JP2005085716A - Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery - Google Patents

Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery Download PDF

Info

Publication number
JP2005085716A
JP2005085716A JP2003319405A JP2003319405A JP2005085716A JP 2005085716 A JP2005085716 A JP 2005085716A JP 2003319405 A JP2003319405 A JP 2003319405A JP 2003319405 A JP2003319405 A JP 2003319405A JP 2005085716 A JP2005085716 A JP 2005085716A
Authority
JP
Japan
Prior art keywords
oxide
electrode
carbon material
binder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319405A
Other languages
Japanese (ja)
Inventor
Koichi Ui
幸一 宇井
Shinya Funo
真也 府野
Yasushi Idemoto
康 井手本
Nobuyuki Koura
延幸 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003319405A priority Critical patent/JP2005085716A/en
Publication of JP2005085716A publication Critical patent/JP2005085716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode comprising an oxide and a carbon material without using a binder, in relation to a manufacturing method of an electrode; and to provide a lithium secondary battery equipped with a positive electrode without using a binder. <P>SOLUTION: The composite electrode of an oxide and a carbon material without containing a binder is manufactured by electrodepositing the oxide and the carbon material on a surface of a negative electrode (cathode) by controlling the moisture content of an electrodeposition bath by using an electrophoresis deposition method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は酸化物と炭素材料の複合電極の製造方法及びリチウム二次電池に関する。さらに詳しくは、泳動電着法によって、結着剤成分を含まない(バインダーフリー)酸化物と炭素材料の複合電極の製造方法及び該複合電極を正極に用いた高エネルギー密度のリチウム二次電池に関する。   The present invention relates to a method for producing a composite electrode of an oxide and a carbon material and a lithium secondary battery. More specifically, the present invention relates to a method for producing a composite electrode of an oxide and a carbon material that does not contain a binder component (binder-free) by electrophoretic electrodeposition, and a high energy density lithium secondary battery using the composite electrode as a positive electrode. .

近年、電子機器の小型化に伴い高容量の二次電池が必要になってきている。その中でも、非水電解質二次電池、特にリチウム二次電池は軽量かつ高エネルギー密度を有するため、携帯機器の駆動用電源として研究開発が活発に進められている。通常、リチウム二次電池の正極には粒子状の酸化物と炭素材料が用いられており、それらを電極に成形するために、結着剤(バインダー)を用いる。バインダーは粒子同士、粒子と集電体とを結着する作用がある。   In recent years, a secondary battery having a high capacity has been required along with miniaturization of electronic equipment. Among them, non-aqueous electrolyte secondary batteries, in particular lithium secondary batteries, are light and have high energy density, and thus research and development are actively promoted as power sources for driving portable devices. Usually, a particulate oxide and a carbon material are used for a positive electrode of a lithium secondary battery, and a binder (binder) is used to form them into an electrode. The binder has an effect of binding the particles to each other and the particles and the current collector.

しかし、近年、高出力でかつ大電流特性に優れた電池とするために電極の薄膜化が進み、従来の作製方法では均一で精度良い活物質層の作製が困難になってきた。この問題を解決するために、泳動電着法を用いて集電体上に厚さ50μm以下の活物質層を形成して、正極を製造する方法が、特開2002−42790号公報に開示されている。しかし、この正極のサイクル特性は、20サイクルでの放電容量が初回の放電容量の84%程度と、良好な特性が得られていない(J.Power Sources,97−98,294−297(2001).)。   However, in recent years, in order to obtain a battery with high output and excellent large current characteristics, electrode thinning has progressed, and it has become difficult to produce a uniform and accurate active material layer by the conventional production method. In order to solve this problem, a method for producing a positive electrode by forming an active material layer having a thickness of 50 μm or less on a current collector using an electrophoretic electrodeposition method is disclosed in JP-A-2002-42790. ing. However, the cycle characteristics of this positive electrode are not as good as the discharge capacity at 20 cycles of about 84% of the initial discharge capacity (J. Power Sources, 97-98, 294-297 (2001)). .).

また、バインダーは電極反応に直接関与しないので、電池のさらなる高エネルギー密度化を実現するためには、バインダーを使用しない、もしくは、その使用量を減らすことが望ましい。そこで、バインダーを含まない(バインダーフリー)炭素材料膜の作製方法とこの炭素材料膜を負極に使用したリチウム二次電池が提案されている。例えば、バインダーフリーの炭素材料膜の作製方法として泳動電着法を用いたものが、特開2002−63894号公報に開示されている。この方法では、非プロトン溶媒であるアセトニトリルに炭素粒子を分散させた溶液に、正極(アノード)としての導電性基板と、負極(カソード)としての対向電極とを浸し、両電極間に電位勾配を発生させて、アノードの表面に炭素粉末を電着させている。また、前記で得られたバインダーフリー炭素材料膜を負極に用いた非水電解質二次電池(リチウム二次電池)も提案されている。しかし、酸化物と炭素材料を用いるバインダーフリー複合電極の製造方法とそれを正極に用いるリチウム二次電池については、未だに成功した例は皆無である。   In addition, since the binder does not directly participate in the electrode reaction, it is desirable not to use the binder or to reduce the amount of use in order to realize further higher energy density of the battery. Therefore, a method for producing a carbon material film not containing a binder (binder-free) and a lithium secondary battery using the carbon material film as a negative electrode have been proposed. For example, JP-A-2002-63894 discloses an electrophoretic electrodeposition method for producing a binder-free carbon material film. In this method, a conductive substrate as a positive electrode (anode) and a counter electrode as a negative electrode (cathode) are immersed in a solution in which carbon particles are dispersed in acetonitrile, which is an aprotic solvent, and a potential gradient is generated between both electrodes. The carbon powder is electrodeposited on the surface of the anode. A non-aqueous electrolyte secondary battery (lithium secondary battery) using the binder-free carbon material film obtained above as a negative electrode has also been proposed. However, there have been no successful examples of a method for producing a binder-free composite electrode using an oxide and a carbon material and a lithium secondary battery using it as a positive electrode.

特開2002−42790号公報JP 2002-42790 A

特開2002−63894号公報JP 2002-63894 A K.Kanamura,et al.,J.Power Sources,97−98,294−297(2001).(Fig.3)K. Kanamura, et al. , J .; Power Sources, 97-98, 294-297 (2001). (FIG. 3)

従来、電極を作製する場合、酸化物と炭素材料の粒子間を結着するため、さらにはそれらと集電体とを接着するために結着剤(バインダー)を必要としてきた。バインダーを使用しないと、電極として成形できないだけでなく、粒子間の結着性や集電体との結着性が低下するため、電極特性、特にサイクル特性が著しく低下するからである。しかし、バインダーは電極反応に無関係なため、その重量に相当する分だけ、エネルギー密度は低下することになる。リチウム二次電池の高容量化において、電極に用いる活物質の単位体積当たりの充填量を増やすことは重要なポイントである。また、電極の厚さが厚くなると、内部抵抗が高くなる。従って、電池の高エネルギー密度化を考慮すると、電子伝導性が低いバインダーを減らすことは好ましい。   Conventionally, when an electrode is produced, a binder (binder) has been required to bind between particles of an oxide and a carbon material, and to bond them to a current collector. If the binder is not used, not only the electrode cannot be molded, but also the binding property between the particles and the binding property with the current collector are lowered, so that the electrode characteristics, particularly the cycle characteristics, are remarkably lowered. However, since the binder is irrelevant to the electrode reaction, the energy density is reduced by an amount corresponding to its weight. In increasing the capacity of lithium secondary batteries, it is an important point to increase the filling amount per unit volume of the active material used for the electrode. Further, as the electrode thickness increases, the internal resistance increases. Therefore, considering the increase in energy density of the battery, it is preferable to reduce the binder having low electron conductivity.

特開2002−42790号公報では、泳動電着法により活物質、導電剤、バインダーを電着するだけで、バインダーの融点前後で熱処理を施していない。このことは、粒子間の接触抵抗を減少させる工程、即ち、電極の内部抵抗を減少させる工程を省くという新たな課題を生み出す。加えて、従来の塗布法で作製した電極は、結着強度を増すために、バインダーの融点前後で熱処理を施した後、プレス処理を施す。しかし、泳動電着法で作製した電極の空隙率は、塗布法で作製し、プレス処理を施した電極の空隙率と同程度のものが得られる。よって、電極内の電解液能力、電極の充放電に伴う膨張・収縮を考慮すると、泳動電着法で作製した電極をプレス処理により圧縮することは、従来の塗布法で作製した電極よりも空隙率が減少するので、この点においても解決すべき課題である。   In Japanese Patent Application Laid-Open No. 2002-42790, only an active material, a conductive agent, and a binder are electrodeposited by an electrophoretic electrodeposition method, and no heat treatment is performed around the melting point of the binder. This creates a new problem of eliminating the step of reducing the contact resistance between the particles, that is, the step of reducing the internal resistance of the electrode. In addition, the electrode produced by the conventional coating method is subjected to a heat treatment before and after the melting point of the binder and then subjected to a press treatment in order to increase the binding strength. However, the porosity of the electrode produced by the electrophoretic electrodeposition method is approximately the same as the porosity of the electrode produced by the coating method and subjected to the press treatment. Therefore, considering the electrolyte solution capacity in the electrode and the expansion / contraction associated with charging / discharging of the electrode, compressing the electrode produced by the electrophoretic electrodeposition method by pressing is more void than the electrode produced by the conventional coating method. This is a problem to be solved in this respect as the rate decreases.

その他にも、膜厚50μm以上の電極を作製する際に、カソード近傍で気泡が発生して均一な膜を形成することが困難なこと、正極のサイクル特性が20サイクル目で初回の84%程度と良好でないことが課題として挙げられる。   In addition, when producing an electrode having a thickness of 50 μm or more, it is difficult to form a uniform film by generating bubbles in the vicinity of the cathode, and the cycle characteristic of the positive electrode is about 84% of the first time at the 20th cycle. The problem is that it is not good.

本発明は上記課題に鑑みなされたものであり、酸化物と炭素材料からなる電極の製造方法において、バインダーを使用しない電極の製造方法を提供することを目的とする。また、本発明はバインダーを使用しない正極を具備するリチウム二次電池を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the manufacturing method of the electrode which does not use a binder in the manufacturing method of the electrode which consists of an oxide and a carbon material. Another object of the present invention is to provide a lithium secondary battery having a positive electrode that does not use a binder.

以上の問題を鑑みて、酸化物と炭素材料の複合電極の製造方法とリチウム二次電池の諸特性を改善するために、鋭意検討した結果、泳動電着法を用いて、非プロトン溶媒の含水量を制御して、負極(カソード)表面に酸化物と炭素材料を電着させ、結着強度を高めるために、熱処理を行うと、バインダーを必要としない酸化物と炭素材料の複合電極を作製できることを見出し、本発明に至った。 In view of the above problems, in order to improve the characteristics of the composite electrode manufacturing method of the oxide and carbon material and the characteristics of the lithium secondary battery, as a result of intensive studies, the electrophoretic electrodeposition method was used to include the aprotic solvent. Controlling the amount of water, electrodepositing an oxide and carbon material on the negative electrode (cathode) surface, and heat treatment to increase the binding strength produces a composite electrode of oxide and carbon material that does not require a binder As a result, the inventors have found out that the present invention can be achieved.

すなわち、本発明によれば、含水量が20〜5,000ppmである非プロトン溶媒1Lにヨウ素を1mg〜5g溶解し、それに酸化物と炭素材料とを分散させた溶液に、正極(アノード)とカソードとを浸漬し、両電極間に電位勾配を発生させることにより、カソードの表面に酸化物と炭素材料とを電着させ、得られた電着膜に熱処理を施す酸化物と炭素材料の複合電極の製造方法が提供される。   That is, according to the present invention, 1 mg to 5 g of iodine is dissolved in 1 L of an aprotic solvent having a water content of 20 to 5,000 ppm, and a positive electrode (anode) is added to a solution in which an oxide and a carbon material are dispersed. A composite of oxide and carbon material in which the cathode and electrode are electrodeposited to generate an electric potential gradient between the electrodes, thereby depositing oxide and carbon material on the surface of the cathode, and subjecting the resulting electrodeposition film to heat treatment An electrode manufacturing method is provided.

また、本発明によれば、少なくとも正極、非水電解質及び負極を備えた非水電解質二次電池であって、正極がバインダーを含まず、酸化物と炭素材料から構成されるリチウム二次電池が提供される。   Further, according to the present invention, there is provided a non-aqueous electrolyte secondary battery including at least a positive electrode, a non-aqueous electrolyte, and a negative electrode, wherein the positive electrode does not include a binder, and the lithium secondary battery includes an oxide and a carbon material. Provided.

泳動電着法を用いると、簡単な製造工程・制御にて導電性基板の表面に酸化物と炭素材料を直接堆積できることが明らかになった。さらに、本発明の酸化物と炭素材料の複合電極の製造方法は、電極反応に関与しない結着剤に相当する重量を減らすことができ、電極の活物質密度を高めること、すなわち活物質である酸化物の単位体積当たりの充填量を増やすことができるので、非水電解質二次電池、特にリチウムイオン電池の高エネルギー密度化に効果がある。ゆえに、本発明の産業的意義は非常に大である。   Using electrophoretic electrodeposition, it has become clear that oxide and carbon materials can be deposited directly on the surface of a conductive substrate with a simple manufacturing process and control. Furthermore, the method for producing a composite electrode of an oxide and a carbon material according to the present invention can reduce the weight corresponding to the binder not involved in the electrode reaction, and increase the active material density of the electrode, that is, the active material. Since the filling amount per unit volume of oxide can be increased, it is effective in increasing the energy density of a non-aqueous electrolyte secondary battery, particularly a lithium ion battery. Therefore, the industrial significance of the present invention is very great.

本発明においては、ヨウ素が溶解している非プロトン溶媒に酸化物と炭素材料とを分散させた液(電着浴)に、正極(アノード)及び負極(カソード)を浸漬するが、その場合、例えば、図2に示すような泳動電着装置を用いることが有効である。この装置は、非プロトン溶媒1にヨウ素1mg/L〜5g/Lを溶解した液(非プロトン溶媒+ヨウ素浴)に、酸化物2と炭素材料3を分散させて、カソード4として導電性基板を、これに対向して、アノード5として対向電極を配置する。両電極4、5は直流電源6に接続されており、これによって両電極4、5間に電位勾配を発生させることができる。   In the present invention, the positive electrode (anode) and the negative electrode (cathode) are immersed in a liquid (electrodeposition bath) in which an oxide and a carbon material are dispersed in an aprotic solvent in which iodine is dissolved. For example, it is effective to use an electrophoretic electrodeposition apparatus as shown in FIG. In this apparatus, an oxide 2 and a carbon material 3 are dispersed in a solution (aprotic solvent + iodine bath) in which 1 mg / L to 5 g / L of iodine is dissolved in an aprotic solvent 1 to form a conductive substrate as a cathode 4. The counter electrode is arranged as the anode 5 opposite to this. Both electrodes 4 and 5 are connected to a DC power source 6, whereby a potential gradient can be generated between both electrodes 4 and 5.

本発明の非プロトン溶媒としては、アセトン、アセチルアセトン等のケトン類、ジエチルエーテル等のエーテル類、トルエン、n−ヘキサン等の炭化水素、アセトニトリル等の窒素化合物等が好ましく、これらのうち1種あるいは2種以上を混合して使用してもよい。特に、アセトン、アセチルアセトンが好適に使用される。   As the aprotic solvent of the present invention, ketones such as acetone and acetylacetone, ethers such as diethyl ether, hydrocarbons such as toluene and n-hexane, nitrogen compounds such as acetonitrile, and the like are preferable. You may mix and use a seed | species or more. In particular, acetone and acetylacetone are preferably used.

また、本発明を実施するのに、非プロトン溶媒にプロトン源を少量ならば添加してもよい。プロトン源としては、水、あるいは炭素数4以下の低級アルコール、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール等が挙げられる。その中でも水が特に好適に使用される。連続生産時には水あるいは低級アルコールを補給して、プロトンの濃度の低下を補うことが望ましい。   Further, for carrying out the present invention, a small amount of a proton source may be added to the aprotic solvent. Examples of the proton source include water or lower alcohols having 4 or less carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol and the like. Of these, water is particularly preferably used. In continuous production, it is desirable to supplement water or lower alcohol to compensate for the decrease in proton concentration.

非プロトン溶媒の含水量は酸化物と炭素材料の分散量にもよるが、20〜5,000ppmであると本発明を実施できる。プロトンが分散している酸化物粒子と炭素材料粒子の表面に吸着することで、粒子表面を正に帯電させることができる。この状態で直流を通電すると、正に帯電した粒子が放電する電極、即ち、カソードに向かって移動し、カソード表面に堆積されると考えられる。含水量が20ppmより少ないと、粒子の帯電量が不足となり、分散せずに凝集し、沈降してしまう。含水量が5,000ppmより多くなると、電解電圧等の諸条件にもよるが、電着中にカソード近傍において、プロトンの還元反応によるガス発生が起き易くなり、得られる膜が不均一になる。さらには、リチウム含有酸化物のリチウムとプロトンが交換反応を起こし、リチウムの含有量が低下してしまう。このことは電極特性の低下をもたらす。   Although the water content of the aprotic solvent depends on the dispersion amount of the oxide and the carbon material, the present invention can be carried out when it is 20 to 5,000 ppm. By adsorbing on the surfaces of oxide particles and carbon material particles in which protons are dispersed, the particle surface can be positively charged. When direct current is applied in this state, it is considered that positively charged particles move toward the discharging electrode, that is, the cathode, and are deposited on the cathode surface. When the water content is less than 20 ppm, the charged amount of the particles becomes insufficient, and the particles are aggregated and settled without being dispersed. If the water content exceeds 5,000 ppm, depending on various conditions such as electrolysis voltage, gas generation due to proton reduction reaction is likely to occur near the cathode during electrodeposition, resulting in a non-uniform film. Furthermore, lithium and proton of the lithium-containing oxide cause an exchange reaction, and the lithium content is lowered. This leads to a decrease in electrode characteristics.

本発明のヨウ素の添加量としては、非プロトン溶媒1Lに対して1mg〜5g溶解することが好ましい。ヨウ素の添加量が1mgより少ないと酸化物や炭素材料に吸着するプロトンの発生が少なくなると考えられ、分散性が低下し、さらには電着量減少に影響を及ぼす。また、ヨウ素の添加量が5gより多くなると、非プロトン溶媒の導電率が増加する。このことは泳動電着時に電解電流の増加をもたらすため、プロトンの還元反応により気泡が発生し、不均一な膜を形成し易くなるだけでなく、電着の阻害も引き起こすので、電着量が減少する。さらには、電着浴の発火の危険性が高まる。   As addition amount of the iodine of this invention, it is preferable to melt | dissolve 1 mg-5g with respect to 1L of aprotic solvents. If the amount of iodine added is less than 1 mg, it is considered that the generation of protons adsorbed on the oxide or the carbon material is reduced, the dispersibility is lowered, and further the electrodeposition amount is affected. Further, when the amount of iodine added is more than 5 g, the conductivity of the aprotic solvent increases. This leads to an increase in electrolysis current during electrophoretic deposition, and bubbles are generated by the proton reduction reaction, which not only facilitates formation of a non-uniform film, but also causes inhibition of electrodeposition. Decrease. Furthermore, the risk of ignition of electrodeposition baths increases.

本発明の酸化物としては特に限定されないが、例えば、リチウム二次電池の正極として使用することを考慮すると、LiCoO2、LiNiO2、LiMnO2、LiFeO2や、この系列のLiMe1-XX2(ここで、MeはFe、Co、Ni、Mnのいずれかであり、Tは遷移金属、4B族又は5B族の金属を表し、0≦X≦1である)、LiMn24、V25等、公知のリチウム二次電池の正極活物質を使用できる。 No particular limitation is imposed on the oxide of the present invention, for example, considering the use as a positive electrode of a lithium secondary battery, LiCoO 2, LiNiO 2, LiMnO 2, LiFeO 2 and, LiMe 1-X T X of this series O 2 (where Me is any of Fe, Co, Ni, Mn, T represents a transition metal, a group 4B or 5B metal, and 0 ≦ X ≦ 1), LiMn 2 O 4 , Known positive electrode active materials for lithium secondary batteries such as V 2 O 5 can be used.

本発明の酸化物の粒子径分布としては0.2〜40μm程度であることが好ましい。粒子径が0.2μmよりも小さいと、分散し難くなり凝集して、沈降してしまう。電池構成時にもセパレータの空孔を通して内部短絡を引き起こす危険性が高くなる。粒子径が40μmよりも大きい場合も、分散せずに、沈降してしまう。   The particle size distribution of the oxide of the present invention is preferably about 0.2 to 40 μm. When the particle diameter is smaller than 0.2 μm, it becomes difficult to disperse and aggregate and settle. There is a high risk of causing an internal short circuit through the pores of the separator even when the battery is configured. Even when the particle diameter is larger than 40 μm, the particles are settled without being dispersed.

本発明の酸化物の添加量としては10〜5,000mg/L程度であることが好ましい。添加量が10mg/Lより少ないと、電着に費やす時間が長くなり、粒子も沈降してしまう。また、添加量が5,000mg/Lよりも多いと、電着浴の濃度が高まり、粒子の泳動速度が低下するだけでなく、電着終了時に電着浴から電着物を引き上げる際に、分散している粒子を付着させてしまう。   The addition amount of the oxide of the present invention is preferably about 10 to 5,000 mg / L. When the addition amount is less than 10 mg / L, the time spent for electrodeposition becomes long, and the particles also settle. Further, when the addition amount is more than 5,000 mg / L, the concentration of the electrodeposition bath is increased, and not only the migration speed of the particles is decreased, but also when the electrodeposit is lifted from the electrodeposition bath at the end of the electrodeposition, The attached particles are adhered.

本発明の炭素材料としては特に限定されないが、例えば、リチウム二次電池の正極用導電剤として機能することを考慮すると、アセチレンブラック(AB)、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、ケッチエンブラック、フラーレン、人造黒鉛、天然黒鉛などを使用することができる。これらの炭素材料は、単独又は2種以上を組み合わせて用いてもよい。   Although it does not specifically limit as a carbon material of this invention, For example, when considering functioning as a electrically conductive agent for positive electrodes of a lithium secondary battery, acetylene black (AB), carbon black, a carbon nanotube, carbon nanohorn, Ketchen black, Fullerene, artificial graphite, natural graphite and the like can be used. These carbon materials may be used alone or in combination of two or more.

本発明の炭素材料の粒子径分布としては0.2〜40μm程度であることが好ましい。粒子径が0.2μmよりも小さいと、分散し難くなり凝集して、沈降してしまう。電池構成時にもセパレータの空孔を通して内部短絡を引き起こす危険性が高くなる。アセチレンブラック等、粒子径が0.04μm程度のものを分散させるときには、超音波照射を行った方がよい。粒子径が40μmよりも大きい場合も、分散せずに、沈降してしまう。本発明の炭素材料の添加量としては10〜5,000mg/L程度であることが好ましい。添加量が10mg/Lより少ないと、電着に費やす時間が長くなり、粒子も沈降してしまう。また、添加量が5,000mg/Lよりも多いと、電着浴の濃度が高まり、粒子の泳動速度が低下するだけでなく、電着終了時に電着浴から電着物を引き上げる際に、分散している粒子を付着させてしまう。   The particle size distribution of the carbon material of the present invention is preferably about 0.2 to 40 μm. When the particle diameter is smaller than 0.2 μm, it becomes difficult to disperse and aggregate and settle. There is a high risk of causing an internal short circuit through the pores of the separator even when the battery is configured. When dispersing acetylene black or the like having a particle size of about 0.04 μm, it is better to perform ultrasonic irradiation. Even when the particle diameter is larger than 40 μm, the particles are settled without being dispersed. The addition amount of the carbon material of the present invention is preferably about 10 to 5,000 mg / L. When the addition amount is less than 10 mg / L, the time spent for electrodeposition becomes long, and the particles also settle. Further, when the addition amount is more than 5,000 mg / L, the concentration of the electrodeposition bath is increased, and not only the migration speed of the particles is decreased, but also when the electrodeposit is lifted from the electrodeposition bath at the end of the electrodeposition, The attached particles are adhered.

本発明の負極(カソード)としては、材質、形状は特に限定されないが、例えば、リチウム二次電池の正極用集電体として使用することを考慮すると、正極活物質及び後述する電解質に対して、化学的、電気化学的に安定性のある導体を使用することができる。集電体の材料としては、アルミニウム、ステンレス、銅、ニッケル等が挙げられ、電気化学的安定性、延伸性および経済性を考慮すると、アルミニウムが好ましい。また、集電体の形態は特に限定されるものではなく、例えば、金属箔、メッシュ、エキスパンドメタル等が挙げられる。カソードの表面状態、厚さ、大きさ、形状等は特に限定されず、例えば、箔状、板状、ワイヤーをスパイラル状にしたもの、発泡状、不織布状、メッシュ状、フェルト状、エキスパンデッド状のような多孔質金属基体が挙げられ、その中でも、箔状、板状のものが好適である。   The material and shape of the negative electrode (cathode) of the present invention are not particularly limited. For example, in consideration of using as a positive electrode current collector of a lithium secondary battery, Conductors that are chemically and electrochemically stable can be used. Examples of the material for the current collector include aluminum, stainless steel, copper, nickel, and the like. Aluminum is preferable in view of electrochemical stability, stretchability, and economy. Moreover, the form of a collector is not specifically limited, For example, metal foil, a mesh, an expanded metal etc. are mentioned. The surface state, thickness, size, shape, etc. of the cathode are not particularly limited. For example, foil shape, plate shape, spiral wire shape, foam shape, non-woven shape, mesh shape, felt shape, expanded A porous metal substrate such as a foil is preferable, and among these, a foil or plate is preferable.

本発明の正極(アノード)としては、公知の導電性基板のいずれを使用することができ、例えば、化学的、電気化学的に安全な白金、グラファイト等が好適に用いられる。負極の形状は、図2で示されるように、板状であってもよいが、スパイラル状等の種々の形状であってもよい。   As the positive electrode (anode) of the present invention, any known conductive substrate can be used. For example, chemically and electrochemically safe platinum, graphite and the like are preferably used. The shape of the negative electrode may be a plate shape as shown in FIG. 2, but may be various shapes such as a spiral shape.

非プロトン溶媒+ヨウ素浴に酸化物と炭素材料を分散させる方法としては、特に限定されるものではないが、酸化物と炭素材料を含む非プロトン溶媒+ヨウ素浴に、超音波照射もしくは攪拌を行うこと等が挙げられる。   The method for dispersing the oxide and the carbon material in the aprotic solvent + iodine bath is not particularly limited, but the aprotic solvent + iodine bath containing the oxide and the carbon material is subjected to ultrasonic irradiation or stirring. And so on.

両電極間に電位勾配を発生させる方法としては、非プロトン溶媒+ヨウ素浴に酸化物と炭素材料を分散させた溶液にカソードとアノードとを浸漬した状態で、両電極に接続されている直流電源によって、両電極に定電圧、定電流、パルス等を印加する方法が挙げられる。これらの印加、所定間隔ごとにその大きさを変化させてもよい。両電極間に発生させる電位勾配は、例えば、定電圧の場合には、0.1〜10,000V/cm程度、より好ましくは1〜1,000V/cm程度を挙げることができる。また、電着時間は継続的に0.1〜600秒間、印加する方法が挙げられる。必要ならば、周期的に0.1〜1秒の間隔で、印加と停止を繰り返してもよい。   As a method of generating a potential gradient between both electrodes, a direct current power source connected to both electrodes in a state where the cathode and the anode are immersed in a solution in which an oxide and a carbon material are dispersed in an aprotic solvent + iodine bath. The method of applying a constant voltage, a constant current, a pulse, etc. to both electrodes is mentioned. You may change the magnitude | size for these application and predetermined intervals. For example, in the case of a constant voltage, the potential gradient generated between both electrodes can be about 0.1 to 10,000 V / cm, more preferably about 1 to 1,000 V / cm. Moreover, the electrodeposition time can be applied continuously for 0.1 to 600 seconds. If necessary, application and stop may be repeated periodically at intervals of 0.1 to 1 second.

上述により、カソードの表面に酸化物と炭素材料を電着することができる。なお、酸化物と炭素材料の電着量は、非プロトン溶媒+ヨウ素浴中の酸化物と炭素材料の分散量、電着電圧、電着時間等により制御することが可能である。例えば、電着膜の電着量を多くするためには、非プロトン溶媒+ヨウ素浴中における酸化物と炭素材料の分散量を多くする、もしくは電着電圧を高めにする、もしくは電着時間が長くする等、制御すればよい。なお、連続生産時には、酸化物と炭素粒子を順次補給して、非プロトン溶媒中における酸化物と炭素材料の分散量の低下を補うことが望ましい。   As described above, the oxide and the carbon material can be electrodeposited on the surface of the cathode. The electrodeposition amount of the oxide and the carbon material can be controlled by the dispersion amount of the oxide and the carbon material in the aprotic solvent + iodine bath, the electrodeposition voltage, the electrodeposition time, and the like. For example, in order to increase the electrodeposition amount of the electrodeposition film, the dispersion amount of the oxide and the carbon material in the aprotic solvent + iodine bath is increased, or the electrodeposition voltage is increased, or the electrodeposition time is increased. Control may be performed such as lengthening. In continuous production, it is desirable to replenish oxides and carbon particles sequentially to compensate for a decrease in the amount of oxide and carbon material dispersed in the aprotic solvent.

また、必要に応じて、本発明の複合電極を熱処理してもよい。その方法としては、100℃以上、酸化物と集電体の融点以下の範囲で行うことが好ましい。雰囲気としては、窒素などの不活性ガスが好ましい。空気中や酸素雰囲気中で熱処理を行うと、集電体が酸化してしまうからである。また、常圧下よりは減圧下の方が熱処理時間が短くて済む。
本発明のリチウム二次電池は、少なくとも正極、非水電解質及び負極を備えて構成されている。
Moreover, you may heat-process the composite electrode of this invention as needed. The method is preferably performed at a temperature of 100 ° C. or higher and below the melting point of the oxide and the current collector. The atmosphere is preferably an inert gas such as nitrogen. This is because when the heat treatment is performed in air or in an oxygen atmosphere, the current collector is oxidized. Also, the heat treatment time is shorter under reduced pressure than under normal pressure.
The lithium secondary battery of the present invention includes at least a positive electrode, a nonaqueous electrolyte, and a negative electrode.

正極の成分は酸化物と炭素材料の構成元素からなる。即ちポリフッ化ビニリデン(PVdF)等のバインダー成分の構成元素、特にフッ素原子を含まないことを意味する。正極の構成元素は、例えば、元素分析やエネルギー分散形X線分析(EDX)等により分析することができる。   The component of the positive electrode is composed of an oxide and a constituent element of a carbon material. That is, it means that it does not contain a constituent element of a binder component such as polyvinylidene fluoride (PVdF), particularly a fluorine atom. The constituent elements of the positive electrode can be analyzed by, for example, elemental analysis or energy dispersive X-ray analysis (EDX).

上記の作製方法によって得られた複合電極を、この電池の正極として使用する場合には、導電性基板を集電体として使用し、その上に電着した酸化物と炭素材料からなる複合膜を正極とする。あるいは導電性基板に電着した複合膜を剥がして、別途、電池用集電体上に正極として貼り合わせたものを用いてもよい。まず、導電性基板上に複合膜を作製し、その後、その複合膜をそのまま又は導電性基板から剥がして、必要に応じて溶剤等を用いて洗浄し、乾燥させてから用いることが望ましい。洗浄用の溶剤としては特に限定されないが、経済性又は取り扱い易さの点からアセトン、アセトニトリルが好適に使用される。電池の正極である複合膜の充填密度を高めるため又は成形性を高めるため、必要に応じて圧縮成形を行なってもよい。圧縮成形には、通常、ローラープレス機が用いられ、これらプレス機を適用する場合のプレス面の材質、回転方法、温度、雰囲気等は特に限定されない。その後、正極上、即ち、導電性基板の複合膜が電着されていない部分、もしくは貼りついていない部分にリードを溶接し、乾燥する。乾燥は、一般的な方法を利用することができ、例えば、熱風、真空、遠赤外線、電子線及び低湿風等を単独あるいは組み合わせて行うことができる。この場合の温度は、150℃程度が適当であり、任意に、減圧を行ってもよい。   When the composite electrode obtained by the above production method is used as a positive electrode of this battery, a conductive film is used as a current collector, and a composite film made of an oxide and a carbon material electrodeposited thereon is used. The positive electrode. Alternatively, a composite film electrodeposited on a conductive substrate may be peeled off and separately attached as a positive electrode on a battery current collector. First, it is desirable to produce a composite film on a conductive substrate, and then peel the composite film as it is or from the conductive substrate, wash it with a solvent or the like as necessary, and dry it before use. Although it does not specifically limit as a solvent for washing | cleaning, Acetone and acetonitrile are used suitably from the point of economical efficiency or handleability. In order to increase the packing density of the composite film, which is the positive electrode of the battery, or to improve the moldability, compression molding may be performed as necessary. A roller press is usually used for compression molding, and the material, rotation method, temperature, atmosphere, and the like of the press surface when these presses are applied are not particularly limited. Thereafter, the lead is welded onto the positive electrode, that is, the portion where the composite film of the conductive substrate is not electrodeposited, or the portion where the composite film is not adhered, and is dried. A general method can be used for drying, for example, hot air, vacuum, far-infrared rays, electron beam, and low-humidity air can be used alone or in combination. The temperature in this case is suitably about 150 ° C., and the pressure may be optionally reduced.

負極には公知の炭素材料を使用できる。負極の粒子径としては、中心径d50は7.5〜10.5μmの炭素粒子が好ましい。つまり、負極を構成する炭素粒子においては、非水電解質との接触面積が大きくなると、SEI(Solid Electrolyte Interface;固体電解質界面)形成やガス発生などの副反応が大きくなり、充放電効率が低くなる。また、非水電解質との接触面積が小さくなると、電極反応速度が遅くなり、電池の負荷特性が低下してしまう。中心径d50は粒度分布測定結果より、ピークを有する粒子径を中心径d50として表される。粒度分布測定は、例えば、レーザー回折式粒度分布測定を用いることができる。 A known carbon material can be used for the negative electrode. As the particle diameter of the negative electrode, carbon particles having a center diameter d 50 of 7.5 to 10.5 μm are preferable. That is, in the carbon particles constituting the negative electrode, when the contact area with the non-aqueous electrolyte increases, side reactions such as SEI (Solid Electrolyte Interface) formation and gas generation increase, and the charge / discharge efficiency decreases. . Further, when the contact area with the non-aqueous electrolyte is reduced, the electrode reaction rate is reduced, and the load characteristics of the battery are reduced. The center diameter d 50 is expressed as a center diameter d 50 from a particle size distribution measurement result. For the particle size distribution measurement, for example, laser diffraction particle size distribution measurement can be used.

本発明の負極としては、活物質、結着剤等を混合して形成したものを用いることができる。具体的には、まず、結着剤を乳鉢中等で溶剤に溶かし、活物質と導電剤とを分散させる。分散処理には、通常、混練機、ボールミル等が用いられ、活物質、導電剤、結着剤が均一分散する状態にペーストを調製する。このペーストを集電体の金属箔に塗布し、これを40〜100℃で仮乾燥する。その後、150℃程度で熱処理をし、所定の活物質密度にするため、プレス機を用いて圧縮成形する。圧縮成形は、上記と同様に行うことができる。その後、集電体の金属箔の無塗工部にリードを溶接し、上記と同様に乾燥する。活物質と結着剤これらの混合比は、活物質100重量部に対して、結着剤を1〜30重量部とすることが好ましい。高エネルギー密度の電池を作製するためには、負極の活物質密度は1.0g/cm3以上、さらには1.5g/cm3以上が好ましい。正極作製において結着性を上げるために、結着剤の融点前後の温度で熱処理を行うことが好ましい。また、本発明の別の負極としては、特開2002−63894号公報に開示されているバインダーフリー炭素材料膜を負極に使用してもよい。 As the negative electrode of the present invention, one formed by mixing an active material, a binder and the like can be used. Specifically, first, the binder is dissolved in a solvent in a mortar or the like to disperse the active material and the conductive agent. For the dispersion treatment, a kneader, a ball mill or the like is usually used, and the paste is prepared so that the active material, the conductive agent, and the binder are uniformly dispersed. This paste is applied to a metal foil of a current collector, and this is temporarily dried at 40 to 100 ° C. Then, in order to heat-process at about 150 degreeC and to make a predetermined | prescribed active material density, it compression-molds using a press. Compression molding can be performed in the same manner as described above. Thereafter, the lead is welded to the uncoated portion of the metal foil of the current collector and dried in the same manner as described above. The mixing ratio of the active material and the binder is preferably 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the active material. In order to produce a battery having a high energy density, the active material density of the negative electrode is preferably 1.0 g / cm 3 or more, more preferably 1.5 g / cm 3 or more. In order to improve the binding property in the production of the positive electrode, it is preferable to perform heat treatment at a temperature around the melting point of the binder. Further, as another negative electrode of the present invention, a binder-free carbon material film disclosed in JP-A-2002-63894 may be used for the negative electrode.

非水電解質(イオン導電体)としては、公知の有機溶媒系電解液、常温型溶融塩(イオン性液体)、高分子固体電界質又はゲル状固体電解質、無機固体電解質等が挙げられる。   Examples of non-aqueous electrolytes (ionic conductors) include known organic solvent electrolytes, room-temperature molten salts (ionic liquids), polymer solid electrolytes or gel solid electrolytes, and inorganic solid electrolytes.

有機溶媒系電解液は、非水溶媒又はリチウム塩を溶解することにより調製することができる。非水溶媒としては、特に限定されないが、例えば、炭酸エチレン(EC)、炭酸プロピレン(PC)、炭酸ブチレン(BC)等の環状炭酸エステル類、ジメチルカーボネート(DMC)、ジメチルカーボネート(DEC)、炭酸メチルエチル(MEC)等の鎖状炭酸エステル類、γ−ブチロラクトン(γ−BL)等の環状カルボン酸エステル類等、公知の非水溶媒を1種又は2種以上を混合して用いることができる。本発明においては、負極に炭素材料を用いるため、ECを含むことが好ましく、非水溶媒中におけるECの含有量としては、10〜80%の体積比率であることが好ましい。また、低温特性を向上させるためにはγ−BLを含有していることが好ましい。さらに、電極活物質内部又はセパレータ基材内部への浸透性を向上させるために、DMC、DEC、MEC等を非水溶媒全体に対して、0〜50%の体積比率添加することが好ましい。また、必要に応じて、ビニレンカーボネート(VC)、エチレンサルファイト(ES)等を非水溶媒の総重量に対して、重量比率1〜10%程度で添加してもよい。   The organic solvent-based electrolytic solution can be prepared by dissolving a nonaqueous solvent or a lithium salt. Although it does not specifically limit as a nonaqueous solvent, For example, cyclic carbonates, such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), dimethyl carbonate (DMC), dimethyl carbonate (DEC), carbonic acid A known nonaqueous solvent such as chain carbonates such as methyl ethyl (MEC) and cyclic carboxylic acid esters such as γ-butyrolactone (γ-BL) can be used alone or in combination of two or more. . In the present invention, since a carbon material is used for the negative electrode, it is preferable to include EC, and the EC content in the non-aqueous solvent is preferably 10 to 80% by volume. Moreover, in order to improve a low temperature characteristic, it is preferable to contain (gamma) -BL. Furthermore, it is preferable to add DMC, DEC, MEC, etc. in a volume ratio of 0 to 50% with respect to the entire non-aqueous solvent in order to improve the permeability into the electrode active material or the separator substrate. Moreover, you may add vinylene carbonate (VC), ethylene sulfite (ES), etc. by weight ratio about 1 to 10% with respect to the total weight of a non-aqueous solvent as needed.

リチウム塩としては、特に限定されず、例えば、過塩素酸リチウム(LiClO4)、4フッ化リチウム(LiBF4)、6フッ化リチウム(LiPF6)、6フッ化砒酸リチウム(LiAsF6)、6フッ化アンチモン酸リチウム(LiSbF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、塩化アルミン酸リチウム(LiAlCl4)、トリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)等のリチウム塩が挙げられ、これらの1種または2種以上を混合して用いることができる。リチウム塩濃度は、高負荷時の放電特性を得るのに必要なイオン伝導率を得ること、リチウム塩のコスト、粘度の増加に起因する電極内への染み込みにくさ、リチウム塩の溶解時間等の長期化による工業的生産効率等を考慮して、非水溶媒全体に対して0.8〜2.5mol/Lであることが好ましい。 The lithium salt is not particularly limited. For example, lithium perchlorate (LiClO 4 ), lithium tetrafluoride (LiBF 4 ), lithium hexafluoride (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), 6 Lithium fluorinated antimonate (LiSbF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO), lithium chloroaluminate (LiAlCl 4 ), lithium imide trifluoromethanesulfonate (LiN ( Examples thereof include lithium salts such as CF 3 SO 2 ) 2 ), and these can be used alone or in combination. Lithium salt concentration is to obtain ionic conductivity necessary to obtain discharge characteristics at high load, lithium salt cost, difficulty of soaking into electrode due to increase in viscosity, dissolution time of lithium salt, etc. In consideration of industrial production efficiency and the like due to a prolonged period, it is preferably 0.8 to 2.5 mol / L with respect to the entire non-aqueous solvent.

常温型溶融塩(イオン性液体)は、AlCl3−EMIC(1−エチル−3−メチル−イミダゾリウムクロリド)−LiCl、AlCl3−EMIC−LiCl−SOCl2、EMIBF4(1−エチル−3−メチル−イミダゾリウムテトラフルオロホウ酸)−LiBF4等が挙げられる。 Room temperature molten salts (ionic liquids) are AlCl 3 -EMIC (1-ethyl-3-methyl-imidazolium chloride) -LiCl, AlCl 3 -EMIC-LiCl-SOCl 2 , EMIBF 4 (1-ethyl-3- Methyl-imidazolium tetrafluoroborate) -LiBF 4 and the like.

高分子固体電解質としては、電解質と電解質との解離を行う高分子から構成された物質、高分子にイオン解離基をもたせた物質等がある。電解質の解離を行う高分子としては、ポリエチレンオキサイド誘導体あるいは該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体、該誘導体を含むポリマー、リン酸エステルポリマー等が挙げられる。   Examples of the polymer solid electrolyte include a substance composed of a polymer that dissociates the electrolyte and the electrolyte, and a substance that has an ion dissociation group on the polymer. Examples of the polymer that dissociates the electrolyte include a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative, a polymer containing the derivative, and a phosphate polymer.

ゲル電解質としては、上記のような高分子固体電解質と有機溶媒を用いたものであり、液漏れの心配のない固体電解質の特長と、液体に近いイオン伝導性を併せもち、極めて有利である。ゲル状の固体電解質の骨格となる有機化合物は、電解質の溶液と親和性があり、重合可能な官能基を有する化合物であれば、特に限定されない。このような化合物としては、ポリエーテル構造および不飽和二重結合基を有するもの、オリゴエステルアクリレート、ポリエステル、ポリイミン、ポリチオエーテル、ポリサルファン等の単独もしくは二種以上の併用が挙げられる。なお、溶媒との親和性からポリエーテル構造および不飽和二重結合基を有するものが好ましい。ポリエーテル構造単位としては、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、グリシジルエーテル類等が挙げられ、これらの単独または二種以上の組み合わせが好適に用いられる。また、二種以上の組み合わせの場合には、その形態はブロック、ランダムを問わず適宜選択できる。さらに、不飽和二重結合基としては、アリル、メタリル、ビニル、アクリロイル、メタクリロイル等が挙げられる。ゲル電解質の作製方法は、有機溶媒に電解質塩を溶解することによって電解液を調製し、上記したゲル状の固体電解質の骨格となる有機化合物と混合し、重合させることによって得られる。ゲル電解質に用いられ有機溶媒としては、EC、PC、BC等の環状カーボネート類、DMC、DEC、EMC、ジプロピルカーボネート等の鎖状カーボネート類、γ−BL、γ−バレロラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられる。電解質塩としては、上記のリチウム塩が挙げられる。   As the gel electrolyte, a polymer solid electrolyte as described above and an organic solvent are used. The gel electrolyte is extremely advantageous because it combines the characteristics of a solid electrolyte that does not cause liquid leakage and ionic conductivity close to that of a liquid. The organic compound serving as the skeleton of the gel-like solid electrolyte is not particularly limited as long as it is a compound having an affinity for the electrolyte solution and having a polymerizable functional group. Examples of such compounds include those having a polyether structure and an unsaturated double bond group, oligoester acrylates, polyesters, polyimines, polythioethers, polysulfanes and the like alone or in combination of two or more. In addition, those having a polyether structure and an unsaturated double bond group are preferred from the viewpoint of affinity with a solvent. Examples of the polyether structural unit include ethylene oxide, propylene oxide, butylene oxide, glycidyl ethers and the like, and these are used alone or in combination of two or more. Further, in the case of a combination of two or more kinds, the form can be appropriately selected regardless of block or random. Furthermore, examples of the unsaturated double bond group include allyl, methallyl, vinyl, acryloyl, methacryloyl and the like. A method for producing a gel electrolyte is obtained by preparing an electrolytic solution by dissolving an electrolyte salt in an organic solvent, mixing the polymer with an organic compound serving as a skeleton of the gel solid electrolyte, and polymerizing the solution. Examples of the organic solvent used in the gel electrolyte include cyclic carbonates such as EC, PC and BC, chain carbonates such as DMC, DEC, EMC and dipropyl carbonate, lactones such as γ-BL and γ-valerolactone, Furans such as tetrahydrofuran and 2-methyltetrahydrofuran, ethers such as diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methylsulfolane, acetonitrile, formic acid Examples include methyl and methyl acetate. Examples of the electrolyte salt include the lithium salts described above.

無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩などがあり、具体的には、Li3N、LiI、Li3N−LiI−LiOH、LiSiO4、LiSiO4−LiI−LiOH、Li3PO4−Li4SiO4等が挙げられる。また、上記の無機固体電解質と有機固体電解質を併用してもよい。 Examples of the inorganic solid electrolyte include Li nitride, halide, oxyacid salt, and the like. Specifically, Li 3 N, LiI, Li 3 N—LiI—LiOH, LiSiO 4 , LiSiO 4 —LiI—LiOH, Examples include Li 3 PO 4 —Li 4 SiO 4 . Moreover, you may use together said inorganic solid electrolyte and organic solid electrolyte.

本発明の非水電解質二次電池は、通常、電解質を保持するためにセパレータが用いられる。セパレータとしては、電気絶縁性の合成樹脂繊維、ガラス繊維、天然繊維等の不織布又は織布等が挙げられる。中でもポリ塩化ビニリデン、ポリエチレン、ポリプロピレン等の不織布が品質の安定性等の点から好ましい。これら合成樹脂の不織布では電池が異常発熱した場合に、セパレータが熱により溶解し、正負極間を遮断する機能を付加したものもあり、安全性の観点からこれらも好適に使用することができる。セパレータの厚みは特に限定はないが、必要量の液を保持することが可能で、かつ正極と負極との短絡を防ぐ厚さがあればよく、通常0.01〜1mm程度のものを用いることができ、好ましくは0.02〜0.05mm程度である。また、セパレータを構成する材質は透気度が1〜500秒/cm3であることが、低い電池内部抵抗を維持しつつ、電池内部短絡を防ぐだけの強度を有しているため好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, a separator is usually used to hold the electrolyte. Examples of the separator include nonwoven fabrics or woven fabrics such as electrically insulating synthetic resin fibers, glass fibers, and natural fibers. Among these, non-woven fabrics such as polyvinylidene chloride, polyethylene, and polypropylene are preferable from the viewpoint of quality stability. Some of these synthetic resin non-woven fabrics have a function in which when the battery abnormally generates heat, the separator is melted by heat to block between the positive and negative electrodes, and these can be suitably used from the viewpoint of safety. The thickness of the separator is not particularly limited, but it is sufficient that the separator can hold a necessary amount of liquid and has a thickness that prevents a short circuit between the positive electrode and the negative electrode. Usually, a thickness of about 0.01 to 1 mm is used. Preferably, it is about 0.02-0.05 mm. Moreover, it is preferable that the material constituting the separator has an air permeability of 1 to 500 seconds / cm 3 because it has a strength sufficient to prevent a battery internal short circuit while maintaining a low battery internal resistance.

本発明の非水電解質二次電池は、ラミネート形、円筒形、角形、コイン形、ボタン形等、公知の形状とすることができる。例えば、円筒形や角形電池では、主にシート状にした電極を缶に挿入し、缶とシート電極を電気的に接続する。電解液を注入して、絶縁パッキンを介して封口板を封口するか又はハーメチックシールにより封口板と缶を絶縁して封口して電池を作製する。このとき、安全素子を備え付けた安全弁を封口板として用いることができる。安全素子には、例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子等がある。また、安全弁の他に電池缶の内圧上昇の対策として、ガスケットに亀裂を入れる方法、封口板に亀裂を入れる方法、電池缶に切れ込みを入れる方法等を用いる。また、過充電や過放電対策を組み込んだ外部回路を用いてもよい。また、コイン形やボタン形電池の場合は、正極や負極はペレット状に形成し、これを缶中に入れ、電解液を注入し、絶縁パッキンを介して蓋をかしめて電池を作製する。   The non-aqueous electrolyte secondary battery of the present invention can have a known shape such as a laminate shape, a cylindrical shape, a square shape, a coin shape, or a button shape. For example, in a cylindrical or square battery, a sheet-like electrode is mainly inserted into a can, and the can and the sheet electrode are electrically connected. An electrolyte is injected and the sealing plate is sealed through an insulating packing, or the sealing plate and the can are insulated and sealed with a hermetic seal to produce a battery. At this time, a safety valve equipped with a safety element can be used as a sealing plate. Examples of the safety element include a fuse, a bimetal, and a PTC element as an overcurrent prevention element. In addition to the safety valve, as a countermeasure against the increase in the internal pressure of the battery can, a method of making a crack in the gasket, a method of making a crack in the sealing plate, a method of making a cut in the battery can, and the like are used. Further, an external circuit incorporating an overcharge or overdischarge countermeasure may be used. In the case of a coin-type or button-type battery, the positive electrode and the negative electrode are formed into pellets, placed in a can, injected with an electrolyte, and a lid is crimped through an insulating packing to produce a battery.

以下に、本発明の酸化物と炭素材料の複合電極の製造方法及びリチウム二次電池を、実施例により具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the method for producing a composite electrode of an oxide and a carbon material and a lithium secondary battery according to the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
含水量100ppmのアセトン100mLにヨウ素10.0mg(以後0.10g/Lと記す)を溶解させた。これにLiCoO2(平均粒子径10μm)を3.0g/L、アセチレンブラックを50mg/L投入して、超音波照射器を用いて10分間懸濁した。この操作により、LiCoO2粒子とAB粒子はアセトン浴中で十分に分散した。カソード4としてリチウム二次電池の集電体に用いるアルミニウム箔(厚さ20μm)を、その距離を10mmとしてもう一方にアノード5として白金板を配置し、図2に示すように設定した。電着浴の超音波を止めた後、直流電源6を用いて、300V/cmを30秒間印加し、電源をOFFした。
(Example 1)
10.0 mg of iodine (hereinafter referred to as 0.10 g / L) was dissolved in 100 mL of acetone having a water content of 100 ppm. To this, 3.0 g / L of LiCoO 2 (average particle diameter 10 μm) and 50 mg / L of acetylene black were added, and suspended for 10 minutes using an ultrasonic irradiator. By this operation, LiCoO 2 particles and AB particles were sufficiently dispersed in an acetone bath. An aluminum foil (thickness: 20 μm) used for the current collector of the lithium secondary battery was used as the cathode 4, a platinum plate was arranged as the anode 5 on the other side with a distance of 10 mm, and settings were made as shown in FIG. After stopping the ultrasonic wave of the electrodeposition bath, 300 V / cm was applied for 30 seconds using the DC power source 6 and the power source was turned off.

カソード4を電着浴から引き出すと、均一な膜が形成されていた。SEM(走査型電子顕微鏡)/EDXにより元素分析を行ったところ、LiCoO2の構成元素である酸素とコバルト、ABの構成元素である炭素、集電体の構成元素であるアルミニウムが検出された。また、X線源としてターゲットCuの封入管からの出力2kWのCuKα線を使用したX線回折測定、ヨードメトリー法によるコバルトの価数分析及びICPによる元素分析の結果から得られた試料はLiCoO2であることが確認された。 When the cathode 4 was pulled out from the electrodeposition bath, a uniform film was formed. When elemental analysis was performed by SEM (scanning electron microscope) / EDX, oxygen and cobalt as constituent elements of LiCoO 2 , carbon as a constituent element of AB, and aluminum as a constituent element of a current collector were detected. In addition, the sample obtained from the results of X-ray diffraction measurement using CuKα rays of 2 kW output from the target Cu enclosure as the X-ray source, cobalt valence analysis by iodometry method, and elemental analysis by ICP is LiCoO 2. It was confirmed that.

その後、アセトンを用いて、LiCoO2とABの複合電極の洗浄を行い、これを減圧下、50〜70℃、3時間、仮乾燥した。複合電極上の電着量の測定結果と、ICPによる元素分析から得られたLiCoO2の重量測定結果より、LiCoO2とABの重量比率が92:8ということが分かった。この電極の厚さは70μm、空隙率は31%であった。アルミニウム箔の無電着部分にニッケル箔(50μm)のリードを溶接した後、熱処理として約300℃にて12時間減圧乾燥した。 Thereafter, the LiCoO 2 and AB composite electrode was washed with acetone, and temporarily dried under reduced pressure at 50 to 70 ° C. for 3 hours. From the measurement result of the electrodeposition amount on the composite electrode and the weight measurement result of LiCoO 2 obtained from the elemental analysis by ICP, it was found that the weight ratio of LiCoO 2 and AB was 92: 8. This electrode had a thickness of 70 μm and a porosity of 31%. A nickel foil (50 μm) lead was welded to the electrodeposited portion of the aluminum foil, and then dried under reduced pressure at about 300 ° C. for 12 hours as a heat treatment.

(比較例1)
アセトン100mLに正極活物質であるLiCoO2 と導電剤であるカーボンブラック(CB)と結着剤であるポリテトラフルオロエチレン(PTFE)をアセトン1000重量部に対し、それぞれ10、0.2、0.5重量部を混合した。さらに、帯電剤として0.5mol/Lのアセトン+ヨウ素浴をアセトン1000重量部に対して5重量部を添加した。この電着浴を5分間、超音波照射を行い、十分に分散した後、カソード4としてリチウム二次電池の集電体に用いるアルミニウム箔(厚さ15μm)を、その距離を10mmとしてもう一方にアノード5として白金板を配置し、図2に示すように設定した。電着浴の超音波を止めた後、直流電源6を用いて、400V/cmを60秒間印加し、電源をOFFした。
(Comparative Example 1)
In 100 mL of acetone, LiCoO 2 as a positive electrode active material, carbon black (CB) as a conductive agent, and polytetrafluoroethylene (PTFE) as a binder are respectively 10, 0.2,. 5 parts by weight were mixed. Further, 5 parts by weight of 0.5 mol / L acetone + iodine bath as a charging agent was added to 1000 parts by weight of acetone. This electrodeposition bath was subjected to ultrasonic irradiation for 5 minutes and sufficiently dispersed, and then an aluminum foil (thickness 15 μm) used as a cathode 4 for a current collector of a lithium secondary battery was used as the cathode 4 at a distance of 10 mm. A platinum plate was disposed as the anode 5 and set as shown in FIG. After stopping the ultrasonic wave of the electrodeposition bath, 400 V / cm was applied for 60 seconds using the DC power source 6 to turn off the power source.

カソード4を電着浴から引き出すと、均一な膜が形成されていた。SEM/EDXにより元素分析を行ったところ、LiCoO2の構成元素である酸素とコバルト、ABの構成元素である炭素、結着剤の構成元素である炭素とフッ素、集電体の構成元素であるアルミニウムが検出された。また、X線源としてターゲットCuの封入管からの出力2kWのCuKα線を使用したX線回折測定、ヨードメトリー法によるコバルトの価数分析及びICPによる元素分析の結果から得られた試料はLiCoO2であることが確認された。
この電極の洗浄を行い、これを減圧下、50〜70℃、3時間、仮乾燥した。複合電極上の電着量の測定結果と、ICPによる元素分析から得られたLiCoO2の重量測定結果より、LiCoO2と(CB+PTFE)の重量比率が80:20ということが分かった。この電極の厚さは45μm、空隙率は47%であった。その後、アルミニウム箔の無電着部分にニッケル箔(50μm)のリードを溶接した。
When the cathode 4 was pulled out from the electrodeposition bath, a uniform film was formed. When elemental analysis was performed by SEM / EDX, oxygen and cobalt as constituent elements of LiCoO 2 , carbon as constituent elements of AB, carbon and fluorine as constituent elements of a binder, and constituent elements of a current collector Aluminum was detected. In addition, the sample obtained from the results of X-ray diffraction measurement using CuKα rays of 2 kW output from the target Cu enclosure as the X-ray source, cobalt valence analysis by iodometry method, and elemental analysis by ICP is LiCoO 2. It was confirmed that.
This electrode was washed and temporarily dried under reduced pressure at 50 to 70 ° C. for 3 hours. From the measurement result of the electrodeposition amount on the composite electrode and the weight measurement result of LiCoO 2 obtained from the elemental analysis by ICP, it was found that the weight ratio of LiCoO 2 and (CB + PTFE) was 80:20. This electrode had a thickness of 45 μm and a porosity of 47%. Thereafter, a lead of nickel foil (50 μm) was welded to the non-electrodeposition portion of the aluminum foil.

(比較例2)
本比較例は従来の作製方法である塗布法で作製した。正極活物質にはLiCoO2(平均粒子径10μm)を使用した。結着剤PVdFを乳鉢中でN−メチル−2ピロリドン(NMP)に溶かし、上記正極活物質と導電剤ABを分散させた。分散処理には2軸遊星方式の混合混錬機を使用し、正極活物質、導電剤、結着剤が均一分散する状態にペーストを調製した。正極の組成はLiCoO2100重量部、AB8.7重量部、PVdF5重量部とした。このペーストを約20μmのアルミニウム箔上に塗布し、これを50〜70℃で仮乾燥した。この電極の厚さは70μm、空隙率は29%であった。その後、約150℃で12時間熱処理をし、活物質密度3.0g/cm3程度になるまで大気中にてローラープレス機を用いて圧縮成形し、無塗工部にニッケル箔(50μm)のリードを溶接した。水分除去のために約150℃にて12時間減圧乾燥した。
(Comparative Example 2)
This comparative example was manufactured by a coating method which is a conventional manufacturing method. LiCoO 2 (average particle diameter 10 μm) was used as the positive electrode active material. The binder PVdF was dissolved in N-methyl-2pyrrolidone (NMP) in a mortar to disperse the positive electrode active material and the conductive agent AB. For the dispersion treatment, a biaxial planetary kneader was used to prepare a paste in a state where the positive electrode active material, the conductive agent, and the binder were uniformly dispersed. The composition of the positive electrode was 100 parts by weight of LiCoO 2 , 8.7 parts by weight of AB, and 5 parts by weight of PVdF. This paste was applied onto an aluminum foil having a thickness of about 20 μm and temporarily dried at 50 to 70 ° C. This electrode had a thickness of 70 μm and a porosity of 29%. Thereafter, heat treatment is performed at about 150 ° C. for 12 hours, and compression molding is performed using a roller press in the air until the active material density reaches about 3.0 g / cm 3. A nickel foil (50 μm) is applied to the uncoated part. The lead was welded. In order to remove moisture, it was dried under reduced pressure at about 150 ° C. for 12 hours.

(評価)
得られた複合電極のリチウム二次電池用正極としての性能を調べるために、3電極式セルを用いて電気化学的特性の評価を行なった。複合電極を試験極に、対向電極及び参照極に金属リチウムを用いた。セルの構成としては対向電極の表面積を試験極のそれに対して十分に大きくして、試験極の電位にて規制されるように設定した。電解液には1.0MのLiClO4/EC+DEC(50:50vol%)を用いた。充放電作動試験は0.1C(27.4mA/g)の定電流充放電、充電終止電位4.2V vs.Li/Li+、放電終止電位3.5Vvs.Li/Li+の制御条件で、アルゴン雰囲気下グローブボックス中、25℃にて行った。なお、容量は
容量(mAh/g)={電流値(mA)×時間(h)/炭素材料の重量(g)}
の式により計算した。
(Evaluation)
In order to investigate the performance of the obtained composite electrode as a positive electrode for a lithium secondary battery, electrochemical characteristics were evaluated using a three-electrode cell. The composite electrode was used as a test electrode, and metallic lithium was used as a counter electrode and a reference electrode. The cell configuration was set so that the surface area of the counter electrode was sufficiently larger than that of the test electrode and was regulated by the potential of the test electrode. As the electrolytic solution, 1.0 M LiClO 4 / EC + DEC (50:50 vol%) was used. The charge / discharge operation test was performed at a constant current charge / discharge of 0.1 C (27.4 mA / g), a charge end potential of 4.2 V vs. Li / Li + , discharge end potential 3.5 Vvs. It was performed at 25 ° C. in a glove box under an argon atmosphere under the control conditions of Li / Li + . The capacity is capacity (mAh / g) = {current value (mA) × time (h) / weight of carbon material (g)}
It was calculated by the following formula.

実施例及び比較例で得られた電極のサイクル特性を図1に示す。本発明の実施例1の複合電極のサイクル特性は、比較例1と2のサイクル特性よりも良好であった。このサイクル特性結果から、本発明の複合電極はリチウム二次電池の正極に使用できることが明らかになった。比較例1の電極はサイクルを繰り返すにつれて、放電容量が低下していった。20サイクル終了後、電極を観察したところ、電極のエッジ部分が集電体から剥離していた。熱処理工程無しでは、結着剤が融着しないので、充放電に伴うLiCoO2粒子の膨張・収縮に耐えられなかったと考えられる。比較例2の電極は15サイクル付近で急激に放電容量が低下した。サイクル試験終了後、電極を観察したところ、電極の大部分が集電体から剥離して、かろうじて付着している状態であった。 The cycle characteristics of the electrodes obtained in the examples and comparative examples are shown in FIG. The cycle characteristics of the composite electrode of Example 1 of the present invention were better than those of Comparative Examples 1 and 2. From this cycle characteristic result, it was revealed that the composite electrode of the present invention can be used as a positive electrode of a lithium secondary battery. The discharge capacity of the electrode of Comparative Example 1 decreased as the cycle was repeated. When the electrode was observed after the end of 20 cycles, the edge portion of the electrode was peeled off from the current collector. Without the heat treatment step, the binder is not fused, so it is considered that the LiCoO 2 particles could not withstand the expansion / contraction due to charge / discharge. The discharge capacity of the electrode of Comparative Example 2 suddenly decreased around 15 cycles. When the electrodes were observed after the end of the cycle test, most of the electrodes were peeled off from the current collector and barely adhered.

以上のことから、従来の正極では結着剤に相当する重量を減らすことには限界がある。また、熱処理工程を加えることにあより、結着剤を使用しなくても良好な電極が作製できることが明らかとなった。電池の軽量化、及びコンパクト化を目指すと、本発明の泳動電着法によるバインダーフリーの酸化物と炭素材料の複合電極を製造し、正極に用いることが効果的である。
From the above, there is a limit to reducing the weight corresponding to the binder in the conventional positive electrode. Moreover, it became clear that a favorable electrode can be produced without using a binder by adding a heat treatment step. In order to reduce the weight and size of the battery, it is effective to manufacture a composite electrode of a binder-free oxide and a carbon material by the electrophoretic electrodeposition method of the present invention and use it for the positive electrode.

実施例及び比較例で得られた電極のサイクル特性を示すグラフである。It is a graph which shows the cycling characteristics of the electrode obtained by the Example and the comparative example. 本発明の酸化物と炭素材料の複合電極の製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the composite electrode of the oxide and carbon material of this invention.

符号の説明Explanation of symbols

1 非プロトン溶媒
2 酸化物
3 炭素材料
4 負極(カソード)
5 正極(アノード)
6 直流電源
1 Aprotic solvent 2 Oxide 3 Carbon material 4 Negative electrode (cathode)
5 Positive electrode (anode)
6 DC power supply

Claims (6)

非プロトン溶媒1Lにヨウ素を1mg〜5g溶解し、それに酸化物と炭素材料とを分散させた溶液に、正極と負極とを浸漬し、両電極間に電位勾配を発生させることにより、負極の表面に酸化物と炭素材料とを電着させることを特徴とする酸化物と炭素材料の複合電極の製造方法。 The surface of the negative electrode is obtained by immersing 1 mg to 5 g of iodine in 1 L of an aprotic solvent and immersing the positive electrode and the negative electrode in a solution in which an oxide and a carbon material are dispersed to generate a potential gradient between the two electrodes. A method of manufacturing a composite electrode of an oxide and a carbon material, characterized by electrodepositing an oxide and a carbon material. 非プロトン溶媒中の含水量が20〜5,000ppmであることを特徴とする請求項1に記載の酸化物と炭素材料の複合電極の製造方法。 The method for producing a composite electrode of an oxide and a carbon material according to claim 1, wherein the water content in the aprotic solvent is 20 to 5,000 ppm. 酸化物が、LiCoO、LiNiO、LiMnO、Vから選択された1つまたは複数の酸化物であることを特徴とする請求項1に記載の酸化物と炭素材料の複合電極の製造方法。 2. The oxide-carbon material composite electrode according to claim 1, wherein the oxide is one or more oxides selected from LiCoO 2 , LiNiO 2 , LiMnO 4 , and V 2 O 5 . Production method. 炭素材料が、アセチレンブラック、カーボンブラック、カーボンナノチューブ、ケッチエンブラック、人造黒鉛、天然黒鉛から選択された1つまたは複数の炭素材料であることを特徴とする請求項1に記載の酸化物と炭素材料の複合電極の製造方法。 2. The oxide and carbon according to claim 1, wherein the carbon material is one or more carbon materials selected from acetylene black, carbon black, carbon nanotube, ketchen black, artificial graphite, and natural graphite. A method for producing a composite electrode of a material. 負極が、アルミニウム、ニッケル、ステンレス鋼から選択されたことを特徴とする請求項1に記載の酸化物と炭素材料の複合電極の製造方法。 The method for producing an oxide-carbon material composite electrode according to claim 1, wherein the negative electrode is selected from aluminum, nickel, and stainless steel. 少なくとも正極、非水電解質及び負極を備えた非水電解質二次電池であって、正極が請求項1〜5のいずれか1項に記載の方法で得られた酸化物と炭素材料から構成されていることを特徴とするリチウム二次電池。
A non-aqueous electrolyte secondary battery comprising at least a positive electrode, a non-aqueous electrolyte, and a negative electrode, wherein the positive electrode is composed of an oxide obtained by the method according to any one of claims 1 to 5 and a carbon material. A lithium secondary battery characterized by comprising:
JP2003319405A 2003-09-11 2003-09-11 Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery Pending JP2005085716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319405A JP2005085716A (en) 2003-09-11 2003-09-11 Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319405A JP2005085716A (en) 2003-09-11 2003-09-11 Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005085716A true JP2005085716A (en) 2005-03-31

Family

ID=34418352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319405A Pending JP2005085716A (en) 2003-09-11 2003-09-11 Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2005085716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096333A (en) * 2011-11-02 2014-08-05 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
CN106591926A (en) * 2016-12-09 2017-04-26 济南大学 Method for preparing CNTs-porous nickel/nickel oxide hydrogen evolution reaction catalyst on surface of steel
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140096333A (en) * 2011-11-02 2014-08-05 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
JP2014534591A (en) * 2011-11-02 2014-12-18 アイ テン Thin film lithium ion micro battery manufacturing method and micro battery obtained by the method
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
JP2018186099A (en) * 2011-11-02 2018-11-22 アイ テン Method for production of thin film lithium ion micro-battery, and micro-battery obtained by the same
KR102018096B1 (en) * 2011-11-02 2019-09-04 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
CN106591926A (en) * 2016-12-09 2017-04-26 济南大学 Method for preparing CNTs-porous nickel/nickel oxide hydrogen evolution reaction catalyst on surface of steel
CN106591926B (en) * 2016-12-09 2018-10-02 济南大学 In the method that steel surface prepares the porous nickel nickel evolving hydrogen reaction catalyst of CNTs-
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Similar Documents

Publication Publication Date Title
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
EP1738425B1 (en) Method for manufacturing an anode active material with improved electrochemical properties
KR101430617B1 (en) Electrode comprising niobium oxide and lithium battery using the same
KR102437198B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
JP6616984B2 (en) Method for producing SEI film-coated negative electrode active material powder
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
JP2005310795A (en) Lithium single-ion conducting inorganic filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
US20140065480A1 (en) Positive-Electrode Active Material, Manufacturing Method Of The Same, And Nonaqueous Electrolyte Rechargeable Battery Having The Same
US11482700B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN110462897B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP6733140B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP2020115485A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010135144A (en) Lithium air secondary battery and method for manufacturing lithium air secondary battery
JP3816025B2 (en) Method for producing carbon material film and non-aqueous electrolyte secondary battery
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
KR20120135107A (en) Method of manufacturing positive electrode active material and electrode, and electrode
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2005085716A (en) Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP6622522B2 (en) Method for producing alkali metal ion pre-doped active material powder
KR101044577B1 (en) Lithium Secondary Battery