JP3327468B2 - Lithium ion secondary battery and method of manufacturing the same - Google Patents

Lithium ion secondary battery and method of manufacturing the same

Info

Publication number
JP3327468B2
JP3327468B2 JP2000062289A JP2000062289A JP3327468B2 JP 3327468 B2 JP3327468 B2 JP 3327468B2 JP 2000062289 A JP2000062289 A JP 2000062289A JP 2000062289 A JP2000062289 A JP 2000062289A JP 3327468 B2 JP3327468 B2 JP 3327468B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
lithium
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000062289A
Other languages
Japanese (ja)
Other versions
JP2001250535A (en
Inventor
一弥 岡部
竜二 塩崎
修竹 黄
明博 藤井
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP2000062289A priority Critical patent/JP3327468B2/en
Publication of JP2001250535A publication Critical patent/JP2001250535A/en
Application granted granted Critical
Publication of JP3327468B2 publication Critical patent/JP3327468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池に関し、さらに詳しくは負極炭素材料の表面被膜に
関するものである。
The present invention relates to a lithium ion secondary battery, and more particularly to a surface coating of a negative electrode carbon material.

【0002】[0002]

【従来の技術】近年、電子機器の軽量化・小型化が急速
に進んでおり、これらの駆動用電源として小型・軽量
で、高エネルギー密度を有する二次電池が求められてい
る。なかでも、リチウム二次電池は高電圧、高エネルギ
ー密度を有する電池として期待が大きい。
2. Description of the Related Art In recent years, the weight and size of electronic devices have been rapidly reduced, and a secondary battery having a small size, light weight, and high energy density has been demanded as a driving power source for these devices. Above all, lithium secondary batteries are expected to have high voltage and high energy density.

【0003】リチウム二次電池の負極には、従来からリ
チウム金属及やリチウム合金が用いられてきた。しか
し、リチウム金属は樹脂状リチウム(デンドライト)の
析出による短絡、高温時の安全性等に問題がある。又、
リチウム合金にはサイクル寿命が短い、充放電エネルギ
ー効率が低いといった問題がある。最近では、これらの
問題点を解決する為、炭素材料を負極に用いる研究が活
発である。
[0003] As a negative electrode of a lithium secondary battery, lithium metal and lithium alloy have been conventionally used. However, lithium metal has problems in short-circuiting due to precipitation of resinous lithium (dendrites), safety at high temperatures, and the like. or,
Lithium alloys have problems such as short cycle life and low charge / discharge energy efficiency. Recently, in order to solve these problems, research on using a carbon material for a negative electrode is active.

【0004】しかし、炭素材料を負極に用いたリチウム
イオン電池では、電解液にLiPF 4等のハロゲンを含
むリチウム塩を用いると、前記リチウム塩が電池内部に
混入した水と反応してフッ素化水素等のハロゲン化水素
酸を発生し、これが負極に影響を与え、自己放電の増大
やサイクル特性を低下させる等の問題があった。特開平
5−258753号公報には、電解液にSやNをヘテロ
元素とする複素環化合物を添加し、炭素表面にこれらの
分解生成物の被膜を形成させることで、自己放電やサイ
クル寿命が改善されることが報告されている。
However, lithium using a carbon material for the negative electrode
In an ion battery, LiPF is used as the electrolyte. FourIncluding halogen
When a lithium salt is used, the lithium salt is stored inside the battery.
Hydrogen halide such as hydrogen fluoride reacting with mixed water
Generates acid, which affects the negative electrode and increases self-discharge
And the cycle characteristics are deteriorated. JP
Japanese Patent Application Laid-Open No. 5-257553 discloses that S and N are heterogeneous in an electrolyte.
Add a heterocyclic compound as an element and apply these
By forming a film of decomposition products, self-discharge and size
It is reported that the cycle life is improved.

【0005】[0005]

【発明が解決しようとする課題】本発明は、炭素材料を
負極に用いた電池において、高率充放電特性に優れ、自
己放電が少なく、充放電サイクル特性にも優れたリチウ
ム二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a lithium secondary battery using a carbon material for a negative electrode, which is excellent in high-rate charge / discharge characteristics, has little self-discharge, and is excellent in charge / discharge cycle characteristics. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、正極と、非水電解液を含むセパレータ
と、炭素材料からなる負極とを備え、前記負極の少なく
ともセパレータと接する部分を構成する炭素粒子の表面
がカーボネート構造を有する被膜層を有し、前記被膜層
が、ホウ素、硫黄、窒素のうちいずれか1種以上の元素
を含んでいることを特徴とするリチウムイオン二次電池
である。また、前記被膜層の厚さが5nm〜100nm
であることを特徴とするリチウムイオン二次電池であ
る。また、電解液が少なくともカーボネート系の溶媒を
含み、初期充電前の正極が、ホウ素、硫黄、窒素のうち
いずれか1つ以上の元素を含有し、40℃以上の温度で
初期充電を行うことを特徴とするリチウムイオン二次電
池の製造方法である。
In order to solve the above-mentioned problems, the present invention provides a positive electrode, a separator containing a non-aqueous electrolyte, and a negative electrode made of a carbon material. Lithium ion secondary battery characterized in that the surface of the constituting carbon particles has a coating layer having a carbonate structure, and the coating layer contains at least one element of boron, sulfur and nitrogen. It is. Further, the thickness of the coating layer is 5 nm to 100 nm.
It is a lithium ion secondary battery characterized by the following. Further, the electrolyte contains at least a carbonate-based solvent, the positive electrode before the initial charge contains one or more elements of boron, sulfur, and nitrogen, and performs the initial charge at a temperature of 40 ° C. or more. A method for producing a lithium ion secondary battery, which is a feature of the present invention.

【0007】負極に炭素材料を用いた場合、炭素材料へ
のリチウムの吸蔵・放出反応は、電解液と炭素表面との
間に生成する被膜の状態によって大きく支配される。リ
チウム金属負極をモデルに説明すると、リチウム金属表
面に、緻密でイオン導伝性の高い被膜があると、優れた
電池特性を示すが、逆に厚くイオン伝導性の低い被膜が
あると、電池のレート特性や、充放電サイクル特性が悪
くなる。ここで、前者の被膜成分は炭酸リチウムや酸化
リチウム等であり、後者の被膜成分はフッ化リチウム等
であることが知られている。同様のことが炭素材料の表
面に生成する被膜についても言える。即ち、炭素材料の
界面抵抗を増大させる要因の一つに、炭素材料表面に、
フッ化リチウム等のイオン伝導度の低い被膜が形成され
ることが挙げられる。
When a carbon material is used for the negative electrode, the reaction of inserting and extracting lithium into and from the carbon material is largely controlled by the state of a film formed between the electrolyte and the carbon surface. Explaining the lithium metal negative electrode as a model, if a lithium metal surface has a dense and highly ion-conductive coating, it exhibits excellent battery characteristics. The rate characteristics and charge / discharge cycle characteristics deteriorate. Here, it is known that the former film component is lithium carbonate, lithium oxide or the like, and the latter film component is lithium fluoride or the like. The same can be said for a film formed on the surface of a carbon material. That is, one of the factors that increase the interfacial resistance of the carbon material is that the carbon material surface
For example, a film having low ion conductivity such as lithium fluoride may be formed.

【0008】本発明者らは、炭素材料表面に生じる被膜
について、研究を進めた結果、負極炭素の表層部に形成
するカーボネート構造の被膜層に、ホウ素、硫黄、窒素
のいずれか1つ以上の元素を含有し、前記被膜層の厚さ
を5nm〜100nmに制御することにより、充放電サ
イクル性能が大幅に改善することを見いだした。
The present inventors have conducted research on a film formed on the surface of a carbon material. As a result, one or more of boron, sulfur, and nitrogen were added to a film layer having a carbonate structure formed on the surface of the negative electrode carbon. It has been found that charge / discharge cycle performance is significantly improved by containing an element and controlling the thickness of the coating layer to 5 nm to 100 nm.

【0009】負極炭素の表面に、本発明の被膜を形成す
る方法としては、例えばホウ素、硫黄、窒素のいずれか
の元素を含有した正極材料を用い、充電操作を行うこと
で、充電中の正極電位が前記元素を電解液中に溶解さ
せ、同時に負極電位が電解液中のカーボネート類を分解
させ前記元素を取り込みながら被膜を形成させる方法な
どがある。このとき、電池の初期充電時の温度を制御す
ることにより、被膜形成反応の速度を制御でき、また前
記初期充電の時間を制御することにより、前記被膜の厚
さが制御できる。正極材料にホウ素、硫黄、窒素の元素
を含有させる方法としては、B23、B23、BH3
N(CH)3といった物質を正極活物質と共に混合する
ことによってもよく、またLiCoO2やLiMn24
等のCo、Mn元素の一部をホウ素等で置換したリチウ
ム金属酸化物を用いてもよい。ホウ素等で置換したリチ
ウム金属酸化物を用いた場合、初期充電工程の温度を4
0℃以上で行い、正極電位を4.0V以上にすれば、本
発明の効果が得られる。
As a method of forming the film of the present invention on the surface of the negative electrode carbon, for example, a positive electrode material containing any one element of boron, sulfur and nitrogen is used, and a charging operation is performed. There is a method in which the potential is dissolved in the electrolytic solution while the negative electrode potential decomposes the carbonates in the electrolytic solution to form a film while taking in the element. At this time, by controlling the temperature at the time of the initial charge of the battery, the speed of the film forming reaction can be controlled, and by controlling the time of the initial charge, the thickness of the film can be controlled. As a method for incorporating elements such as boron, sulfur, and nitrogen into the positive electrode material, B 2 O 3 , B 2 S 3 , BH 3.
A material such as N (CH) 3 may be mixed with the positive electrode active material, or LiCoO 2 or LiMn 2 O 4
Alternatively, a lithium metal oxide obtained by substituting a part of Co and Mn elements with boron or the like may be used. When a lithium metal oxide substituted with boron or the like is used, the temperature of the initial charging step is set to 4
The effect of the present invention can be obtained by performing the process at 0 ° C. or higher and setting the positive electrode potential to 4.0 V or higher.

【0010】制御されたカーボネート構造の被膜層は、
負極の全てのカーボン粒子表面に形成される必要はな
く、少なくともセパレータと接する部分を構成する炭素
粒子の表面に形成されていればよい。
[0010] The controlled carbonate structure coating layer comprises:
It is not necessary to form on the surface of all the carbon particles of the negative electrode, and it is sufficient if it is formed on at least the surface of the carbon particles constituting the portion in contact with the separator.

【0011】なお、「特許請求の範囲」にいう「被膜層
の厚さ」とは、電池を解体して負極板を取り出し、ジエ
チルカーボネート等の溶媒によって電解液を洗浄・除去
し、真空乾燥を行った後に計測した値をいう。
[0011] The "thickness of the coating layer" in the claims means that the battery is disassembled, the negative electrode plate is taken out, the electrolyte is washed and removed with a solvent such as diethyl carbonate, and vacuum drying is performed. It means the value measured after performing.

【0012】電池内においては前記被膜層は電解液によ
って膨潤した状態になっていると考えられるため、実際
の被膜の厚さは、これより大きいと考えられる。実際の
被膜層の厚さを計測するには、電極をエポキシ等の樹脂
に埋めた後、断面をカットして炭素表面から埋めた樹脂
迄の距離を電子顕微鏡等で計測する方法等が挙げられる
が、この方法は、電解液の組成や形成されるカーボネー
ト骨格の構造等により、膨潤係数が異なることや、サン
プル間の誤差が大く現れやすいため、上記のような定義
とした。
[0012] In the battery, the coating layer is considered to be swollen by the electrolyte, so that the actual thickness of the coating is considered to be larger than this. In order to measure the actual thickness of the coating layer, a method of embedding the electrode in a resin such as epoxy, cutting the cross section and measuring the distance from the carbon surface to the embedded resin with an electron microscope or the like can be used. However, in this method, the swelling coefficient varies depending on the composition of the electrolytic solution, the structure of the carbonate skeleton to be formed, and the like, and a large error between samples is likely to appear.

【0013】[0013]

【発明の実施の形態】本発明は以下の記載により限定さ
れるものではなく、試験方法や構成する電池の正極活物
質、負極活物質、正極、負極、電解質、セパレータ並び
に電池形状等は任意である。本発明電池の実施形態の一
例を図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is not limited by the following description, and the test method and the positive electrode active material, the negative electrode active material, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery and the like of the battery to be constituted are arbitrary. is there. FIG. 1 shows an example of an embodiment of the battery of the present invention.

【0014】負極9に用いる炭素材料としては、リチウ
ムを吸蔵、放出可能な炭素材料であればよく、特にエッ
クス線回折法より見積もられる面間隔(d002)が0.
3354〜0.3369nmで、c軸方向の結晶子の大
きさ(Lc)が20nm以上である炭素粒子が好まし
い。
The carbon material used for the negative electrode 9 may be any carbon material capable of occluding and releasing lithium. In particular, the plane spacing (d 002 ) estimated by X-ray diffraction method is 0.
Carbon particles having a crystallite size (Lc) of 3354 to 0.3369 nm in the c-axis direction of 20 nm or more are preferred.

【0015】正極7としては、LiCoO2、LiNi
2、LiMn24等のリチウム金属酸化物や、前記L
iCoO2、LiNiO2、LiMn24のCo、Ni、
Mnの部位の一部を他元素で置換した酸化物等を用いる
ことができる。前記他元素としては、Li、B,V,A
l,Ni,Co,Mg,Cr,Tb等が挙げられる。
As the positive electrode 7, LiCoO 2 , LiNi
Lithium metal oxides such as O 2 and LiMn 2 O 4;
Co, Ni of iCoO 2 , LiNiO 2 , LiMn 2 O 4 ,
An oxide or the like in which a part of Mn is substituted with another element can be used. As the other elements, Li, B, V, A
1, Ni, Co, Mg, Cr, Tb and the like.

【0016】セパレータ8には、イオンの透過性に優
れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性の観点から、ポリプロピレン
やポリエチレンといったオレフィン系のポリマーが用い
られる。セパレータの孔径は、一般に電池に用いられる
範囲のものであり、例えば0.01〜1μmである。ま
た、その厚みについても同様で、一般に電池に用いられ
る範囲のものであり、例えば5〜40μmである。
As the separator 8, an insulating thin film having excellent ion permeability and mechanical strength can be used. From the viewpoint of organic solvent resistance and hydrophobicity, olefin polymers such as polypropylene and polyethylene are used. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 1 μm. The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 40 μm.

【0017】電解質には、高いリチウムイオン伝導性を
示すLiPF6、LiBF4、LiAsF6、LiOSO2
CF3等等を用いることができる。これら含フッ素電解
質は、非水溶媒中に通常0.1M〜3.0M好ましくは
0.5M〜2.0Mの濃度に溶解して使用する。
The electrolyte includes LiPF 6 , LiBF 4 , LiAsF 6 and LiOSO 2 exhibiting high lithium ion conductivity.
CF 3, etc. and the like can be used. These fluorinated electrolytes are used after being dissolved in a non-aqueous solvent at a concentration of usually 0.1 M to 3.0 M, preferably 0.5 M to 2.0 M.

【0018】前記非水溶媒は、高誘電率溶媒と低粘度溶
媒の組み合わせで使用されることが好ましい。高誘電率
溶媒としては、例えば、エチレンカーボネート(E
C)、プロフピレンカーボネート(PC)等の環状カー
ボネート類が好適に用いられる。これら高誘電率溶媒
は、単独で使用してもよく、また2種類以上を組み合わ
せてもよい。
The non-aqueous solvent is preferably used in a combination of a high dielectric constant solvent and a low viscosity solvent. Examples of the high dielectric constant solvent include ethylene carbonate (E
C) and cyclic carbonates such as propylene carbonate (PC) are preferably used. These high dielectric constant solvents may be used alone or in combination of two or more.

【0019】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジメチルカーボネート(DMC)等の鎖状カー
ボネート類、γーブチロラクトン等のラクトン類が挙げ
られる。これら低粘度溶媒は単独で使用してもよく、ま
た2種類以上を組み合わせてもよい。
Examples of the low viscosity solvent include dimethyl carbonate (DMC) and methyl ethyl carbonate (M
EC), chain carbonates such as dimethyl carbonate (DMC), and lactones such as γ-butyrolactone. These low-viscosity solvents may be used alone or in combination of two or more.

【0020】[0020]

【実施例】以下、実施例に基づき、本発明をさらに詳細
に説明する。
The present invention will be described below in further detail with reference to examples.

【0021】(本発明電池1)負極9は、次のようにし
て得た。人造黒鉛(粒径6μm)に、結着剤としてポリ
フッ化ビニリデン(PVDF)粉末を10重量%加え、
溶剤としてN−メチルピロリドンを加えて混練分散し、
塗布液を調製した。前記塗布液を厚さ10μmの銅箔集
電体の両面に塗布し、ロールプレスにより集電体込みの
厚さを180μmに調整して、7mAh/cm2の容量
を持つ負極シートを作製した。前記負極シートを幅65
mm高さ111mmの形状に裁断し、シートの末端に厚
み10μm幅10mmの銅リード板を取り付け、150
℃で12時間減圧乾燥し、負極9とした。
(Battery 1 of the Present Invention) Negative electrode 9 was obtained as follows. 10% by weight of polyvinylidene fluoride (PVDF) powder as a binder was added to artificial graphite (particle diameter: 6 μm),
N-methylpyrrolidone is added as a solvent, kneaded and dispersed,
A coating solution was prepared. The coating solution was applied to both sides of a copper foil current collector having a thickness of 10 μm, and the thickness including the current collector was adjusted to 180 μm by a roll press to prepare a negative electrode sheet having a capacity of 7 mAh / cm 2 . The negative electrode sheet has a width of 65
The sheet was cut into a shape having a height of 111 mm and a copper lead plate having a thickness of 10 μm and a width of 10 mm was attached to the end of the sheet.
It dried under reduced pressure at 12 degreeC for 12 hours, and was set as the negative electrode 9.

【0022】正極7は、正極活物質としてLiCo
2、B23、導電剤としてアセチレンブラック及び結
着剤としてポリフッ化ビニリデン(PVDF)粉末を重
量比84:1:10:5の割合で混合し、溶剤としてN
−メチルピロリドンを加えて混練分散し、塗布液を調製
した。前記塗布液を厚さ20μmのアルミ箔集電体の両
面に塗布し、ロールプレスにより集電体込みの厚さを2
30μmに調整して6.3mAh/cm2の容量を持つ
正極シートを作製した。前記正極シートを幅61mm高
さ107mmの形状に裁断し、シートの末端に厚み20
μm幅10mmのアルミニウムリード板を取り付け、1
50℃で12時間減圧乾燥し、正極7とした。
The positive electrode 7 is made of LiCo as a positive electrode active material.
O 2 , B 2 O 3 , acetylene black as a conductive agent and polyvinylidene fluoride (PVDF) powder as a binder were mixed at a weight ratio of 84: 1: 10: 5, and N was used as a solvent.
-Methylpyrrolidone was added and kneaded and dispersed to prepare a coating solution. The coating solution was applied to both sides of a 20 μm-thick aluminum foil current collector, and the thickness including the current collector was adjusted to 2 by a roll press.
The thickness was adjusted to 30 μm to prepare a positive electrode sheet having a capacity of 6.3 mAh / cm 2 . The positive electrode sheet was cut into a shape having a width of 61 mm and a height of 107 mm.
Attach an aluminum lead plate with a width of 10 mm
After drying under reduced pressure at 50 ° C. for 12 hours, a positive electrode 7 was obtained.

【0023】ポリエチレン製微多孔膜の袋を幅65mm
×高さ111mmの袋状に成形し、セパレータ8として
用いた。前記正極7をセパレータ8の袋に挿入したもの
と負極9とを交互に積層し、40枚の正極7及び41枚
の負極9からなる極群を得た。この極群をポリエチレン
樹脂からなる絶縁フィルムに包み込み、アルミニウム製
の角形電槽缶10に収納した。正極7及び負極9のリー
ド板と、蓋2に取り付けられた正極端子5及び負極端子
4をそれぞれボルトによって接続した。なお、端子はポ
リプロピレン樹脂からなるガスケット6を用いて絶縁し
てある。
A polyethylene microporous membrane bag is 65 mm wide.
× It was formed into a bag shape having a height of 111 mm and used as the separator 8. The positive electrode 7 inserted in the bag of the separator 8 and the negative electrode 9 were alternately laminated to obtain an electrode group including 40 positive electrodes 7 and 41 negative electrodes 9. This electrode group was wrapped in an insulating film made of a polyethylene resin, and housed in a rectangular battery case 10 made of aluminum. The lead plates of the positive electrode 7 and the negative electrode 9 were connected to the positive electrode terminal 5 and the negative electrode terminal 4 attached to the lid 2 by bolts, respectively. The terminals are insulated using a gasket 6 made of polypropylene resin.

【0024】安全弁1を有するアルミニウム製の蓋2と
電槽缶19とをレーザーで溶接し、横70mm、高さ1
30mm(端子込み136mm)幅22mmの角形電池
を作製した。3はレーザー溶接部である。
A lid 2 made of aluminum having a safety valve 1 and a battery case 19 are welded by a laser to a width of 70 mm and a height of 1 mm.
A prismatic battery having a width of 30 mm (136 mm including terminals) and a width of 22 mm was produced. 3 is a laser weld.

【0025】十分に精製したエチレンカーボネートと十
分に精製したジエチルカーボネートとを体積比1:1の
割合で混合した溶媒に、十分に精製したLiPF6を1
mol/l溶解したものを電解液とし、前記電解液を前
記角形電池に65g注入し、封口した。
In a solvent in which fully purified ethylene carbonate and sufficiently purified diethyl carbonate are mixed at a volume ratio of 1: 1, 1 well purified LiPF 6 is added.
The solution dissolved in mol / l was used as an electrolyte, and 65 g of the electrolyte was injected into the prismatic battery and sealed.

【0026】次に被膜作製工程として、前記角形電池に
対し、20℃において1.5A、4.2Vの定電圧充電
を施した後、50℃で3日間放置した。放置中の正極の
電位は4.0V以上(v.s.Li/Li+)であり、負極の電位は、0.
3V以下(v.s.Li/Li+)であった。
Next, as a film forming step, the prismatic battery was charged at a constant voltage of 1.5 A and 4.2 V at 20 ° C., and then left at 50 ° C. for 3 days. The potential of the positive electrode during standing is 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode is 0.
It was 3 V or less (vsLi / Li + ).

【0027】このようにして、図1に示す容量15Ah
の角形非水電解質電池を試作した。この電池を本発明電
池1とする。
In this way, the capacitance 15Ah shown in FIG.
The prototype non-aqueous electrolyte battery was manufactured. This battery is referred to as Battery 1 of the invention.

【0028】(本発明電池2)正極材料のうち、B23
に代えてB23を用いたこと以外は本発明電池1と同様
に作製した電池を本発明電池2とする。充電後、放置中
の正極の電位は4.0V以上(v.s.Li/Li+)であり、負極の電
位は、0.3V以下(v.s.Li/Li+)であった。
(Battery 2 of the Present Invention) Among the positive electrode materials, B 2 O 3
A battery manufactured in the same manner as the battery 1 of the present invention except that B 2 S 3 was used in place of After charging, the potential of the positive electrode during standing was 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0029】(本発明電池3)正極材料のうち、B23
に代えてBH3・N(CH33を用いたこと以外は本発
明電池1と同様に作製した電池を本発明電池3とする。
充電後、放置中の正極の電位は4.0V以上(v.s.Li/Li+)で
あり、負極の電位は、0.3V以下(v.s.Li/Li+)であった。
(Battery 3 of the Present Invention) Among the positive electrode materials, B 2 O 3
A battery manufactured in the same manner as the battery 1 of the present invention except that BH 3 .N (CH 3 ) 3 was used instead of
After charging, the potential of the positive electrode during standing was 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0030】(本発明電池4)被膜作製工程が、20℃
において1.5A、4.2Vの定電圧充電を施した後、
60℃で4日間放置することによる以外は本発明電池1
と同様に作製した電池を本発明電池4とする。放置中の
正極の電位は4.0V以上(v.s.Li/Li+)であり、負極の電位
は、0.3V以下(v.s.Li/Li+)であった。
(Battery 4 of the Present Invention) The film forming step was performed at 20 ° C.
After applying a constant voltage charge of 1.5 A and 4.2 V at
Battery 1 of the present invention except that it was left at 60 ° C. for 4 days
A battery manufactured in the same manner as in the above is referred to as Battery 4 of the invention. The potential of the positive electrode during standing was 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0031】(本発明電池5)被膜作製工程が、20℃
において1.5A、4.2Vの定電圧充電を施した後、
60℃で7日間放置することによる以外は本発明電池1
と同様に作製した電池を本発明電池5とする。放置中の
正極の電位は4.0V以上(v.s.Li/Li+)であり、負極の電位
は、0.3V以下(v.s.Li/Li+)であった。
(Battery 5 of the Present Invention) The film forming step was performed at 20 ° C.
After applying a constant voltage charge of 1.5 A and 4.2 V at
Battery 1 of the present invention except that it was left at 60 ° C. for 7 days
A battery manufactured in the same manner as in the above is referred to as Battery 5 of the invention. The potential of the positive electrode during standing was 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0032】(比較電池1)被膜作製工程が、20℃に
おいて1.5A、4.2Vの定電圧充電を施した後、6
0℃で14日間放置することによる以外は本発明電池1
と同様に作製した電池を比較電池1とする。放置中の正
極の電位は4.0V以上(v.s.Li/Li+)であり、負極の電位
は、0.3V以下(v.s.Li/Li+)であった。
(Comparative Battery 1) In the film forming step, after applying a constant voltage of 1.5 A and 4.2 V at 20 ° C.,
Battery 1 of the present invention except that it was left at 0 ° C. for 14 days
A battery fabricated in the same manner as in Comparative Example 1 is referred to as Comparative Battery 1. The potential of the positive electrode during standing was 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0033】(比較電池2)正極材料が、LiCo
2、アセチレンブラック及びPVDF粉末とを重量比
85:10:5で混合したこと以外は実施例1と同様に
作製した電池を比較電池2とする。放置中の正極の電位
は4.0V以上(v.s.Li/Li+)であり、負極の電位は、0.3V以
下(v.s.Li/Li+)であった。
(Comparative Battery 2) The cathode material is LiCo
A battery manufactured in the same manner as in Example 1 except that O 2 , acetylene black and PVDF powder were mixed at a weight ratio of 85: 10: 5 is referred to as Comparative Battery 2. The potential of the positive electrode during standing was 4.0 V or more (vsLi / Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0034】(比較電池3) 被膜作製工程が、20℃において1.5A、4.2Vの
定電圧充電を施した後、20℃での放置時間が12時間
以内であること以外は実施例1と同様にした電池を比較
電池3とする。放置中の正極の電位は4.0V以上(v.s.Li/
Li+)であり、負極の電位は、0.3V以下(v.s.Li/Li+)であ
った。
(Comparative Battery 3) The procedure of Example 1 was repeated except that the film-forming step was performed after a constant voltage charge of 1.5 A and 4.2 V at 20 ° C. and a standing time at 20 ° C. of 12 hours or less. A battery similar to that described above is referred to as Comparative Battery 3. The potential of the positive electrode during standing is 4.0 V or more (vsLi /
Li + ), and the potential of the negative electrode was 0.3 V or less (vsLi / Li + ).

【0035】これらの本発明電池1〜4及び比較電池
1、2は、それぞれ複数個作製し、一部を被膜の分析に
供し、一部を充放電試験に供した。
Each of the batteries 1 to 4 of the present invention and the comparative batteries 1 and 2 was prepared in a plural number, a part of which was subjected to the analysis of the coating, and a part was subjected to the charge / discharge test.

【0036】(被膜の分析)本発明電池1〜5及び比較
電池1〜3を解体し、負極9をジエチルカーボネートに
よって充分洗浄した後、真空乾燥した負極の表面を、集
束イオンビーム加工装置によって加工した。加工後の負
極断面を電子顕微鏡観察写真によって確認し、被膜層厚
さを測定した。測定結果を表1に示した。
(Analysis of Coating) The batteries 1 to 5 of the present invention and the comparative batteries 1 to 3 were disassembled, and the negative electrode 9 was sufficiently washed with diethyl carbonate. Then, the surface of the negative electrode dried in vacuum was processed by a focused ion beam processing apparatus. did. The cross section of the negative electrode after processing was confirmed by an electron microscopic observation photograph, and the thickness of the coating layer was measured. Table 1 shows the measurement results.

【0037】また、エックス線光分子分光法によって、
被膜の主な構成要素を分析した。その結果、全ての電池
の被膜が、カーボネート骨格を有することが確認でき
た。また、各電池の被膜中に検出されたC(炭素)以外
の元素を表1に併せて示した。
Further, by X-ray photomolecular spectroscopy,
The main components of the coating were analyzed. As a result, it was confirmed that the coatings of all the batteries had a carbonate skeleton. In addition, elements other than C (carbon) detected in the coating of each battery are also shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】(充放電試験) (1)0.1It放電容量の測定 本発明電池1〜5及び比較電池1〜3を用いて、1.5
A(0.1It)で3Vまで放電した後、1.5A
(0.1It)で15時間4.2Vの定電圧充電と、
1.5A(0.1It)にて3Vまでの定電流放電を行
う充放電の繰り返しを5サイクル行った。得られた5サ
イクル目の放電容量の結果を表2に示した。 (2)2It放電容量の測定 引き続き、15A(1It)で1.5時間4.2Vの定
電圧充電と、30A(2It)で3Vまでの定電流放電
を行う充放電を1サイクル行った。得られた放電容量
と、前記0.1It放電容量との比を、表2に併せて示
した。 (3)1Itサイクル寿命の測定 引き続き、15A(1It)で1.5時間4.2Vの定
電圧充電と、15A(1It)で3Vまでの定電流放電
を行う充放電を連続して繰り返し行った。放電容量が前
記0.1It放電容量の80%に低下した時点のサイク
ル数をサイクル寿命とした。結果を表2に併せて示し
た。
(Charge / Discharge Test) (1) Measurement of 0.1 It Discharge Capacity Using batteries 1 to 5 of the present invention and comparative batteries 1 to 3,
1.5 A after discharging to 3 V at A (0.1 It )
(0.1 It ) for 15 hours at a constant voltage of 4.2 V,
Five cycles of repetition of charge / discharge for performing constant current discharge up to 3 V at 1.5 A (0.1 It ) were performed. Table 2 shows the results of the obtained discharge capacity at the fifth cycle. (2) Measurement of 2 It Discharge Capacity Subsequently, a charge / discharge cycle of performing a constant voltage charge of 4.2 V for 1.5 hours at 15 A (1 It ) and a constant current discharge of 3 V at 30 A (2 It ) is performed. Was. Table 2 also shows the ratio between the obtained discharge capacity and the 0.1 It discharge capacity. (3) 1 It subsequently measuring the cycle life, 15A and constant voltage charge for 1.5 hours 4.2V at (1 It), the charge and discharge continuously for at 15A (1 It) performs constant current discharge to 3V Repeated. The cycle number at which the discharge capacity decreased to 80% of the 0.1 It discharge capacity was defined as the cycle life. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】被膜作製工程が同一条件である本発明電池
1〜3及び比較電池2の結果を比べると、B23を正極
に添加した本発明電池1は、B23を添加していない比
較電池2よりも良好なサイクル性能を示した。また、B
23に代えてB23やBH3・N(CH)3を正極に添加
した本発明電池2及び本発明電池3は、本発明電池1よ
りもさらに良好なサイクル性能を示した。
Comparing the results of the batteries 1 to 3 of the present invention and the comparative battery 2 under the same film forming process, the battery 1 of the present invention in which B 2 O 3 was added to the positive electrode did not contain B 2 O 3. The battery exhibited better cycle performance than Comparative Battery 2. Also, B
The battery 2 of the present invention and the battery 3 of the present invention in which B 2 S 3 or BH 3 .N (CH) 3 was added to the positive electrode instead of 2 O 3 exhibited better cycle performance than the battery 1 of the present invention.

【0042】次に、正極にB23を添加し、被膜厚さが
異なる本発明電池1,4,5及び比較電池1,3の結果
を比べると、被膜厚さ1nmの比較電池3に比べ、被膜
厚さ5nm以上の電池は良好なサイクル性能を示してい
る。しかしながら、2It放電容量は、被膜厚さの増大
と共に減少し、被膜厚さ200nmの比較電池1では、
0.1It放電容量に対し、76%にまで至っている。
Next, when B 2 O 3 was added to the positive electrode and the results of the batteries 1, 4 and 5 of the present invention and the comparative batteries 1 and 3 having different coating thicknesses were compared, the comparative battery 3 having a coating thickness of 1 nm was compared. In comparison, batteries having a coating thickness of 5 nm or more show good cycle performance. However, the 2 It discharge capacity decreases as the film thickness increases, and in the comparative battery 1 having a film thickness of 200 nm,
It has reached 76% of the 0.1 It discharge capacity.

【0043】上記実施例では、正極材料及び負極材料と
してLiCoO2及び人造黒鉛をそれぞれ用いたが、他
の正極材料、負極材料を用いた電池についても、同様の
効果が確認されている。
In the above example, LiCoO 2 and artificial graphite were used as the positive electrode material and the negative electrode material, respectively, but similar effects were confirmed for batteries using other positive electrode materials and negative electrode materials.

【0044】[0044]

【発明の効果】上記実施例で、正極に添加したB2
3は、正極シートの作製工程で空気中の水分を吸収し、
ホウ酸になり、150℃の真空乾燥工程によってメタホ
ウ酸を経て4ホウ酸になっていると考えられる。これら
の物質は、少なくとも4.0V以上の電位がかかると、
電解液中に溶出することがわかっている。前記溶出した
ホウ素化合物が負極に到達し、負極において0.3V以
下の電位によって、ホウ素が取り込まれたカーボネート
構造の被膜が生成するものと考えられる。
According to the above embodiment, B 2 O added to the positive electrode
3 absorbs moisture in the air in the process of making the positive electrode sheet,
It is considered that boric acid was formed, and it was converted into boric acid via metaboric acid by a vacuum drying process at 150 ° C. When these substances are applied with a potential of at least 4.0 V,
It is known to be eluted in the electrolyte. It is considered that the eluted boron compound reaches the negative electrode, and a film having a carbonate structure in which boron is incorporated is generated at the negative electrode at a potential of 0.3 V or less.

【0045】負極炭素表面に生成するカーボネート構造
の被膜に、ホウ素や窒素といった元素を含有させ、被膜
厚さを制御することによって、サイクル特性が向上する
理由としては、必ずしも明確ではないが、本発明者らは
以下のように考察する。
It is not clear why the cycle characteristics are improved by adding an element such as boron or nitrogen to the carbonate structure film formed on the carbon surface of the negative electrode and controlling the film thickness. They consider as follows.

【0046】負極炭素材料が充電によってリチウムを吸
蔵する際、炭素表面はリチウム電位に近い還元雰囲気下
に置かれる。このとき、電解液と炭素材料との接触界面
において、炭酸リチウム等イオン伝導性の高い被膜を形
成される。ところが、電解液の溶媒にカーボネート類を
用いている場合、イオン伝導性の高いカーボネート構造
の被膜層が形成される。しかしながら前記カーボネート
構造の被膜は脆弱であるため、充放電の繰り返しによっ
て前記カーボネート構造の被膜が破壊される。その結
果、炭素表面が、リチウム塩と微量水分が反応して生じ
たハロゲン化水素酸に曝され、フッ化リチウム等のイオ
ン伝導性の低い被膜層が形成されてしまう。また、被膜
層が破壊された場合、電解液の分解も進行する。
When the negative electrode carbon material absorbs lithium by charging, the carbon surface is placed in a reducing atmosphere close to the lithium potential. At this time, a film having high ion conductivity such as lithium carbonate is formed at the contact interface between the electrolyte and the carbon material. However, when carbonates are used as the solvent of the electrolytic solution, a coating layer having a carbonate structure with high ion conductivity is formed. However, since the film having the carbonate structure is fragile, the film having the carbonate structure is broken by repeated charge and discharge. As a result, the carbon surface is exposed to hydrohalic acid generated by the reaction between the lithium salt and a trace amount of water, and a coating layer having low ion conductivity such as lithium fluoride is formed. In addition, when the coating layer is broken, the decomposition of the electrolytic solution also proceeds.

【0047】ここで、被膜層に、ホウ素、硫黄、窒素等
元素が含有していると、カーボネート構造の被膜を強固
なものにする効果があると考えられる。
Here, it is considered that when the coating layer contains an element such as boron, sulfur, or nitrogen, there is an effect of strengthening the coating having the carbonate structure.

【0048】実施例の結果を参照すると、前記効果は、
前記元素を単独で含む場合には、ホウ素について最も高
く硫黄や窒素については低い。しかしながら、硫黄、窒
素は、ホウ素と混在させた場合、各々を単独で用いる場
合より優れた効果を発現する。
Referring to the results of the examples, the effect is as follows.
When the element is contained alone, it is highest for boron and lowest for sulfur and nitrogen. However, when sulfur and nitrogen are mixed with boron, they exhibit more excellent effects than when each is used alone.

【0049】また、本発明の被膜層の上に生成したフッ
化リチウムは炭素負極の特性を低下させる影響が少ない
ことがわかった。
It was also found that lithium fluoride formed on the coating layer of the present invention had little effect on lowering the properties of the carbon anode.

【0050】なお、比較電池2の負極について、エック
ス線光分子分光装置を用い、アルゴンエッチングを施し
ながら負極表面被膜の分析を行った結果、カーボネート
骨格の被膜層の最下層、即ち、グラファイト由来の炭素
のピークが検出される程度の炭素負極の表面近傍に、多
くのフッ化リチウム(LiF)が検出された。また、本
発明電池電池1の負極について同様の分析を行った結
果、同じくカーボネート骨格の被膜層の最下層、即ち、
グラファイト由来の炭素のピークが検出される程度の炭
素負極の表面近傍には、フッ化リチウム(LiF)が検
出されるものの、比較電池2に比べるとはるかに少ない
量であった。
The negative electrode of Comparative Battery 2 was analyzed for its negative electrode surface coating using an X-ray photo-molecular spectrometer while performing argon etching. As a result, the lowermost layer of the carbonate skeleton coating layer, that is, graphite-derived carbon Many lithium fluorides (LiF) were detected in the vicinity of the surface of the carbon negative electrode to the extent that the peak of was detected. The same analysis was performed on the negative electrode of the battery 1 of the present invention. As a result, the lowermost layer of the carbonate skeleton coating layer, that is,
Although lithium fluoride (LiF) was detected in the vicinity of the surface of the carbon negative electrode at which a carbon peak derived from graphite was detected, the amount was much smaller than that of the comparative battery 2.

【0051】これらのことから、炭素材料を用いた負極
にカーボネート骨格を有する被膜層を5〜100nm設
けることによって、LiF等の好ましくない被膜が炭素
表面で発生しにくくなり、優れたサイクル性能を示すも
のと考えられる。
From these facts, by providing a coating layer having a carbonate skeleton on the negative electrode using a carbon material in a thickness of 5 to 100 nm, an undesired coating such as LiF is less likely to be generated on the carbon surface, and excellent cycle performance is exhibited. It is considered something.

【0052】上述のように、本発明によれば、正極に微
量の添加剤を加え、初期充電後の保存温度と保存時間を
制御するといった簡単な方法により、高率充放電特性を
有する、サイクル寿命特性に優れたリチウム二次電池を
提供できる。
As described above, according to the present invention, a cycle having a high rate charge / discharge characteristic can be obtained by a simple method of adding a small amount of additive to the positive electrode and controlling the storage temperature and storage time after the initial charge. A lithium secondary battery having excellent life characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の1実施形態を示す図である。FIG. 1 is a diagram showing one embodiment of a battery of the present invention.

【符号の説明】[Explanation of symbols]

7 正極 8 セパレータ 9 負極 7 positive electrode 8 separator 9 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 明博 大阪府高槻市古曽部町二丁目3番21号 株式会社 ユアサ コーポレーション 内 (72)発明者 油布 宏 大阪府高槻市古曽部町二丁目3番21号 株式会社 ユアサ コーポレーション 内 審査官 植前 充司 (56)参考文献 特開 平7−14572(JP,A) 特開 平8−45509(JP,A) 特開2001−43858(JP,A) 特開 平9−161779(JP,A) 特開 平7−176323(JP,A) 特開 平9−147864(JP,A) 特開 平11−144711(JP,A) 特開 平7−135021(JP,A) 特開 平9−259885(JP,A) 特開 平10−261406(JP,A) 特開 平10−270089(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Fujii 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka Inside Yuasa Corporation Co., Ltd. (72) Inventor Hiroshi Yufu, 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka Examiner at Yuasa Corporation Inc. Mitsuji Uemae (56) References JP-A 7-14572 (JP, A) JP-A 8-45509 (JP, A) JP-A 2001-43858 (JP, A) JP JP-A-7-176323 (JP, A) JP-A-9-147864 (JP, A) JP-A-11-144711 (JP, A) JP-A-7-135021 (JP, A) A) JP-A-9-259885 (JP, A) JP-A-10-261406 (JP, A) JP-A-10-270089 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01M 4/02 H01M 4/62 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、非水電解液を含むセパレータ
と、炭素材料からなる負極とを備え、前記負極の少なく
ともセパレータと接する部分を構成する炭素粒子の表面
がカーボネート構造を有する被膜層を有し、前記被膜層
が、ホウ素、硫黄、窒素のうちいずれか1種以上の元素
を含んでいることを特徴とするリチウムイオン二次電
池。
An anode comprising a positive electrode, a separator containing a non-aqueous electrolyte, and a negative electrode made of a carbon material, wherein at least a portion of the carbon particles constituting a part of the negative electrode in contact with the separator has a coating layer having a carbonate structure. A lithium ion secondary battery wherein the coating layer contains at least one element of boron, sulfur and nitrogen.
【請求項2】 前記被膜層の厚さが5nm〜100nm
であることを特徴とする請求項1記載のリチウムイオン
二次電池。
2. The method according to claim 1, wherein said coating layer has a thickness of 5 nm to 100 nm.
The lithium ion secondary battery according to claim 1, wherein
【請求項3】 電解液が少なくともカーボネート系の溶
媒を含み、初期充電前の正極が、ホウ素、硫黄、窒素の
うちいずれか1つ以上の元素を含有し、40℃以上の温
度で初期充電を行うことを特徴とするリチウムイオン二
次電池の製造方法。
3. The electrolyte solution contains at least a carbonate-based solvent, and the positive electrode before the initial charge contains one or more elements of boron, sulfur and nitrogen, and performs an initial charge at a temperature of 40 ° C. or more. A method for producing a lithium ion secondary battery.
JP2000062289A 2000-03-07 2000-03-07 Lithium ion secondary battery and method of manufacturing the same Expired - Fee Related JP3327468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062289A JP3327468B2 (en) 2000-03-07 2000-03-07 Lithium ion secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062289A JP3327468B2 (en) 2000-03-07 2000-03-07 Lithium ion secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001250535A JP2001250535A (en) 2001-09-14
JP3327468B2 true JP3327468B2 (en) 2002-09-24

Family

ID=18582318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062289A Expired - Fee Related JP3327468B2 (en) 2000-03-07 2000-03-07 Lithium ion secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3327468B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687942B2 (en) * 2003-09-30 2011-05-25 株式会社Gsユアサ Method for producing non-aqueous electrolyte secondary battery
KR101117624B1 (en) 2010-05-07 2012-02-29 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
KR101683206B1 (en) 2012-04-30 2016-12-06 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP7255276B2 (en) * 2019-03-25 2023-04-11 トヨタ自動車株式会社 Positive electrode mixture, all-solid battery, and method for producing positive electrode mixture
KR102495135B1 (en) 2019-04-03 2023-02-02 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP7147709B2 (en) * 2019-08-01 2022-10-05 トヨタ自動車株式会社 positive electrode mixture
JP7147708B2 (en) * 2019-08-01 2022-10-05 トヨタ自動車株式会社 positive electrode mixture
JP7380881B2 (en) * 2020-06-15 2023-11-15 株式会社村田製作所 secondary battery

Also Published As

Publication number Publication date
JP2001250535A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
US6689511B2 (en) Secondary battery and electronic instrument using it
KR100666822B1 (en) Anode active material with improved electrochemical properties and electrochemical device comprising the same
US6610109B2 (en) Method of manufacturing lithium secondary cell
JP4151060B2 (en) Non-aqueous secondary battery
CN1168172C (en) Non-aqueous electrolyte battery and its manufacturing method
EP1936731A1 (en) Rechargeable lithium battery
CN102290573A (en) Cathode active material, cathode and nonaqueous electrolyte battery
JP5622525B2 (en) Lithium ion secondary battery
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
CN101355146A (en) Anode, battery, and methods of manufacturing them
JP2001256996A (en) Organic electrolytic solution and lithium secondary battery adopting it
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
KR20190030345A (en) Pre-lithiation method of negative electrode for secondary battery
EP4145567A1 (en) Non-aqueous electrolyte secondary battery
US7919208B2 (en) Anode active material and battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2001222995A (en) Lithium ion secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2003168427A (en) Nonaqueous electrolyte battery
KR20190088330A (en) Manufacturing methods for carbon nano tube-electrode composite powder and electrode for solid electrolyte battery including the same
KR20150116222A (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP2002260726A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3327468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees