WO2012008540A1 - Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor - Google Patents

Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor Download PDF

Info

Publication number
WO2012008540A1
WO2012008540A1 PCT/JP2011/066139 JP2011066139W WO2012008540A1 WO 2012008540 A1 WO2012008540 A1 WO 2012008540A1 JP 2011066139 W JP2011066139 W JP 2011066139W WO 2012008540 A1 WO2012008540 A1 WO 2012008540A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
electrode material
negative electrode
silicon
sicu
Prior art date
Application number
PCT/JP2011/066139
Other languages
French (fr)
Japanese (ja)
Inventor
友紀 廣野
哲朗 仮屋
柳本 勝
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2012008540A1 publication Critical patent/WO2012008540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a Si-based alloy negative electrode material excellent in electrical conductivity of an electricity storage device such as a lithium ion secondary battery or a hybrid capacitor that accompanies movement of lithium ions during charge and discharge, and a method for producing the same.
  • lithium-ion secondary batteries as hybrid electric storage devices for automobiles and home use and hybrid capacitors in which the reaction mechanism is applied to the negative electrode are also actively developed.
  • a negative electrode material for such electricity storage devices carbonaceous materials such as natural graphite, artificial graphite, and coke that can occlude and release lithium ions are used.
  • Si has attracted attention as a material that can replace carbonaceous materials.
  • the reason is that since Si can form a compound represented by Li 22 Si 5 and occlude a large amount of lithium, the capacity of the negative electrode can be greatly increased compared to the case where a carbonaceous material is used, As a result, there is a possibility that the storage capacity of the lithium ion secondary battery or the hybrid capacitor can be increased.
  • the Si phase is pulverized by repeated expansion when alloying with lithium during charging and contraction when dealloying with lithium during discharging.
  • the lifetime of the electricity storage device is extremely short because problems such as the Si phase dropping off from the electrode substrate or the lack of electrical conductivity between the Si phases occur.
  • Si has poor electrical conductivity compared to carbonaceous materials and metal-based materials, and the efficient movement of electrons associated with charge / discharge is limited, so the negative electrode material supplements electrical conductivity such as carbonaceous materials.
  • the negative electrode material supplements electrical conductivity such as carbonaceous materials.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-297757
  • Patent Document 2 Japanese Patent Laid-Open No. 10-31804
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-228059
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2005-44672
  • a material in which at least a part of a parent lithium phase such as Si is surrounded by an intermetallic compound is an industrially preferable process because a parent lithium phase and an intermetallic compound are formed during a solidification process after melting.
  • a parent lithium phase and an intermetallic compound are formed during a solidification process after melting.
  • the present inventors have formed an intermetallic compound with a Cu element, among other intermetallic compounds with the Si phase, to form SiCu 3 that is particularly excellent in electrical conductivity. I found out. Moreover, the present inventors have found that a composite phase consisting of Si phase and SiCu 3 alloy, utilizing the large discharge capacity of Si, and, SiCu 3 with excellent inherent low electrical conductivity Si electrical conductivity It has also been found that both the discharge capacity and the cycle life are improved when the average particle size of the Si phase is 10 ⁇ m or less.
  • an object of the present invention is to make it possible to provide a secondary negative electrode material having both excellent discharge capacity and cycle life and excellent electrical conductivity.
  • a Si-based alloy negative electrode material having excellent electrical conductivity wherein the negative electrode material is Si base phase, which is a partially substituted Si phase in which the Si phase or a part of Si is substituted with one or more elements selected from the group consisting of C, Ge, Sn, Pb, Al and P
  • the negative electrode material is Si base phase, which is a partially substituted Si phase in which the Si phase or a part of Si is substituted with one or more elements selected from the group consisting of C, Ge, Sn, Pb, Al and P
  • a SixCuy phase made of an alloy having a composition of SixCuy (where x ⁇ y), which is an intermetallic compound of Si and Cu;
  • a powder composed of a composite phase of There is provided a Si-based alloy negative electrode material in which the Si base phase has a particle shape having an average particle size of 10 ⁇ m or less, and at least a part of the Si base phase is surrounded by a SixCuy phase.
  • a method for producing a Si-based alloy negative electrode material having excellent electrical conductivity Melting a SiCu-based alloy having the overall composition of the negative electrode material to form a molten metal; A step of quenching the molten metal by a gas atomizing method, a disk atomizing method or a liquid quenching method; A manufacturing method is provided comprising:
  • FIG. 1 shows a phase diagram of the Si—Cu binary system.
  • Si precipitates as the primary crystal when the liquidus temperature is reached (eg, 1200 ° C. in the case of Si: 64 atomic% —Cu: 36 atomic%).
  • This primary crystal precipitates as a granular crystal if the cooling rate is high as in the liquid quenching method or the atomizing method, and when the temperature reaches the solidus temperature (802 ° C.), a eutectic reaction between Si and SiCu 3 occurs and solidification is completed.
  • the phase diagram on the Si rich side it is a eutectic reaction between the Si phase and the SiCu 3 phase, and the Si phase surrounds the SiCu 3 phase.
  • combinations of elements for alloying other than Cu and Si include, for example, Fe—Si, Ni—Si, Mn—Si, Co—Si, Cr—Si, Si—W, Mo—Si, Nb—Si, and Si. -Ti, Si-V, etc. are conceivable. However, it will both FeSi 2, NiSi 2, CoSi 2 , CrSi 2, WSi 2, MoSi 2, MnSi 2, NbSi 2, TiSi 2, VSi 2 and the Si-rich composition remains than metal elements .
  • SiCu 3 has a metal-rich composition compared to other silicide compounds.
  • Cu 1.73 ⁇ 10 ⁇ 4 ⁇ ⁇ m
  • Fe 10 ⁇ 10 ⁇ 4 ⁇ ⁇ m
  • Ni 11.8 ⁇ 10 ⁇ 4 ⁇ ⁇ m
  • Co 9.71 ⁇ 10 ⁇ 4 ⁇ ⁇ m
  • simple substance Cu had a very low resistance value compared to other transition metal elements, and was a combination of Si and the transition metal having the lowest resistance value It is.
  • the combination of Si and transition metal element having the lowest resistance value among the transition metal silicide compounds is Si and Cu.
  • Si which is a raw material of a transition metal silicide compound, has an extremely low resistance value compared to other simple transition metal elements, and is never obtained by a combination of transition metal elements of Si phase and Si.
  • a metal-rich compound phase (SixCuy (x ⁇ y)), for example, an SiCu 3 phase between Cu and Cu elements.
  • SiCu 3 is an Si-rich intermetallic compound (FeSi 2 , NiSi 2 , CoSi 2 , CrSi 2 , WSi 2 , MoSi 2 , MnSi 2 , NbSi 2 , TiSi 2 , It can be seen that the electric conductivity is higher than that of VSi 2 ).
  • the SiCu 3 phase since the SiCu 3 phase is not alloyed with lithium, the SiCu 3 phase itself does not expand or contract even if it is repeatedly charged (lithium enters the negative electrode) -discharge (lithium comes out from the negative electrode). On the contrary, since the SiCu 3 phase has a lower hardness than Si, it can be a phase that relieves stress due to a large volume expansion and contraction of Si caused by the reaction between Si and lithium.
  • the average particle size of the Si phase or Si phase having Si as the main phase is 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. This is because if the average particle size is large, the cycle life is reduced.
  • the reaction between Si and lithium occurs at the contact portion of the electrolyte.
  • “average particle diameter” refers to a number-based D50 particle diameter. For large Si particles having a maximum particle size exceeding 10 ⁇ m, the reaction with lithium during the initial charging reaction stops only at the surface part of the Si particle in contact with the electrolytic solution, and it takes time until the electrolytic solution penetrates. The internal reaction will not be performed.
  • Si is a main phase, and is a group of phases composed of one or more elements that can reversibly combine and segregate with Li.
  • this phase one or two or more elements selected from the group consisting of C, Ge, Sn, Pb, Al, and P, which are such elements, are substituted as a part of Si and partially substituted Si phase may be used.
  • the composition ratio is not particularly limited, but the ratio of C, Ge, Sn, Pb, Al, and P is replaced by Si when Si is 1 when these are M.
  • the total amount of M is preferably less than 0.5, more preferably less than 0.2, even more preferably less than 0.1, and most preferably less than 0.05.
  • the composition of the SixCuy phase needs to be x ⁇ y.
  • FeSi 2 does not become Fe rich. Since an alloy of Fe element and Si forms a Si-rich compound phase, the electrical conductivity is inferior, and the electrical conductivity between Si phases is prevented from being lowered due to the refinement of Si caused by repeated charge and discharge. Therefore, the composition of the SixCuy phase is set to x ⁇ y.
  • FIG. 2 shows a cross-sectional SEM image of the Si—Cu alloy powder.
  • the black portion is the embedded resin 1
  • the gray portion is the Si phase 2
  • the white portion is the SiCu 3 phase 3. Focusing particularly on the central Si—Cu particles, the gray Si phase 2 is surrounded by the white SiCu 3 phase in the portion A inside the particles. However, it can be seen that in the portion B of the particle surface portion, the gray Si phase 2 is exposed on the particle surface. Thus, at least a part of the Si phase is surrounded by the SixCuy phase.
  • the negative electrode material of the present invention as a whole is one or more selected from the group consisting of 10 to 50% Cu, 0 to 10% C, Ge, Sn, Pb, Al and P in at%. , And the balance Si and inevitable impurities, more preferably selected from the group consisting of 18-36% Cu, 0-3% C, Ge, Sn, Pb, Al and P It has the composition which consists of 1 type (s) or 2 or more types and balance Si and an unavoidable impurity. These preferable overall compositions also apply to the SiCu-based alloy as a starting material for producing the negative electrode material of the present invention.
  • a negative electrode material powder having the composition shown in Table 1 was prepared by a liquid quenching method, a gas atomizing method, or a disk atomizing method as described below.
  • a raw material having a predetermined composition is placed in a quartz tube having pores at the bottom, melted at a high frequency in an Ar atmosphere to form a molten metal, and after the molten metal is discharged on the surface of a rotating copper roll, the copper roll A quenching ribbon was produced by the quenching effect. Thereafter, the produced ribbon was sealed in a zirconia pot container together with zirconia balls in an Ar atmosphere, and powdered by mechanical milling.
  • a raw material of a predetermined structure is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then gas is injected and discharged in the Ar gas atmosphere, followed by rapid cooling.
  • the desired gas atomized fine powder was obtained by solidification.
  • a raw material having a predetermined structure is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then on a rotating disk (40000 to 60000 r) in an Ar gas atmosphere. P.m.) and then rapidly solidified by cooling to obtain the desired disc atomized fine powder.
  • a so-called bipolar coin-type cell using lithium metal as a counter electrode was used.
  • a negative electrode active material Si—Cu, etc.
  • a conductive material acetylene black
  • a binder polyvinylidene fluoride
  • a dispersion N-methylpyrrolidone
  • the solvent was evaporated by drying under reduced pressure with a vacuum dryer, and then punched into a shape suitable for a coin cell.
  • lithium for the counter electrode was punched into a shape suitable for the coin cell.
  • a 1: 7 mixed solvent of ethylene carbonate and dimethyl carbonate was used, and 1 mol of LiPF 6 (lithium hexafluorophosphate) was dissolved in the electrolyte as a supporting electrolyte to prepare an electrolyte for use in a lithium ion battery. . Since this electrolyte solution must be handled in an inert atmosphere with dew point control, all the cells were assembled in a glove box with an inert atmosphere. The separator was cut out into a shape suitable for a coin cell, and then held in the electrolyte for several hours under reduced pressure in order to sufficiently permeate the electrolyte into the separator. Thereafter, the negative electrode, separator, and counter electrode lithium punched in the previous step were combined in that order, and the battery was fully filled with the electrolyte.
  • LiPF 6 lithium hexafluorophosphate
  • the charge capacity and discharge capacity were measured at a temperature of 25 ° C. Charging is performed at a current density of 0.50 mA / cm 2 until the potential is equal to that of the metal lithium electrode (0 V), while discharging is performed up to 1.5 V at the same current value (0.50 mA / cm 2 ).
  • One cycle of charge-discharge The charge capacity at the first cycle at this time was evaluated as the initial capacity value. Further, as the cycle life, the discharge capacity of the first cycle was measured, and the discharge capacity of the negative electrode using the negative electrode material was measured. The discharge capacity of the 100th cycle was measured, and used as a measure of the cycle life.
  • Nos. 1 to 14 are examples of the present invention. 15 to 26 show comparative examples.
  • Invention Example No. 1 to 14 are powders composed of a composite phase of a SixCuy phase composed of a SixCuy alloy which is an intermetallic compound of Si phase and Si and Cu, and the composition of the SixCuy phase is x ⁇ y, and Si is the main phase. Since the average particle size of the Si phase is 10 ⁇ m or less, the condition of the present invention is satisfied. Moreover, the discharge capacity of the 1st cycle showed 1000 mAh / g or more. In addition, due to the improvement in electrical conductivity by the intermetallic compound phase SixCuy phase where x ⁇ y, the discharge capacity after 100 cycles was 372 mAh / g or more, which is the capacity of the current graphite electrode.
  • Comparative Example No. Nos. 15 to 16 are examples of the present invention. As in 1-2, it is a powder composed of a composite phase of a SixCuy phase composed of a SixCuy alloy which is an intermetallic compound of Si phase and Si and Cu, and the composition of the SixCuy phase is x ⁇ y.
  • the average particle size of the Si phase used as the phase is Comparative Example No. 15 and 12 ⁇ m, Comparative Example No. 16 exceeds 20 ⁇ m and 10 ⁇ m, so the conditions of the present invention are not satisfied.
  • the discharge capacity in the first cycle is the same as that in Comparative Example No. 15 at 1080 mAh / g, Comparative Example No.
  • Comparative Example No. 16 showed 1090 mAh / g and 1000 mAh / g or more, but the discharge capacity after 100 cycles was Comparative Example No. 15 and 200 mAh / g, Comparative Example No. 16 was 170 mAh / g, which was lower than the current capacity of the graphite electrode, 372 mAh / g.
  • the metal-rich SiCu 3 phase is excellent in electrical conductivity, and further has an excellent effect of improving both the charge / discharge capacity and the charge / discharge life due to the synergistic effect of making the average particle size of the Si phase 10 ⁇ m or less. It plays.
  • an alloy is melted to form a molten metal, and the molten metal is quenched by a gas atomizing method, a disk atomizing method, or a liquid quenching method, thereby enabling a method for producing a Si-based alloy negative electrode material having excellent electrical conductivity. .

Abstract

Disclosed is a silicon-alloy negative-electrode material that exhibits high electrical conductivity and both high discharge capacity and a long cycle life. Said negative-electrode material is a powder comprising a composite phase consisting of: a silicon base phase, which is either a silicon phase or a partially-substituted silicon phase in which some silicon has been substituted by one or more elements selected from the group comprising carbon, germanium, tin, lead, aluminum, and phosphorus; and a SixCuy phase comprising an alloy that has the composition SixCuy (x being less than y), i.e. an intermetallic compound of silicon and copper. The silicon base phase comprises particles with a mean diameter of 10 µm or less, and the SixCuy phase encloses at least part of the silicon base phase.

Description

電気伝導性に優れたSi系合金負極材料およびその製造方法Si-based alloy negative electrode material having excellent electrical conductivity and method for producing the same 関連出願の相互参照Cross-reference of related applications
 本願は、2010年7月16日に出願された日本国特許出願2010-161308号に基づく優先権、および2011年5月10日に出願された日本国特許出願2011-105109号に基づく優先権を主張するものであり、それらの全体の開示内容が参照により本明細書に組み込まれる。 This application has priority based on Japanese Patent Application No. 2010-161308 filed on July 16, 2010 and priority based on Japanese Patent Application No. 2011-105109 filed on May 10, 2011. And the entire disclosures of which are incorporated herein by reference.
 本発明は、リチウムイオン2次電池やハイブリットキャパシタなど、充放電時にリチウムイオンの移動を伴う蓄電デバイスの電気伝導性に優れたSi系合金負極材料およびその製造方法に関するものである。 The present invention relates to a Si-based alloy negative electrode material excellent in electrical conductivity of an electricity storage device such as a lithium ion secondary battery or a hybrid capacitor that accompanies movement of lithium ions during charge and discharge, and a method for producing the same.
 近年、携帯機器の普及に伴い、リチウムイオン電池を中心とした高性能2次電池の開発が盛んに行われている。さらには自動車用や家庭用定置用蓄電デバイスとしてリチウムイオン2次電池やその反応機構を負極に適用したハイブリットキャパシタの開発も盛んになっている。それらの蓄電デバイスの負極材料としては、リチウムイオンを吸蔵および放出することができる、天然黒鉛や人造黒鉛、コークスなどの炭素質材料が用いられている。 In recent years, with the widespread use of portable devices, development of high-performance secondary batteries centering on lithium-ion batteries has been actively conducted. Furthermore, lithium-ion secondary batteries as hybrid electric storage devices for automobiles and home use and hybrid capacitors in which the reaction mechanism is applied to the negative electrode are also actively developed. As a negative electrode material for such electricity storage devices, carbonaceous materials such as natural graphite, artificial graphite, and coke that can occlude and release lithium ions are used.
 しかし、炭素質材料はリチウムイオンをC面間に挿入するため、負極に用いた際の理論容量は372mAh/gが限界であり、高容量化を目的とした炭素質材料に代わる新規材料の探索が盛んに行われている。 However, because carbonaceous materials insert lithium ions between the C-planes, the theoretical capacity when used for the negative electrode is limited to 372 mAh / g, and the search for new materials to replace carbonaceous materials for the purpose of increasing capacity is required. Has been actively conducted.
 一方、炭素質材料に代わる材料として、Siが注目されている。その理由は、SiはLi22Si5 で表される化合物を形成して大量のリチウムを吸蔵することができるため、炭素質材料を使用した場合に比較して負極の容量を大幅に増大でき、結果としてリチウムイオン2次電池やハイブリットキャパシタの蓄電容量を増大することができる可能性を持っているためである。 On the other hand, Si has attracted attention as a material that can replace carbonaceous materials. The reason is that since Si can form a compound represented by Li 22 Si 5 and occlude a large amount of lithium, the capacity of the negative electrode can be greatly increased compared to the case where a carbonaceous material is used, As a result, there is a possibility that the storage capacity of the lithium ion secondary battery or the hybrid capacitor can be increased.
 しかし、Siを単独で負極材として使用した場合には、充電時にリチウムと合金化する際の膨張と、放電時にリチウムと脱合金化する際の収縮との繰返しによってSi相が微粉化され、使用中に電極基板からSi相が脱落したりSi相間の電気伝導性が取れなくなる等の不具合が生じるために蓄電デバイスとしての寿命が極めて短いといった課題があった。 However, when Si is used alone as a negative electrode material, the Si phase is pulverized by repeated expansion when alloying with lithium during charging and contraction when dealloying with lithium during discharging. There is a problem that the lifetime of the electricity storage device is extremely short because problems such as the Si phase dropping off from the electrode substrate or the lack of electrical conductivity between the Si phases occur.
 また、Siは炭素質材料や金属系材料に比べて電気伝導性が悪く、充放電に伴う電子の効率的な移動が制限されているため、負極材としては炭素質材料など電気伝導性を補う材料と組合せて使用されるが、その場合でも特に初期の充放電や高効率での充放電特性も課題となっている。 In addition, Si has poor electrical conductivity compared to carbonaceous materials and metal-based materials, and the efficient movement of electrons associated with charge / discharge is limited, so the negative electrode material supplements electrical conductivity such as carbonaceous materials. Although used in combination with materials, even in that case, initial charge / discharge characteristics and charge / discharge characteristics with high efficiency are also problems.
 このようなSi相を負極として利用する際の欠点を解決する方法として、Siなどの親リチウム相の少なくとも一部をSiと遷移金属に代表される金属との金属間化合物で包囲した材料やその製造方法が提案されている。その一つとして、例えば、特開2001-297757号公報(特許文献1)や特開平10-312804号公報(特許文献2)などが知られている。 As a method for solving the drawbacks when using such a Si phase as a negative electrode, a material in which at least a part of a parent lithium phase such as Si is surrounded by an intermetallic compound of Si and a metal typified by a transition metal, or the like Manufacturing methods have been proposed. For example, Japanese Patent Laid-Open No. 2001-297757 (Patent Document 1) and Japanese Patent Laid-Open No. 10-31804 (Patent Document 2) are known.
 また、別の解決方法として、Si相を含む活物質の相をリチウムと合金化しないCuなどの電気伝導性材料で被覆した電極やその製造方法が提案されている。例えば、特開2004-228059号公報(特許文献3)や特開2005-44672号公報(特許文献4)などが知られている。 As another solution, an electrode in which an active material phase including a Si phase is coated with an electrically conductive material such as Cu that does not alloy with lithium, and a method for manufacturing the same have been proposed. For example, Japanese Unexamined Patent Application Publication No. 2004-228059 (Patent Document 3) and Japanese Unexamined Patent Application Publication No. 2005-44672 (Patent Document 4) are known.
特開2001-297757号公報JP 2001-297757 A 特開平10-312804号公報JP 10-31804 A 特開2004-228059号公報JP 2004-228059 A 特開2005-44672号公報JP 2005-44672 A
 しかしながら、上述した活物質の相をCuなどの電気伝導性材料で被覆する方法では、Si相を含む活物質を電極に形成する工程の前または後にめっきなどの方法で被覆する必要があり、また、被覆膜厚の制御など工業的に手間がかかるという問題がある。 However, in the above-described method of coating the active material phase with an electrically conductive material such as Cu, it is necessary to coat the active material containing the Si phase with a method such as plating before or after the step of forming the active material on the electrode. In addition, there is a problem that it takes time and labor from an industrial point of view such as control of the coating film thickness.
 また、Siなどの親リチウム相の少なくとも一部を金属間化合物で包囲した材料は溶融後の凝固プロセス中に親リチウム相と金属間化合物が形成されるため、工業的に好ましいプロセスといえるが、提案されている元素の組合せではSi相と平衡する殆どの金属間化合物は電気伝導性に劣るSiリッチな化合物になるためCuめっきに比べて、特に、初期の充放電特性や高効率での充放電特性に劣る欠点があった。また、これまでの提案ではそれらの課題を解決できるような電気伝導性に優れた金属間化合物の組成に関するものはない。 In addition, a material in which at least a part of a parent lithium phase such as Si is surrounded by an intermetallic compound is an industrially preferable process because a parent lithium phase and an intermetallic compound are formed during a solidification process after melting. In the proposed combination of elements, most of the intermetallic compounds that are in equilibrium with the Si phase become Si-rich compounds that are inferior in electrical conductivity. There was a drawback of poor discharge characteristics. In addition, there is no proposal related to the composition of an intermetallic compound excellent in electrical conductivity that can solve these problems.
 本発明者らは、今般、Si相を包囲する金属間化合物として、Si相との多くの金属間化合物のなかでもCu元素との金属間化合物が特に電気伝導性に優れたSiCu3 を形成することを知見した。その上、本発明者らは、Si相とSiCu3 合金からなる複合相とすることで、Siの大きな放電容量を活かし、かつ、Si本来の低い電気伝導性を電気伝導性に優れたSiCu3 が補う効果によって、さらにはSi相の平均粒径を10μm以下とすることによって放電容量とサイクル寿命のいずれも良好になることをも知見した。 As the intermetallic compound that surrounds the Si phase, the present inventors have formed an intermetallic compound with a Cu element, among other intermetallic compounds with the Si phase, to form SiCu 3 that is particularly excellent in electrical conductivity. I found out. Moreover, the present inventors have found that a composite phase consisting of Si phase and SiCu 3 alloy, utilizing the large discharge capacity of Si, and, SiCu 3 with excellent inherent low electrical conductivity Si electrical conductivity It has also been found that both the discharge capacity and the cycle life are improved when the average particle size of the Si phase is 10 μm or less.
 したがって、本発明の目的は、放電容量とサイクル寿命のいずれも良好な、電気伝導性に優れた2次負極材料の提供を可能とすることにある。 Therefore, an object of the present invention is to make it possible to provide a secondary negative electrode material having both excellent discharge capacity and cycle life and excellent electrical conductivity.
 本発明の一態様によれば、電気伝導性に優れたSi系合金負極材料であって、該負極材料が、
 Si相またはSiの一部がC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素で置換されてなる一部置換Si相である、Si基相と、
 SiおよびCuの金属間化合物である、SixCuy(式中、x<yである)の組成を有する合金からなるSixCuy相と、
の複合相からなる粉体であり、
 前記Si基相が、平均粒径10μm以下の粒子形状を有し、該Si基相の少なくとも一部をSixCuy相が取り囲んでなる、Si系合金負極材料が提供される。
According to one aspect of the present invention, a Si-based alloy negative electrode material having excellent electrical conductivity, wherein the negative electrode material is
Si base phase, which is a partially substituted Si phase in which the Si phase or a part of Si is substituted with one or more elements selected from the group consisting of C, Ge, Sn, Pb, Al and P When,
A SixCuy phase made of an alloy having a composition of SixCuy (where x <y), which is an intermetallic compound of Si and Cu;
A powder composed of a composite phase of
There is provided a Si-based alloy negative electrode material in which the Si base phase has a particle shape having an average particle size of 10 μm or less, and at least a part of the Si base phase is surrounded by a SixCuy phase.
 本発明の別の一態様によれば、電気伝導性に優れたSi系合金負極材料の製造方法であって、
 上記負極材料の全体組成を有するSiCu基合金を溶解して溶湯を形成する工程と、
 該溶湯をガスアトマイズ法、ディスクアトマイズ法または液体急冷法により急冷する工程と、
を含んでなる、製造方法が提供される。
According to another aspect of the present invention, there is provided a method for producing a Si-based alloy negative electrode material having excellent electrical conductivity,
Melting a SiCu-based alloy having the overall composition of the negative electrode material to form a molten metal;
A step of quenching the molten metal by a gas atomizing method, a disk atomizing method or a liquid quenching method;
A manufacturing method is provided comprising:
Si-Cu二元系の状態図を示す図である。It is a figure which shows the phase diagram of Si-Cu binary system. Si-Cu合金粉末の断面SEM画像を示す図である。It is a figure which shows the cross-sectional SEM image of Si-Cu alloy powder.
 以下、本発明を図面に従って詳細に説明する。図1は、Si-Cu二元系の状態図を示す。この図に示すように、Si-Cu合金溶融物を冷却すると液相線温度(例えば、Si:64原子%-Cu:36原子%の場合は1200℃)に達した時に初晶としてSiが析出し始める。この初晶は液体急冷法やアトマイズ法のように冷却速度が大きければ粒状晶として析出し、温度が固相線温度(802℃)に達するとSiとSiCu3 の共晶反応が起こり凝固が完了する。このように、Siリッチ側の状態図ではSi相とSiCu3 相との共晶反応であり、Si相をSiCu3 相が取り囲む組織になる。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows a phase diagram of the Si—Cu binary system. As shown in this figure, when the Si—Cu alloy melt is cooled, Si precipitates as the primary crystal when the liquidus temperature is reached (eg, 1200 ° C. in the case of Si: 64 atomic% —Cu: 36 atomic%). Begin to. This primary crystal precipitates as a granular crystal if the cooling rate is high as in the liquid quenching method or the atomizing method, and when the temperature reaches the solidus temperature (802 ° C.), a eutectic reaction between Si and SiCu 3 occurs and solidification is completed. To do. Thus, in the phase diagram on the Si rich side, it is a eutectic reaction between the Si phase and the SiCu 3 phase, and the Si phase surrounds the SiCu 3 phase.
 一方、Cu以外とSiとを合金化させる元素の組合せとして、例えばFe-Si、Ni-Si、Mn-Si、Co-Si、Cr-Si、Si-W、Mo-Si、Nb-Si、Si-Ti、Si-V等が考えられる。しかし、これらは、いずれもFeSi2 、NiSi2 、CoSi2 、CrSi2 、WSi2 、MoSi2 、MnSi2 、NbSi2 、TiSi2 、VSi2 と金属元素よりもSiリッチな組成が残ることになる。 On the other hand, combinations of elements for alloying other than Cu and Si include, for example, Fe—Si, Ni—Si, Mn—Si, Co—Si, Cr—Si, Si—W, Mo—Si, Nb—Si, and Si. -Ti, Si-V, etc. are conceivable. However, it will both FeSi 2, NiSi 2, CoSi 2 , CrSi 2, WSi 2, MoSi 2, MnSi 2, NbSi 2, TiSi 2, VSi 2 and the Si-rich composition remains than metal elements .
 上記のSiと遷移元素との組合せで唯一Cuが金属リッチな化合物(SiCu3 )としてSi相と平衡する。このCuリッチな化合物(SiCu3 )の抵抗値を調べると、SiCu3 :16.3×10-4Ω・m、同様に、FeSi2 :1000×10-4Ω・m、NiSi2 :50×10-4Ω・m、CoSi2 :18×10-4Ω・mとSiCu3 が他のシリサイド化合物に比べて抵抗値の低いことが分かる。 The combination of Si and the transition element described above equilibrates with the Si phase as the only Cu-rich compound (SiCu 3 ). When the resistance value of this Cu-rich compound (SiCu 3 ) is examined, it is found that SiCu 3 : 16.3 × 10 −4 Ω · m, similarly FeSi 2 : 1000 × 10 −4 Ω · m, NiSi 2 : 50 × It can be seen that 10 −4 Ω · m, CoSi 2 : 18 × 10 −4 Ω · m and SiCu 3 have a lower resistance value than other silicide compounds.
 SiCu3 の抵抗値が最も低かった要因は二つあり、一つ目はSiCu3 が他のシリサイド化合物に比べて金属リッチな組成であることである。二つ目として、原料の遷移金属元素に注目すると、Cu:1.73×10-4Ω・m、Fe:10×10-4Ω・m、Ni:11.8×10-4Ω・m、Co:9.71×10-4Ω・m、と単体Cuは他の遷移金属元素と比較しても極めて抵抗値が低く、Siと最も抵抗値が低くなる遷移金属の組合せであったことである。 There are two factors that have the lowest resistance value of SiCu 3 , and the first is that SiCu 3 has a metal-rich composition compared to other silicide compounds. Secondly, when focusing on the transition metal element of the raw material, Cu: 1.73 × 10 −4 Ω · m, Fe: 10 × 10 −4 Ω · m, Ni: 11.8 × 10 −4 Ω · m , Co: 9.71 × 10 −4 Ω · m, and simple substance Cu had a very low resistance value compared to other transition metal elements, and was a combination of Si and the transition metal having the lowest resistance value It is.
 上述のことからも分かるように、遷移金属シリサイド化合物の中で最も低い抵抗値をとるSiと遷移金属元素の組合せはSiとCuである。これは、遷移金属シリサイド化合物の原料である単体Cuが他の単体遷移金属元素と比較しても極めて抵抗値が低く、かつ、Si相とSiとの遷移金属元素の組合せでは決して得られないSiとCu元素との金属リッチな化合物相(SixCuy(x<y))、例えば、SiCu3 相の形成が可能であることによるものである。このように最も抵抗値が低いことから、SiCu3 は上記したSiリッチな金属間化合物(FeSi2 、NiSi2 、CoSi2 、CrSi2 、WSi2 、MoSi2 、MnSi2 、NbSi2 、TiSi2 、VSi2 )よりも高い電気伝導性を示すことが分かる。 As can be seen from the above, the combination of Si and transition metal element having the lowest resistance value among the transition metal silicide compounds is Si and Cu. This is because Si, which is a raw material of a transition metal silicide compound, has an extremely low resistance value compared to other simple transition metal elements, and is never obtained by a combination of transition metal elements of Si phase and Si. This is because it is possible to form a metal-rich compound phase (SixCuy (x <y)), for example, an SiCu 3 phase between Cu and Cu elements. Thus, since the resistance value is the lowest, SiCu 3 is an Si-rich intermetallic compound (FeSi 2 , NiSi 2 , CoSi 2 , CrSi 2 , WSi 2 , MoSi 2 , MnSi 2 , NbSi 2 , TiSi 2 , It can be seen that the electric conductivity is higher than that of VSi 2 ).
 上記のことより、Siとの遷移金属元素との組合せで唯一CuだけがSi相と金属リッチな化合物(SiCu3 )相を共晶反応により析出することが分かり、かつ、このSiCu3 はSi-Cu二元系状態図からSiリッチな組成(例えば、Si:64原子%-Cu:36原子%)においてはSi相をSiCu3 相が取り囲む組織になっていることも分かっている。このことによりSiと他の遷移金属元素との組合せをはるかに上回る電気伝導性を持つSiCu3 相をSi相の回りに析出させることで、SiCu3 相がSiの乏しい電気伝導性を補う役割を果してくれる。 From the above, it can be seen that only Cu in a combination of Si and a transition metal element precipitates an Si phase and a metal-rich compound (SiCu 3 ) phase by a eutectic reaction, and this SiCu 3 is Si— From the Cu binary phase diagram, it is also known that in a Si-rich composition (for example, Si: 64 atomic% -Cu: 36 atomic%), the Si phase surrounds the SiCu 3 phase. This allows the SiCu 3 phase to precipitate around the Si phase, which has a much higher electrical conductivity than the combination of Si and other transition metal elements, so that the SiCu 3 phase plays a role in supplementing the poor electrical conductivity of Si. He will do it.
 さらに、SiCu3 相はリチウムと合金化しないことにより、SiCu3 相自身は充電(負極にリチウムが入る)-放電(負極からリチウムが出ていく)が繰り返されても体積膨張および収縮はせず、それどころかSiCu3 相はSiに比べて硬度が低いためSiとリチウムとの反応により生じるSiの大きな体積膨張および収縮の変化による応力を緩和する相とも成り得る。 Further, since the SiCu 3 phase is not alloyed with lithium, the SiCu 3 phase itself does not expand or contract even if it is repeatedly charged (lithium enters the negative electrode) -discharge (lithium comes out from the negative electrode). On the contrary, since the SiCu 3 phase has a lower hardness than Si, it can be a phase that relieves stress due to a large volume expansion and contraction of Si caused by the reaction between Si and lithium.
 また、Si相またはSiを主相とするSi相の平均粒径としては、10μm以下、好ましくは8μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下とする。これは平均粒径が大きければサイクル寿命が低下するからである。Siとリチウムの反応は電解液の接触部で起こる。なお、本明細書において「平均粒径」とは個数基準D50粒径を示す。最大粒径が10μmを超える大きなSi粒子では、初期充電反応の間にリチウムとの反応が電解液の接触するSi粒子表層部のみの反応に止まり、電解液が染み込むまでに時間がかかるリチウムとSi内部の反応が行なわれなくなってしまう。 Further, the average particle size of the Si phase or Si phase having Si as the main phase is 10 μm or less, preferably 8 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, and most preferably 2 μm or less. This is because if the average particle size is large, the cycle life is reduced. The reaction between Si and lithium occurs at the contact portion of the electrolyte. In the present specification, “average particle diameter” refers to a number-based D50 particle diameter. For large Si particles having a maximum particle size exceeding 10 μm, the reaction with lithium during the initial charging reaction stops only at the surface part of the Si particle in contact with the electrolytic solution, and it takes time until the electrolytic solution penetrates. The internal reaction will not be performed.
 そして、初期のSiへのリチウムの挿入反応により起こるSi表面と内部の体積膨張および収縮差により生じる応力に耐え切れなくなり、表層Siが割れ、そのSiが集電体から剥離したり、集電性がとれない電気的に孤立したSiアイランドになってしまうことで次のサイクルからそれらのSiが利用できなくなってしまう。また、その時、割れ方によっては未反応のSiを含んだまま集電体から剥離したり、集電のとれない電気的に孤立した状態になってしまう恐れもある。さらに、表層のSiがなくなり、新たな未反応Si面が出てくることで上記の現象の繰り返しになり、初期数サイクルのうちに容量が急激に低下してしまう。 Then, it becomes unable to withstand the stress caused by the volume expansion and contraction between the Si surface and the interior caused by the insertion reaction of lithium into the initial Si, the surface Si is cracked, and the Si peels off from the current collector, By becoming an electrically isolated Si island that cannot be removed, those Si cannot be used from the next cycle. At that time, depending on the cracking method, there is a risk of peeling from the current collector while containing unreacted Si or becoming an electrically isolated state where current cannot be collected. Furthermore, when the surface Si disappears and a new unreacted Si surface appears, the above phenomenon is repeated, and the capacity rapidly decreases in the initial few cycles.
 上記のことから、Si相の平均粒径が大きいと、初期充電反応の間にリチウムとの反応が電解液の接触するSi粒子表層部のみの反応に止まってしまうことが分かっている。そこで、Si相を微細化し、反応するSiの比表面積を大きくすることであらかじめ電解液が接触するSi表面積を増やす対策を行なう。これにより、初期のリチウムとSiの反応率を増やし、未反応Siがなくなるサイズまで微細化し、Siが集電体から剥離したり、集電性がとれない電気的に孤立したSiアイランドを防ぎ、上述したSiの剥離、および電気的孤立現象の繰り返しによる初期数サイクルの容量の急激な低下を改善する。したがって、その上限を10μmとした。平均粒径の下限値は小さい程好ましい。 From the above, it is known that when the average particle size of the Si phase is large, the reaction with lithium stops only in the surface layer portion of the Si particle in contact with the electrolyte during the initial charging reaction. Therefore, measures are taken to increase the Si surface area with which the electrolytic solution comes into contact in advance by refining the Si phase and increasing the specific surface area of the reacting Si. This increases the reaction rate between the initial lithium and Si, refines it to a size that eliminates unreacted Si, prevents Si from peeling off the current collector, and preventing electrically isolated Si islands that cannot collect current, The rapid decrease in capacity in the initial few cycles due to the repetition of the above-described Si peeling and electrical isolation phenomenon is improved. Therefore, the upper limit is set to 10 μm. The lower the lower limit of the average particle diameter, the better.
 また、Siは主相であり、Liと可逆的に化合および隔離することができる1または2以上の元素から構成される相の群である。この相は、このような元素である、C,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素を、Siの一部として置換して一部置換Si相であっても良い。これら元素が置換型の固溶体をなすとき、その組成比は特に限定しないが、C,Ge,Sn,Pb,Al,Pの割合はこれらをMとすると、Siを1とした場合、Siに置換するMの合計は0.5未満が好ましく、より好ましくは0.2未満であり、さらに好ましくは0.1未満であり、最も好ましくは0.05未満である。 Moreover, Si is a main phase, and is a group of phases composed of one or more elements that can reversibly combine and segregate with Li. In this phase, one or two or more elements selected from the group consisting of C, Ge, Sn, Pb, Al, and P, which are such elements, are substituted as a part of Si and partially substituted Si phase may be used. When these elements form a substitutional solid solution, the composition ratio is not particularly limited, but the ratio of C, Ge, Sn, Pb, Al, and P is replaced by Si when Si is 1 when these are M. The total amount of M is preferably less than 0.5, more preferably less than 0.2, even more preferably less than 0.1, and most preferably less than 0.05.
 さらに、Siと金属間化合物を形成するCuとの合金であるSixCuy合金において、SixCuy相の組成がx<yであることが必要である。例えば、FeSi2 では、Feリッチとはならない。Fe元素とSiとの合金では、Siリッチな化合物相を形成してしまうことから、電気伝導性が劣り、かつ、充放電の繰り返しで生じるSiの微細化によるSi相間の電気伝導性の低下防止を十分に発揮させることができないため、SixCuy相の組成がx<yであることにした。好ましくはx=1、y=3とする。 Further, in the SixCuy alloy, which is an alloy of Si and Cu that forms an intermetallic compound, the composition of the SixCuy phase needs to be x <y. For example, FeSi 2 does not become Fe rich. Since an alloy of Fe element and Si forms a Si-rich compound phase, the electrical conductivity is inferior, and the electrical conductivity between Si phases is prevented from being lowered due to the refinement of Si caused by repeated charge and discharge. Therefore, the composition of the SixCuy phase is set to x <y. Preferably, x = 1 and y = 3.
 図2は、Si-Cu合金粉末の断面SEM画像を示す。この図に示すように、黒色の部分が埋め込み樹脂1、灰色の部分がSi相2、白色の部分がSiCu3 相3である。特に中央のSi-Cu粒子に注目すると、粒子内部のA部分では灰色のSi相2が白色のSiCu3 相に取り囲まれた状態になっている。しかし、粒子表面部分のB部分では灰色のSi相2が粒子表面に剥ぎ出しになっている様子がわかる。このように、Si相の少なくとも一部がSixCuy相で取り囲んでいることにある。 FIG. 2 shows a cross-sectional SEM image of the Si—Cu alloy powder. As shown in this figure, the black portion is the embedded resin 1, the gray portion is the Si phase 2, and the white portion is the SiCu 3 phase 3. Focusing particularly on the central Si—Cu particles, the gray Si phase 2 is surrounded by the white SiCu 3 phase in the portion A inside the particles. However, it can be seen that in the portion B of the particle surface portion, the gray Si phase 2 is exposed on the particle surface. Thus, at least a part of the Si phase is surrounded by the SixCuy phase.
 本発明の負極材料は、全体として、at%で、10~50%のCu、0~10%のC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上、ならびに残部Siおよび不可避不純物からなる組成を有するのが好ましく、より好ましくは、18~36%のCu、0~3%のC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上、ならびに残部Siおよび不可避不純物からなる組成を有する。また、これらの好ましい全体組成は本発明の負極材料を製造するための出発原料としてのSiCu基合金についても同様に当てはまる。 The negative electrode material of the present invention as a whole is one or more selected from the group consisting of 10 to 50% Cu, 0 to 10% C, Ge, Sn, Pb, Al and P in at%. , And the balance Si and inevitable impurities, more preferably selected from the group consisting of 18-36% Cu, 0-3% C, Ge, Sn, Pb, Al and P It has the composition which consists of 1 type (s) or 2 or more types and balance Si and an unavoidable impurity. These preferable overall compositions also apply to the SiCu-based alloy as a starting material for producing the negative electrode material of the present invention.
 以下、本発明を実施例に基づいて具体的に説明する。表1に示す組成の負極材料粉末を、以下に述べるような液体急冷法、ガスアトマイズ法またはディスクアトマイズ法により作製した。液体急冷法については、所定組成の原料を底部に細孔を設けた石英管内に入れ、Ar雰囲気中で高周波溶解して溶湯を形成し、この溶湯を回転する銅ロール表面に出湯後、銅ロールにより急冷効果により急冷リボンを作製した。その後、作製リボンをジルコニアポット容器内にジルコニアボールとともにAr雰囲気中にて密閉し、メカニカルミリングにより粉末化した。 Hereinafter, the present invention will be specifically described based on examples. A negative electrode material powder having the composition shown in Table 1 was prepared by a liquid quenching method, a gas atomizing method, or a disk atomizing method as described below. For the liquid quenching method, a raw material having a predetermined composition is placed in a quartz tube having pores at the bottom, melted at a high frequency in an Ar atmosphere to form a molten metal, and after the molten metal is discharged on the surface of a rotating copper roll, the copper roll A quenching ribbon was produced by the quenching effect. Thereafter, the produced ribbon was sealed in a zirconia pot container together with zirconia balls in an Ar atmosphere, and powdered by mechanical milling.
 ガスアトマイズ法については、所定組織の原料を底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融後、Arガス雰囲気中、ガス噴射させるとともに出湯させ、急冷凝固することで目的とするガスアトマイズ微粉末を得た。ディスクアトマイズ法については、所定組織の原料を底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融後、Arガス雰囲気中、回転ディスク上(40000~60000r.p.m.)に出湯させ、急冷凝固することで目的とするディスクアトマイズ微粉末を得た。 For the gas atomization method, a raw material of a predetermined structure is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then gas is injected and discharged in the Ar gas atmosphere, followed by rapid cooling. The desired gas atomized fine powder was obtained by solidification. For the disk atomization method, a raw material having a predetermined structure is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then on a rotating disk (40000 to 60000 r) in an Ar gas atmosphere. P.m.) and then rapidly solidified by cooling to obtain the desired disc atomized fine powder.
 上記負極の単極での電極性能を評価するために、対極にリチウム金属を用いた、いわゆる二極式コイン型セルを用いた。まず、負極活物質(Si-Cuなど)、導電材(アセチレンブラック)、および結着材(ポリフッ化ビニリデン)を電子天秤で秤量し、分散液(N-メチルピロリドン)と共に混合スラリー状態とした後、集電体(Cu箔)上に均一に塗布した。塗布後、真空乾燥機で減圧乾燥し溶媒を蒸発させた後、コインセルにあった形状に打ち抜いた。対極のリチウムも同様に金属リチウム箔をコインセルにあった形状に打ち抜いた。 In order to evaluate the electrode performance of the negative electrode with a single electrode, a so-called bipolar coin-type cell using lithium metal as a counter electrode was used. First, a negative electrode active material (Si—Cu, etc.), a conductive material (acetylene black), and a binder (polyvinylidene fluoride) are weighed with an electronic balance and mixed with a dispersion (N-methylpyrrolidone). And uniformly applied on the current collector (Cu foil). After coating, the solvent was evaporated by drying under reduced pressure with a vacuum dryer, and then punched into a shape suitable for a coin cell. Similarly, lithium for the counter electrode was punched into a shape suitable for the coin cell.
 エチレンカーボネートとジメチルカーボネートの3:7混合溶媒を用い、支持電解質としてLiPF6 (六フッ化リン酸リチウム)を電解液に対して1モル溶解して、リチウムイオン電池に使用する電解液を用意した。この電解液は露点管理された不活性雰囲気中で取り扱う必要があるため、セルの組立ては全て不活性雰囲気のグローブボックス内で行った。セパレータはコインセルにあった形状に切り抜いた後、セパレータ内に電解液を十分浸透させるために、減圧下で数時間電解液中に保持した。その後、前工程で打ち抜いた負極、セパレータおよび対極リチウムの順に組合せ、電池内部を電解液で十分満たした形で構築した。 A 1: 7 mixed solvent of ethylene carbonate and dimethyl carbonate was used, and 1 mol of LiPF 6 (lithium hexafluorophosphate) was dissolved in the electrolyte as a supporting electrolyte to prepare an electrolyte for use in a lithium ion battery. . Since this electrolyte solution must be handled in an inert atmosphere with dew point control, all the cells were assembled in a glove box with an inert atmosphere. The separator was cut out into a shape suitable for a coin cell, and then held in the electrolyte for several hours under reduced pressure in order to sufficiently permeate the electrolyte into the separator. Thereafter, the negative electrode, separator, and counter electrode lithium punched in the previous step were combined in that order, and the battery was fully filled with the electrolyte.
 上記二極式セルを用い、温度25℃で充電容量および放電容量の測定を行った。充電は0.50mA/cm2 の電流密度で、金属リチウム極と同等の電位(0V)になるまで行う一方、放電は同じ電流値(0.50mA/cm2 )で1.5Vまで行い、この充電-放電を1サイクルとした。このときの1サイクル目の充電容量を初期容量値として評価した。また、サイクル寿命として、上記1サイクル目の放電容量を測定すると共に、その負極材料を用いた負極の放電容量とし、100サイクル目の放電容量を測定して、サイクル寿命の目安とした。 Using the bipolar cell, the charge capacity and discharge capacity were measured at a temperature of 25 ° C. Charging is performed at a current density of 0.50 mA / cm 2 until the potential is equal to that of the metal lithium electrode (0 V), while discharging is performed up to 1.5 V at the same current value (0.50 mA / cm 2 ). One cycle of charge-discharge. The charge capacity at the first cycle at this time was evaluated as the initial capacity value. Further, as the cycle life, the discharge capacity of the first cycle was measured, and the discharge capacity of the negative electrode using the negative electrode material was measured. The discharge capacity of the 100th cycle was measured, and used as a measure of the cycle life.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、No.1~14は本発明例であり、No.15~26は比較例を示す。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 1 and Table 2, Nos. 1 to 14 are examples of the present invention. 15 to 26 show comparative examples.
 本発明例No.1~14はSi相とSiとCuとの金属間化合物であるSixCuy合金からなるSixCuy相の複合相からなる粉体であり、かつSixCuy相の組成がx<yであり、またSiを主相とするSi相の平均粒径が10μm以下であるため、本発明の条件を満たす。また、1サイクル目の放電容量が1000mAh/g以上を示した。また、x<yである金属間化合物相SixCuy相による電気伝導性改善により、100サイクル後の放電容量は現状のグラファイト電極の容量である372mAh/g以上示した。 Invention Example No. 1 to 14 are powders composed of a composite phase of a SixCuy phase composed of a SixCuy alloy which is an intermetallic compound of Si phase and Si and Cu, and the composition of the SixCuy phase is x <y, and Si is the main phase. Since the average particle size of the Si phase is 10 μm or less, the condition of the present invention is satisfied. Moreover, the discharge capacity of the 1st cycle showed 1000 mAh / g or more. In addition, due to the improvement in electrical conductivity by the intermetallic compound phase SixCuy phase where x <y, the discharge capacity after 100 cycles was 372 mAh / g or more, which is the capacity of the current graphite electrode.
 比較例No.15~16は、本発明例No.1~2と同じくSi相とSiとCuとの金属間化合物であるSixCuy合金からなるSixCuy相の複合相からなる粉体であり、かつSixCuy相の組成がx<yであるが、Siを主相とするSi相の平均粒径が比較例No.15で12μm、比較例No.16で20μmと10μmを超えるため、本発明の条件を満たさない。また、充放電容量においても、1サイクル目の放電容量は比較例No.15で1080mAh/g、比較例No.16で1090mAh/gと1000mAh/g以上を示したが、100サイクル後の放電容量は比較例No.15で200mAh/g、比較例No.16で170mAh/gと現状のグラファイト電極の容量である372mAh/gを下回った。 Comparative Example No. Nos. 15 to 16 are examples of the present invention. As in 1-2, it is a powder composed of a composite phase of a SixCuy phase composed of a SixCuy alloy which is an intermetallic compound of Si phase and Si and Cu, and the composition of the SixCuy phase is x <y. The average particle size of the Si phase used as the phase is Comparative Example No. 15 and 12 μm, Comparative Example No. 16 exceeds 20 μm and 10 μm, so the conditions of the present invention are not satisfied. Also, in the charge / discharge capacity, the discharge capacity in the first cycle is the same as that in Comparative Example No. 15 at 1080 mAh / g, Comparative Example No. 16 showed 1090 mAh / g and 1000 mAh / g or more, but the discharge capacity after 100 cycles was Comparative Example No. 15 and 200 mAh / g, Comparative Example No. 16 was 170 mAh / g, which was lower than the current capacity of the graphite electrode, 372 mAh / g.
 比較例No.17~26は、Siを主相とするSi相の平均粒径が10μm以下ではあるが、Si相とSiとCuとの金属間化合物であるSixCuy合金からなるSixCuy相の複合相からなる粉体でないため、本発明の条件を満たさない。また、1サイクル目の放電容量が1000mAh/g未満を示した。また、x>yである金属間化合物相SixMy相(M=Ni、Fe、Mn、Co、Cr、W、Mo、Nb、Ti、V)により電気伝導性が劣り、100サイクル後の放電容量は現状のグラファイト電極の容量である372mAh/g未満を示した。 Comparative Example No. Nos. 17 to 26 are powders composed of a composite phase of a SixCuy phase composed of a SixCuy alloy that is an intermetallic compound of a Si phase and Si and Cu, although the average particle size of the Si phase having Si as a main phase is 10 μm or less. Therefore, the conditions of the present invention are not satisfied. Further, the discharge capacity at the first cycle was less than 1000 mAh / g. Moreover, the electrical conductivity is inferior due to the intermetallic compound phase SixMy phase (M = Ni, Fe, Mn, Co, Cr, W, Mo, Nb, Ti, V) where x> y, and the discharge capacity after 100 cycles is The current capacity of the graphite electrode was less than 372 mAh / g.
 以上のように、金属リッチなSiCu3 相は電気伝導性に優れており、さらに、Si相の平均粒径を10μm以下とする相乗効果で充放電容量や充放電寿命ともに向上する極めて優れた効果を奏するものである。加えて、合金を溶解して溶湯を形成し、該溶湯をガスアトマイズ法、ディスクアトマイズ法または液体急冷法により急冷することで、電気伝導性に優れたSi系合金負極材料の製造方法が可能になる。 As described above, the metal-rich SiCu 3 phase is excellent in electrical conductivity, and further has an excellent effect of improving both the charge / discharge capacity and the charge / discharge life due to the synergistic effect of making the average particle size of the Si phase 10 μm or less. It plays. In addition, an alloy is melted to form a molten metal, and the molten metal is quenched by a gas atomizing method, a disk atomizing method, or a liquid quenching method, thereby enabling a method for producing a Si-based alloy negative electrode material having excellent electrical conductivity. .

Claims (9)

  1.  電気伝導性に優れたSi系合金負極材料であって、該負極材料が、
     Si相またはSiの一部がC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素で置換されてなる一部置換Si相である、Si基相と、
     SiおよびCuの金属間化合物である、SixCuy(式中、x<yである)の組成を有する合金からなるSixCuy相と、
    の複合相からなる粉体であり、
     前記Si基相が、平均粒径10μm以下の粒子形状を有し、該Si基相の少なくとも一部をSixCuy相が取り囲んでなる、Si系合金負極材料。
    Si-based alloy negative electrode material excellent in electrical conductivity, the negative electrode material,
    Si base phase, which is a partially substituted Si phase in which the Si phase or a part of Si is substituted with one or more elements selected from the group consisting of C, Ge, Sn, Pb, Al and P When,
    A SixCuy phase made of an alloy having a composition of SixCuy (where x <y), which is an intermetallic compound of Si and Cu;
    A powder composed of a composite phase of
    A Si-based alloy negative electrode material, wherein the Si base phase has a particle shape with an average particle size of 10 μm or less, and at least a part of the Si base phase is surrounded by a SixCuy phase.
  2.  前記SixCuyの組成がSiCu3 である、請求項1に記載の負極材料。 The negative electrode material according to claim 1, wherein the composition of the SixCuy is SiCu 3 .
  3.  前記Si基相が、Siの一部がC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素で置換されてなる一部置換Si相である、請求項1または2に記載の負極材料。 The Si base phase is a partially substituted Si phase in which a part of Si is substituted with one or more elements selected from the group consisting of C, Ge, Sn, Pb, Al and P. The negative electrode material according to claim 1.
  4.  初期放電容量が1000mAh/g以上であり、かつ、100サイクル目の放電容量が372mAh/g以上である、請求項1~3のいずれか一項に記載の負極材料。 The negative electrode material according to any one of claims 1 to 3, wherein the initial discharge capacity is 1000 mAh / g or more and the discharge capacity at the 100th cycle is 372 mAh / g or more.
  5.  前記負極材料が、全体として、at%で、
     Cu:10~50%、
     C,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上:0~10%、ならびに
     残部Siおよび不可避不純物
    からなる組成を有する、請求項1~4のいずれか一項に記載の負極材料。
    The negative electrode material as a whole is at%,
    Cu: 10 to 50%,
    One or more selected from the group consisting of C, Ge, Sn, Pb, Al and P: 0 to 10%, and the composition consisting of the balance Si and inevitable impurities The negative electrode material according to one item.
  6.  前記負極材料が、全体として、at%で、
     Cu:18~36%、
     C,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上:0~3%、ならびに
     残部Siおよび不可避不純物
    からなる組成を有する、請求項1~4のいずれか一項に記載の負極材料。
    The negative electrode material as a whole is at%,
    Cu: 18 to 36%,
    One or more selected from the group consisting of C, Ge, Sn, Pb, Al and P: 0 to 3%, and the composition consisting of the balance Si and inevitable impurities The negative electrode material according to one item.
  7.  電気伝導性に優れたSi系合金負極材料の製造方法であって、
     請求項1~6のいずれか一項に記載の負極材料の全体組成を有するSiCu基合金を溶解して溶湯を形成する工程と、
     該溶湯をガスアトマイズ法、ディスクアトマイズ法または液体急冷法により急冷する工程と、
    を含んでなる、製造方法。
    A method for producing a Si-based alloy negative electrode material having excellent electrical conductivity,
    Melting a SiCu base alloy having the overall composition of the negative electrode material according to any one of claims 1 to 6 to form a molten metal;
    A step of quenching the molten metal by a gas atomizing method, a disk atomizing method or a liquid quenching method;
    A manufacturing method comprising:
  8.  前記SiCu基合金が、at%で、
     Cu:10~50%、
     C,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上:0~10%、ならびに
     残部Siおよび不可避不純物からなる、請求項7に記載の方法。
    The SiCu-based alloy is at%,
    Cu: 10 to 50%,
    The method according to claim 7, comprising one or more selected from the group consisting of C, Ge, Sn, Pb, Al and P: 0 to 10%, and the balance Si and inevitable impurities.
  9.  前記SiCu基合金が、at%で、
     Cu:18~36%、
     C,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上:0~3%、ならびに
     残部Siおよび不可避不純物からなる、請求項7に記載の方法。
    The SiCu-based alloy is at%,
    Cu: 18 to 36%,
    The method according to claim 7, comprising one or more selected from the group consisting of C, Ge, Sn, Pb, Al and P: 0 to 3%, and the balance Si and inevitable impurities.
PCT/JP2011/066139 2010-07-16 2011-07-14 Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor WO2012008540A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010161308 2010-07-16
JP2010-161308 2010-07-16
JP2011105109A JP2012038708A (en) 2010-07-16 2011-05-10 Silicon alloy negative electrode material excellent in conductivity and method for producing the same
JP2011-105109 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012008540A1 true WO2012008540A1 (en) 2012-01-19

Family

ID=45469535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066139 WO2012008540A1 (en) 2010-07-16 2011-07-14 Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2012038708A (en)
WO (1) WO2012008540A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064316A (en) * 2010-09-14 2012-03-29 Sanyo Special Steel Co Ltd MANUFACTURING METHOD FOR Si ALLOY NEGATIVE ELECTRODE
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
WO2016052643A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Powder for conductive fillers
JP2016072192A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Powder for electrical conductive filler
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler
CN114695864A (en) * 2022-04-25 2022-07-01 安徽工业大学 Preparation method of phosphorus-doped silicon-copper alloy negative electrode material of lithium ion battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076772B2 (en) * 2013-02-19 2017-02-08 山陽特殊製鋼株式会社 Si-based alloy negative electrode material for power storage device and electrode using the same
EP3474355B1 (en) * 2016-06-16 2022-02-16 Nissan Motor Co., Ltd. Negative electrode active material for electrical device, and electrical device in which said material is used

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP2004362895A (en) * 2003-06-03 2004-12-24 Sony Corp Negative electrode material, and battery using it
JP2005011650A (en) * 2003-06-18 2005-01-13 Sony Corp Negative electrode material and battery using the same
WO2006129415A1 (en) * 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP2007149685A (en) * 2005-11-29 2007-06-14 Samsung Sdi Co Ltd Anode active material for lithium secondary battery and lithium secondary battery containing the same
JP2009032644A (en) * 2007-06-26 2009-02-12 Daido Steel Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP2004362895A (en) * 2003-06-03 2004-12-24 Sony Corp Negative electrode material, and battery using it
JP2005011650A (en) * 2003-06-18 2005-01-13 Sony Corp Negative electrode material and battery using the same
WO2006129415A1 (en) * 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP2007149685A (en) * 2005-11-29 2007-06-14 Samsung Sdi Co Ltd Anode active material for lithium secondary battery and lithium secondary battery containing the same
JP2009032644A (en) * 2007-06-26 2009-02-12 Daido Steel Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064316A (en) * 2010-09-14 2012-03-29 Sanyo Special Steel Co Ltd MANUFACTURING METHOD FOR Si ALLOY NEGATIVE ELECTRODE
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
WO2016052643A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Powder for conductive fillers
JP2016072192A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Powder for electrical conductive filler
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler
CN114695864A (en) * 2022-04-25 2022-07-01 安徽工业大学 Preparation method of phosphorus-doped silicon-copper alloy negative electrode material of lithium ion battery
CN114695864B (en) * 2022-04-25 2023-09-08 安徽工业大学 Preparation method of phosphorus-doped silicon-copper alloy negative electrode material of lithium ion battery

Also Published As

Publication number Publication date
JP2012038708A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP6322362B2 (en) Si alloy negative electrode material
JP4865105B1 (en) Si alloy negative electrode material
JP4739462B1 (en) Si-based alloy negative electrode material with excellent conductivity
WO2012008540A1 (en) Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor
JP6374678B2 (en) Negative electrode materials for electricity storage devices
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2008091328A (en) Lithium secondary cell and its manufacturing method
JP6076772B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
WO2016043061A1 (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
WO2015137338A1 (en) Negative-electrode material for electricity-storage device
JP2013122905A (en) Scale-like silicon-based alloy negative electrode material
JP2004335272A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP2012529747A (en) Thin film alloy electrode
JP2013171812A (en) METHOD FOR MANUFACTURING Si-BASED ALLOY NEGATIVE ELECTRODE
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2015090847A (en) Powder for negative electrode of power storage device
WO2018193864A1 (en) Negative electrode material for power storage device
JP6630632B2 (en) Anode materials for power storage devices
JP2014038832A (en) Material for negative electrode of electric power storage device
JP6470806B2 (en) Powder for negative electrode of electricity storage device
WO2018180212A1 (en) Negative electrode material for storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806870

Country of ref document: EP

Kind code of ref document: A1