the charge and discharge capacity and the cycle life showed good characteristics.

本発明例のNo.13〜18はSi主要相とSiとCrからなる相を含み、Siの結晶子サイズが30nm以下であり、SiとCrからなる化合物相の結晶子サイズが40nm以下の条件を満足している。 No. 1 of the present invention example. Nos. 13 to 18 include a Si main phase and a phase composed of Si and Cr, the crystallite size of Si is 30 nm or less, and the crystallite size of the compound phase composed of Si and Cr is 40 nm or less.

本発明例No.14では、Si主要相とSiとCrを含み、Siの結晶子サイズは5n
mであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrからなる化合物相の結晶子サイズが14nmであり、SiとCrからなる化合物相の結晶子サイズ40nm以下の条件を満足している。また、上記のように本発明条件を満たし、放電容量が989mAh/g、50サイクル後の放電容量維持率が83%と充放電容量とサイクル寿命のいずれも良好な特性を示した。
Inventive Example No. 14 contains Si main phase and Si and Cr, and the crystallite size of Si is 5n.
m, which satisfies the condition that the crystallite size of Si is 30 nm or less. In addition, the crystallite size of the compound phase composed of Si and Cr is 14 nm, and the condition that the crystallite size of the compound phase composed of Si and Cr is 40 nm or less is satisfied. Further, as described above, the conditions of the present invention were satisfied, the discharge capacity was 989 mAh/g, the discharge capacity retention rate after 50 cycles was 83%, and both the charge and discharge capacity and the cycle life showed good characteristics.

本発明例のNo.19〜24はSi主要相とSiとCrとTiからなる相を含み、Siの結晶子サイズが30nm以下であり、SiとCrとTiからなる化合物相の結晶子サイズが40nm以下の条件を満足している。 No. 1 of the present invention example. 19 to 24 include a Si main phase and a phase composed of Si, Cr, and Ti, the crystallite size of Si is 30 nm or less, and the crystallite size of the compound phase composed of Si, Cr, and Ti satisfies the condition of 40 nm or less. doing.

本発明例No.23では、Si主要相とSiとCrとTiを含み、Siの結晶子サイズ
は9nmであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrとTiからなる化合物相の結晶子サイズが15nmであり、SiとCrとTiからなる化合物相の結晶子サイズ40nm以下の条件を満足している。また、上記のように本発明条件を満たし、放電容量が674mAh/g、50サイクル後の放電容量維持率が84%と充放電容量とサイクル寿命のいずれも良好な特性を示した。
Inventive Example No. In No. 23, the main phase of Si, Si, Cr and Ti are contained, the crystallite size of Si is 9 nm, and the condition of the crystallite size of Si is 30 nm or less is satisfied. The crystallite size of the compound phase composed of Si, Cr and Ti is 15 nm, and the crystallite size of the compound phase composed of Si, Cr and Ti is 40 nm or less. Further, as described above, the conditions of the present invention were satisfied, the discharge capacity was 674 mAh/g, the discharge capacity retention ratio after 50 cycles was 84%, and good characteristics were shown in both charge and discharge capacity and cycle life.

本発明例のNo.25〜48はSi主要相とSiとCr、あるいはSiとCrとTiからなる相を含み、Si主要相のSi結晶子サイズが30nm以下であり、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下の条件を満足している。また、Cu、V、Mn、Fe、Ni、Nb、Zn、Alから少なくとも一種以上含まれる添加元素の合計含有量は、0.05at.%〜5at.%である。また、Mg、B、P、Gaから少なくとも一種類以上含まれる添加元素の合計含有量は0.05at.%〜5at.%である。同様の効果を狙った、Co、Zr、Pd、Bi、In、Sb、Sn等の微量添加も含む。 No. 1 of the invention example . Nos. 25 to 48 include a Si main phase and a phase composed of Si and Cr or a phase composed of Si, Cr and Ti, and the Si crystallite size of the Si main phase is 30 nm or less and composed of Si and Cr or Si, Cr and Ti. The crystallite size of the compound phase satisfies the condition of 40 nm or less. Further, the total content of the additive elements contained in at least one or more of Cu, V, Mn, Fe, Ni, Nb, Zn, and Al is 0.05 at. % To 5 at. %. Moreover, the total content of the additive elements contained in at least one or more of Mg, B, P, and Ga is 0.05 at. % To 5 at. %. It also includes trace additions of Co, Zr, Pd, Bi, In, Sb, Sn and the like aiming at the same effect.

例えば、No.39では、Si主要相とSiとCrとTiを含み、Siの結晶子サイズは15nmであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrとTiからなる化合物相の結晶子サイズが32nmであり、SiとCrとTiからなる化合物相の結晶子サイズ40nm以下の条件を満足している。加えて、0.01at.%Cu、0.03at.%V、0.01at.%Mn、0.01at.%Fe、0.01at.%Ni、0.02at.%Zn、0.02at.%Alを含んでいる。また、0.01at.%Co、0.14at.%Bi、0.15at.%In、0.15at.%Sb、0.15at.%Snを含んでいる。上記のように本発明条件を満たし、放電容量が1079mAh/g、50サイクル後の放電容量維持率が85%と充放電容量とサイクル寿命のいずれも良好な特性を示した。 For example, No. In No. 39, the main phase of Si, Si, Cr, and Ti are included, the crystallite size of Si is 15 nm, and the condition of the crystallite size of Si is 30 nm or less is satisfied. In addition, the crystallite size of the compound phase composed of Si, Cr and Ti is 32 nm, and the condition that the crystallite size of the compound phase composed of Si, Cr and Ti is 40 nm or less is satisfied. In addition, 0.01 at. % Cu, 0.03 at. % V, 0.01 at. % Mn, 0.01 at. % Fe, 0.01 at. % Ni, 0.02 at. % Zn, 0.02 at. % Al is included. In addition, 0.01 at. % Co, 0.14 at. % Bi, 0.15 at. % In, 0.15 at. % Sb, 0.15 at. % Sn is included. As described above, the conditions of the present invention were satisfied, the discharge capacity was 1079 mAh/g, the discharge capacity retention ratio after 50 cycles was 85%, and both the charge and discharge capacity and the cycle life showed good characteristics.

例えば、比較例No.81では、CrとTiの合計含有量が21.1〜40at.%の範囲を含まず、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲でないため、かつ、Siの結晶子サイズ30nm以下の条件を満たさないため、本発明条件を満たさない。比較例No.106では、CrとTiの合計含有量が21.1〜40at.%の範囲を含まず、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲でないため、かつ、Siの結晶子サイズ30nm以下の条件を満たさず、化合物相の結晶子サイズが40nm以下の条件も満たさないため、本発明条件を満たさない。
For example, Comparative Example No. No. 81, the total content of Cr and Ti was 21.1 to 40 at. %, and the ratio of Cr to Ti, Cr%/(Cr%+Ti%), is not in the range of 0.15 to 1.00, and the condition of Si crystallite size of 30 nm or less is not satisfied. Therefore, the conditions of the present invention are not satisfied. Comparative Example No. 106, the total content of Cr and Ti is 21.1 to 40 at. %, the ratio of Cr and Ti, Cr%/(Cr%+Ti%), is not in the range of 0.15 to 1.00, and the condition of Si crystallite size of 30 nm or less is not satisfied. The condition of the present invention is not satisfied because the condition that the crystallite size of the compound phase is 40 nm or less is not satisfied.

以上のように、組織の微細化、優れたイオン伝導性と電子伝導性、応力緩和効果を高める成分の制御と、Si相結晶子サイズの制御、あるいはさらに金属間化合物相の結晶子サイズも制御することによって、よりスムーズな充放電反応を行うことができ、充放電サイクル特性の向上を可能とする。さらに、ポリイミド系バインダーを含むことで、Cu等の集電体との密着性を高め、かつSiの体積膨張収縮による応力にも耐えうる強度を有するため、高い充放電容量と優れたサイクル寿命を兼備する極めて優れた効果を有する。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the composition is refined, the components that enhance the excellent ionic conductivity and electronic conductivity, and the stress relaxation effect are controlled, the Si phase crystallite size is controlled, and the crystallite size of the intermetallic compound phase is also controlled. By doing so, a smoother charge/discharge reaction can be carried out, and the charge/discharge cycle characteristics can be improved. Further, by including a polyimide-based binder, the adhesion with the current collector such as Cu is enhanced, and the strength that can withstand the stress due to the volume expansion and contraction of Si also has a high charge/discharge capacity and an excellent cycle life. It has an extremely excellent effect.


Patent applicant Sanyo Special Steel Co., Ltd.
Attorney Attorney Shiina Akira

Claims (4)

充放電時にリチウムイオンの移動が伴う蓄電デバイス用Si系合金からなる負極材料であって、前記Si系合金からなる負極材料が、SiからなるSi主要相とSiとSi以外の一種以上の元素からなる化合物相を有し、前記化合物相が、SiとCr、あるいはSiとCrとTiからなる相を含んでなる相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつ、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下であること、CrとTiの合計含有量が21.1〜40at.%含み、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。 A negative electrode material made of a Si-based alloy for an electricity storage device in which lithium ions move during charge and discharge, wherein the negative electrode material made of the Si-based alloy is composed of a Si main phase made of Si and Si and one or more elements other than Si. And a compound phase having a phase including Si and Cr or a phase including Si, Cr and Ti, and the Si crystallite size of the Si main phase is 30 nm or less, and , Si and Cr or the compound phase consisting of Si, Cr and Ti has a crystallite size of 40 nm or less, and the total content of Cr and Ti is 21.1 to 40 at. %, and Cr%/(Cr%+Ti%), which is the ratio of Cr and Ti, is in the range of 0.15 to 1.00, wherein the negative electrode material is made of a Si-based alloy for an electricity storage device. 請求項1に記載した蓄電デバイス用Si系合金からなる負極材料の前記化合物相に、Cu、V、Mn、Fe、Ni、Nb、Zn、Alからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。 At least one element selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn, and Al is added to the compound phase of the negative electrode material made of the Si-based alloy for an electricity storage device according to claim 1. Including the total content of 0.05 at. % To 5 at. %, a negative electrode material made of a Si-based alloy for a power storage device. 請求項1〜2のいずれか1項に記載した蓄電デバイス用Si系合金からなる負極材料の前記化合物相に、Mg、B、P、Gaからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。 The at least 1 type or more element selected from the group which consists of Mg, B, P, Ga is contained in the said compound phase of the negative electrode material which consists of Si type alloys for electrical storage devices as described in any one of Claims 1-2. , A total content of 0.05 at. % To 5 at. %, a negative electrode material made of a Si-based alloy for a power storage device. 請求項1〜3のいずれか1項に記載した蓄電デバイス用Si系合金からなる負極材料を用いた電極において、ポリイミド系バインダーを含むことを特徴とする蓄電デバイス用Si系合金からなる負極。 Any electrode odor using the anode material consisting of Si-based alloy for a power storage device as described in one of claims 1 to 3 Te, a negative electrode comprising a Si-based alloy for an electricity storage device which comprises a polyimide-based binder ..
JP2014187238A 2014-09-16 2014-09-16 Si-based alloy negative electrode material for power storage device and electrode using the same Active JP6735060B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014187238A JP6735060B2 (en) 2014-09-16 2014-09-16 Si-based alloy negative electrode material for power storage device and electrode using the same
KR1020177004242A KR20170057235A (en) 2014-09-16 2015-09-03 Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
PCT/JP2015/075119 WO2016043061A1 (en) 2014-09-16 2015-09-03 Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
CN201580046199.4A CN106605322A (en) 2014-09-16 2015-09-03 Si-based alloy negative electrode material for electricity storage devices and electrode using same
TW104130302A TW201616707A (en) 2014-09-16 2015-09-14 Si-based alloy negative electrode material for electricity storage devices and electrode using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187238A JP6735060B2 (en) 2014-09-16 2014-09-16 Si-based alloy negative electrode material for power storage device and electrode using the same

Publications (2)

Publication Number Publication Date
JP2016062660A JP2016062660A (en) 2016-04-25
JP6735060B2 true JP6735060B2 (en) 2020-08-05

Family

ID=55533101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187238A Active JP6735060B2 (en) 2014-09-16 2014-09-16 Si-based alloy negative electrode material for power storage device and electrode using the same

Country Status (5)

Country Link
JP (1) JP6735060B2 (en)
KR (1) KR20170057235A (en)
CN (1) CN106605322A (en)
TW (1) TW201616707A (en)
WO (1) WO2016043061A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228403A (en) * 2016-06-21 2017-12-28 山陽特殊製鋼株式会社 Negative electrode material for power storage device
WO2019053984A1 (en) * 2017-09-14 2019-03-21 株式会社豊田自動織機 Negative electrode active substance comprising al-containing silicon material
WO2019053983A1 (en) * 2017-09-14 2019-03-21 株式会社豊田自動織機 Negative electrode active material containing al-containing silicon material
JP6859930B2 (en) * 2017-09-14 2021-04-14 株式会社豊田自動織機 Al-containing silicon material
JP7119895B2 (en) * 2018-10-24 2022-08-17 トヨタ自動車株式会社 Negative electrode active material
KR102654226B1 (en) 2023-05-08 2024-04-03 김경민 Manufacture system for fire protection pipe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP3841779B2 (en) * 2003-08-22 2006-11-01 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5766445B2 (en) * 2011-01-17 2015-08-19 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium ion secondary battery and manufacturing method thereof
JP4865105B1 (en) * 2011-04-20 2012-02-01 山陽特殊製鋼株式会社 Si alloy negative electrode material
US9373839B2 (en) * 2011-12-13 2016-06-21 Samsung Sdi Co., Ltd. Negative electrode active material and secondary battery including the same
JP6322362B2 (en) * 2012-02-01 2018-05-09 山陽特殊製鋼株式会社 Si alloy negative electrode material
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014038832A (en) * 2012-07-20 2014-02-27 Sanyo Special Steel Co Ltd Material for negative electrode of electric power storage device
JP6371504B2 (en) * 2013-02-19 2018-08-08 山陽特殊製鋼株式会社 Si-based alloy negative electrode material for power storage device and electrode using the same

Also Published As

Publication number Publication date
KR20170057235A (en) 2017-05-24
JP2016062660A (en) 2016-04-25
CN106605322A (en) 2017-04-26
WO2016043061A1 (en) 2016-03-24
TW201616707A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
JP6322362B2 (en) Si alloy negative electrode material
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP6374678B2 (en) Negative electrode materials for electricity storage devices
TWI569497B (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
JP6735060B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP4739462B1 (en) Si-based alloy negative electrode material with excellent conductivity
JP6076772B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
WO2012008540A1 (en) Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor
JP2017224499A (en) Negative electrode active material for lithium ion battery and lithium ion battery
JP2012014866A (en) Negative electrode active substance for lithium secondary battery, and method of manufacturing the same
JP2013122905A (en) Scale-like silicon-based alloy negative electrode material
WO2017221693A1 (en) Negative electrode material for electricity storage devices
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP6630632B2 (en) Anode materials for power storage devices
WO2018193864A1 (en) Negative electrode material for power storage device
JP2014116297A (en) Negative electrode active material for lithium ion secondary battery
JP2005100876A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250