JP2008234851A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008234851A
JP2008234851A JP2007068408A JP2007068408A JP2008234851A JP 2008234851 A JP2008234851 A JP 2008234851A JP 2007068408 A JP2007068408 A JP 2007068408A JP 2007068408 A JP2007068408 A JP 2007068408A JP 2008234851 A JP2008234851 A JP 2008234851A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
secondary battery
comparative example
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007068408A
Other languages
Japanese (ja)
Inventor
Atsushi Ueda
敦史 上田
Yosuke Kita
洋介 喜多
Yukishige Inaba
幸重 稲葉
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007068408A priority Critical patent/JP2008234851A/en
Publication of JP2008234851A publication Critical patent/JP2008234851A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery for restraining decomposition of a nonaqueous electrolyte and degradation of a positive electrode active material and having high capacity, superior cycle performance, and high-temperature preservation characteristics. <P>SOLUTION: In the nonaqueous electrolyte secondary battery having a group of electrode plates 1 winding a positive electrode plate and negative electrode plate via a separator and a nonaqueous electrolyte, and a charge and discharge control device connected with a main body of the nonaqueous electrolyte secondary battery, the positive electrode plate includes a binding agent mainly made of PTFE, a compound layer with high oxidation resistance having fine holes is arranged on at least one surface of the separator facing to the positive electrode plate, and charge terminating voltage of the charge and discharge control device is set up to be 4.3 V or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はリチウムイオンを利用する非水電解質二次電池に関し、特に充電終止電圧を4.3V以上に設定した場合でも良好に作動する非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery using lithium ions, and more particularly to a non-aqueous electrolyte secondary battery that operates well even when the end-of-charge voltage is set to 4.3 V or higher.

近年、移動体通信機器、携帯電子機器の主電源として利用されている非水電解質二次電池は、起電力が高く、高エネルギー密度である特長を有している。ここで用いられる正極活物質としてはコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)等がある。これらの正極活物質はリチウム(Li)に対し4V以上の電圧を有している。 In recent years, non-aqueous electrolyte secondary batteries used as a main power source for mobile communication devices and portable electronic devices have a high electromotive force and a high energy density. Examples of the positive electrode active material used here include lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ). These positive electrode active materials have a voltage of 4 V or more with respect to lithium (Li).

これらのリチウムイオンを利用したリチウムイオン二次電池では、電池の充電終止電圧を高く設定するほど高容量な電池が実現可能となるため、充電終止電圧の高電圧化が検討されている。   In these lithium ion secondary batteries using lithium ions, a higher capacity battery can be realized as the charge end voltage of the battery is set higher. Therefore, higher charge end voltage has been studied.

それらの中でも、マンガン(Mn)を含むリチウムスピネル酸化物は高電位でも安定なため、充電終止電圧を4.0Vから4.5Vの範囲に設定する構成が提案されている(例えば、特許文献1参照)。   Among them, since a lithium spinel oxide containing manganese (Mn) is stable even at a high potential, a configuration in which a charge end voltage is set in a range of 4.0 V to 4.5 V has been proposed (for example, Patent Document 1). reference).

また、特定の2種の正極活物質を混合することで、4.3V以上の充電終止電圧で作動させても良好なサイクル特性が得られることが提案されている(例えば、特許文献2参照)。
特開2001−307781号公報 特開2006−164934号公報
It has also been proposed that by mixing two specific positive electrode active materials, good cycle characteristics can be obtained even when operated at a charge end voltage of 4.3 V or more (see, for example, Patent Document 2). .
JP 2001-307781 A JP 2006-164934 A

しかし、充電終止電圧を4.3V以上に設定した場合は、より高容量な電池が実現できるものの、充電終止電圧を高めることにより正極活物質の構造劣化及び正極活物質表面における電解液の分解等が生じ易くなり、高温保存試験や充放電サイクル試験により電池の容量が大幅に低下するという課題があった。   However, when the end-of-charge voltage is set to 4.3 V or higher, a battery with a higher capacity can be realized. However, by increasing the end-of-charge voltage, structural degradation of the positive electrode active material, decomposition of the electrolyte on the surface of the positive electrode active material, etc. There is a problem that the capacity of the battery is greatly reduced by a high-temperature storage test or a charge / discharge cycle test.

特に正極活物質の構造劣化は充電終止電圧が4.3V以上の領域で急激に加速され、これまでに報告されている特許文献1や特許文献2のように正極板の結着剤としてポリビニリデンジフルオライド(PVDF)を用いた場合には、正極活物質の構造劣化を抑制しているとは言えない状況であった。   In particular, the structural deterioration of the positive electrode active material is accelerated rapidly in the region where the end-of-charge voltage is 4.3 V or more, and as disclosed in Patent Documents 1 and 2, polyvinylidene is used as a binder for the positive electrode plate. When difluoride (PVDF) is used, it cannot be said that the structure deterioration of the positive electrode active material is suppressed.

本発明はこの課題を解決し、通常作動状態での充電終止電圧を4.3V以上に設定しても、高温保存特性や充放電サイクル特性等、電池としての機能が正常に作動する高容量な非水電解質二次電池を提供することを目的とする。   The present invention solves this problem, and even when the end-of-charge voltage in a normal operation state is set to 4.3 V or higher, the battery function such as high-temperature storage characteristics and charge / discharge cycle characteristics is high enough to operate normally. An object is to provide a non-aqueous electrolyte secondary battery.

上記目的を達成するために本発明は、正極板と負極板とをセパレータを介して巻回してなる極板群と非水電解質とを備えた非水電解質二次電池と、前記非水電解質二次電池の本体に接続した充放電制御装置とを備えた非水電解質二次電池であって、前記正極板はポリテトラフルオロエチレン(PTFE)を主体とする結着剤を含み、この正極板に対向する前記セパレータの少なくとも一方の面に微細孔を有する耐酸化性の高い化合物の層を設け
、前記充放電制御装置の充電終止電圧を4.3V以上に設定したことを特徴とする。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery comprising an electrode plate group obtained by winding a positive electrode plate and a negative electrode plate via a separator, and a non-aqueous electrolyte, and the non-aqueous electrolyte secondary battery. A non-aqueous electrolyte secondary battery including a charge / discharge control device connected to a main body of the secondary battery, wherein the positive electrode plate includes a binder mainly composed of polytetrafluoroethylene (PTFE), and the positive electrode plate includes A layer of a compound having high oxidation resistance having fine holes is provided on at least one surface of the facing separator, and a charge end voltage of the charge / discharge control device is set to 4.3 V or more.

この構成によれば、充電終止電圧を4.3V以上に設定した場合においても、セパレータや正極板の結着剤の酸化反応が起きにくく、正極活物質の構造劣化及び正極活物質の表面における電解液の分解等が大幅に抑制されるため、高温保存試験や充放電サイクル試験で容量が大幅に低下するという課題を解決でき、高容量で且つ高温保存特性や充放電サイクル特性に優れた非水電解質二次電池が得られる。   According to this configuration, even when the end-of-charge voltage is set to 4.3 V or more, the oxidation reaction of the binder of the separator and the positive electrode plate hardly occurs, the structure of the positive electrode active material is deteriorated and the surface of the positive electrode active material is electrolyzed. Since the decomposition of the liquid is greatly suppressed, it is possible to solve the problem that the capacity is drastically reduced in the high temperature storage test and the charge / discharge cycle test. An electrolyte secondary battery is obtained.

充電終止電圧を4.3V以上に設定した場合、正極活物質の構造劣化及び正極活物質の表面における電解液の分解等が大幅に加速され、その結果、高温保存特性や充放電サイクル特性が大幅に低下する傾向が観測されている。さらにそれらの電池を詳細に調べた結果、ポリエチレン(PE)を主体とするセパレータを用いて作製した電池では、正極板と接しているセパレータ表面のPEが大幅に酸化されており、また、正極板の結着剤にPVDFを主体に用いて作製した電池では、結着剤のPVDFも大幅に酸化されていることが明らかとなった。これらはPEを主体とするセパレータとPVDFを主体とする結着剤が、高電圧に充電された状態の正極活物質と直接接することにより、酸化反応を受けたものと考えられる。   When the end-of-charge voltage is set to 4.3 V or more, the structure deterioration of the positive electrode active material and the decomposition of the electrolyte on the surface of the positive electrode active material are greatly accelerated. As a result, the high temperature storage characteristics and charge / discharge cycle characteristics are greatly increased. A downward trend is observed. Furthermore, as a result of examining these batteries in detail, in the battery produced using a separator mainly composed of polyethylene (PE), the PE on the separator surface in contact with the positive electrode plate was greatly oxidized, and the positive electrode plate It was revealed that the PVDF as the binder was greatly oxidized in the battery manufactured using PVDF as the main binder. It is considered that these were subjected to an oxidation reaction when a separator mainly composed of PE and a binder mainly composed of PVDF were in direct contact with a positive electrode active material charged at a high voltage.

これらの結果より、充電終止電圧を4.3V以上に設定した場合の正極活物質の構造劣化及び正極活物質の表面における電解液の分解等は、PEを主体とするセパレータの酸化反応と、PVDFを主体とする結着剤の酸化反応が大きく関与しており、それらの酸化反応を抑制することで正極活物質の構造劣化及び正極活物質の表面における電解液の分解等が抑制できる可能性が示唆された。   From these results, the structural deterioration of the positive electrode active material and the decomposition of the electrolyte solution on the surface of the positive electrode active material when the end-of-charge voltage is set to 4.3 V or higher are the oxidation reaction of the separator mainly composed of PE, PVDF Oxidation reaction of the binder mainly composed of is greatly involved, and by suppressing these oxidation reactions, there is a possibility that structural degradation of the positive electrode active material and decomposition of the electrolyte solution on the surface of the positive electrode active material can be suppressed. It was suggested.

本発明によれば、セパレータの正極板に接する面が微細孔を有する耐酸化性の高い化合物で形成されており、且つ前記正極板の結着剤がPTFEを主体としていることで、充電終止電圧を4.3V以上に設定した際の正極活物質の構造劣化及び正極活物質の表面における電解液の分解等を大幅に抑制し、高容量で且つ高温保存特性や充放電サイクル特性に優れた非水電解質二次電池を提供できる。   According to the present invention, the surface of the separator that is in contact with the positive electrode plate is formed of a highly oxidation-resistant compound having fine pores, and the binder of the positive electrode plate is mainly composed of PTFE. Significantly suppresses structural deterioration of the positive electrode active material and decomposition of the electrolyte solution on the surface of the positive electrode active material when the voltage is set to 4.3 V or higher, and has high capacity and excellent high-temperature storage characteristics and charge / discharge cycle characteristics. A water electrolyte secondary battery can be provided.

本発明においては、正極板と負極板とをセパレータを介して巻回してなる極板群と非水電解質とを備えた非水電解質二次電池と、前記非水電解質二次電池の本体に接続した充放電制御装置とを備えた非水電解質二次電池であって、前記正極板はPTFEを主体とする結着剤を含み、この正極板に対向する前記セパレータの少なくとも一方の面に微細孔を有する耐酸化性の高い化合物の層を設け、前記充放電制御装置の充電終止電圧を4.3V以上に設定した。   In the present invention, a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte and an electrode plate group formed by winding a positive electrode plate and a negative electrode plate through a separator, and connected to the main body of the non-aqueous electrolyte secondary battery A non-aqueous electrolyte secondary battery including a charge / discharge control device, wherein the positive electrode plate includes a binder mainly composed of PTFE, and at least one surface of the separator facing the positive electrode plate has micropores. A layer of a compound having high oxidation resistance and having a charge endurance voltage of 4.3 V or higher was set.

このように正極板の結着剤としてPTFEを主体として用い、正極板に対向するセパレータの少なくとも一方の面に微細孔を有する耐酸化性の高い化合物の層を設けることで、充放電制御装置の充電終止電圧を4.3V以上に設定した場合においても、正極結着剤の酸化反応、およびPEを主体とするセパレータを用いた場合のPEの酸化反応を抑制することが可能となり、それらの酸化反応を抑制することで正極活物質の構造劣化及び正極活物質の表面における電解液の分解等が抑制可能となる。その結果、高容量で且つ高温保存特性や充放電サイクル特性に優れた非水電解質二次電池を提供できる。   Thus, by using PTFE as a binder for the positive electrode plate, and providing a layer of a compound having high oxidation resistance having fine holes on at least one surface of the separator facing the positive electrode plate, Even when the end-of-charge voltage is set to 4.3 V or more, it becomes possible to suppress the oxidation reaction of the positive electrode binder and the oxidation reaction of PE when a separator mainly composed of PE is used. By suppressing the reaction, the structure deterioration of the positive electrode active material and the decomposition of the electrolyte solution on the surface of the positive electrode active material can be suppressed. As a result, a non-aqueous electrolyte secondary battery having a high capacity and excellent in high-temperature storage characteristics and charge / discharge cycle characteristics can be provided.

また、正極板と対向するセパレータの面に設けた微細孔を有する耐酸化性の高い化合物は、ポリプロピレン、ポリアラミド、ポリアミドイミド、およびポリイミドよりなる群から選択される少なくとも1種の材料を含むことがより好ましい。
これによれば、耐酸化性と柔軟性を併せ持つ層の形成が可能となる効果が得られる。
The highly oxidation-resistant compound having micropores provided on the surface of the separator facing the positive electrode plate may include at least one material selected from the group consisting of polypropylene, polyaramid, polyamideimide, and polyimide. More preferred.
According to this, an effect that enables formation of a layer having both oxidation resistance and flexibility can be obtained.

以下、図面を参照して本発明の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

尚、ここで示す図は本発明の非水電解質二次電池の一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。   In addition, the figure shown here is an example of the nonaqueous electrolyte secondary battery of this invention, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.

(電池の作製)
図1は本実施例の非水電解質二次電池の一実施例を示す一部切欠斜視図である。
(Production of battery)
FIG. 1 is a partially cutaway perspective view showing an embodiment of the nonaqueous electrolyte secondary battery of the present embodiment.

図1に示したように、セパレータを介して帯状の正極板と負極板を複数回渦巻状に巻回して、極板群1を構成した。正極板と負極板にはそれぞれアルミニウム製の正極リード2およびニッケル製の負極リード3を接続した。それをアルミニウム製の電池ケース4内に収容した。正極リード2の他端をアルミニウム製の封口板5にスポット溶接し、また負極リード3の他端は封口板5の中心部にあるニッケル製の負極端子6の下部にスポット溶接した。電池ケース4の開口部周囲と封口板5とをレーザ溶接し、所定量の非水電解液を注入口7から注入した。最後に注入口7をアルミニウム製の栓を用いてレーザー溶接し、非水電解質二次電池を完成した。   As shown in FIG. 1, a strip-shaped positive electrode plate and a negative electrode plate were wound in a spiral shape a plurality of times through a separator to constitute an electrode plate group 1. A positive electrode lead 2 made of aluminum and a negative electrode lead 3 made of nickel were connected to the positive electrode plate and the negative electrode plate, respectively. It was housed in a battery case 4 made of aluminum. The other end of the positive electrode lead 2 was spot welded to the aluminum sealing plate 5, and the other end of the negative electrode lead 3 was spot welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5. The periphery of the opening of the battery case 4 and the sealing plate 5 were laser welded, and a predetermined amount of non-aqueous electrolyte was injected from the inlet 7. Finally, the injection port 7 was laser welded using an aluminum plug to complete a nonaqueous electrolyte secondary battery.

(1)正極板の作製
(1−1)結着剤としてPVDFを用いた正極板の作製
LiCo0.94Mg0.05Al0.01を正極活物質とした。この正極活物質100重量部に導電剤としてアセチレンブラック3重量部、結着剤としてPVDFが5重量部になるようにN−メチルピロリジノン(NMP)溶液を調整し、撹拌混合してペースト状の正極合剤を得た。次に、厚さ20μmのアルミニウム箔を正極集電体とし、その両面に前記ペースト状の正極合剤を塗布し、乾燥後圧延ローラーで圧延を行い、所定寸法に裁断して正極板とした。
(1) Production of positive electrode plate (1-1) Production of positive electrode plate using PVDF as binder LiCo 0.94 Mg 0.05 Al 0.01 O 2 was used as a positive electrode active material. An N-methylpyrrolidinone (NMP) solution was prepared so that 3 parts by weight of acetylene black as a conductive agent and 5 parts by weight of PVDF as a binder were added to 100 parts by weight of the positive electrode active material, and the mixture was stirred and mixed to obtain a paste-like positive electrode A mixture was obtained. Next, an aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, the paste-like positive electrode mixture was applied to both surfaces thereof, dried and rolled with a rolling roller, and cut into a predetermined size to obtain a positive electrode plate.

(1−2)結着剤としてPTFEを用いた正極板の作製
LiCo0.94Mg0.05Al0.01を正極活物質とした。この正極活物質100重量部に導電剤としてアセチレンブラック3重量部、結着剤としてPTFE5重量部を混合し、これをカルボキシメチルセルロースの水溶液に混濁させてペースト状の正極合剤を得た。次に、厚さ20μmのアルミニウム箔を正極集電体とし、その両面に前記ペースト状の正極合剤を塗布し、乾燥後圧延ローラーで圧延を行い、所定寸法に裁断して正極板とした。
(1-2) Preparation of positive electrode plate using PTFE as binder LiCo 0.94 Mg 0.05 Al 0.01 O 2 was used as a positive electrode active material. 100 parts by weight of the positive electrode active material was mixed with 3 parts by weight of acetylene black as a conductive agent and 5 parts by weight of PTFE as a binder, and the mixture was made turbid in an aqueous solution of carboxymethyl cellulose to obtain a paste-like positive electrode mixture. Next, an aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, the paste-like positive electrode mixture was applied to both surfaces thereof, dried and rolled with a rolling roller, and cut into a predetermined size to obtain a positive electrode plate.

尚、正極板用の導電剤としては、構成した非水電解質二次電池において実質的に化学的に安定な電子伝導性材料であればよい。例えば、グラファイト類、カーボンブラック類、導電性繊維類、金属粉末類、導電性ウィスカー類、導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などが挙げられ、これらを単独または混合物として用いても良い。   The conductive agent for the positive electrode plate may be any electron conductive material that is substantially chemically stable in the constructed nonaqueous electrolyte secondary battery. For example, graphites, carbon blacks, conductive fibers, metal powders, conductive whiskers, conductive metal oxides, organic conductive materials such as polyphenylene derivatives, and the like can be used alone or as a mixture. Also good.

(2)負極板の作製
平均粒径が約20μmになるように粉砕、分級した鱗片状黒鉛と結着剤のスチレン/ブタジエンゴム3重量部を混合した後、黒鉛に対しカルボキシメチルセルロースが1%となるようにカルボキシメチルセルロ−ス水溶液を加え、撹拌混合しペースト状の負極合剤とした。厚さ15μmの銅箔を負極集電体とし、その両面にペースト状の負極合剤を塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して負極板とした。
(2) Production of negative electrode plate After pulverized and classified so as to have an average particle size of about 20 μm and 3 parts by weight of styrene / butadiene rubber as a binder, carboxymethyl cellulose is 1% of graphite. A carboxymethyl cellulose aqueous solution was added so that the mixture was stirred and mixed to obtain a paste-like negative electrode mixture. A copper foil having a thickness of 15 μm was used as a negative electrode current collector, a paste-like negative electrode mixture was applied to both surfaces thereof, dried and then rolled using a rolling roller, and cut into a predetermined size to obtain a negative electrode plate.

尚、負極活物質としては、例えばリチウムをドープ・脱ドープすることが可能な炭素質を主体とする材料として、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭素等が挙げられ、これらを単独もしくは2種以上を混合して用いることができる。負極活物質の平均粒径は特に限定されないが、1〜30μmのものが好ましい。   Examples of the negative electrode active material include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and the like, which are mainly carbonaceous materials that can be doped and dedoped with lithium. , Glassy carbons, organic polymer compound fired bodies (phenol resins, furan resins, etc., fired at a suitable temperature and carbonized), carbon fibers, activated carbon, etc., and these may be used alone or in combination of two or more. It can be used by mixing. The average particle size of the negative electrode active material is not particularly limited, but is preferably 1 to 30 μm.

負極用の導電剤としては、電子伝導性材料であれば特に限定されないが、例えば、人造黒鉛、アセチレンブラック、炭素繊維などが好ましい。   The conductive agent for the negative electrode is not particularly limited as long as it is an electron conductive material. For example, artificial graphite, acetylene black, carbon fiber and the like are preferable.

負極用の結着剤としては、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体などが好ましい。   Examples of the binder for the negative electrode include styrene butadiene rubber, polyvinylidene fluoride, an ethylene-acrylic acid copolymer, or a (Na +) ion crosslinked product of the above material, an ethylene-methacrylic acid copolymer, or a (Na + of the above material). An ionic cross-linked product, an ethylene-methyl acrylate copolymer, or a (Na +) ionic cross-linked product of the material, an ethylene-methyl methacrylate copolymer, or a (Na +) ionic cross-linked product of the material are preferred.

(3)セパレータの作製
(3−1)正極板に接する面にポリプロピレンからなる層を設けたセパレータの作製
ポリエチレン微孔性膜を基材として、正極板に接する面にポリプロピレン微孔性膜を多層化することにより、正極板に接する面にポリプロピレンからなる層を設けたセパレータを作製した。
(3) Production of separator (3-1) Production of separator provided with a layer made of polypropylene on the surface in contact with the positive electrode plate Using a polyethylene microporous membrane as a base material, a polypropylene microporous membrane is multilayered on the surface in contact with the positive electrode plate Thus, a separator in which a layer made of polypropylene was provided on the surface in contact with the positive electrode plate was produced.

(3−2)正極板に接する面にポリアラミドからなる層を設けたセパレータの作製
NMP100重量部に対し無水塩化カルシウムを5重量部添加し、完全に溶解した。この溶液に、パラフェニレンジアミン(PPD)を3重量部添加後、テレフタル酸ジクロライド(TPC)5重量部を少しずつ滴下して重合反応によりポリパラフェニレンテレフタルアミド(PPTA)を合成した。得られた重合液を、さらに、塩化カルシウムを添加したNMP溶液にて希釈した。このPPTA液を、ポリエチレン微孔性膜からなる基材の正極板に接する面にバーコーターにより薄くコートし、60℃で加熱乾燥し、PPTAからなるアラミド樹脂層を形成し複合膜とした。この複合膜を、純水で十分に水洗して塩化カルシウムを除去することによりアラミド樹脂層を多孔質化し、正極板に接する面にポリアラミドからなる層を設けたセパレータを作製した。
(3-2) Production of separator having a layer made of polyaramid on the surface in contact with the positive electrode plate 5 parts by weight of anhydrous calcium chloride was added to 100 parts by weight of NMP and completely dissolved. After adding 3 parts by weight of paraphenylenediamine (PPD) to this solution, 5 parts by weight of terephthalic acid dichloride (TPC) was added dropwise little by little to synthesize polyparaphenylene terephthalamide (PPTA) by a polymerization reaction. The obtained polymerization solution was further diluted with an NMP solution to which calcium chloride was added. This PPTA solution was thinly coated with a bar coater on the surface of the base material made of a polyethylene microporous film, which was in contact with the positive electrode plate, and heated and dried at 60 ° C. to form an aramid resin layer made of PPTA to obtain a composite film. The composite membrane was sufficiently washed with pure water to remove calcium chloride, thereby making the aramid resin layer porous, and a separator having a layer made of polyaramid on the surface in contact with the positive electrode plate was produced.

(4)非水電解液の作製
エチレンカーボネートとエチルメチルカーボネートを20℃において30:70の体積割合で調整した溶媒に1.0mol/lのLiPFを溶解したものを用いた。
(4) Production of non-aqueous electrolyte A solution prepared by dissolving 1.0 mol / l LiPF 6 in a solvent prepared by mixing ethylene carbonate and ethyl methyl carbonate at a volume ratio of 30:70 at 20 ° C. was used.

(5)電池の組立
<実施例1および比較例1>
結着剤としてPTFEを用いた正極板と負極板、および正極板に接する面に、前記(3−1)で作製したポリプロピレンからなる層を設けたセパレータを渦巻状に巻回し、これに前記(4)で調整した非水電解液を注液した後、密封栓して組み立てた角型リチウムイオン二次電池の本体に充放電制御装置を接続した。
(5) Battery assembly <Example 1 and Comparative Example 1>
A separator provided with a layer made of polypropylene prepared in (3-1) above is spirally wound on a surface in contact with a positive electrode plate and a negative electrode plate using PTFE as a binder, and the positive electrode plate. After injecting the non-aqueous electrolyte adjusted in 4), a charge / discharge control device was connected to the main body of the prismatic lithium ion secondary battery assembled by sealing and sealing.

(実施例1の電池A1−1)
前記の通り作製した角型リチウムイオン二次電池を用い、最大電流600mAで、充電終止電圧を4.3Vとして定電圧充電を2時間行った。この角型リチウムイオン二次電池を本発明の実施例1の電池A1−1とした。
(Battery A1-1 of Example 1)
Using the prismatic lithium ion secondary battery produced as described above, constant voltage charging was performed for 2 hours at a maximum current of 600 mA and a charge end voltage of 4.3 V. This square lithium ion secondary battery was designated as battery A1-1 of Example 1 of the present invention.

(実施例1の電池A1−2)
充電終止電圧を4.4Vとした以外は実施例1の電池A1−1と同様に作製した角型リチウムイオン二次電池を本発明の実施例1の電池A1−2とした。
(Battery A1-2 of Example 1)
A square lithium ion secondary battery produced in the same manner as the battery A1-1 of Example 1 except that the end-of-charge voltage was 4.4 V was designated as the battery A1-2 of Example 1 of the present invention.

(実施例1の電池A1−3)
充電終止電圧を4.5Vとした以外は実施例1の電池A1−1と同様に作製した角型リチウムイオン二次電池を本発明の実施例1の電池A1−3とした。
(Battery A1-3 of Example 1)
A square lithium ion secondary battery produced in the same manner as the battery A1-1 of Example 1 except that the end-of-charge voltage was set to 4.5 V was designated as battery A1-3 of Example 1 of the present invention.

(比較例1の電池B1−1)
充電終止電圧を4.1Vとした以外は実施例1の電池A1−1と同様に作製した角型リチウムイオン二次電池を比較例1の電池B1−1とした。
(Battery B1-1 of Comparative Example 1)
A square lithium ion secondary battery produced in the same manner as the battery A1-1 of Example 1 except that the end-of-charge voltage was 4.1 V was designated as a battery B1-1 of Comparative Example 1.

(比較例1の電池B1−2)
充電終止電圧を4.2Vとした以外は実施例1の電池A1−1と同様に作製した角型リチウムイオン二次電池を比較例1の電池B1−2とした。
(Battery B1-2 of Comparative Example 1)
A square lithium ion secondary battery produced in the same manner as the battery A1-1 of Example 1 except that the end-of-charge voltage was 4.2 V was designated as battery B1-2 of Comparative Example 1.

<実施例2および比較例2>
セパレータとして、前記(3−2)で作製したポリアラミドからなる層を設けたセパレータを用いた以外は実施例1および比較例1と同様に充放電制御装置を接続した角型リチウムイオン二次電池を作製した。
<Example 2 and Comparative Example 2>
A prismatic lithium ion secondary battery connected to a charge / discharge control device in the same manner as in Example 1 and Comparative Example 1 except that the separator provided with the layer made of polyaramid prepared in (3-2) was used as the separator. Produced.

(実施例2の電池A2−1)
前記の通り作製した角型リチウムイオン二次電池を用い、最大電流600mAで、充電終止電圧を4.3Vとして定電圧充電を2時間行った。この角型リチウムイオン二次電池を本発明の実施例2の電池A2−1とした。
(Battery A2-1 of Example 2)
Using the prismatic lithium ion secondary battery produced as described above, constant voltage charging was performed for 2 hours at a maximum current of 600 mA and a charge end voltage of 4.3 V. This square lithium ion secondary battery was designated as Battery A2-1 of Example 2 of the present invention.

(実施例2の電池A2−2)
充電終止電圧を4.4Vとした以外は実施例2の電池A2−1と同様に作製した角型リチウムイオン二次電池を本発明の実施例2の電池A2−2とした。
(Battery A2-2 of Example 2)
A square lithium ion secondary battery produced in the same manner as the battery A2-1 of Example 2 except that the end-of-charge voltage was 4.4 V was designated as a battery A2-2 of Example 2 of the present invention.

(実施例2の電池A2−3)
充電終止電圧を4.5Vとした以外は実施例2の電池A2−1と同様に作製した角型リチウムイオン二次電池を本発明の実施例2の電池A2−3とした。
(Battery A2-3 of Example 2)
A square lithium ion secondary battery produced in the same manner as the battery A2-1 of Example 2 except that the end-of-charge voltage was 4.5 V was designated as a battery A2-3 of Example 2 of the present invention.

(比較例2の電池B2−1)
充電終止電圧を4.1Vとした以外は実施例2の電池A2−1と同様に作製した角型リチウムイオン二次電池を比較例2の電池B2−1とした。
(Battery B2-1 of Comparative Example 2)
A square lithium ion secondary battery produced in the same manner as the battery A2-1 of Example 2 except that the end-of-charge voltage was 4.1 V was designated as a battery B2-1 of Comparative Example 2.

(比較例2の電池B2−2)
充電終止電圧を4.2Vとした以外は実施例2の電池A2−1と同様に作製した角型リチウムイオン二次電池を比較例2の電池B2−2とした。
(Battery B2-2 of Comparative Example 2)
A square lithium ion secondary battery produced in the same manner as the battery A2-1 of Example 2 except that the end-of-charge voltage was 4.2 V was designated as a battery B2-2 of Comparative Example 2.

<比較例3>
結着剤としてPVDFを用い、セパレータとして微細孔を有する耐酸化性の高い化合物の層を設けなかったポリエチレン微孔性膜を用いた以外は実施例1および比較例1と同様に充放電制御装置を接続した角型リチウムイオン二次電池を作製した。
<Comparative Example 3>
A charge / discharge control device as in Example 1 and Comparative Example 1 except that PVDF was used as the binder and a polyethylene microporous membrane without fine oxidation-resistant compound layers having fine pores was used as the separator. A square-shaped lithium ion secondary battery connected with was prepared.

(比較例3の電池B3−1)
前記の通り作製した角型リチウムイオン二次電池を用い、最大電流600mAで、充電終止電圧を4.1Vとして定電圧充電を2時間行った。この角型リチウムイオン二次電池を比較例3の電池B3−1とした。
(Battery B3-1 of Comparative Example 3)
Using the prismatic lithium ion secondary battery produced as described above, constant voltage charging was performed for 2 hours at a maximum current of 600 mA and a charge end voltage of 4.1 V. This square lithium ion secondary battery was designated as Battery B3-1 of Comparative Example 3.

(比較例3の電池B3−2)
充電終止電圧を4.2Vとした以外は比較例3の電池B3−1と同様に作製した角型リチウムイオン二次電池を比較例3の電池B3−2とした。
(Battery B3-2 of Comparative Example 3)
A square lithium ion secondary battery produced in the same manner as the battery B3-1 of Comparative Example 3 except that the end-of-charge voltage was 4.2 V was designated as Battery B3-2 of Comparative Example 3.

(比較例3の電池B3−3)
充電終止電圧を4.3Vとした以外は比較例3の電池B3−1と同様に作製した角型リチウムイオン二次電池を比較例3の電池B3−3とした。
(Battery B3-3 of Comparative Example 3)
A square lithium ion secondary battery produced in the same manner as the battery B3-1 of Comparative Example 3 except that the end-of-charge voltage was 4.3 V was designated as Battery B3-3 of Comparative Example 3.

(比較例3の電池B3−4)
充電終止電圧を4.4Vとした以外は比較例3の電池B3−1と同様に作製した角型リチウムイオン二次電池を比較例3の電池B3−4とした。
(Battery B3-4 of Comparative Example 3)
A square lithium ion secondary battery produced in the same manner as the battery B3-1 of Comparative Example 3 except that the end-of-charge voltage was 4.4V was designated as Battery B3-4 of Comparative Example 3.

(比較例3の電池B3−5)
充電終止電圧を4.5Vとした以外は比較例3の電池B3−1と同様に作製した角型リチウムイオン二次電池を比較例3の電池B3−5とした。
(Battery B3-5 of Comparative Example 3)
A square lithium ion secondary battery produced in the same manner as the battery B3-1 of Comparative Example 3 except that the end-of-charge voltage was 4.5 V was designated as Battery B3-5 of Comparative Example 3.

<比較例4>
結着剤として、PVDFを用いた以外は実施例1および比較例1と同様に充放電制御装置を接続した角型リチウムイオン二次電池を作製した。
<Comparative Example 4>
A square lithium ion secondary battery connected to a charge / discharge control device was produced in the same manner as in Example 1 and Comparative Example 1 except that PVDF was used as the binder.

(比較例4の電池B4−1)
前記の通り作製した角型リチウムイオン二次電池を用い、最大電流600mAで、充電終止電圧を4.1Vとして定電圧充電を2時間行った。この角型リチウムイオン二次電池を比較例4の電池B4−1とした。
(Battery B4-1 of Comparative Example 4)
Using the prismatic lithium ion secondary battery produced as described above, constant voltage charging was performed for 2 hours at a maximum current of 600 mA and a charge end voltage of 4.1 V. This square lithium ion secondary battery was designated as Battery B4-1 of Comparative Example 4.

(比較例4の電池B4−2)
充電終止電圧を4.2Vとした以外は比較例4の電池B4−1と同様に作製した角型リチウムイオン二次電池を比較例4の電池B4−2とした。
(Battery B4-2 of Comparative Example 4)
A square lithium ion secondary battery produced in the same manner as the battery B4-1 of Comparative Example 4 except that the end-of-charge voltage was 4.2 V was designated as Battery B4-2 of Comparative Example 4.

(比較例4の電池B4−3)
充電終止電圧を4.3Vとした以外は比較例4の電池B4−1と同様に作製した角型リチウムイオン二次電池を比較例4の電池B4−3とした。
(Battery B4-3 of Comparative Example 4)
A square lithium ion secondary battery produced in the same manner as the battery B4-1 of Comparative Example 4 except that the end-of-charge voltage was 4.3 V was designated as Battery B4-3 of Comparative Example 4.

(比較例4の電池B4−4)
充電終止電圧を4.4Vとした以外は比較例4の電池B4−1と同様に作製した角型リチウムイオン二次電池を比較例4の電池B4−4とした。
(Battery B4-4 of Comparative Example 4)
A square lithium ion secondary battery produced in the same manner as the battery B4-1 of Comparative Example 4 except that the end-of-charge voltage was 4.4V was designated as Battery B4-4 of Comparative Example 4.

(比較例4の電池B4−5)
充電終止電圧を4.5Vとした以外は比較例4の電池B4−1と同様に作製した角型リチウムイオン二次電池を比較例4の電池B4−5とした。
(Battery B4-5 of Comparative Example 4)
A square lithium ion secondary battery produced in the same manner as the battery B4-1 of Comparative Example 4 except that the end-of-charge voltage was set to 4.5 V was designated as Battery B4-5 of Comparative Example 4.

<比較例5>
結着剤としてPVDFを用い、セパレータとして前記(3−2)で作製したポリアラミドからなる層を設けたセパレータを用いた以外は実施例1および比較例1と同様に充放電制御装置を接続した角型リチウムイオン二次電池を作製した。
<Comparative Example 5>
A corner to which a charge / discharge control device is connected in the same manner as in Example 1 and Comparative Example 1 except that PVDF is used as a binder and a separator provided with a layer made of polyaramid prepared in (3-2) is used as a separator. Type lithium ion secondary battery was produced.

(比較例5の電池B5−1)
前記の通り作製した角型リチウムイオン二次電池を用い、最大電流600mAで、充電終止電圧を4.1Vとして定電圧充電を2時間行った。この角型リチウムイオン二次電池
を比較例5の電池B5−1とした。
(Battery B5-1 of Comparative Example 5)
Using the prismatic lithium ion secondary battery produced as described above, constant voltage charging was performed for 2 hours at a maximum current of 600 mA and a charge end voltage of 4.1 V. This square lithium ion secondary battery was designated as battery B5-1 of Comparative Example 5.

(比較例5の電池B5−2)
充電終止電圧を4.2Vとした以外は比較例5の電池B5−1と同様に作製した角型リチウムイオン二次電池を比較例5の電池B5−2とした。
(Battery B5-2 of Comparative Example 5)
A square lithium ion secondary battery produced in the same manner as the battery B5-1 of Comparative Example 5 except that the end-of-charge voltage was 4.2 V was designated as Battery B5-2 of Comparative Example 5.

(比較例5の電池B5−3)
充電終止電圧を4.3Vとした以外は比較例5の電池B5−1と同様に作製した角型リチウムイオン二次電池を比較例5の電池B5−3とした。
(Battery B5-3 of Comparative Example 5)
A square lithium ion secondary battery produced in the same manner as the battery B5-1 of Comparative Example 5 except that the end-of-charge voltage was 4.3 V was designated as Battery B5-3 of Comparative Example 5.

(比較例5の電池B5−4)
充電終止電圧を4.4Vとした以外は比較例5の電池B5−1と同様に作製した角型リチウムイオン二次電池を比較例5の電池B5−4とした。
(Battery B5-4 of Comparative Example 5)
A square lithium ion secondary battery produced in the same manner as the battery B5-1 of Comparative Example 5 except that the end-of-charge voltage was 4.4 V was designated as Battery B5-4 of Comparative Example 5.

(比較例5の電池B5−5)
充電終止電圧を4.5Vとした以外は比較例5の電池B5−1と同様に作製した角型リチウムイオン二次電池を比較例5の電池B5−5とした。
(Battery B5-5 of Comparative Example 5)
A square lithium ion secondary battery produced in the same manner as the battery B5-1 of Comparative Example 5 except that the end-of-charge voltage was set to 4.5 V was designated as Battery B5-5 of Comparative Example 5.

<比較例6>
セパレータとして、微細孔を有する耐酸化性の高い化合物の層を設けなかったポリエチレン微孔性膜を用いた以外は実施例1および比較例1と同様に充放電制御装置を接続した角型リチウムイオン二次電池を作製した。
<Comparative Example 6>
As a separator, a square lithium ion connected to a charge / discharge control device was used in the same manner as in Example 1 and Comparative Example 1 except that a polyethylene microporous membrane having fine pores and not having a layer of high oxidation resistance was used. A secondary battery was produced.

(比較例6の電池B6−1)
前記の通り作製した角型リチウムイオン二次電池を用い、最大電流600mAで、充電終止電圧を4.1Vとして定電圧充電を2時間行った。この角型リチウムイオン二次電池を比較例6の電池B6−1とした。
(Battery B6-1 of Comparative Example 6)
Using the prismatic lithium ion secondary battery produced as described above, constant voltage charging was performed for 2 hours at a maximum current of 600 mA and a charge end voltage of 4.1 V. This square lithium ion secondary battery was designated as Battery B6-1 of Comparative Example 6.

(比較例6の電池B6−2)
充電終止電圧を4.2Vとした以外は比較例6の電池B6−1と同様に作製した角型リチウムイオン二次電池を比較例6の電池B6−2とした。
(Battery B6-2 of Comparative Example 6)
A square lithium ion secondary battery produced in the same manner as the battery B6-1 of Comparative Example 6 except that the end-of-charge voltage was 4.2 V was designated as Battery B6-2 of Comparative Example 6.

(比較例6の電池B6−3)
充電終止電圧を4.3Vとした以外は比較例6の電池B6−1と同様に作製した角型リチウムイオン二次電池を比較例6の電池B6−3とした。
(Battery B6-3 of Comparative Example 6)
A square lithium ion secondary battery produced in the same manner as the battery B6-1 of Comparative Example 6 except that the end-of-charge voltage was 4.3 V was designated as Battery B6-3 of Comparative Example 6.

(比較例6の電池B6−4)
充電終止電圧を4.4Vとした以外は比較例6の電池B6−1と同様に作製した角型リチウムイオン二次電池を比較例6の電池B6−4とした。
(Battery B6-4 of Comparative Example 6)
A square lithium ion secondary battery produced in the same manner as the battery B6-1 of Comparative Example 6 except that the end-of-charge voltage was 4.4 V was designated as Battery B6-4 of Comparative Example 6.

(比較例6の電池B6−5)
充電終止電圧を4.5Vとした以外は比較例6の電池B6−1と同様に作製した角型リチウムイオン二次電池を比較例6の電池B6−5とした。
(Battery B6-5 of Comparative Example 6)
A square lithium ion secondary battery produced in the same manner as the battery B6-1 of Comparative Example 6 except that the end-of-charge voltage was 4.5 V was designated as Battery B6-5 of Comparative Example 6.

<放電容量の評価>
実施例1、実施例2および比較例1〜比較例6の角型リチウムイオン二次電池を用い、環境温度20℃で放電容量を測定した。放電条件は電流値200mA、放電終止電圧3.0Vの定電流で行った。
<Evaluation of discharge capacity>
Using the prismatic lithium ion secondary batteries of Example 1, Example 2, and Comparative Examples 1 to 6, the discharge capacity was measured at an environmental temperature of 20 ° C. The discharge conditions were a constant current with a current value of 200 mA and a discharge end voltage of 3.0 V.

<サイクル寿命特性の評価>
実施例1、実施例2および比較例1〜比較例4の角型リチウムイオン二次電池を用い、環境温度20℃で充放電サイクルを500回行った。充電条件は最大電流600mA、充電終止電圧を実施例1、実施例2および比較例1〜比較例4で作製した各電池の充電終止電圧として定電圧充電を2時間行った。放電条件は電流値600mA、放電終止電圧3.0Vの定電流で行い、500サイクル経過後の放電容量を測定し、初期容量に対する比率で評価した。
<Evaluation of cycle life characteristics>
Using the prismatic lithium ion secondary batteries of Example 1, Example 2, and Comparative Examples 1 to 4, the charge / discharge cycle was performed 500 times at an environmental temperature of 20 ° C. The charging conditions were a maximum current of 600 mA, a charging end voltage was constant voltage charging for 2 hours as the charging end voltage of each battery produced in Example 1, Example 2 and Comparative Examples 1 to 4. The discharge conditions were a constant current with a current value of 600 mA and a discharge end voltage of 3.0 V, the discharge capacity after 500 cycles was measured, and the ratio was evaluated with respect to the initial capacity.

<高温保存特性の評価>
実施例1、実施例2および比較例1〜比較例4の角型リチウムイオン二次電池を用い、85℃24時間の高温保存試験を行った。充電条件は環境温度20℃で、最大電流600mA、充電終止電圧を実施例1、実施例2および比較例1〜比較例4で作製した各電池の充電終止電圧として定電圧充電を2時間行った。放電条件は環境温度20℃で電流値600mA、放電終止電圧3.0Vの定電流で行い、各電池の放電容量を測定した。各電池において、高温保存前の放電容量に対する高温保存後の放電容量の比率を評価した。
<Evaluation of high-temperature storage characteristics>
Using the prismatic lithium ion secondary batteries of Example 1, Example 2, and Comparative Examples 1 to 4, a high temperature storage test at 85 ° C. for 24 hours was performed. Charging conditions were an environmental temperature of 20 ° C., a maximum current of 600 mA, a charge end voltage of constant charge as a charge end voltage of each battery produced in Example 1, Example 2 and Comparative Examples 1 to 4 for 2 hours. . The discharge conditions were an environmental temperature of 20 ° C., a constant current of 600 mA and a final discharge voltage of 3.0 V, and the discharge capacity of each battery was measured. In each battery, the ratio of the discharge capacity after high temperature storage to the discharge capacity before high temperature storage was evaluated.

放電容量、サイクル寿命特性、および高温保存特性の評価結果を(表1)に示す。   The evaluation results of discharge capacity, cycle life characteristics, and high temperature storage characteristics are shown in Table 1.

Figure 2008234851
Figure 2008234851

(表1)からわかる通り放電容量の評価結果は、比較例1と実施例1、比較例2と実施例2、比較例3、比較例4、比較例5、および比較例6の角型リチウムイオン二次電池ともに充電終止電圧の上昇に従って放電容量が増大しており、充電終止電圧を上げることで、より高容量な電池が実現可能であることが確認できた。   As can be seen from (Table 1), the evaluation results of the discharge capacity were as follows: Comparative Example 1 and Example 1, Comparative Example 2 and Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 5, and Comparative Example 6 It was confirmed that the discharge capacity of the ion secondary battery increased as the end-of-charge voltage increased, and that a higher capacity battery could be realized by increasing the end-of-charge voltage.

500サイクル後の容量維持率は、結着剤としてPVDFを用いた正極板、もしくはポリエチレン微孔性膜のセパレータの少なくともどちらか一方を用いている比較例3〜比較例6の角型リチウムイオン二次電池において、充電終止電圧を4.3V以上に設定した場合に極端な容量維持率の低下が認められた。   The capacity retention rate after 500 cycles was determined by comparing the square lithium ion 2 of Comparative Examples 3 to 6 using at least one of a positive electrode plate using PVDF as a binder and a separator of polyethylene microporous membrane. In the secondary battery, when the end-of-charge voltage was set to 4.3 V or more, an extreme decrease in capacity retention rate was observed.

一方、結着剤としてPTFEを用いた正極板と、正極板に対向する面にポリプロピレンからなる層を設けたセパレータ、もしくは正極板に対向する面にポリアラミドからなる層を設けたセパレータを組み合わせて作製し、充電終止電圧を4.3V〜4.5Vとした実施例1の電池A1−1〜電池A1−3および実施例2の電池A2−1〜電池A2−3は、
4.2V以下の充電終止電圧と同様に良好な500サイクル後の容量維持率を示すことがわかった。
On the other hand, produced by combining a positive electrode plate using PTFE as a binder and a separator provided with a layer made of polypropylene on the surface facing the positive electrode plate, or a separator provided with a layer made of polyaramid on the surface facing the positive electrode plate The battery A1-1 to battery A1-3 of Example 1 and the battery A2-1 to battery A2-3 of Example 2 in which the end-of-charge voltage was 4.3 V to 4.5 V were:
It was found that the capacity retention rate after 500 cycles was good as well as the end-of-charge voltage of 4.2 V or less.

500サイクル後の容量維持率の低下が大きかった比較例3の電池B3−3〜電池B3−5、比較例4の電池B4−3〜電池B4−5、比較例5の電池B5−3〜電池B5−5、比較例6の電池B6−3〜電池B6−5を分解し解析を行った結果、正極板のX線回折分析を行うと、正極活物質の結晶構造が変化しており正極活物質が顕著に劣化していることがわかった。また、電解液も分解により大幅に涸渇した状態であった。   Battery B3-3 to Battery B3-5 of Comparative Example 3, Battery B4-3 to Battery B4-5 of Comparative Example 4, and Battery B5-3 of Comparative Example 5 were greatly reduced in capacity retention after 500 cycles. B5-5, battery B6-3 of Comparative Example 6 and battery B6-5 were disassembled and analyzed. As a result, when the X-ray diffraction analysis of the positive electrode plate was performed, the crystal structure of the positive electrode active material changed and the positive electrode active The material was found to be significantly degraded. Moreover, the electrolyte was also greatly depleted by decomposition.

高温保存後の容量維持率についても、500サイクル後の容量維持率と同じ傾向が認められた。   The same tendency as the capacity retention rate after 500 cycles was observed for the capacity retention rate after high-temperature storage.

以上の結果より、実施例1、実施例2においては結着剤としてPTFEを用いた正極板と、正極板に対向する面にポリプロピレンからなる層を設けたセパレータ、もしくは正極板に対向する面にポリアラミドからなる層を設けたセパレータを組み合わせて角型リチウムイオン二次電池を作製することにより、充電終止電圧が4.3V以上に設定された角型リチウムイオン二次電池において、充放電サイクルや高温保存における非水電解液の分解および正極活物質の劣化が抑制され、良好なサイクル寿命特性および高温保存特性が得られることがわかった。   From the above results, in Example 1 and Example 2, the positive electrode plate using PTFE as the binder, the separator provided with a layer made of polypropylene on the surface facing the positive electrode plate, or the surface facing the positive electrode plate In a prismatic lithium ion secondary battery in which the end-of-charge voltage is set to 4.3 V or higher by combining a separator provided with a layer made of polyaramid, a charge-discharge cycle and a high temperature It was found that decomposition of the non-aqueous electrolyte and deterioration of the positive electrode active material during storage were suppressed, and good cycle life characteristics and high temperature storage characteristics were obtained.

尚、正極板に対向するセパレータの少なくとも一方の面に微細孔を有する耐酸化性の高い化合物の層として、ポリアミドイミドからなる層、またはポリイミドからなる層を設けても良好なサイクル寿命特性および高温保存特性が得られることを確認した。   In addition, even if a layer made of polyamideimide or a layer made of polyimide is provided as a layer of a compound with high oxidation resistance having fine pores on at least one surface of the separator facing the positive electrode plate, good cycle life characteristics and high temperature It was confirmed that storage characteristics were obtained.

本発明にかかる非水電解液二次電池は、高容量で且つサイクル寿命特性や高温保存特性に優れるので非水電解液二次電池として有用である。   The non-aqueous electrolyte secondary battery according to the present invention is useful as a non-aqueous electrolyte secondary battery because of its high capacity and excellent cycle life characteristics and high-temperature storage characteristics.

本発明の非水電解液二次電池の一実施例を示す一部切欠斜視図The partially cutaway perspective view showing one embodiment of the nonaqueous electrolyte secondary battery of the present invention

符号の説明Explanation of symbols

1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 注入口


1 Electrode Plate Group 2 Positive Electrode Lead 3 Negative Electrode Lead 4 Battery Case 5 Sealing Plate 6 Negative Electrode Terminal 7 Inlet


Claims (2)

正極板と負極板とをセパレータを介して巻回してなる極板群と非水電解質とを備えた非水電解質二次電池と、前記非水電解質二次電池の本体に接続した充放電制御装置とを備えた非水電解質二次電池であって、
前記正極板はポリテトラフルオロエチレンを主体とする結着剤を含み、この正極板に対向する前記セパレータの少なくとも一方の面に微細孔を有する耐酸化性の高い化合物の層を設け、前記充放電制御装置の充電終止電圧を4.3V以上に設定したことを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a group of electrode plates formed by winding a positive electrode plate and a negative electrode plate via a separator and a non-aqueous electrolyte, and a charge / discharge control device connected to the main body of the non-aqueous electrolyte secondary battery A non-aqueous electrolyte secondary battery comprising:
The positive electrode plate includes a binder mainly composed of polytetrafluoroethylene, and a layer of a highly oxidation-resistant compound having fine holes is provided on at least one surface of the separator facing the positive electrode plate, and the charge / discharge A non-aqueous electrolyte secondary battery, characterized in that the end-of-charge voltage of the control device is set to 4.3 V or higher.
前記微細孔を有する耐酸化性の高い化合物がポリプロピレン、ポリアラミド、ポリアミドイミド、およびポリイミドよりなる群から選択される少なくとも1種の材料を含むことを特徴とする請求項1に記載の非水電解質二次電池。   2. The non-aqueous electrolyte 2 according to claim 1, wherein the oxidation-resistant compound having micropores includes at least one material selected from the group consisting of polypropylene, polyaramid, polyamideimide, and polyimide. Next battery.
JP2007068408A 2007-03-16 2007-03-16 Nonaqueous electrolyte secondary battery Pending JP2008234851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068408A JP2008234851A (en) 2007-03-16 2007-03-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068408A JP2008234851A (en) 2007-03-16 2007-03-16 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008234851A true JP2008234851A (en) 2008-10-02

Family

ID=39907432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068408A Pending JP2008234851A (en) 2007-03-16 2007-03-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008234851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069474A1 (en) 2011-11-10 2013-05-16 日本電気株式会社 Lithium ion secondary battery
JP2014240189A (en) * 2013-05-16 2014-12-25 東レ株式会社 Aromatic polyamide/aromatic polyimide composite porous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015034080A1 (en) * 2013-09-09 2015-03-12 宇部興産株式会社 Separator, and electrical storage device using same
CN109873110A (en) * 2017-12-04 2019-06-11 北京好风光储能技术有限公司 A kind of bipolar battery heap

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068113A (en) * 1999-08-31 2001-03-16 Nippon Telegr & Teleph Corp <Ntt> Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JP2001250550A (en) * 2000-03-03 2001-09-14 Nissan Motor Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2004039569A (en) * 2002-07-05 2004-02-05 Daikin Ind Ltd Additive for electrode
JP2007042302A (en) * 2005-07-29 2007-02-15 Sony Corp Battery
JP2007059379A (en) * 2005-07-29 2007-03-08 Sony Corp Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068113A (en) * 1999-08-31 2001-03-16 Nippon Telegr & Teleph Corp <Ntt> Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JP2001250550A (en) * 2000-03-03 2001-09-14 Nissan Motor Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2004039569A (en) * 2002-07-05 2004-02-05 Daikin Ind Ltd Additive for electrode
JP2007042302A (en) * 2005-07-29 2007-02-15 Sony Corp Battery
JP2007059379A (en) * 2005-07-29 2007-03-08 Sony Corp Battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069474A1 (en) 2011-11-10 2013-05-16 日本電気株式会社 Lithium ion secondary battery
US9692085B2 (en) 2011-11-10 2017-06-27 Nec Corporation Lithium ion secondary battery
JP2014240189A (en) * 2013-05-16 2014-12-25 東レ株式会社 Aromatic polyamide/aromatic polyimide composite porous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015034080A1 (en) * 2013-09-09 2015-03-12 宇部興産株式会社 Separator, and electrical storage device using same
CN109873110A (en) * 2017-12-04 2019-06-11 北京好风光储能技术有限公司 A kind of bipolar battery heap
CN109873110B (en) * 2017-12-04 2020-09-08 北京好风光储能技术有限公司 Bipolar battery stack

Similar Documents

Publication Publication Date Title
US6645667B1 (en) Lithium secondary cell
JP4604460B2 (en) Nonaqueous electrolyte secondary battery and battery charge / discharge system
KR20180036600A (en) Anode for lithium secondary battery with double protective layer and lithium secondary battery comprising the same
KR102084245B1 (en) Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt
US20070248884A1 (en) Negative electrode and secondary battery
US9172083B2 (en) Lithium ion secondary battery
JP5099168B2 (en) Lithium ion secondary battery
KR20140101640A (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JP2013197091A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including the same
JP6746506B2 (en) Non-aqueous electrolyte secondary battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6783149B2 (en) Power storage device
KR20130069432A (en) Coating of disordered carbon active material using water-based binder slurry
JP2016042461A (en) Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
KR20180066694A (en) Cathode composite with high power performance and all solid lithium secondary battery comprising the same
JP2009200043A (en) Battery
WO2017098682A1 (en) Nonaqueous electrolyte secondary battery
JP2013254647A (en) Lithium ion-lithium air composite secondary battery, charging/discharging method using the same, and cathode material for lithium ion-lithium air composite secondary battery
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
KR20020082118A (en) Non-aqueous electrolyte secondary battery
JP2013157318A (en) Anode, method for manufacturing the same, and lithium battery including the same
JP3046055B2 (en) Non-aqueous secondary battery
JPH0422066A (en) Nonaqueous secondary battery
JP2008234851A (en) Nonaqueous electrolyte secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724