JP2005011696A - Negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005011696A
JP2005011696A JP2003174992A JP2003174992A JP2005011696A JP 2005011696 A JP2005011696 A JP 2005011696A JP 2003174992 A JP2003174992 A JP 2003174992A JP 2003174992 A JP2003174992 A JP 2003174992A JP 2005011696 A JP2005011696 A JP 2005011696A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
silicon
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003174992A
Other languages
Japanese (ja)
Inventor
Teruaki Yamamoto
輝明 山本
Harunari Shimamura
治成 島村
Yasuhiko Mifuji
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003174992A priority Critical patent/JP2005011696A/en
Publication of JP2005011696A publication Critical patent/JP2005011696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a nonaqueous electrolyte secondary battery capable of restraining generation of gas caused by an auxiliary reaction. <P>SOLUTION: The negative electrode material for a nonaqueous electrolyte secondary battery is composed of silicon and/or silicon-containing alloy, and at least a part of the surface of the negative electrode material contains fluorine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用負極材料に関する。
【0002】
【従来の技術】
近年、移動体通信機器、携帯電子機器の主電源として利用されているリチウム二次電池は、起電力が大きく、エネルギー密度が高いという特長を有している。現在、リチウム金属に代わる負極材料として、リチウムイオンを吸蔵・放出可能な炭素材料を使用した電池が実用化されている。しかし、炭素材料のひとつである黒鉛の理論容量は372mAh/gであり、リチウム金属単体の理論容量の10%程度と小さい。
【0003】
そこで、リチウム二次電池の高容量化を図るため、炭素材料よりも理論容量の高い負極材料として、ケイ素(理論容量は4200mAh/g)の単体もしくは他の金属元素との金属間化合物(以下、ケイ素合金と表記)などについて研究が行われている。
【0004】
通常、ケイ素およびケイ素合金の表面はケイ素酸化物で覆われている。このケイ素酸化物は電解液と副反応を起こしやすく、その際にガスを発生するため、十分なサイクル特性が得られない。この副反応によるガス発生は負極材料として黒鉛を用いた場合でも起こるが、ケイ素またはケイ素合金を用いた電池では、そのガス発生量が多くなるため、電池に対してより大きな悪影響を及ぼす。
【0005】
これまで負極材料として炭素材料を用いた非水電解質二次電池のガス発生を抑制するために、電解液に添加物を含ませたり(例えば、特許文献1)、電解液と接触させないように高分子膜などで炭素材料を被覆する(例えば、特許文献2)ことなどが提案されている。
【0006】
【特許文献1】
特開平8−339824号公報(第1〜8頁)
【特許文献2】
特開平8−306353号公報(第1〜5頁)
【0007】
【発明が解決しようとする課題】
負極材料として炭素材料を用いた非水電解質二次電池におけるガス発生の抑制に対して有効とされる添加物は、負極材料としてケイ素および/またはケイ素合金を用いた場合でも同様の効果が得られる。しかし、十分な容量維持率は得られない。これはケイ素酸化物と電解液との間で起こる副反応が影響していると考えられる。
【0008】
また、ケイ素を含む負極材料を用いた場合、ケイ素の完全充電時の体積は充電前の4倍であるため、充放電時の膨張収縮による体積変化が大きい。このため、負極材料の表面を高分子膜などで被覆した場合では、サイクル中に負極材料表面に形成した高分子膜が剥れてしまうなどしてガス発生を抑制する効果を維持できないという問題がある。
【0009】
そこで、本発明は、ケイ素および/またはケイ素合金の表面に、フッ素を含ませ、化学的に安定なケイ素−フッ素結合を形成することにより、副反応によるガス発生を抑制できる非水電解質二次電池用負極材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の非水電解質二次電池用負極材料は、ケイ素および/またはケイ素を含む合金で構成された負極材料であって、前記負極材料の表面の少なくとも一部にフッ素を含むことを特徴とする。
前記合金が、ケイ素と、鉄、ニッケル、銅、チタン、ジルコニウム、ハフニウムよりなる群より選択される少なくとも1種の元素とからなることが好ましい。
【0011】
前記合金が、少なくともケイ素からなる相と、ケイ素を含む合金相とからなることが好ましい。
前記表面におけるフッ素とケイ素の原子比F/Siが0.02〜1.5であることが好ましい。
【0012】
【発明の実施の形態】
本発明は、ケイ素および/またはケイ素を含む合金で構成された負極材料であって、前記負極材料の表面の少なくとも一部にフッ素を含む非水電解質二次電池用負極材料に関する。
【0013】
ガス発生がサイクル特性に悪影響を与えるのは以下の理由による。
ガスが発生すると電極表面においてガスが発生した領域では電極と電解液とが接触しなくなる。このため、この領域は十分な充放電ができなくなり、その周囲への負荷が大きくなる。その結果、ガス発生領域周辺の高負荷領域においてサイクル劣化が加速する。そして、それがさらにその周りへの負荷を大きくする。このような電極の不均一な反応により全体としてサイクル劣化が加速度的に進行すると考えられる。
【0014】
この問題の解決により得られる本発明の効果は以下のように考えている。
このガス発生の要因は種々考えられるが、負極材料表面のケイ素酸化物が電解液と反応しやすいのが主要因である。したがって、負極材料の表面を化学的に安定化させることができれば、ガス発生による不均一反応の進行およびサイクル特性の低下を最小限に抑制することができる。Si−Fの結合エネルギー(541.0kJ/mol)は、Si−Si (176.6kJ/mol)、Si−H (294.6kJ/mol)およびSi−O (369.0kJ/mol)の結合エネルギーと較べ非常に大きいため、化学的に安定であり、自然酸化の抑制効果もある(例えば、非特許文献1)。
【0015】
【非特許文献1】
日本結晶学会誌Vol.33(1991)(第182〜187頁)
【0016】
一方、ケイ素−ハロゲン結合は非常に大きな極性を有しており、一般的にはケイ素が求核攻撃を受けやすいため、広範囲にわたる種々の物質との間における反応性が高い。しかし、本発明者らは、ケイ素−ハロゲン結合は、電解液に対して安定であり、副反応によるガス発生を抑制する効果があることを見出した。そして、ハロゲンの原子量が増加するとともに反応性は大きくなるため、ケイ素を含む負極材料の表面は、ハロゲンの中でも電解液に対する安定性が最も大きいフッ素との結合が最も好ましいと考えた。
【0017】
本発明に係る表面の少なくとも一部にフッ素を含む負極材料は、例えば、負極材料の表面をプラズマ処理、または浸漬処理することにより得られる。
プラズマ処理では、対象となる材料と有機フッ化物またはフッ素ガス前駆体とをチャンバー内に導入し、制御された不活性雰囲気または活性/不活性混合雰囲気中でプラズマを発生させることにより、対象となる材料の表面をフッ素化することができる。
浸漬処理では、対象となる材料をフッ化水素酸や硝酸などを含む水溶液中に浸漬することにより、表面の酸化膜を除去するとともに表面をフッ化することができる。
【0018】
負極材料の表面に含まれるフッ素とケイ素の原子比F/Siは0.02〜1.5であることが好ましい。
原子比F/Siが0.02未満の場合は、ケイ素を含む負極材料の表面に占めるフッ素の面積割合が小さいため副反応を抑制する効果は十分に得られない。一方、原子比F/Siが1.5を超えると、ガス発生は抑制されるが、負極材料表面の抵抗が増大するためサイクル特性が低下する。
【0019】
フッ素とケイ素の原子比F/Siは、マイクロオージェ電子分光測定により調べることができる。測定原理を簡単に説明する。電子線の照射により内核電子が弾き出され、それにより生じた空軌道を外殻電子が補填するときに放出される電子がオージェ電子であり、元素固有の運動エネルギーを調べることにより表面から数nmまでの深さの元素分析ができる。
【0020】
また、前記負極材料においてフッ素を含む表面部分(表面層)の厚さは0.5〜10nmが望ましい。前記表面層の厚さが0.5nm未満の場合、副反応を抑制する効果は十分に得られない。一方、前記表面層の厚さが10nmを超えると、負極材料表面の電気抵抗が増加するため、放電効率が低下し、サイクル特性が悪くなる。
【0021】
前記合金が、ケイ素と、鉄、ニッケル、銅、チタン、ジルコニウム、ハフニウムよりなる群より選択される少なくとも1種の元素とからなることが好ましい。
また、前記合金が、少なくともケイ素からなる単相と、ケイ素を含む合金相とからなることが好ましい。
【0022】
このなかでも、ケイ素と、鉄、ニッケル、銅、チタン、ジルコニウム、ハフニウムよりなる群より選択される少なくとも1種の元素とからなる充放電反応に寄与しない不活性な合金相で、充放電反応に寄与する活性なケイ素からなる単相を少なくとも部分的に包囲することが好ましい。ケイ素からなる単相の表面で起こる副反応によるガス発生を低減できるからである。また、リチウム吸蔵時の応力を緩和して負極材料の膨張や微粉化を抑制し、かつ負極材料の電子伝導性を向上させる効果がある。
【0023】
【実施例】
《実施例1》
以下に、本発明を実施例に基づいて具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
【0024】
(i)負極材料の作製および表面のフッ素化
市販のケイ素粉末を遊星ボールミルにて3時間解砕後、45μm以下に分級することにより平均粒径20μmのケイ素粉末を得た。なお、解砕はアルゴン雰囲気下、直径15mmのステンレスボールを用い、15Gの力がかかるように駆動モーターの回転数を1分間3700回転として行った。
【0025】
次に、上記で得られたケイ素粉末表面にフッ素を存在させるためにプラズマ処理を行った。
まず、ガス流量制御装置を備えた回転プラズマ反応器に、ケイ素粉末と有機フッ化物としてフッ素化エチレン−プロピレン共重合体とを充填し、真空乾燥を行った。そして、水素を導入して900℃で5時間熱処理を行い、還元により表面酸化膜を減少させた。アルゴンで置換した後、アルゴン及び酸素を供給しながら反応系の圧力を0.001Paに保持し、100ワット時公称電力でプラズマを発生させ、フッ素化エチレン−プロピレンを分解することによりケイ素表面をフッ化させた。このとき、プラズマ処理の時間を調整することにより、表1に示す原子比率F/Siの異なる負極材料をそれぞれ作製した。
【0026】
(ii)負極の作製
負極材料としての上記で得られた各ケイ素粉末と、導電剤としてのアセチレンブラック(以下、ABと表記)粉末と、結着剤としてのカルボキシメチルセルロース(以下、CMCと表記)およびスチレンブタジエンゴム(以下、SBRと表記)とをよく混合し、水を加えて、それぞれ負極ペーストを得た。各負極ペーストに含まれる負極材料/AB/CMC/SBRの重量比は、100/12/4/8とした。得られた各負極ペーストを、それぞれ厚さ15μmの銅箔の両面に塗布した後、常圧60℃で15分間予備乾燥した。これを圧延した後、さらに180℃で10時間真空乾燥してそれぞれ負極3を得た。
【0027】
(iii)正極の作製
LiCOとCoCOとを所定のモル比で混合し、950℃で加熱することにより正極材料としてLiCoOを合成した。さらに、これを100メッシュ以下の大きさに分級した。上記で得られた正極材料100gに対して、導電剤としてアセチレンブラックを10g、結着剤としてポリ4フッ化エチレンの水性分散液を8g(樹脂成分)および純水を適量加え、充分に混合し、正極ペーストを得た。この正極ペーストをアルミニウムの芯材に塗布した後、乾燥し、圧延して正極1を得た。
【0028】
(iv)扁平形電池の作製
上記で得られた負極および正極を用いて、扁平形電池(試験セル)を作製した。その手順を図1に示す扁平形電池の概略縦断面図を参照しながら以下に説明する。
超音波溶接により、正極1にアルミニウムからなる正極リード2を取り付けた。同様に負極3に銅からなる負極リード4を取り付けた。そして、正極、負極、および両電極より幅が広く、帯状の多孔性ポリプロピレン製セパレータ5を積層した。このとき、セパレータ5は、両電極の間に介在させた。次いで、積層体を扁平状に捲回して電極群とした。
【0029】
電極群の上下部にそれぞれポリプロピレン製の絶縁板(図示せず)を配した後、電極群を電池ケース7に挿入した。そして、電池ケース7の上部に枠体6を形成した後、所定の非水電解液を注入し、正極端子を有する封口板8で密閉して扁平形電池とした。なお、電解液には、1.0mol/lのLiPFを含むエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比1:3)を用いた。
そして、上記で得られた各負極材料および各扁平形電池について、それぞれ以下に示す評価を行った。
【0030】
[評価]
▲1▼負極材料の表面における原子比F/Siの測定
上記で得られた各負極材料表面における原子比F/Siは、マイクロオージェ電子分光分析により確認した。測定深さは表面より3nmとした。
【0031】
▲2▼負極材料の電子伝導度の測定
上記で得られた各負極材料の電子伝導度の測定を粉体抵抗測定機を用いて行った。なお、測定時の加圧は4.0N/mとした。
【0032】
▲3▼容量維持率の測定
上記で得られた扁平形電池の評価は20℃で以下のように実施した。
まず、充電を、充電電流値0.2C(1Cは1時間率の電流値を表す)で電池電圧が4.2Vになるまで行い、次いで、充電電流値0.01Cで電池電圧が4.2Vになるまで行った。その後、放電を、放電電流値0.2Cで電池電圧が2.5Vになるまで行った。この充放電サイクルを100回繰り返した。そして、この時の容量維持率(%)を調べた。容量維持率(%)は、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を示す。容量維持率は100%に近いほどサイクル寿命が良好であることを示す。
【0033】
▲4▼ガス発生量の測定
上記の充放電サイクル中に発生したガスの量と主要成分をガスクロマトグラフィーにより分析した。なお、この分析により副反応時に電解液が分解することにより生成したと考えられるメタン、エタン等を確認した。
【0034】
《比較例1》
フッ化処理を行わずに実施例1の負極材料を用いた以外は、実施例と同様の方法により負極を作製した。この負極を用いた以外は、実施例1と同様の方法により扁平形電池を作製した。
上記の実施例1および比較例1の電池について評価を行った結果を表1に示す。
【0035】
【表1】

Figure 2005011696
【0036】
表1より、原子比F/Siが大きいほど、100サイクル後のガス発生量は減少するが、負極材料の電子伝導度が低下することがわかった。原子比F/Siが0.02以上のとき、ガス発生量が抑制されるため、100サイクル後の容量維持率は70%を超える。しかし、原子比F/Siが1.5以上になると、負極材料表面の抵抗が増加するため、100サイクル後の容量維持率は70%以下となる。これより、原子比F/Siは0.02〜1.5が好ましいことがわかった。さらに、容量維持率が80%を超えるため、原子比F/Siは0.05〜1.00であることが、より好ましいことがわかった。
【0037】
《実施例2〜7》
次にケイ素からなる相とケイ素を含む合金相とからなる負極材料表面にフッ素を存在させることの効果を確認した。
まず、遊星ボールミル容器中に、表2に示す混合比率で所定の原材料を投入した後、メカニカルアロイング(以下、MAと表記)法による合成を10時間実施し、所定のSiからなる相およびSiを含む合金相からなる負極材料を作製した。その他の条件は実施例1における解砕時の条件と同一とした。これらの負極材料は電子顕微鏡の観察結果から、ケイ素からなる相の全面または一部がケイ素を含む合金相によって包囲されていることが確認できた。また、ケイ素を含む合金相が表2に示すものであることをX線回折測定により確認した。
【0038】
このようにして得られたケイ素からなる相と、ケイ素合金を含む合金相とからなる負極材料の表面を、プラズマ処理によりフッ素化させた。このとき、各負極材料の原子比F/Siが、実施例1で最も容量維持率が高かった0.10になるように、プラズマ処理時間を調整した。
なお、この際、ケイ素原子のうちケイ素合金由来と考えられるものは除外した。例えば、実施例10の場合、鉄の2倍の原子数のケイ素を二ケイ化鉄(FeSi)由来としてケイ素の総原子数から除外し、フッ素の原子数と残ったケイ素の原子数との比を原子比F/Siとした。
【0039】
上記で得られた各負極材料を用いた以外は、実施例1と同様の方法により負極を作製した。そして、これらの負極を用いた以外は実施例1と同様の方法により電池を作製した。
【0040】
《比較例2〜7》
実施例2〜7における各負極材料の表面をフッ化させるプラズマ処理を行わない以外は、実施例2〜7と同様の方法により負極材料を得た。これらの負極材料を用いて実施例1と同様の方法により負極をそれぞれ作製した。そして、これらの負極を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。
【0041】
実施例2〜7および比較例2〜7の各負極材料および各電池について実施例1と同様の方法により評価を行った。
これらの結果を表2に示す。
【0042】
【表2】
Figure 2005011696
【0043】
表2に示すように、まずケイ素相がケイ素合金相で包囲されることにより、ケイ素単体の場合(実施例1)に較べてガス発生量が減少し容量維持率が向上している。
これら負極材料に対しプラズマ処理を実施して、原子比F/Siを0.10にすることにより、いずれもガス発生量が抑制され、容量維持率が向上することを確認した。
【0044】
ケイ素を含む合金相がチタン、ジルコニウム、ハフニウムを含む負極材料についてその表面をフッ化させた実施例5〜7の場合では、容量維持率が95%を超え、優れたサイクル特性が得られた。
【0045】
《実施例8》
比較例5の負極材料について、フッ化プラズマ処理を行った。このとき、プラズマ処理の時間を調整することにより、原子比F/Siを表3に示す0.01〜2.00の範囲で種々に変えた負極材料をそれぞれ作製した。これらの負極材料を用いた以外は実施例1と同様の条件で負極をそれぞれ作製した。そして、これらの負極を用いた以外は、実施例1と同様の方法で電池をそれぞれ作製した。
これらの負極材料および電池の評価結果を表3に示す。なお、表3には、比較として比較例5の評価結果も示す。
【0046】
【表3】
Figure 2005011696
【0047】
原子比F/Siの算出の際は、ケイ素原子のうち、ケイ素を含む合金由来と考えられるものは除外した。
表3からわかるように、負極材料にケイ素単体を用いた実施例1の場合と同様に、原子比F/Siが大きいほど、100サイクル後のガス発生量は減少し、負極材料の電子伝導度が低下することがわかった。その結果、原子比F/Siが0.02以上のとき、ガスの発生量が抑制されるため、100サイクル後の容量維持率は90%以上となる。しかし、原子比F/Siが1.5を超えると、負極材料表面の抵抗が増加するため、100サイクル後の容量維持率は90%以下となる。
【0048】
これより、原子比F/Siは、0.02〜1.50以下が好ましいことがわかった。さらに、容量維持率が95%を超えるため、原子比F/Siは、0.05〜1.00が、より好ましいことがわかった。
【0049】
《実施例9〜12》
実施例5の電池で用いられた1.0mol/lのLiPFを含むエチレンカーボネートとジエチルカーボネートの混合溶媒からなる電解液の代わりに、表4に示すリチウム塩および溶媒からなる各電解液を用いた場合についてそれぞれ検討した。なお、電解液以外の条件は実施例5と同一の方法によりそれぞれ電池を作製した。
【0050】
《比較例8〜11》
比較例5の電池で用いられた1.0mol/lのLiPFを含むエチレンカーボネートとジエチルカーボネートの混合溶媒からなる電解液の代わりに、表4に示すリチウム塩および溶媒からなる各電解液を用いた場合についてそれぞれ検討した。なお、電解液以外の条件は比較例5と同一の方法によりそれぞれ電池を作製した。
これらの電池の評価結果を表4に示す。なお、表4には、比較として実施例5及び比較例5の結果も示す。
【0051】
【表4】
Figure 2005011696
【0052】
表4からわかるように、リチウム塩および溶媒を変えても、負極材料表面にフッ素を存在させることにより、ガス発生量が減少し、容量維持率の向上に対して効果があることが確認できた。
【0053】
《実施例13、14》
実施例1および5の負極材料について、プラズマ処理の代わりに以下に示すような浸漬処理を行った。
【0054】
浸漬処理は、フッ化水素酸に所定の負極材料を浸漬することにより行った。この方法を用いると、表面酸化膜の除去と表面フッ化とを同時に行える利点がある。なお、フッ化水素酸の濃度は2%とし、浸漬時間は原子比F/Siが0.10になるように調整した。浸漬処理後、洗浄時の酸化を低減させるため、溶存酸素量が0.05ppmの純水で負極材料を洗浄した。
【0055】
プラズマ処理の代わりに上述の浸漬処理を行った以外は、実施例1および5と同様の方法により負極材料を得た。そして、これらの負極材料を用いた以外は、実施例1と同様の方法により負極を作製した。さらに、これらの負極を用いた以外は、実施例1と同様の方法により電池をそれぞれ作製した。
各負極および電池についての評価結果を表5に示す。なお、表5には、比較として実施例1および5ならびに比較例1および5の結果も示す。
【0056】
【表5】
Figure 2005011696
【0057】
表5に示すように、浸漬処理により負極材料表面にフッ素を存在させた場合でも、ガスの発生量が減少し、容量維持率が向上することが確認できた。プラズマ処理と較べてガス発生量に対する効果はあまり変わらないが、容量維持率が向上することがわかった。これは、負極材料の電子伝導度が増加し、その表面における抵抗が減少したことにより、放電効率が向上したためであると考えられる。
【0058】
【発明の効果】
以上のように本発明によれば、副反応によるガス発生を抑制できる非水電解質二次電池用負極材料を提供することができる。そして、この負極を用いることにより、長寿命の非水電解質二次電池が得られる。
【図面の簡単な説明】
【図1】本発明の実施例における扁平形電池の概略縦断面図である。
【符号の説明】
1 正極
2 正極リード
3 負極
4 負極リード
5 セパレータ
6 枠体
7 電池ケース
8 封口板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, lithium secondary batteries used as a main power source for mobile communication devices and portable electronic devices have the features of large electromotive force and high energy density. Currently, a battery using a carbon material capable of occluding and releasing lithium ions is put into practical use as a negative electrode material replacing lithium metal. However, the theoretical capacity of graphite, which is one of the carbon materials, is 372 mAh / g, which is as small as about 10% of the theoretical capacity of a single lithium metal.
[0003]
Therefore, in order to increase the capacity of the lithium secondary battery, as a negative electrode material having a theoretical capacity higher than that of the carbon material, silicon (theoretical capacity is 4200 mAh / g) alone or an intermetallic compound with another metal element (hereinafter, Research has been conducted on silicon alloys).
[0004]
Usually, the surfaces of silicon and silicon alloys are covered with silicon oxide. Since this silicon oxide tends to cause a side reaction with the electrolytic solution and gas is generated at that time, sufficient cycle characteristics cannot be obtained. Although gas generation due to this side reaction occurs even when graphite is used as the negative electrode material, a battery using silicon or a silicon alloy has a larger adverse effect on the battery because the amount of gas generation increases.
[0005]
In order to suppress gas generation in non-aqueous electrolyte secondary batteries using a carbon material as a negative electrode material so far, an additive is included in the electrolytic solution (for example, Patent Document 1), or high in order not to contact the electrolytic solution. It has been proposed to coat a carbon material with a molecular film or the like (for example, Patent Document 2).
[0006]
[Patent Document 1]
JP-A-8-339824 (pages 1 to 8)
[Patent Document 2]
JP-A-8-306353 (pages 1 to 5)
[0007]
[Problems to be solved by the invention]
Additives effective for suppressing gas generation in a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode material have the same effect even when silicon and / or silicon alloys are used as the negative electrode material. . However, a sufficient capacity maintenance rate cannot be obtained. This is considered to be due to the side reaction occurring between the silicon oxide and the electrolytic solution.
[0008]
Moreover, when the negative electrode material containing silicon is used, the volume at the time of full charge of silicon is four times that before charge, and thus the volume change due to expansion and contraction at the time of charge and discharge is large. For this reason, when the surface of the negative electrode material is coated with a polymer film or the like, there is a problem that the effect of suppressing gas generation cannot be maintained because the polymer film formed on the negative electrode material surface peels off during the cycle. is there.
[0009]
Accordingly, the present invention provides a non-aqueous electrolyte secondary battery that can suppress gas generation due to side reactions by including fluorine on the surface of silicon and / or silicon alloy to form a chemically stable silicon-fluorine bond. An object of the present invention is to provide a negative electrode material.
[0010]
[Means for Solving the Problems]
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is a negative electrode material made of silicon and / or an alloy containing silicon, wherein at least a part of the surface of the negative electrode material contains fluorine. .
The alloy is preferably composed of silicon and at least one element selected from the group consisting of iron, nickel, copper, titanium, zirconium, and hafnium.
[0011]
It is preferable that the alloy includes a phase composed of at least silicon and an alloy phase including silicon.
The atomic ratio F / Si of fluorine and silicon on the surface is preferably 0.02 to 1.5.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a negative electrode material composed of silicon and / or an alloy containing silicon, and relates to a negative electrode material for a non-aqueous electrolyte secondary battery containing fluorine in at least a part of the surface of the negative electrode material.
[0013]
Gas generation adversely affects cycle characteristics for the following reasons.
When the gas is generated, the electrode and the electrolytic solution are not in contact with each other in the region where the gas is generated on the electrode surface. For this reason, sufficient charging / discharging cannot be performed in this area, and the load on the surrounding area increases. As a result, cycle deterioration is accelerated in a high load region around the gas generation region. And it further increases the load around it. It is considered that the cycle deterioration as a whole progresses at an accelerated rate due to such an uneven reaction of the electrodes.
[0014]
The effect of the present invention obtained by solving this problem is considered as follows.
There are various possible causes of this gas generation, but the main factor is that the silicon oxide on the surface of the negative electrode material easily reacts with the electrolyte. Therefore, if the surface of the negative electrode material can be chemically stabilized, the progress of the heterogeneous reaction due to gas generation and the deterioration of the cycle characteristics can be minimized. The bond energy of Si-F (541.0 kJ / mol) is the bond energy of Si-Si (176.6 kJ / mol), Si-H (294.6 kJ / mol) and Si-O (369.0 kJ / mol). Therefore, it is chemically stable and has an effect of suppressing natural oxidation (for example, Non-Patent Document 1).
[0015]
[Non-Patent Document 1]
The Crystallographic Society of Japan Vol. 33 (1991) (Pages 182-187)
[0016]
On the other hand, the silicon-halogen bond has a very large polarity, and since silicon is generally susceptible to nucleophilic attack, it has high reactivity with a wide variety of substances. However, the present inventors have found that the silicon-halogen bond is stable to the electrolytic solution and has an effect of suppressing gas generation due to side reaction. Since the reactivity increases as the atomic weight of the halogen increases, the surface of the negative electrode material containing silicon is considered to be most preferably bonded to fluorine, which has the greatest stability to the electrolyte among the halogens.
[0017]
The negative electrode material containing fluorine on at least a part of the surface according to the present invention can be obtained, for example, by subjecting the surface of the negative electrode material to plasma treatment or immersion treatment.
In plasma processing, a target material and an organic fluoride or a fluorine gas precursor are introduced into a chamber, and plasma is generated in a controlled inert atmosphere or an active / inactive mixed atmosphere. The surface of the material can be fluorinated.
In the immersion treatment, the target material can be immersed in an aqueous solution containing hydrofluoric acid or nitric acid to remove the surface oxide film and fluorinate the surface.
[0018]
The atomic ratio F / Si between fluorine and silicon contained on the surface of the negative electrode material is preferably 0.02 to 1.5.
When the atomic ratio F / Si is less than 0.02, the area ratio of fluorine in the surface of the negative electrode material containing silicon is small, so that the effect of suppressing side reactions cannot be sufficiently obtained. On the other hand, when the atomic ratio F / Si exceeds 1.5, gas generation is suppressed, but the resistance on the surface of the negative electrode material increases, so that the cycle characteristics deteriorate.
[0019]
The atomic ratio F / Si of fluorine and silicon can be examined by micro Auger electron spectroscopy. The measurement principle will be briefly explained. The inner core electrons are ejected by electron beam irradiation, and the electrons emitted when the outer shell electrons compensate for the resulting empty orbits are Auger electrons. Elemental analysis at depths of
[0020]
Moreover, as for the thickness of the surface part (surface layer) containing a fluorine in the said negative electrode material, 0.5-10 nm is desirable. When the thickness of the surface layer is less than 0.5 nm, the effect of suppressing side reactions cannot be sufficiently obtained. On the other hand, when the thickness of the surface layer exceeds 10 nm, the electrical resistance on the surface of the negative electrode material increases, so that the discharge efficiency is lowered and the cycle characteristics are deteriorated.
[0021]
The alloy is preferably composed of silicon and at least one element selected from the group consisting of iron, nickel, copper, titanium, zirconium, and hafnium.
Moreover, it is preferable that the said alloy consists of a single phase which consists at least of silicon, and an alloy phase containing silicon.
[0022]
Among these, an inert alloy phase that does not contribute to the charge / discharge reaction consisting of silicon and at least one element selected from the group consisting of iron, nickel, copper, titanium, zirconium, and hafnium, is used for the charge / discharge reaction. It is preferred to at least partly surround the single phase of contributing active silicon. This is because gas generation due to side reactions occurring on the surface of a single phase made of silicon can be reduced. In addition, there is an effect of relieving stress at the time of occlusion of lithium, suppressing expansion and pulverization of the negative electrode material, and improving electronic conductivity of the negative electrode material.
[0023]
【Example】
Example 1
The present invention will be specifically described below based on examples. However, the present invention is not limited to these examples.
[0024]
(I) Preparation of negative electrode material and surface fluorination Commercially available silicon powder was crushed by a planetary ball mill for 3 hours and then classified to 45 μm or less to obtain silicon powder having an average particle diameter of 20 μm. The crushing was performed in a argon atmosphere using a stainless steel ball having a diameter of 15 mm and the drive motor rotating at 3700 rpm for 1 minute so that a force of 15 G was applied.
[0025]
Next, plasma treatment was performed in order to make fluorine exist on the surface of the silicon powder obtained above.
First, a rotary plasma reactor equipped with a gas flow rate control device was filled with silicon powder and a fluorinated ethylene-propylene copolymer as an organic fluoride, and vacuum dried. Then, hydrogen was introduced and heat treatment was performed at 900 ° C. for 5 hours, and the surface oxide film was reduced by reduction. After substituting with argon, the pressure of the reaction system is maintained at 0.001 Pa while supplying argon and oxygen, plasma is generated at a nominal power of 100 watt hours, and the silicon surface is fluorinated by decomposing fluorinated ethylene-propylene. Made it. At this time, negative electrode materials having different atomic ratios F / Si shown in Table 1 were prepared by adjusting the plasma treatment time.
[0026]
(Ii) Production of negative electrode Each silicon powder obtained above as a negative electrode material, acetylene black (hereinafter referred to as AB) powder as a conductive agent, and carboxymethyl cellulose (hereinafter referred to as CMC) as a binder. And styrene butadiene rubber (hereinafter referred to as SBR) were mixed well and water was added to obtain negative electrode pastes. The weight ratio of negative electrode material / AB / CMC / SBR contained in each negative electrode paste was 100/12/4/8. Each of the obtained negative electrode pastes was applied on both sides of a copper foil having a thickness of 15 μm, and then pre-dried at normal pressure of 60 ° C. for 15 minutes. After rolling this, it was further vacuum-dried at 180 ° C. for 10 hours to obtain negative electrodes 3 respectively.
[0027]
(Iii) Preparation of positive electrode LiCoO 2 was synthesized as a positive electrode material by mixing Li 2 CO 3 and CoCO 3 at a predetermined molar ratio and heating at 950 ° C. Furthermore, this was classified into a size of 100 mesh or less. To 100 g of the positive electrode material obtained above, 10 g of acetylene black as a conductive agent, 8 g (resin component) of an aqueous dispersion of polytetrafluoroethylene as a binder and an appropriate amount of pure water are added and mixed thoroughly. A positive electrode paste was obtained. The positive electrode paste was applied to an aluminum core, dried, and rolled to obtain the positive electrode 1.
[0028]
(Iv) Production of flat battery A flat battery (test cell) was produced using the negative electrode and positive electrode obtained above. The procedure will be described below with reference to the schematic longitudinal sectional view of the flat battery shown in FIG.
A positive electrode lead 2 made of aluminum was attached to the positive electrode 1 by ultrasonic welding. Similarly, a negative electrode lead 4 made of copper was attached to the negative electrode 3. And the positive electrode, the negative electrode, and the strip | belt-shaped porous polypropylene separator 5 which were wider than both electrodes were laminated | stacked. At this time, the separator 5 was interposed between both electrodes. Next, the laminate was wound into a flat shape to form an electrode group.
[0029]
After placing an insulating plate (not shown) made of polypropylene on the upper and lower portions of the electrode group, the electrode group was inserted into the battery case 7. And after forming the frame 6 in the upper part of the battery case 7, predetermined | prescribed nonaqueous electrolyte solution was inject | poured and it sealed with the sealing board 8 which has a positive electrode terminal, and was set as the flat battery. Note that a mixed solvent (volume ratio 1: 3) of ethylene carbonate (EC) and diethyl carbonate (DEC) containing 1.0 mol / l LiPF 6 was used as the electrolytic solution.
Then, each negative electrode material and each flat battery obtained above were evaluated as follows.
[0030]
[Evaluation]
(1) Measurement of atomic ratio F / Si on the surface of the negative electrode material The atomic ratio F / Si on the surface of each negative electrode material obtained above was confirmed by micro-Auger electron spectroscopic analysis. The measurement depth was 3 nm from the surface.
[0031]
(2) Measurement of electronic conductivity of negative electrode material The electronic conductivity of each negative electrode material obtained above was measured using a powder resistance measuring machine. In addition, the pressurization at the time of measurement was 4.0 N / m 2 .
[0032]
(3) Measurement of capacity retention rate The flat battery obtained above was evaluated at 20 ° C. as follows.
First, charging is performed until the battery voltage reaches 4.2 V at a charging current value of 0.2 C (1 C represents a current value of 1 hour rate), and then the battery voltage is 4.2 V at a charging current value of 0.01 C. I went until. Thereafter, discharging was performed at a discharge current value of 0.2 C until the battery voltage reached 2.5V. This charge / discharge cycle was repeated 100 times. Then, the capacity retention rate (%) at this time was examined. The capacity retention rate (%) indicates the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle. The capacity retention rate is closer to 100%, indicating that the cycle life is better.
[0033]
(4) Measurement of gas generation amount The amount of gas generated during the charge / discharge cycle and the main components were analyzed by gas chromatography. This analysis confirmed methane, ethane, and the like that were thought to be generated by the decomposition of the electrolyte during the side reaction.
[0034]
<< Comparative Example 1 >>
A negative electrode was produced in the same manner as in Example except that the negative electrode material of Example 1 was used without performing fluorination treatment. A flat battery was produced in the same manner as in Example 1 except that this negative electrode was used.
Table 1 shows the results of evaluating the batteries of Example 1 and Comparative Example 1.
[0035]
[Table 1]
Figure 2005011696
[0036]
From Table 1, it was found that as the atomic ratio F / Si is larger, the amount of gas generated after 100 cycles is decreased, but the electron conductivity of the negative electrode material is decreased. When the atomic ratio F / Si is 0.02 or more, the amount of gas generated is suppressed, so that the capacity retention rate after 100 cycles exceeds 70%. However, when the atomic ratio F / Si is 1.5 or more, the resistance of the negative electrode material surface increases, so the capacity retention after 100 cycles is 70% or less. From this, it was found that the atomic ratio F / Si is preferably 0.02 to 1.5. Furthermore, since the capacity retention ratio exceeds 80%, it was found that the atomic ratio F / Si is more preferably 0.05 to 1.00.
[0037]
<< Examples 2 to 7 >>
Next, the effect of having fluorine present on the surface of the negative electrode material composed of a phase made of silicon and an alloy phase containing silicon was confirmed.
First, after a predetermined raw material is charged into a planetary ball mill container at a mixing ratio shown in Table 2, synthesis by a mechanical alloying (hereinafter referred to as MA) method is performed for 10 hours, a predetermined Si phase and Si The negative electrode material which consists of an alloy phase containing this was produced. The other conditions were the same as the conditions for crushing in Example 1. From these observation results of an electron microscope, it was confirmed that the whole or part of the phase made of silicon was surrounded by an alloy phase containing silicon. Further, it was confirmed by X-ray diffraction measurement that the alloy phase containing silicon was as shown in Table 2.
[0038]
The surface of the negative electrode material composed of the silicon phase thus obtained and the alloy phase containing a silicon alloy was fluorinated by plasma treatment. At this time, the plasma treatment time was adjusted so that the atomic ratio F / Si of each negative electrode material was 0.10, which had the highest capacity retention rate in Example 1.
At this time, silicon atoms that were considered to be derived from a silicon alloy were excluded. For example, in the case of Example 10, silicon having twice the number of atoms of iron as iron disilicide (FeSi 2 ) is excluded from the total number of atoms of silicon, and the number of fluorine atoms and the number of remaining silicon atoms The ratio was the atomic ratio F / Si.
[0039]
A negative electrode was produced in the same manner as in Example 1 except that each negative electrode material obtained above was used. And the battery was produced by the method similar to Example 1 except having used these negative electrodes.
[0040]
<< Comparative Examples 2-7 >>
A negative electrode material was obtained by the same method as in Examples 2 to 7 except that the plasma treatment for fluorinating the surface of each negative electrode material in Examples 2 to 7 was not performed. Using these negative electrode materials, negative electrodes were produced in the same manner as in Example 1. Then, batteries were produced in the same manner as in Example 1 except that these negative electrodes were used.
[0041]
Each negative electrode material and each battery of Examples 2 to 7 and Comparative Examples 2 to 7 were evaluated in the same manner as in Example 1.
These results are shown in Table 2.
[0042]
[Table 2]
Figure 2005011696
[0043]
As shown in Table 2, the silicon phase is first surrounded by the silicon alloy phase, so that the amount of gas generated is reduced and the capacity retention rate is improved as compared with the case of silicon alone (Example 1).
It was confirmed that by performing plasma treatment on these negative electrode materials and setting the atomic ratio F / Si to 0.10, the gas generation amount was suppressed and the capacity retention rate was improved.
[0044]
In Examples 5 to 7 in which the surface of a negative electrode material containing silicon, an alloy phase containing silicon, titanium, zirconium, and hafnium was fluorinated, the capacity retention rate exceeded 95%, and excellent cycle characteristics were obtained.
[0045]
Example 8
The negative electrode material of Comparative Example 5 was subjected to a fluorination plasma treatment. At this time, negative electrode materials having various atomic ratios F / Si in the range of 0.01 to 2.00 shown in Table 3 were prepared by adjusting the plasma treatment time. Negative electrodes were produced under the same conditions as in Example 1 except that these negative electrode materials were used. Then, batteries were produced in the same manner as in Example 1 except that these negative electrodes were used.
Table 3 shows the evaluation results of these negative electrode materials and batteries. Table 3 also shows the evaluation results of Comparative Example 5 as a comparison.
[0046]
[Table 3]
Figure 2005011696
[0047]
When calculating the atomic ratio F / Si, silicon atoms that were considered to be derived from alloys containing silicon were excluded.
As can be seen from Table 3, as in the case of Example 1 in which a single element of silicon was used as the negative electrode material, the larger the atomic ratio F / Si, the smaller the amount of gas generated after 100 cycles and the lower the electron conductivity of the negative electrode material. Was found to decrease. As a result, when the atomic ratio F / Si is 0.02 or more, the amount of gas generated is suppressed, so that the capacity retention rate after 100 cycles is 90% or more. However, when the atomic ratio F / Si exceeds 1.5, the resistance of the surface of the negative electrode material increases, so that the capacity retention rate after 100 cycles is 90% or less.
[0048]
From this, it was found that the atomic ratio F / Si is preferably 0.02 to 1.50 or less. Furthermore, since the capacity retention ratio exceeded 95%, it was found that the atomic ratio F / Si is more preferably 0.05 to 1.00.
[0049]
<< Examples 9 to 12 >>
Instead of the electrolytic solution composed of a mixed solvent of ethylene carbonate and diethyl carbonate containing 1.0 mol / l LiPF 6 used in the battery of Example 5, each electrolytic solution composed of a lithium salt and a solvent shown in Table 4 was used. Each case was examined. In addition, the battery was produced by the same method as in Example 5 except for the electrolytic solution.
[0050]
<< Comparative Examples 8-11 >>
Instead of the electrolyte solution composed of a mixed solvent of ethylene carbonate and diethyl carbonate containing 1.0 mol / l LiPF 6 used in the battery of Comparative Example 5, each electrolyte solution composed of a lithium salt and a solvent shown in Table 4 was used. Each case was examined. In addition, batteries were produced by the same method as in Comparative Example 5 except for the electrolytic solution.
Table 4 shows the evaluation results of these batteries. Table 4 also shows the results of Example 5 and Comparative Example 5 as a comparison.
[0051]
[Table 4]
Figure 2005011696
[0052]
As can be seen from Table 4, even when the lithium salt and the solvent were changed, it was confirmed that the presence of fluorine on the negative electrode material surface reduced the amount of gas generated and was effective in improving the capacity retention rate. .
[0053]
<< Examples 13 and 14 >>
The negative electrode materials of Examples 1 and 5 were subjected to an immersion treatment as shown below instead of the plasma treatment.
[0054]
The immersion treatment was performed by immersing a predetermined negative electrode material in hydrofluoric acid. When this method is used, there is an advantage that the removal of the surface oxide film and the surface fluorination can be performed simultaneously. The concentration of hydrofluoric acid was 2%, and the immersion time was adjusted so that the atomic ratio F / Si was 0.10. After the immersion treatment, the negative electrode material was washed with pure water having a dissolved oxygen content of 0.05 ppm in order to reduce oxidation during washing.
[0055]
A negative electrode material was obtained in the same manner as in Examples 1 and 5 except that the above immersion treatment was performed instead of the plasma treatment. And the negative electrode was produced by the method similar to Example 1 except having used these negative electrode materials. Further, batteries were respectively produced by the same method as in Example 1 except that these negative electrodes were used.
Table 5 shows the evaluation results for each negative electrode and battery. Table 5 also shows the results of Examples 1 and 5 and Comparative Examples 1 and 5 for comparison.
[0056]
[Table 5]
Figure 2005011696
[0057]
As shown in Table 5, it was confirmed that even when fluorine was present on the surface of the negative electrode material by the immersion treatment, the amount of gas generated was reduced and the capacity retention rate was improved. Although the effect on the amount of gas generated is not much different from the plasma treatment, it has been found that the capacity retention rate is improved. This is presumably because the discharge efficiency was improved because the electron conductivity of the negative electrode material increased and the resistance at the surface decreased.
[0058]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a negative electrode material for a non-aqueous electrolyte secondary battery that can suppress gas generation due to side reactions. By using this negative electrode, a long-life nonaqueous electrolyte secondary battery can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a flat battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead 3 Negative electrode 4 Negative electrode lead 5 Separator 6 Frame 7 Battery case 8 Sealing plate

Claims (4)

ケイ素および/またはケイ素を含む合金で構成された負極材料であって、前記負極材料の表面の少なくとも一部にフッ素を含むことを特徴とする非水電解質二次電池用負極材料。A negative electrode material composed of silicon and / or an alloy containing silicon, wherein at least a part of the surface of the negative electrode material contains fluorine. 前記合金が、ケイ素と、鉄、ニッケル、銅、チタン、ジルコニウム、ハフニウムよりなる群より選択される少なくとも1種の元素とからなることを特徴とする請求項1記載の非水電解質二次電池用負極材料。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the alloy includes silicon and at least one element selected from the group consisting of iron, nickel, copper, titanium, zirconium, and hafnium. Negative electrode material. 前記合金が、少なくともケイ素からなる相と、ケイ素を含む合金相とからなることを特徴とする請求項1記載の非水電解質二次電池用負極材料。2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the alloy includes a phase composed of at least silicon and an alloy phase including silicon. 前記表面におけるフッ素とケイ素の原子比F/Siが0.02〜1.5であることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用負極材料。4. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein an atomic ratio F / Si of fluorine and silicon on the surface is 0.02 to 1.5. 5.
JP2003174992A 2003-06-19 2003-06-19 Negative electrode material for nonaqueous electrolyte secondary battery Pending JP2005011696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174992A JP2005011696A (en) 2003-06-19 2003-06-19 Negative electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174992A JP2005011696A (en) 2003-06-19 2003-06-19 Negative electrode material for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005011696A true JP2005011696A (en) 2005-01-13

Family

ID=34098321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174992A Pending JP2005011696A (en) 2003-06-19 2003-06-19 Negative electrode material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005011696A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185728A (en) * 2004-12-27 2006-07-13 Samsung Sdi Co Ltd Lithium secondary battery
JP2007080827A (en) * 2005-09-13 2007-03-29 Samsung Sdi Co Ltd Anode and lithium cell adopting above
JP2008258030A (en) * 2007-04-05 2008-10-23 Denso Corp Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and manufacturing method of nonaqueous electrolyte secondary battery
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
KR100991358B1 (en) 2008-03-27 2010-11-03 (주)포스코켐텍 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
WO2012000854A1 (en) * 2010-06-29 2012-01-05 Umicore Negative electrode material for lithium-ion batteries
JP2012142275A (en) * 2010-12-16 2012-07-26 Semiconductor Energy Lab Co Ltd Active material, electrode comprising the active material and method for manufacturing the same, and secondary battery
WO2017061468A1 (en) * 2015-10-05 2017-04-13 積水化学工業株式会社 Lithium ion secondary battery
JP2021057216A (en) * 2019-09-30 2021-04-08 Agc株式会社 Negative electrode active material powder used in lithium ion secondary battery, negative electrode, and lithium ion secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185728A (en) * 2004-12-27 2006-07-13 Samsung Sdi Co Ltd Lithium secondary battery
JP2007080827A (en) * 2005-09-13 2007-03-29 Samsung Sdi Co Ltd Anode and lithium cell adopting above
US8455138B2 (en) 2005-09-13 2013-06-04 Samsung Sdi Co., Ltd. Anode and lithium battery including the anode
JP2008258030A (en) * 2007-04-05 2008-10-23 Denso Corp Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and manufacturing method of nonaqueous electrolyte secondary battery
KR100991358B1 (en) 2008-03-27 2010-11-03 (주)포스코켐텍 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
US9337476B2 (en) 2008-09-24 2016-05-10 National Institute Of Advanced Industrial Science And Technology Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP5419020B2 (en) * 2008-09-24 2014-02-19 独立行政法人産業技術総合研究所 Lithium sulfide-carbon composite, method for producing the same, and lithium ion secondary battery using the composite
WO2012000854A1 (en) * 2010-06-29 2012-01-05 Umicore Negative electrode material for lithium-ion batteries
JP2016164886A (en) * 2010-12-16 2016-09-08 株式会社半導体エネルギー研究所 Power storage device
JP2012142275A (en) * 2010-12-16 2012-07-26 Semiconductor Energy Lab Co Ltd Active material, electrode comprising the active material and method for manufacturing the same, and secondary battery
US9543577B2 (en) 2010-12-16 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Active material, electrode including the active material and manufacturing method thereof, and secondary battery
WO2017061468A1 (en) * 2015-10-05 2017-04-13 積水化学工業株式会社 Lithium ion secondary battery
CN108028418A (en) * 2015-10-05 2018-05-11 积水化学工业株式会社 Lithium rechargeable battery
JPWO2017061468A1 (en) * 2015-10-05 2018-07-26 積水化学工業株式会社 Lithium ion secondary battery
US20180233773A1 (en) * 2015-10-05 2018-08-16 Sekisui Chemical Co., Ltd. Lithium ion secondary battery
EP3361544A4 (en) * 2015-10-05 2019-07-03 Sekisui Chemical Co., Ltd. Lithium ion secondary battery
US10566650B2 (en) 2015-10-05 2020-02-18 Sekisui Chemical Co., Ltd. Lithium ion secondary battery
CN108028418B (en) * 2015-10-05 2022-07-12 积水化学工业株式会社 Lithium ion secondary battery
JP2021057216A (en) * 2019-09-30 2021-04-08 Agc株式会社 Negative electrode active material powder used in lithium ion secondary battery, negative electrode, and lithium ion secondary battery
JP7331597B2 (en) 2019-09-30 2023-08-23 Agc株式会社 Negative electrode active material powder, negative electrode, and lithium ion secondary battery used for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR101513820B1 (en) Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
EP2400586B1 (en) Carbon material for lithium ion secondary batteries
Kang et al. Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries
JPWO2013018486A1 (en) Non-aqueous electrolyte secondary battery active material, method for producing the same, and negative electrode using the same
JP7206282B2 (en) Silicon-based powders, electrodes and batteries containing such powders
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
CN107394150A (en) A kind of mesoporous silicon copper composition electrode material and its preparation method and application
CN1552110A (en) Method for manufacturing nickel hydrogen battery
KR101509358B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, capacitor negative electrode, lithium ion secondary battery, and capacitor
JP2009087891A (en) Manufacturing method of positive-electrode active material, and manufacturing method of lithium secondary cell
JP2005011696A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP2002289177A (en) Lithium secondary battery and electrode for it
JP2005071655A (en) Anode material for nonaqueous electrolytic solution secondary battery, its manufacturing method, and nonaqueous electrolytic solution secondary battery using same
JP3721734B2 (en) Non-aqueous electrolyte secondary battery
KR102405718B1 (en) battery
JP5682411B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing the negative electrode active material
JP5584302B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP2012164640A (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery comprising the negative electrode active material, and method for manufacturing negative electrode active material for lithium ion secondary battery
JP4362909B2 (en) Nonaqueous electrolyte secondary battery
JP2010198904A (en) Manufacturing method of lithium secondary battery
JPH0922696A (en) Electrode for secondary battery and manufacture thereof
Yu et al. A New Activation Process for a Zr‐Based Alloy as a Negative Electrode for Ni/MH Electric Vehicle Batteries
JP3678283B2 (en) Hydrogen storage electrode
JP2005085716A (en) Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery
JP2018195558A (en) Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091210