JP2010135144A - Lithium air secondary battery and method for manufacturing lithium air secondary battery - Google Patents

Lithium air secondary battery and method for manufacturing lithium air secondary battery Download PDF

Info

Publication number
JP2010135144A
JP2010135144A JP2008308616A JP2008308616A JP2010135144A JP 2010135144 A JP2010135144 A JP 2010135144A JP 2008308616 A JP2008308616 A JP 2008308616A JP 2008308616 A JP2008308616 A JP 2008308616A JP 2010135144 A JP2010135144 A JP 2010135144A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
electrode
air secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008308616A
Other languages
Japanese (ja)
Other versions
JP5215146B2 (en
Inventor
Hironobu Minowa
浩伸 蓑輪
Masahiko Hayashi
政彦 林
Masaya Takahashi
雅也 高橋
Takahisa Masashiro
尊久 正代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008308616A priority Critical patent/JP5215146B2/en
Publication of JP2010135144A publication Critical patent/JP2010135144A/en
Application granted granted Critical
Publication of JP5215146B2 publication Critical patent/JP5215146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium air secondary battery having a structure capable of producing an anode electrode containing lithium ions with small deterioration by a process simpler than before, and a method for manufacturing the lithium air secondary battery having a structure capable of producing an anode electrode containing lithium ions with small deterioration by a process simpler than before. <P>SOLUTION: The lithium air secondary battery is provided with a gas diffusion type cathode electrode 8 having carbon as a component, and an anode electrode 7 having a lithium occlusion material capable of occluding or discharging lithium, and being in a state not containing lithium, as a component, wherein a nonaqueous electrolyte is arranged between the gas diffusion type cathode electrode 8 and the anode electrode 7. An auxiliary electrode 2 made of metallic lithium is arranged so as to contact with the nonaqueous electrolyte contacting with the anode electrode 7 in the lithium air secondary battery at a position farther than the anode electrode 7 when viewed from the gas diffusion type cathode electrode 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はリチウム空気二次電池及びリチウム空気二次電池の製造方法に関する。   The present invention relates to a lithium air secondary battery and a method for manufacturing a lithium air secondary battery.

市販型亜鉛空気電池は、300mAh/g程度の大きな、重量当たりの放電容量を有することから、主に補聴器等に用いられている。しかしながら、非水電解液を用いるリチウム系の電池と比較すると、1V程度の電圧しか得られないため、広範な範囲での利用は難しいと考えられる。   Commercially available zinc-air batteries have a large discharge capacity per weight of about 300 mAh / g, and are therefore mainly used for hearing aids and the like. However, compared with a lithium battery using a non-aqueous electrolyte, only a voltage of about 1 V can be obtained, so it is considered difficult to use in a wide range.

近年、正極反応系として亜鉛空気電池と同様な酸素の電気化学的な還元(放電)・酸化(充電)を用いて、負極として亜鉛にかわって金属リチウムを組み合わせ、また電解液とてして非水電解質を用いることによって、2〜3Vの高電圧を示すリチウム/空気二次電池を作製する試みが行われており(下記特許文献1、非特許文献1参照)、1000mAh/g以上の大きな、重量当たりの放電容量が得られている。しかし、電池内部に金属リチウムを含むため、その安全性に問題を抱えている。
特許4015899号公報 “An O2 cathode for rechargeable lithium batteries: The effect of a catalyst”, A. Debart, J. Bao, G. Armstrong and P. G. Bruce, Journal of Power Sources, Vol. 174, pp. 1177-1182 (2007).
In recent years, electrochemical reduction (discharge) / oxidation (charge) of oxygen is used as a positive electrode reaction system in the same manner as a zinc-air battery, and metal lithium is combined in place of zinc as a negative electrode, and it is not used as an electrolyte. Attempts have been made to produce a lithium / air secondary battery exhibiting a high voltage of 2 to 3 V by using a water electrolyte (see Patent Document 1 and Non-Patent Document 1 below), a large value of 1000 mAh / g or more, The discharge capacity per weight is obtained. However, since lithium is contained inside the battery, there is a problem in its safety.
Japanese Patent No. 4015899 “An O2 cathode for rechargeable lithium batteries: The effect of a catalyst”, A. Debart, J. Bao, G. Armstrong and PG Bruce, Journal of Power Sources, Vol. 174, pp. 1177-1182 (2007).

上述したように、従来のリチウム空気電池は、内部に反応性が高い金属リチウムが含まれているため、安全性が低下するといった課題があった。   As described above, the conventional lithium-air battery has a problem that safety is lowered because metallic lithium having high reactivity is contained therein.

また、この解決策として、例えば、リチウム/カーボンのセルを使って、電気化学的にLiCを合成し、さらに、このLiCをセルから取り出し、リチウム空気電池の負極として利用する場合、大気中での作業は負極の劣化を招き、不活性ガス雰囲気で作業を行う場合、高価なグローブボックスが必要になり高純度のArガス等不活性ガスを必要とするため、プロセスが複雑になり、コストがかかるという課題がある。 In addition, as a solution, for example, when LiC 6 is electrochemically synthesized using a lithium / carbon cell, and this LiC 6 is taken out from the cell and used as a negative electrode of a lithium air battery, In the case of working in, the negative electrode is deteriorated, and when working in an inert gas atmosphere, an expensive glove box is required and an inert gas such as high-purity Ar gas is required, which complicates the process and reduces the cost. There is a problem that it takes.

本発明は上記の課題に鑑みてなされたものであり、本発明が解決しようとする課題は、従来よりも簡素なプロセスで、劣化の少ないリチウムイオン含有負極を作製しうる構造を有するリチウム空気二次電池と、従来よりも簡素なプロセスで、劣化の少ないリチウムイオン含有負極を作製するリチウム空気二次電池の製造方法とを提供することである。   The present invention has been made in view of the above-described problems, and the problem to be solved by the present invention is to provide lithium air having a structure capable of producing a lithium ion-containing negative electrode with less deterioration by a simpler process. The present invention provides a secondary battery and a method for producing a lithium-air secondary battery that produces a lithium ion-containing negative electrode with less deterioration by a simpler process than before.

本発明においては、上記課題を解決するために、請求項1に記載のように、
カーボンを構成要素とするガス拡散型酸素電極からなる正極と、リチウムの吸蔵・放出が可能であってリチウムを含有しない状態になりうるリチウム吸蔵性物質を構成要素とする負極とを具備し、前記正極と前記負極との間に非水電解質を配置して構成されるリチウム空気二次電池において、該リチウム空気二次電池内部で、前記負極と接触している非水電解質に、前記正極から見て前記負極よりも遠い位置で接触する、金属リチウムからなる補助電極が配置されることを特徴とするリチウム空気二次電池を構成する。
In the present invention, in order to solve the above problem, as described in claim 1,
A positive electrode comprising a gas diffusion type oxygen electrode comprising carbon as a constituent element, and a negative electrode comprising a lithium occluding substance capable of occluding and releasing lithium and not containing lithium as a constituent element, In a lithium-air secondary battery configured by disposing a non-aqueous electrolyte between a positive electrode and the negative electrode, the non-aqueous electrolyte in contact with the negative electrode is viewed from the positive electrode inside the lithium-air secondary battery. Thus, an auxiliary electrode made of metallic lithium, which is in contact with a position far from the negative electrode, is disposed.

また、本発明においては、請求項2に記載のように、
前記補助電極を構成する金属リチウムの量が、充電反応によって該金属リチウムの全てが前記非水電解質に溶解し、前記負極に移動して該負極内に吸蔵され得る量であることを特徴とする請求項1に記載のリチウム空気二次電池を構成する。
In the present invention, as described in claim 2,
The amount of metallic lithium constituting the auxiliary electrode is an amount that allows all of the metallic lithium to be dissolved in the nonaqueous electrolyte by a charging reaction, transferred to the negative electrode, and occluded in the negative electrode. The lithium air secondary battery according to claim 1 is configured.

また、本発明においては、請求項3に記載のように、
前記リチウム吸蔵性物質が、カーボン、シリコンまたはスズであることを特徴とする請求項1または2に記載のリチウム空気二次電池を構成する。
In the present invention, as described in claim 3,
3. The lithium air secondary battery according to claim 1, wherein the lithium storage material is carbon, silicon, or tin.

また、本発明においては、請求項4に記載のように、
カーボンを構成要素とするガス拡散型酸素電極からなる正極と、リチウムの吸蔵・放出が可能であってリチウムを含有しない状態になりうるリチウム吸蔵性物質を構成要素とする負極とを具備し、前記正極と前記負極との間に非水電解質を配置して構成されるリチウム空気二次電池を製造するリチウム空気二次電池の製造方法において、リチウムの吸蔵・放出が可能であってリチウムを含有しない状態にあるリチウム吸蔵性物質を用いて請求項1、2または3に記載のリチウム空気二次電池を組立てた後に、金属リチウムからなる補助電極と負極との間に充電電流を流すことによって、該金属リチウムを非水電解質に溶解し、該負極へ移動させ、該負極内に吸蔵させる工程を有することを特徴とするリチウム空気二次電池の製造方法を構成する。
In the present invention, as described in claim 4,
A positive electrode comprising a gas diffusion type oxygen electrode comprising carbon as a constituent element, and a negative electrode comprising a lithium occluding substance capable of occluding and releasing lithium and not containing lithium as a constituent element, Lithium-air secondary battery manufacturing method for manufacturing a lithium-air secondary battery comprising a non-aqueous electrolyte disposed between a positive electrode and the negative electrode is capable of occluding and releasing lithium and does not contain lithium After assembling the lithium air secondary battery according to claim 1, 2 or 3, using the lithium storage material in a state, a charging current is passed between the auxiliary electrode made of metallic lithium and the negative electrode, A method for producing a lithium-air secondary battery comprising the steps of dissolving metallic lithium in a non-aqueous electrolyte, moving to the negative electrode, and occluding in the negative electrode is provided. .

本発明による補助電極を用いることによって、セル作製中の劣化が少なく、高い安全性能を持ちながら、高エネルギー密度を有するリチウム空気二次電池を作製することができる。   By using the auxiliary electrode according to the present invention, it is possible to produce a lithium-air secondary battery having high energy density while having little safety during cell production and having high safety performance.

本発明は、他のリチウム空気二次電池よりも安全性に優れ、かつ現在、様々な用途に利用されているリチウムイオン二次電池より高エネルギー密度を有するリチウム空気二次電池に関するものである。   The present invention relates to a lithium air secondary battery that is superior in safety to other lithium air secondary batteries and has a higher energy density than lithium ion secondary batteries currently used for various applications.

本発明では、カーボンを構成要素とするガス拡散型酸素電極からなる正極と、リチウムの吸蔵・放出が可能であってリチウムを含有しない状態になりうるリチウム吸蔵性物質を構成要素とする負極とを具備し、正極と負極との間に非水電解質を配置して構成するリチウム空気二次電池において、さらに電池内部の非水電解質中に金属リチウムからなる補助電極を配置することに特徴がある。   In the present invention, a positive electrode comprising a gas diffusion type oxygen electrode having carbon as a constituent element, and a negative electrode having a lithium occluding substance capable of occluding and releasing lithium and not containing lithium as constituent elements. A lithium-air secondary battery comprising a non-aqueous electrolyte between a positive electrode and a negative electrode is characterized in that an auxiliary electrode made of metallic lithium is further arranged in the non-aqueous electrolyte inside the battery.

上述した目的を達成するために、リチウムを含有しない状態にある前記リチウム吸蔵性物質を用いて負極を形成し、この負極と補助電極との間に、負極にリチウムイオンが吸蔵されるための充電電流を通電することによって充電反応を起こさせ、補助電極を構成する金属リチウムを非水電解質中のリチウムイオンとし、電解質中を移動させ、負極に吸蔵させて、リチウムが含有された負極を作製する。補助電極である金属リチウムは全て溶解し、負極に吸蔵されることによって、セル作製時における大気中の劣化や金属リチウムのデンドライト形成を防ぎ、電池内部での短絡を抑制し、電池内に金属リチウムが存在しないため、優れた安全性と高エネルギー密度を有するリチウム空気二次電池を、低コストで作製することができる。   In order to achieve the above-described object, a negative electrode is formed using the lithium storage material that does not contain lithium, and charging is performed between the negative electrode and the auxiliary electrode so that lithium ions are stored in the negative electrode. A charging reaction is caused by passing an electric current, and the metallic lithium constituting the auxiliary electrode is converted into lithium ions in the non-aqueous electrolyte, moved in the electrolyte, and occluded in the negative electrode to produce a negative electrode containing lithium. . All the metallic lithium as the auxiliary electrode is dissolved and occluded in the negative electrode to prevent deterioration in the atmosphere and dendrite formation of metallic lithium at the time of cell preparation, suppress short circuit inside the battery, and prevent metallic lithium in the battery. Therefore, a lithium air secondary battery having excellent safety and high energy density can be manufactured at low cost.

本発明に係るリチウム空気二次電池の概要について、次に記す。   The outline of the lithium-air secondary battery according to the present invention will be described below.

前記リチウム吸蔵性物質を用いた負極と、金属リチウムからなる補助電極との間に、負極にリチウムイオンが吸蔵されるための充電電流を通電することによって、リチウムが含有された負極を合成し、これによって、補助電極である金属リチウムが全て溶解し、リチウムが負極に吸蔵される。   By passing a charging current for inserting lithium ions into the negative electrode between the negative electrode using the lithium storage material and an auxiliary electrode made of metallic lithium, a lithium-containing negative electrode is synthesized, As a result, all the metallic lithium as the auxiliary electrode is dissolved, and lithium is occluded in the negative electrode.

正極活物質である酸素の電気化学的還元反応が進行するガス拡散型電極を形成するには、カーボン粉末とポリテトラフルオロエチレン(PTFE)のような結着剤粉末との混合物を通気性のある金属メッシュ等の支持体上に圧着成形(プレス)するか、あるいは、前述の混合物を有機溶剤等の溶媒中に分散してスラリー状にして金属メッシュ上に塗布し乾燥する等の方法を用いる。   In order to form a gas diffusion electrode in which an electrochemical reduction reaction of oxygen, which is a positive electrode active material, proceeds, a mixture of carbon powder and a binder powder such as polytetrafluoroethylene (PTFE) is air permeable. A method such as pressure forming (pressing) on a support such as a metal mesh or a method of dispersing the above-mentioned mixture in a solvent such as an organic solvent to form a slurry and applying the slurry onto a metal mesh and drying is used.

このような方法によって作製されたガス拡散型電極の片面は大気に曝され、またもう一方の面は電解液である非水電解質と接する。   One side of the gas diffusion electrode produced by such a method is exposed to the atmosphere, and the other side is in contact with a non-aqueous electrolyte that is an electrolytic solution.

また、電極の強度を高め電解液の漏洩を防止するために、冷間プレスだけでなくホットプレスを行うことによっても、より安定性に優れた電極を作製可能である。   Further, in order to increase the strength of the electrode and prevent leakage of the electrolytic solution, it is possible to produce an electrode having higher stability by performing not only cold pressing but also hot pressing.

ガス拡散型電極(正極)上での放電反応は次のように表すことができる。   The discharge reaction on the gas diffusion type electrode (positive electrode) can be expressed as follows.

2Li + O + 2e → Li (1)
あるいは 2Li + 1/2O + 2e → LiO (2)
上式中のリチウムイオンLiは、負極から電解質を介して正極表面まで移動してきたものである。また、酸素Oは、大気中からガス拡散型電極内部に取り込まれたものである。この放電反応により生成したLiまたはLiOは、正極上に析出し、正極上の反応サイトを全て被覆したとき放電反応は終了する。
2Li + + O 2 + 2e → Li 2 O 2 (1)
Or 2Li + +1/2 O 2 + 2e → Li 2 O (2)
The lithium ion Li + in the above formula has moved from the negative electrode to the positive electrode surface via the electrolyte. Oxygen O 2 is taken into the gas diffusion electrode from the atmosphere. Li 2 O 2 or Li 2 O produced by this discharge reaction is deposited on the positive electrode, and the discharge reaction ends when all the reaction sites on the positive electrode are covered.

また、充電時の電極反応は、反応(1)および(2)の逆反応となり、発生した酸素が電池外へ排出され、リチウムイオンは電解質を介して負極に再び挿入される。   In addition, the electrode reaction during charging is the reverse reaction of reactions (1) and (2), the generated oxygen is discharged out of the battery, and lithium ions are inserted again into the negative electrode through the electrolyte.

ガス拡散型電極中の正極材料であるカーボンは、ケッチェンブラック、アセチレンブラック、活性炭、カーボンファイバー等を用いることができるが、正極での反応サイトを増加させ、かつ触媒の分散度を高めるために、粒子径が40nm以下で表面積が1000m/g以上のカーボンを用いることが望ましい。電極触媒を正極に添加する方法としては、カーボンや結着剤と、ボールミル等で機械的に混合する固相法や、アルコール中等で撹拌混合する等の湿式法を用いることができる。触媒の分散度を向上させ効率的に電極反応を進行させるためには、後者が望ましい。また、正極への前記触媒の添加量については、少量添加であると反応サイトの生成が不十分で、多量添加では電極の電気抵抗が増加してしまうために、20〜60重量%の範囲で添加することが好ましい。 Ketjen black, acetylene black, activated carbon, carbon fiber, etc. can be used as the positive electrode material in the gas diffusion electrode. To increase the reaction sites at the positive electrode and increase the degree of dispersion of the catalyst. It is desirable to use carbon having a particle size of 40 nm or less and a surface area of 1000 m 2 / g or more. As a method for adding the electrode catalyst to the positive electrode, a solid phase method in which carbon or a binder is mechanically mixed with a ball mill or the like, or a wet method such as stirring and mixing in an alcohol or the like can be used. The latter is desirable for improving the degree of dispersion of the catalyst and allowing the electrode reaction to proceed efficiently. Moreover, about the addition amount of the said catalyst to a positive electrode, since the production | generation of a reaction site is inadequate if it is a small amount addition, and the electrical resistance of an electrode will increase in a large amount addition, in the range of 20 to 60 weight%. It is preferable to add.

触媒については、正極にPt、Au、Ag、Ru、Ir、Rh等の貴金属、CuO、MnO、TiO、CrO、V、MnO等の遷移金属酸化物、コバルトフタロシアニン等の遷移金属有機錯体等を使用することができる。 For the catalyst, the positive electrode is made of noble metals such as Pt, Au, Ag, Ru, Ir, Rh, transition metal oxides such as CuO, MnO 2 , TiO 2 , CrO 2 , V 2 O 5 , MnO 3 , cobalt phthalocyanine, etc. Transition metal organic complexes and the like can be used.

前記結着剤については、上記PTFE粉末の他に、PTFE分散液やポリフッ化ビニリデン(PVdF)の粉末や分散液を用いることもできる。   As the binder, in addition to the PTFE powder, a PTFE dispersion or a polyvinylidene fluoride (PVdF) powder or dispersion may be used.

前記負極については、リチウムイオンの吸蔵・放出が可能なカーボン材料、シリコン、スズを用いることができる。   For the negative electrode, a carbon material capable of occluding and releasing lithium ions, silicon, and tin can be used.

前記非水電解質としては、リチウムイオンの移動が可能な非水電解質であればよく、有機電解液や、ポリマー等の固体電解質、イオン液体も使用することができる。   The non-aqueous electrolyte may be any non-aqueous electrolyte that can move lithium ions, and organic electrolytes, solid electrolytes such as polymers, and ionic liquids may also be used.

有機電解液については、LiClO、LiPF等の金属塩をプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)等の有機溶媒に溶解したものを使用することができ、ポリマー電解質については、ポリエチレンオキサイド(PEO)、ポリアクリロニトリル(PAN)等のポリマー材料にLiPF、Li(CFSO)N等の金属塩を添加したものを使用することができ、イオン液体については、1-エチル-3-メチルイミダゾリウムイオン等のカチオンにPF 等のアニオンを組み合わせたものを使用することができる。 As the organic electrolyte, a solution obtained by dissolving a metal salt such as LiClO 4 or LiPF 6 in an organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), or dimethyl carbonate (DMC) can be used. Can be obtained by adding a metal salt such as LiPF 6 or Li (CF 3 SO 2 ) 2 N to a polymer material such as polyethylene oxide (PEO) or polyacrylonitrile (PAN). , PF 6 1-ethyl-3-methylimidazolium cation such as ions - may be used a combination of anions, and the like.

セパレータや電池ケース等の電池構成材料等についても、従来公知の各種材料が使用でき、特に制限はない。   Various conventionally known materials can be used for battery constituent materials such as separators and battery cases, and there is no particular limitation.

[実施例1]
正極のガス拡散型電極は、高導電性カーボンブラック粉末とポリテトラフルオロエチレン(PTFE)粉末を1対1の重量比で混合し、ロール成形し、シート状電極とし、これを円形に切り抜くことにより得た。
[Example 1]
The gas diffusion electrode of the positive electrode is prepared by mixing a highly conductive carbon black powder and a polytetrafluoroethylene (PTFE) powder in a weight ratio of 1: 1, roll-molding to form a sheet-like electrode, and cutting it into a circle Obtained.

負極は、リチウム吸蔵性物質である天然グラファイト粉末とポリテトラフルオロエチレン(PTFE)粉末を1対1の重量比で混合し、ロール成形し、シート状電極とし、これを円形に切り抜くことにより得た。   The negative electrode was obtained by mixing natural graphite powder, which is a lithium occluding material, and polytetrafluoroethylene (PTFE) powder in a weight ratio of 1: 1, roll-forming to form a sheet-like electrode, and cutting it into a circle. .

上記の正極と負極とを用いて本発明に係るリチウム空気二次電池を組立てた後に、リチウムイオンの吸蔵・放出が可能なカーボン材料(天然グラファイト)を用いた負極と補助電極との間で、負極にリチウムが吸蔵されるための充電電流を通電することによってリチウムが含有された負極を合成し、補助電極である金属リチウムが全て溶解し、負極に吸蔵された状態とする。これによって、リチウムを吸蔵する負極を有するリチウム空気二次電池が完成する。   After assembling the lithium-air secondary battery according to the present invention using the positive electrode and the negative electrode, between the negative electrode and the auxiliary electrode using a carbon material (natural graphite) capable of occluding and releasing lithium ions, A negative electrode containing lithium is synthesized by supplying a charging current for inserting lithium into the negative electrode, and all the metallic lithium as the auxiliary electrode is dissolved and stored in the negative electrode. As a result, a lithium air secondary battery having a negative electrode for storing lithium is completed.

本実施例において、充電電流を通電する前の段階においては、負極にリチウムが吸蔵されていないので、空気中の酸素による負極の性能劣化は起こらず、電池の組立て作業が、従来法に比べて、格段に容易となる。   In this example, in the stage before the charging current is passed, since the lithium is not occluded in the negative electrode, the performance of the negative electrode does not deteriorate due to oxygen in the air, and the battery assembly work is compared with the conventional method. It will be much easier.

図1は、本発明に係るリチウム空気二次電池のセル構造の略図であり、図の左部分はセル構造の構成要素の間隔を空けたものを示す図であり、右の部分は組立後のセル構造の断面図である。   FIG. 1 is a schematic diagram of a cell structure of a lithium-air secondary battery according to the present invention, in which the left part of the figure is a diagram showing the components of the cell structure spaced apart, and the right part is after assembly. It is sectional drawing of a cell structure.

図中、1は補助電極ケース、2は金属リチウム補助電極、3は各ケースの接続具、4は電解液ケース、5は電解液注入及びガス抜き口、6は負極ケース、7は負極電極、8はガス拡散型正極電極、9は正極ケースを示す。正極ケース9の底面(図中、上面)には、酸素をガス拡散型正極電極8に取り込むための円形の空気孔(直径16mm)を形成してある。   In the figure, 1 is an auxiliary electrode case, 2 is a metallic lithium auxiliary electrode, 3 is a connector for each case, 4 is an electrolyte case, 5 is an electrolyte injection and venting port, 6 is a negative electrode case, 7 is a negative electrode, Reference numeral 8 denotes a gas diffusion type positive electrode, and 9 denotes a positive electrode case. A circular air hole (diameter 16 mm) for taking oxygen into the gas diffusion type positive electrode 8 is formed on the bottom surface (upper surface in the drawing) of the positive electrode case 9.

PVdF製補助電極ケース1に、リチウムイオンの吸蔵・放出が可能なカーボン負極材料が吸蔵し得る量のリチウムからなる補助電極2を配置し、留め具3をはめこむことにより固定した。その上にPVdF製電解液ケース4と補助電極ケース1を、負極ケース6とケース4を、それぞれ留め具3を通して接合し、負極電極7を負極ケース6に配置し、別の留め具3をはめ込む。さらに、PVdF製正極ケース9にガス拡散型正極電極8を配置し、留め具3を正極層ケースにはめこむことにより固定し、前述のセルと接合し、これにそれぞれの電解液注入及びガス抜き口5から電解液を注入し、すべての口に栓をした。電解液としては、プロピレンカーボネート(PC)溶媒に、六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解した溶液を使用した。 An auxiliary electrode 2 made of lithium in an amount capable of being occluded by a carbon negative electrode material capable of occluding and releasing lithium ions was placed in the PVdF auxiliary electrode case 1 and fixed by fitting a fastener 3. On top of that, the PVdF electrolyte case 4 and the auxiliary electrode case 1 are joined, the negative electrode case 6 and the case 4 are joined through the fasteners 3, respectively, the negative electrode 7 is arranged in the negative electrode case 6, and another fastener 3 is fitted. . Further, the gas diffusion type positive electrode 8 is disposed in the positive electrode case 9 made of PVdF, and the fastener 3 is fixed by being fitted in the positive electrode layer case, and is joined to the above-described cell, and each electrolyte is injected and degassed therein. The electrolyte was injected from the mouth 5 and all the mouths were plugged. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a propylene carbonate (PC) solvent at a concentration of 1 mol / liter was used.

重さ約0.03gの金属リチウム補助電極2と、重さ約0.4gのグラファイト負極電極7を補助電極ケース1から負極ケース6の間に装填し、充電電流を120mAh通電し、負極電極7にリチウムイオンを電気化学的に挿入させる。この時、金属リチウムは全て溶解される。このときの充電反応は下式で表される。   A metallic lithium auxiliary electrode 2 having a weight of about 0.03 g and a graphite negative electrode 7 having a weight of about 0.4 g are loaded between the auxiliary electrode case 1 and the negative electrode case 6, and a charging current of 120 mAh is applied. Lithium ions are electrochemically inserted into the substrate. At this time, all metallic lithium is dissolved. The charging reaction at this time is represented by the following formula.

補助電極:Li → Li + e (3)
負極 :C + Li + e → LiC (4)
この電池を、正負極間において、電流密度0.1mA/cm(大気に曝されるガス拡散型正極電極の面積で規格化)で、放電終止電圧2.0V及び充電終止電圧4.5Vで充放電試験を行った。放電容量は、以後の比較のために正極カーボン重量当たりの容量(mAh/g)で記した。
Auxiliary electrode: Li → Li + + e (3)
Negative electrode: C 6 + Li + + e → LiC 6 (4)
The battery was measured between a positive electrode and a negative electrode at a current density of 0.1 mA / cm 2 (standardized by the area of the gas diffusion positive electrode exposed to the atmosphere) at a discharge end voltage of 2.0 V and a charge end voltage of 4.5 V. A charge / discharge test was conducted. The discharge capacity is indicated by the capacity per unit weight of the positive electrode carbon (mAh / g) for the following comparison.

本実施例で作製したリチウム空気二次電池の放電曲線及び充電曲線を図2に示す。一回目の放電において、平均放電電圧が約2.4Vと高電圧であるとともに、放電容量も2035mAh/gと非常に大きい値を示した。また、充電もほぼ安定に作動し、放電容量と同程度の充電が可能であり、可逆的にサイクル可能な二次電池となっていることが確認された。当該電池の初期特性と、引き続いて、充放電サイクルを繰り返した場合の推移を表1の「天然グラファイト(実施例1)」の欄に示す。   A discharge curve and a charge curve of the lithium-air secondary battery produced in this example are shown in FIG. In the first discharge, the average discharge voltage was a high voltage of about 2.4 V, and the discharge capacity was a very large value of 2035 mAh / g. In addition, it was confirmed that the charging is almost stable, the charging can be performed at the same level as the discharge capacity, and the secondary battery can be reversibly cycled. The initial characteristics of the battery and the transition when the charge / discharge cycle is repeated are shown in the column of “Natural graphite (Example 1)” in Table 1.

Figure 2010135144
サイクルを繰り返しても、平均放電電圧にほとんど変化は見られず、また、放電容量については、表1より、10回の充放電を繰り返しても、10%程度の容量減少しか見られず、安定にサイクルできることが分かった。また、同様の電池を15個作製し、同様の条件で充放電試験を行ったところ、すべての電池において80%以上の容量を維持しており、20サイクル後で、それぞれの負極表面を確認したところ、デンドライトの形成は確認されなかった。
Figure 2010135144
Even when the cycle is repeated, there is almost no change in the average discharge voltage, and with regard to the discharge capacity, even if the charge / discharge is repeated 10 times, only a capacity decrease of about 10% is observed and stable. It turned out that it can cycle. Further, 15 similar batteries were produced and subjected to charge / discharge tests under the same conditions. As a result, the capacity of 80% or more was maintained in all batteries, and the surface of each negative electrode was confirmed after 20 cycles. However, formation of dendrite was not confirmed.

[実施例2]
負極として、シリコンを用いてリチウム空気電池を作製し、電池の充放電試験を行った。負極は、市販のシリコン粉末とカーボン粉末を1対1の質量比で混合したものと結合剤を、イソプロピルアルコール溶剤と混合し、スラリー状になったものを撹拌機、混合機等を用いて負極合剤ペーストを調製し、金属板に塗布し、乾燥した後、プレスで加圧成形して作製した。負極に添加するシリコンの量は、補助電極の金属リチウムがすべて溶解し、負極に吸蔵されるような量とした。その他、電解液、補助電極については実施例1と同様に作製した。
[Example 2]
A lithium air battery was produced using silicon as the negative electrode, and a charge / discharge test of the battery was performed. The negative electrode is prepared by mixing a commercially available silicon powder and carbon powder in a mass ratio of 1: 1 and a binder with an isopropyl alcohol solvent, and using a stirrer, a mixer, etc., in a slurry state. A mixture paste was prepared, applied to a metal plate, dried, and then press molded with a press. The amount of silicon added to the negative electrode was such that all the metallic lithium of the auxiliary electrode was dissolved and occluded in the negative electrode. Other electrolyte solutions and auxiliary electrodes were prepared in the same manner as in Example 1.

この電池を、正負極間において、電流密度0.1mA/cm(大気に曝されるガス拡散型正極電極の面積で規格化)で、放電終止電圧2.0V及び充電終止電圧4.5Vで充放電試験を行った。その結果を表1の「シリコン(実施例2)」の欄に示す。 The battery was measured between a positive electrode and a negative electrode at a current density of 0.1 mA / cm 2 (standardized by the area of the gas diffusion positive electrode exposed to the atmosphere) at a discharge end voltage of 2.0 V and a charge end voltage of 4.5 V. A charge / discharge test was conducted. The results are shown in the column “Silicon (Example 2)” in Table 1.

[実施例3]
負極として、スズを用いてリチウム空気電池を作製し、電池の充放電試験を行った。負極は、市販のスズ粉末とカーボン粉末を1対1の質量比で混合し、その他は実施例2と同様に作製した。
[Example 3]
A lithium air battery was produced using tin as the negative electrode, and the battery was charged and discharged. The negative electrode was prepared in the same manner as in Example 2 except that commercially available tin powder and carbon powder were mixed at a mass ratio of 1: 1.

この電池を、正負極間において、電流密度0.1mA/cm(大気に曝されるガス拡散型正極電極の面積で規格化)で、放電終止電圧2.0V及び充電終止電圧4.5Vで充放電試験を行った。その結果を表1の「スズ(実施例3)」の欄に示す。 The battery was measured between a positive electrode and a negative electrode at a current density of 0.1 mA / cm 2 (standardized by the area of the gas diffusion positive electrode exposed to the atmosphere) at a discharge end voltage of 2.0 V and a charge end voltage of 4.5 V. A charge / discharge test was conducted. The results are shown in the column “Tin (Example 3)” in Table 1.

実施例2から3において、いずれの電池も大きな放電容量を示すことが分かったが、天然グラファイトに比べシリコン、スズとも分極が大きく放電電圧は低下した。   In Examples 2 to 3, it was found that all the batteries showed a large discharge capacity, but both silicon and tin were polarized and the discharge voltage was reduced compared to natural graphite.

[比較例1]
本発明で得られたリチウム空気二次電池の性能を、補助電極を用いない場合の金属リチウム二次電池と比較した。金属リチウム二次電池の作製方法については、実施例1と同様の方法で、負極部を取り除いてカーボン正極と金属リチウム負極のみで作製した。
[Comparative Example 1]
The performance of the lithium-air secondary battery obtained in the present invention was compared with that of a metal lithium secondary battery without using an auxiliary electrode. About the preparation method of a metal lithium secondary battery, it carried out by the method similar to Example 1, removed the negative electrode part, and produced only with the carbon positive electrode and the metal lithium negative electrode.

本比較例のリチウム二次電池は、正極面積で規格化した値である電流密度0.1mA/cmで、充電終止電圧4.5V、放電終止電圧2.0Vで充放電試験を行った。なお、放電容量は正極重量で規格化した値(mAh/g)で表した。それらのサイクル試験の結果と、実施例1に示した15個の電池に関するサイクル試験の結果とを合わせて表2に示す。 The lithium secondary battery of this comparative example was subjected to a charge / discharge test at a current density of 0.1 mA / cm 2 , which is a value normalized by the positive electrode area, at a charge end voltage of 4.5 V and a discharge end voltage of 2.0 V. The discharge capacity was expressed as a value (mAh / g) normalized by the weight of the positive electrode. The results of the cycle tests and the results of the cycle tests for the 15 batteries shown in Example 1 are shown in Table 2.

Figure 2010135144
両リチウム空気二次電池とも、約2000mAh/gの大きな放電容量を示しているが、同様の電池を15個作製したところ、比較例1において、4個はサイクル特性が悪くなった。これら4個の10サイクル後に金属リチウム負極表面を観察したところ、デンドライトの形成を確認した。このことから、デンドライト形成による電圧降下がサイクル特性の悪化の原因と考えられ、デンドライトによる電極間の短絡の危険性もあり、安全性にも問題が生じると考えられる。すなわち、これは、本発明に係る二次電池が、安全性に優れた高エネルギー密度二次電池として、非常に有益であることを示唆するものである。
Figure 2010135144
Both lithium-air secondary batteries showed a large discharge capacity of about 2000 mAh / g, but when 15 similar batteries were produced, 4 in Comparative Example 1 had poor cycle characteristics. When the surface of the metal lithium negative electrode was observed after these four 10 cycles, formation of dendrites was confirmed. From this, voltage drop due to dendrite formation is considered to be a cause of deterioration of cycle characteristics, there is a risk of short circuit between electrodes due to dendrite, and it is considered that there is a problem in safety. That is, this suggests that the secondary battery according to the present invention is very useful as a high energy density secondary battery excellent in safety.

[産業上の利用可能性]
以上のように、本発明によれば、高安全性に優れ、高エネルギー密度を有するという特徴を有したリチウム空気二次電池を作製することができ、本発明に係るリチウム空気二次電池を、様々な電子機器の駆動源として、有効活用することができる。
[Industrial applicability]
As described above, according to the present invention, it is possible to produce a lithium-air secondary battery having the characteristics of being excellent in high safety and having a high energy density. It can be effectively used as a drive source for various electronic devices.

本発明に係る円筒型リチウム空気二次電池セルの図である。It is a figure of the cylindrical lithium air secondary battery cell which concerns on this invention. 本発明に係る、負極にグラファイトを用いたリチウム空気二次電池の充放電曲線である。It is a charging / discharging curve of the lithium air secondary battery which used the graphite for the negative electrode based on this invention.

符号の説明Explanation of symbols

1:補助電極ケース、2:金属リチウム補助電極、3:接合具、4:電解液ケース、5:電解液注入及びガス抜き口、6:負極ケース、7:負極電極、8:ガス拡散型正極電極、9:正極ケース。   1: Auxiliary electrode case, 2: Metallic lithium auxiliary electrode, 3: Joiner, 4: Electrolytic solution case, 5: Electrolyte injection and venting port, 6: Negative electrode case, 7: Negative electrode, 8: Gas diffusion type positive electrode Electrode, 9: positive electrode case.

Claims (4)

カーボンを構成要素とするガス拡散型酸素電極からなる正極と、リチウムの吸蔵・放出が可能であってリチウムを含有しない状態になりうるリチウム吸蔵性物質を構成要素とする負極とを具備し、前記正極と前記負極との間に非水電解質を配置して構成されるリチウム空気二次電池において、
該リチウム空気二次電池内部で、前記負極と接触している非水電解質に、前記正極から見て前記負極よりも遠い位置で接触する、金属リチウムからなる補助電極が配置されることを特徴とするリチウム空気二次電池。
A positive electrode comprising a gas diffusion type oxygen electrode comprising carbon as a constituent element, and a negative electrode comprising a lithium occluding substance capable of occluding and releasing lithium and not containing lithium as a constituent element, In a lithium air secondary battery configured by disposing a non-aqueous electrolyte between a positive electrode and the negative electrode,
Inside the lithium-air secondary battery, an auxiliary electrode made of metallic lithium that is in contact with the nonaqueous electrolyte that is in contact with the negative electrode at a position farther from the negative electrode when viewed from the positive electrode is disposed. Lithium air secondary battery.
前記補助電極を構成する金属リチウムの量が、充電反応によって該金属リチウムの全てが前記非水電解質に溶解し、前記負極に移動して該負極内に吸蔵され得る量であることを特徴とする請求項1に記載のリチウム空気二次電池。   The amount of metallic lithium constituting the auxiliary electrode is an amount that allows all of the metallic lithium to be dissolved in the nonaqueous electrolyte by a charging reaction, transferred to the negative electrode, and occluded in the negative electrode. The lithium air secondary battery according to claim 1. 前記リチウム吸蔵性物質が、カーボン、シリコンまたはスズであることを特徴とする請求項1または2に記載のリチウム空気二次電池。   The lithium air secondary battery according to claim 1, wherein the lithium storage material is carbon, silicon, or tin. カーボンを構成要素とするガス拡散型酸素電極からなる正極と、リチウムの吸蔵・放出が可能であってリチウムを含有しない状態になりうるリチウム吸蔵性物質を構成要素とする負極とを具備し、前記正極と前記負極との間に非水電解質を配置して構成されるリチウム空気二次電池を製造するリチウム空気二次電池の製造方法において、
リチウムの吸蔵・放出が可能であってリチウムを含有しない状態にあるリチウム吸蔵性物質を用いて請求項1、2または3に記載のリチウム空気二次電池を組立てた後に、金属リチウムからなる補助電極と負極との間に充電電流を流すことによって、該金属リチウムを非水電解質に溶解し、該負極へ移動させ、該負極内に吸蔵させる工程を有することを特徴とするリチウム空気二次電池の製造方法。
A positive electrode comprising a gas diffusion type oxygen electrode comprising carbon as a constituent element, and a negative electrode comprising a lithium occluding substance capable of occluding and releasing lithium and not containing lithium as a constituent element, In the method for producing a lithium air secondary battery for producing a lithium air secondary battery constituted by disposing a nonaqueous electrolyte between a positive electrode and the negative electrode,
An auxiliary electrode made of metallic lithium after assembling the lithium air secondary battery according to claim 1, 2 or 3, using a lithium occluding material capable of occluding and releasing lithium and not containing lithium. A lithium-air secondary battery comprising a step of dissolving a lithium metal in a nonaqueous electrolyte by flowing a charging current between the negative electrode and the negative electrode, transferring the lithium to the negative electrode, and inserting the lithium into the negative electrode Production method.
JP2008308616A 2008-12-03 2008-12-03 Lithium air secondary battery and method for producing lithium air secondary battery Expired - Fee Related JP5215146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308616A JP5215146B2 (en) 2008-12-03 2008-12-03 Lithium air secondary battery and method for producing lithium air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308616A JP5215146B2 (en) 2008-12-03 2008-12-03 Lithium air secondary battery and method for producing lithium air secondary battery

Publications (2)

Publication Number Publication Date
JP2010135144A true JP2010135144A (en) 2010-06-17
JP5215146B2 JP5215146B2 (en) 2013-06-19

Family

ID=42346241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308616A Expired - Fee Related JP5215146B2 (en) 2008-12-03 2008-12-03 Lithium air secondary battery and method for producing lithium air secondary battery

Country Status (1)

Country Link
JP (1) JP5215146B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182606A (en) * 2009-02-09 2010-08-19 Nippon Telegr & Teleph Corp <Ntt> Lithium air cell
JP2010212198A (en) * 2009-03-12 2010-09-24 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
WO2011152464A1 (en) * 2010-06-04 2011-12-08 日立造船株式会社 Metal air battery
JP2012209020A (en) * 2011-03-29 2012-10-25 Hitachi Zosen Corp Metal-air battery
JP2013058405A (en) * 2011-09-08 2013-03-28 Honda Motor Co Ltd Lithium ion oxygen cell
WO2013077350A1 (en) * 2011-11-21 2013-05-30 独立行政法人物質・材料研究機構 Storage container for thin lithium-air cell, and cell
CN104218275A (en) * 2013-05-31 2014-12-17 华为技术有限公司 Lithium air cell and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309568A (en) * 1989-05-24 1990-12-25 Brother Ind Ltd Lithium secondary battery
JP2009283381A (en) * 2008-05-26 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Lithium air secondary battery and method for manufacturing lithium air secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309568A (en) * 1989-05-24 1990-12-25 Brother Ind Ltd Lithium secondary battery
JP2009283381A (en) * 2008-05-26 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Lithium air secondary battery and method for manufacturing lithium air secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182606A (en) * 2009-02-09 2010-08-19 Nippon Telegr & Teleph Corp <Ntt> Lithium air cell
JP2010212198A (en) * 2009-03-12 2010-09-24 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
WO2011152464A1 (en) * 2010-06-04 2011-12-08 日立造船株式会社 Metal air battery
CN102934280A (en) * 2010-06-04 2013-02-13 日立造船株式会社 Metal air battery
US20130295472A1 (en) * 2010-06-04 2013-11-07 Masanobu Aizawa Metal-air battery
JP2012209020A (en) * 2011-03-29 2012-10-25 Hitachi Zosen Corp Metal-air battery
JP2013058405A (en) * 2011-09-08 2013-03-28 Honda Motor Co Ltd Lithium ion oxygen cell
WO2013077350A1 (en) * 2011-11-21 2013-05-30 独立行政法人物質・材料研究機構 Storage container for thin lithium-air cell, and cell
JP2013109959A (en) * 2011-11-21 2013-06-06 National Institute For Materials Science Storage container for thin lithium air battery
CN104218275A (en) * 2013-05-31 2014-12-17 华为技术有限公司 Lithium air cell and preparation method thereof
JP2015529953A (en) * 2013-05-31 2015-10-08 華為技術有限公司Huawei Technologies Co.,Ltd. Lithium-air battery and preparation method thereof

Also Published As

Publication number Publication date
JP5215146B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2010073332A1 (en) Lithium air battery
US9525197B2 (en) Stable non-aqueous electrolyte promoting ideal reaction process in rechargeable lithium-air batteries
JP5215146B2 (en) Lithium air secondary battery and method for producing lithium air secondary battery
CN101821897A (en) Air secondary battery
US20130316253A1 (en) Method for producing cathode material for rechargeable lithium-air batteries, cathode material for rechargeable lithium-air batteries and rechargeable lithium-air battery
WO2012114453A1 (en) Non-aqueous electrolyte air cell
JP2009283381A (en) Lithium air secondary battery and method for manufacturing lithium air secondary battery
JP2021510904A (en) Rechargeable metal halide battery
JP2015130287A (en) Carbon complex and power storage device
US20130143133A1 (en) Cathode catalyst for rechargeable metal-air battery and rechargeable metal-air battery
CN109428126A (en) Aqueous electrolyte and aquo-lithium ion secondary cell
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
JP2012084379A (en) Metal-air battery system and method for charging metal-air battery
JP2009032415A (en) Air battery system
CN109417167A (en) Cladding lithium titanate for lithium ion battery
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
Xiao et al. Zn-based batteries for energy storage
JP6047086B2 (en) Sodium secondary battery
WO2005041343A1 (en) Electrochemical energy storage device
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP4433021B2 (en) Non-aqueous electrolyte battery
JP2014107160A (en) Sodium secondary battery
JP2014013702A (en) Electrode for electricity storage device, electricity storage device including the same, and method for manufacturing the electrode
JP6715209B2 (en) Lithium air secondary battery
JP2012174349A (en) Air primary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5215146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees