KR102568790B1 - Cathodes active material for lithium ion batteries, and the batteries with them - Google Patents

Cathodes active material for lithium ion batteries, and the batteries with them Download PDF

Info

Publication number
KR102568790B1
KR102568790B1 KR1020150188906A KR20150188906A KR102568790B1 KR 102568790 B1 KR102568790 B1 KR 102568790B1 KR 1020150188906 A KR1020150188906 A KR 1020150188906A KR 20150188906 A KR20150188906 A KR 20150188906A KR 102568790 B1 KR102568790 B1 KR 102568790B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
electrode active
crystal structure
lithium ion
Prior art date
Application number
KR1020150188906A
Other languages
Korean (ko)
Other versions
KR20170030411A (en
Inventor
이타루 혼마
무루카나할리 켐파이아 데바라주
유이치 아이하라
세이타로 이토
Original Assignee
삼성전자주식회사
가부시키가이샤 토호쿠 테크노 아치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015179886A external-priority patent/JP6724271B2/en
Application filed by 삼성전자주식회사, 가부시키가이샤 토호쿠 테크노 아치 filed Critical 삼성전자주식회사
Priority to US15/260,540 priority Critical patent/US10193152B2/en
Publication of KR20170030411A publication Critical patent/KR20170030411A/en
Application granted granted Critical
Publication of KR102568790B1 publication Critical patent/KR102568790B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

방전 용량이 개선된 리튬 코발트계의 양극 활물질과 상기 양극 활물질을 이용하여 제조된 양극을 갖는 리튬 이온 이차전지 등을 제공한다. 리튬 이온 이차전지(1)는, 양극 활물질 입자를 갖는 양극(3), 전해질(9) 및 음극(5)을 포함하고, 상기 양극 활물질 입자의 적어도 일부는, (111) 면이 적어도 일방향의 주면이 되는 플레이트상의 결정 구조 및 또한 스피넬형의 결정 구조를 가지고, 상기 양극 활물질 입자의 원소 조성은 LiCo2-xNixO4(단, 0<x<2)로 나타내어진다.Provided is a lithium-ion secondary battery having a lithium cobalt-based positive electrode active material having improved discharge capacity and a positive electrode manufactured using the positive electrode active material. The lithium ion secondary battery 1 includes a positive electrode 3 having positive electrode active material particles, an electrolyte 9 and a negative electrode 5, and at least a portion of the positive electrode active material particles have a (111) plane as a main surface in at least one direction. It has a plate-like crystal structure and also a spinel-type crystal structure, and the elemental composition of the positive electrode active material particle is represented by LiCo 2-x Ni x O 4 (provided that 0 < x < 2).

Description

양극 활물질 입자, 이를 이용한 리튬 이온 이차전지 및 양극 활물질 입자의 제조 방법{Cathodes active material for lithium ion batteries, and the batteries with them}Cathode active material particles, lithium ion secondary battery using the same, and manufacturing method of cathode active material particles {Cathodes active material for lithium ion batteries, and the batteries with them}

리튬 이온 이차전지 및 양극 활물질의 제조 방법이 개시된다.A method for manufacturing a lithium ion secondary battery and a cathode active material is disclosed.

리튬 이온 이차전지용의 양극 활물질로서 스피넬 구조를 갖는 재료가 알려져 있지만, 실용적인 용량을 나타내는 것은 망간을 갖는 재료 또는 그 일부 치환체로 한정되어 있다.Materials having a spinel structure are known as positive electrode active materials for lithium ion secondary batteries, but those showing practical capacity are limited to materials containing manganese or substituents thereof.

예를 들어, 특허 문헌 1에는, 리튬 망간 복합 산화물(LiMn2O4 등)이 양극 활물질로 사용되고, 탄소질 미립자가 음극 활물질로 사용된 리튬 이온 이차전지가 개시되어 있다.For example, in Patent Document 1, lithium manganese composite oxide (LiMn 2 O 4 etc.) is used as a cathode active material, and a lithium ion secondary battery in which carbonaceous fine particles are used as an anode active material is disclosed.

또한, 특허 문헌 2에는, LiMn2O4등으로 이루어진 양극 활물질의 제조 방법이 개시되어 있다.In addition, Patent Document 2 discloses a method for producing a positive electrode active material made of LiMn 2 O 4 or the like.

[선행 기술 문헌][Prior art literature]

[특허 문헌][Patent Literature]

[특허 문헌 1] 특개 2012-199025호 공보[Patent Document 1] Japanese Unexamined Publication No. 2012-199025

[특허 문헌 2] 특개 2011-81926호 공보[Patent Document 2] Japanese Unexamined Publication No. 2011-81926

상술한 재료 중 전지에 사용하였을 경우에 실용적인 용량을 나타내는 스피넬 재료는, 현재로서는 망간을 갖는 재료와 그 일부 치환체로 한정되어 있다.Among the above-mentioned materials, spinel materials that exhibit practical capacity when used in batteries are currently limited to materials containing manganese and some substituents thereof.

본 발명의 목적은, 방전 용량이 개선된 리튬 코발트계의 스피넬형 양극 활물질과 상기 양극 활물질을 사용하여 제조된 양극을 포함하는 리튬 이온 이차전지 등을 제공하는 것이다.An object of the present invention is to provide a lithium-ion secondary battery including a lithium cobalt-based spinel-type positive electrode active material having improved discharge capacity and a positive electrode manufactured using the positive electrode active material.

본 명세서에 개시된 리튬 이온 이차전지는, 양극 활물질 입자를 포함하는 양극, 전해질 및 음극을 포함할 수 있다. 상기 양극 활물질 입자의 적어도 일부는, (111) 면이 적어도 일방향의 주면이 되는 플레이트상의 결정 구조 및 또한 스피넬형의 결정 구조를 가지고,The lithium ion secondary battery disclosed herein may include a positive electrode including positive electrode active material particles, an electrolyte, and a negative electrode. At least some of the particles of the positive electrode active material have a plate-shaped crystal structure in which the (111) plane is a main surface in at least one direction, and also a spinel-type crystal structure,

상기 양극 활물질 입자의 원소 조성은 LiCo2 - xNixO4(단, 0<x<2)로 나타내어진다.The elemental composition of the positive electrode active material particle is represented by LiCo 2 - x Ni x O 4 (provided that 0<x<2).

본 명세서에 개시된 양극 활물질 입자를 양극에 사용하면, 리튬 이온 이차전지의 방전 용량을 크게 개선할 수 있다.When the positive electrode active material particles disclosed herein are used for a positive electrode, the discharge capacity of a lithium ion secondary battery can be greatly improved.

도 1은 본 명세서에 개시된 실시 형태와 관련되는 리튬 이온 이차전지를 모식적으로 나타낸 단면도이다.
도 2는 실시예 5와 관련되는 리튬 코발트 니켈 복합 산화물의 전자 회절에 의한 사진을 나타내는 도면이다.
도 3은 본 명세서에 개시된 실시예 및 참고예와 관련되는 양극 활물질 입자에 대해서, X선회절(XRD) 법에 따른 측정 결과를 나타내는 도면이다.
도 4는 참고예 1과 관련되는 리튬 코발트 복합 산화물의 투과형 전자현미경(TEM)에 의한 사진을 나타내는 도면이다.
도 5는 실시예 5와 관련되는 리튬 코발트 니켈 복합 산화물의 TEM에 의한 사진을 나타내는 도면이다.
도 6은 실시예 4, 5및 참고예 1과 관련되는 양극 활물질의 방전 특성을 나타내는 도면이다.
1 is a cross-sectional view schematically showing a lithium ion secondary battery according to an embodiment disclosed herein.
FIG. 2 is a diagram showing a photograph by electron diffraction of a lithium cobalt nickel composite oxide related to Example 5. FIG.
3 is a diagram showing measurement results according to an X-ray diffraction (XRD) method for positive electrode active material particles related to Examples and Reference Examples disclosed herein.
4 is a view showing a photograph taken by a transmission electron microscope (TEM) of a lithium cobalt composite oxide related to Reference Example 1;
5 is a diagram showing a photograph taken by TEM of a lithium cobalt nickel composite oxide related to Example 5;
6 is a diagram showing discharge characteristics of positive electrode active materials according to Examples 4 and 5 and Reference Example 1;

<양극 활물질 입자 및 리튬 이온 이차전지의 구성><Configuration of Cathode Active Material Particles and Lithium Ion Secondary Battery>

도 1은 본 명세서에 개시된 실시 형태와 관련되는 리튬 이온 이차전지를 모식적으로 나타낸 단면도이다. 아울러, 도 1에 나타낸 것은 본 실시 형태의 리튬 이온 이차전지의 일례이며, 실제의 전지 구성은 이것으로 한정되지 않는다.1 is a cross-sectional view schematically showing a lithium ion secondary battery according to an embodiment disclosed herein. In addition, what was shown in FIG. 1 is an example of the lithium ion secondary battery of this embodiment, and the actual battery structure is not limited to this.

도 1에 도시된 바와 같이, 본 명세서에 개시된 리튬 이온 이차전지(1)는, 양극 활물질 입자를 갖는 양극(3), 음극(5), 양극(3)과 음극(5)의 사이에 채워진 전해질(9), 양극(3)과 음극(5)의 사이에 배치되어 전해질(9)을 분할하는 세퍼레이터(7), 및 양극(3), 음극(5), 세퍼레이터(7) 및 전해질(9)을 수용하는 용기(11)를 포함할 수 있다.As shown in FIG. 1, the lithium ion secondary battery 1 disclosed herein includes a positive electrode 3 having positive electrode active material particles, a negative electrode 5, and an electrolyte filled between the positive electrode 3 and the negative electrode 5. (9), a separator 7 disposed between the positive electrode 3 and the negative electrode 5 to divide the electrolyte 9, and the positive electrode 3, the negative electrode 5, the separator 7 and the electrolyte 9 It may include a container 11 for accommodating.

전해질(9)은 리튬 이온이 용출할 수 있는 재료이고, 액체 또는 겔상일 수 있다. 리튬 이온 이차전지(1)가 전고체형(all solid state)의 전지인 경우에는 전해질(9)은 고체일 수 있다. 전해질(9)의 구성 재료로서, 예를 들어, 액체로는 리튬염이 용해된 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC)를 들 수 있고, 고체로는 NASICON형 산화물(LixAlyTiz(PO4)3), 페로브스카이트형 산화물(LaxLiyTiO3), 황화물(Li10GeP2S12), Li2S-P2S5를 주원료로 하는 황화물 고체 전해질(Li3PS4, Li7P3S11, Li6PS5Cl, Li10GeP2S12 등 )을 들 수 있다.The electrolyte 9 is a material from which lithium ions can be eluted, and may be in a liquid or gel state. When the lithium ion secondary battery 1 is an all solid state battery, the electrolyte 9 may be solid. As the constituent material of the electrolyte 9, for example, ethylene carbonate (EC) and propylene carbonate (PC) in which lithium salt is dissolved can be used as a liquid, and NASICON-type oxide (Li x Al y Ti z (PO 4 ) 3 ), perovskite-type oxide (La x Li y TiO 3 ) , sulfide ( Li 10 GeP 2 S 12 ), and sulfide solid electrolyte (Li 3 PS 4 , Li 7 P 3 S 11 , Li 6 PS 5 Cl, Li 10 GeP 2 S 12 , etc.).

세퍼레이터(7)는 전자를 통과시키지 않고, 리튬 이온을 통과시키는 재료로 구성되어 있다. 세퍼레이터(7)의 재료로는, 폴리에틸렌이나 폴리프로필렌으로 이루어진 미세 다공성 막 등의 공지의 재료를 사용할 수 있다.The separator 7 is made of a material that does not pass electrons but allows lithium ions to pass therethrough. As the material of the separator 7, a known material such as a microporous membrane made of polyethylene or polypropylene can be used.

음극(5)은, 예를 들어, 동박 등으로 이루어진 집전체, 및 집전체에 도포된 음극 활물질과 바인더의 혼합물을 포함할 수 있다. 음극 활물질로는, 흑연이나 하드 카본등의 공지의 재료를 사용할 수 있다.The negative electrode 5 may include, for example, a current collector made of copper foil or the like, and a mixture of a negative electrode active material and a binder applied to the current collector. As the negative electrode active material, known materials such as graphite and hard carbon can be used.

양극(3)은 입자상의 양극 활물질을 포함할 수 있다. 구체적으로, 양극(3)은, 알루미늄 박 등의 집전체, 및 상기 집전체에 도포된 양극 활물질 입자와 공지의 바인더의 혼합물을 포함할 수 있다.The cathode 3 may include a particulate cathode active material. Specifically, the positive electrode 3 may include a current collector such as an aluminum foil, and a mixture of positive electrode active material particles coated on the current collector and a known binder.

본 실시 형태의 양극 활물질 입자는, (111) 면이 적어도 일방향의 주면(main surface)이 되는 플레이트상의 결정 구조를 포함할 수 있다. 본 명세서에서, 주면이란, 플레이트상의 결정에서, 안팎으로 대향하는 2개의 넓은 면을 지칭한다. 양극 활물질의 결정 구조의 평면 형상은 육각형이다.The positive electrode active material particle of the present embodiment may include a plate-shaped crystal structure in which the (111) plane serves as a main surface in at least one direction. In this specification, the main surface refers to two broad faces facing inward and outward in a plate-like crystal. The planar shape of the crystal structure of the positive electrode active material is hexagonal.

또한, 상기 양극 활물질 입자는 스피넬형의 결정 구조를 가지며, 상기 양극 활물질 입자의 원소 조성은 LiCo2-xNixO4(단, 0<x<2)로 나타내어진다. 즉, 본 실시 형태의 양극 활물질 입자는 LiCo2O4의 코발트의 일부가 니켈에 의해 치환된 재료로 구성되어 있다. 또한, 상기 양극 활물질 입자는 단결정 구조를 가질 수 있다.In addition, the cathode active material particle has a spinel-type crystal structure, and the elemental composition of the cathode active material particle is represented by LiCo 2-x Ni x O 4 (provided that 0<x<2). That is, the positive electrode active material particles of the present embodiment are made of a material in which a part of cobalt in LiCo 2 O 4 is substituted with nickel. In addition, the positive active material particles may have a single crystal structure.

본 실시 형태의 양극 활물질 입자에서, 코발트의 일부를 니켈로 치환함으로써, 이론상의 충방전 전위를 증가시킬 수 있으며, 이론 용량을 증가시킬 수 있다. 또한, 상술한 결정 구조를 갖기 때문에, 본 실시 형태의 양극 활물질 입자에서는, 리튬 이온의 방출 및 삽입을 하는 (111) 면의 노출 면적이, 입방체형의 결정 구조를 갖는 LiCo2O4에 비해 넓어진다. 이 때문에, 본 실시 형태의 양극 활물질을 이용하는 경우에는, LiCo2O4를 양극 활물질로 이용하는 경우에 비해 리튬 이온 이차전지의 방전 용량을 증가시킬 수 있다. 또한, 본 실시 형태의 양극 활물질을 이용하는 경우 충방전 속도의 향상도 기대할 수 있다.In the positive electrode active material particle of the present embodiment, the theoretical charge/discharge potential can be increased and the theoretical capacity can be increased by substituting a part of cobalt with nickel. In addition, since it has the above-described crystal structure, in the positive electrode active material particle of the present embodiment, the exposed area of the (111) plane through which lithium ions are released and inserted is wider than that of LiCo 2 O 4 having a cubic crystal structure. all. For this reason, in the case of using the positive electrode active material of the present embodiment, the discharge capacity of the lithium ion secondary battery can be increased compared to the case where LiCo 2 O 4 is used as the positive electrode active material. In addition, when using the positive electrode active material of the present embodiment, an improvement in charge/discharge rate can be expected.

상기 양극 활물질 입자의 원소 조성(LiCo2 - xNixO4)에서, x가 0<x<2의 범위이면 전지의 방전 용량을 개선할 수 있지만, x가 0.8 이상 1.2 미만이면 x=0의 경우에 비해 충방전 전위를 높임과 동시에 방전 용량을 충분히 크게 할 수 있다. x=1이면, 방전 용량을 크게 상승시킬 수 있다.In the elemental composition of the positive electrode active material particle (LiCo 2 - x Ni x O 4 ), when x is in the range of 0<x<2, the discharge capacity of the battery can be improved, but when x is greater than or equal to 0.8 and less than 1.2, the value of x=0 It is possible to increase the charge/discharge potential and at the same time sufficiently increase the discharge capacity compared to the case. If x = 1, the discharge capacity can be greatly increased.

x가 0.8 미만인 경우에는 x가 작아짐에 따라 양극 활물질 입자의 결정 중에서 입방체 구조를 갖는 부분의 비율이 높아지고(즉, 플레이트상 구조를 갖는 부분의 비율이 낮아지고), x가 1.2이상인 경우에는 x가 커짐에 따라 양극 활물질 입자의 결정 중에서 플레이트상 구조 및 또한 스피넬형의 결정 구조가 붕괴된다. x=1인 경우에 방전 용량을 크게 상승시킬 수 있는 것은, 이 경우에 거의 모든 양극 활물질 입자의 결정 구조가 플레이트형이 되기 때문이다.When x is less than 0.8, as x decreases, the proportion of the portion having a cubic structure among the crystals of the positive electrode active material particle increases (ie, the proportion of the portion having a plate-like structure decreases), and when x is 1.2 or more, the proportion of x increases. As it grows, the plate-like structure and also the spinel-type crystal structure in the crystals of the positive electrode active material particles collapse. The reason why discharge capacity can be greatly increased in the case of x = 1 is that in this case, almost all of the positive active material particles have a plate-like crystal structure.

또한, 상기 양극 활물질 입자의 평균 입자 직경은 특별히 한정되지는 않지만, 1000 nm이하일 수 있다. 상기 양극 활물질 입자의 평균 입자 직경이 1000 nm이하인 경우에는, 평균 입자 직경이 1000 nm를 넘는 경우에 비해 양극 활물질 입자와 액체 전해질(9) 간의 접촉 면적을 크게 할 수 있으며, 이와 동시에 리튬 이온이 입자 내부의 전극 재료로 이동할 때의 이동거리를 작게 할 수 있다. 이 때문에, 상기 양극 활물질 입자를 포함하는 리튬 이온 이차전지의 방전 용량이 더욱 향상될 수 있다.In addition, the average particle diameter of the cathode active material particles is not particularly limited, but may be 1000 nm or less. When the average particle diameter of the cathode active material particles is 1000 nm or less, the contact area between the cathode active material particles and the liquid electrolyte 9 can be increased compared to the case where the average particle diameter exceeds 1000 nm, and at the same time, lithium ions are introduced into the particles. It is possible to reduce the movement distance when moving to the inner electrode material. For this reason, the discharge capacity of the lithium ion secondary battery including the positive electrode active material particles can be further improved.

또한, 상기 양극 활물질 입자의 평균 입자 직경이 500 nm이하이면, 상기 양극 활물질 입자와 액체 전해질(9) 간의 접촉 면적을 보다 크게 할 수 있다. 아울러, 상기 평균 입자 직경의 측정은, 입도 분포 측정 장치를 이용하여 실시된다. 예를 들어, TEM을 이용한 관찰에 의해 입경을 직접 해석할 수 있다. 상기 양극 활물질 입자가 플레이트상인 경우, 면방향과 두께 방향으로 입경이 크게 달라지지만, 본 실시 형태의 양극 활물질의 경우, 면방향의 크기로 입경을 판정한다.In addition, when the average particle diameter of the positive electrode active material particles is 500 nm or less, the contact area between the positive electrode active material particles and the liquid electrolyte 9 can be increased. In addition, the measurement of the said average particle diameter is performed using a particle size distribution analyzer. For example, the particle size can be directly analyzed by observation using a TEM. When the positive electrode active material particles are plate-shaped, the particle size varies greatly in the plane direction and the thickness direction, but in the case of the positive electrode active material of the present embodiment, the particle size is determined by the size in the plane direction.

또한, 양극에 포함되는 양극 활물질 입자의 입자 직경이 균일하면 전지 특성의 격차를 감소시킬 수 있다. 또한, 집전체상에는 양극 활물질이 균일하게 분산되어 도포될 수 있다.In addition, when the positive electrode active material particles included in the positive electrode have a uniform particle diameter, variation in battery characteristics can be reduced. In addition, the cathode active material may be uniformly dispersed and applied on the current collector.

본 실시 형태의 양극 활물질 입자를 포함하는 양극은, 리튬 이온 이차전지의 양극으로 사용될 수 있다.A positive electrode including the positive electrode active material particles of the present embodiment can be used as a positive electrode of a lithium ion secondary battery.

본 실시 형태의 양극 활물질 입자의 제조 방법은, 상술한 결정 구조를 실현할 수 있는 방법이면 특별히 한정되지는 않지만, 예를 들어, 초임계 유체를 이용하는 방법일 수 있다.The manufacturing method of the positive electrode active material particles of the present embodiment is not particularly limited as long as it is a method capable of realizing the crystal structure described above, but may be, for example, a method using a supercritical fluid.

상기 초임계 유체를 이용하는 방법은, 코발트를 포함하는 재료, 니켈을 포함하는 재료 및 리튬을 포함하는 재료를 초임계 유체 중에서 반응시켜 리튬, 코발트 및 니켈을 포함하는 금속 복합 산화물을 생성시키는 단계, 및 상기 금속 복합 산화물과 리튬을 포함하는 재료를 혼합하여 반응시키는 단계로서, (111) 면이 적어도 일방향의 주면이 되는 플레이트상의 결정 구조 및 또한 스피넬형의 결정 구조를 가지며, 원소 조성이 LiCo2 - xNixO4(단, 0<x<2)로 나타내어지는 양극 활물질 입자를 제조하는 단계를 포함할 수 있다.The method using the supercritical fluid includes the steps of reacting a material containing cobalt, a material containing nickel, and a material containing lithium in a supercritical fluid to produce a metal composite oxide containing lithium, cobalt, and nickel; and A step of mixing and reacting the metal composite oxide with a material containing lithium, which has a plate-like crystal structure in which the (111) plane is a main surface in at least one direction and also a spinel-type crystal structure, and has an elemental composition of LiCo 2 - x Ni x O 4 (provided that 0<x<2) may include a step of preparing a positive electrode active material particle.

상기 금속 복합 산화물을 리튬을 포함하는 재료와 반응시키는 단계에서는, 예를 들어, 250℃~450℃ 정도의 열처리를 1시간 정도 수행할 수 있다. 또한, 상기 코발트를 포함하는 재료로는, 예를 들어, 질산 코발트의 수화물(Co(NO3)2·6H2O) 등이 사용되고, 상기 니켈을 포함하는 재료로는 질산 니켈의 수화물(Ni(NO3)2·6H2O) 등이 사용된다. 상기 리튬을 포함하는 재료로는, 예를 들어, 수산화 리튬의 수화물(LiOH·H2O) 등이 사용된다.In the step of reacting the metal composite oxide with a material containing lithium, heat treatment at, for example, 250° C. to 450° C. may be performed for about 1 hour. In addition, as the material containing the cobalt, for example, a hydrate of cobalt nitrate (Co(NO 3 ) 2 6H 2 O), etc. is used, and as the material containing the nickel, a hydrate of nickel nitrate (Ni( NO 3 ) 2 6H 2 O) and the like are used. As the material containing the lithium, for example, a hydrate of lithium hydroxide (LiOH·H 2 O) or the like is used.

상술한 초임계 상태는, 초임계 유체용의 장치를 이용하여 반응 용기내를 250℃~500℃, 20MPa~50MPa 정도의 고온 및 고압 조건으로 만듦으로써 달성될 수 있다.The above-mentioned supercritical state can be achieved by making the inside of the reaction vessel into a high-temperature and high-pressure condition of about 20 MPa to 50 MPa at 250° C. to 500° C. using a device for supercritical fluid.

이 방법에 의하면, 균일한 나노 크기의 양극 활물질 입자를 제조할 수 있다.According to this method, uniform nano-sized cathode active material particles can be produced.

실시예Example

<양극 활물질 입자의 제조><Preparation of Cathode Active Material Particles>

우선, 고체 수화물인 Co(NO3)2·6H2O, Ni(NO3)2·6H2O 및 LiOH·H2O를 소정의 농도가 되도록 에탄올에 용해시킨 후, 50℃에서 교반 및 혼합하였다. 에탄올 중의 질산 코발트 농도는 0.5 M, 질산 니켈 농도는 0.5 M, 수산화 리튬 농도는 3 M로 조절하였다.First, solid hydrates Co(NO 3 ) 2 6H 2 O, Ni(NO 3 ) 2 6H 2 O, and LiOH H 2 O were dissolved in ethanol to a predetermined concentration, and then stirred and mixed at 50°C. did The concentration of cobalt nitrate in ethanol was adjusted to 0.5 M, the concentration of nickel nitrate to 0.5 M, and the concentration of lithium hydroxide to 3 M.

다음에, 이 혼합 용액을 초임계 합성용 장치(AKICO사 제품)의 용기내에 봉입한 후, 300℃ 및 10 MPa의 조건하에서 40분간 상술한 금속 화합물끼리 반응시켰다. 이 조건하에서는, 용매인 에탄올은 초임계 유체가 된다.Next, this mixed solution was sealed in a container of a supercritical synthesis apparatus (manufactured by AKICO), and then the above-mentioned metal compounds were reacted with each other for 40 minutes under conditions of 300°C and 10 MPa. Under these conditions, the solvent ethanol becomes a supercritical fluid.

여기서, 상기 혼합액 중의 코발트:니켈의 몰비를 9:1으로 한 것을 실시예 1로 하였고, 4:1로 한 것을 실시예 2로 하였고, 7:3으로 한 것을 실시예 3으로 하였고, 3:2로 한 것을 실시예 4로 하였고, 1:1로 한 것을 실시예 5로 하였으며, 2:3으로 한 것을 실시예 6으로 하였다.Here, the cobalt:nickel molar ratio in the mixture was 9:1 as Example 1, 4:1 as Example 2, 7:3 as Example 3, and 3:2 as Example 2. What was set as Example 4 was made, 1: 1 was set as Example 5, and what was set as 2: 3 was set as Example 6.

그 다음에, 용매를 증발시켜 제거하여 수득한 분말을 LiOH·H2O와 혼합한 후, 650℃ 및 5시간의 조건으로 열처리를 실시하여, 목적하는 양극 활물질 입자를 얻었다. 상기 양극 활물질 입자의 조성을 LiCo2 - xNixO4로 나타내면, 실시예 1에서는 x=0.2, 실시예 2에서는 x=0.4, 실시예 3에서는 x=0.6, 실시예 4에서는 x=0.8, 실시예 5에서는 x=1.0, 실시예 6에서는 x=1.2가 되었다.Then, the powder obtained by evaporating off the solvent was mixed with LiOH·H 2 O, and heat treatment was performed at 650° C. for 5 hours to obtain desired positive electrode active material particles. If the composition of the positive electrode active material particle is represented by LiCo 2 - x Ni x O 4 , x=0.2 in Example 1, x=0.4 in Example 2, x=0.6 in Example 3, x=0.8 in Example 4, In Example 5, x = 1.0, and in Example 6, x = 1.2.

또한, 최초의 공정에서, 질산 니켈 용액을 가하지 않고 질산 코발트 용액과 수산화 리튬 용액을 혼합하여 초임계 유체 중에서 반응시킨 후, 실시예 1~6에서와 동일한 방법으로 열처리 하여, LiCo2O4의 조성을 갖는 양극 활물질 입자를 제조하여, 이를 참고예 1로 하였다.In addition, in the first step, a mixture of a cobalt nitrate solution and a lithium hydroxide solution was reacted in a supercritical fluid without adding a nickel nitrate solution, and then heat treatment was performed in the same manner as in Examples 1 to 6 to obtain a composition of LiCo 2 O 4 Cathode active material particles having the same were prepared and used as Reference Example 1.

이상과 같이 수득한 실시예 5와 관련되는 양극 활물질 입자의 결정 구조를 확인하기 위하여, 전자 회절(electron diffraction)법에 따른 해석을 실시하였다. 또한, 실시예 1~6 및 참고예 1과 관련되는 양극 활물질 입자의 결정 구조를 확인하기 위하여, XRD법에 따른 해석을 실시하였다. 또한, 상기 조성식에서, x=0인 경우(참고예 1;LiCo2O4)와 x=1인 경우(실시예 5;LiCo1 . 0Ni1 . 0O4)의 양극 활물질 입자를 각각 TEM을 이용하여 촬영하여, 입자의 외관을 확인하였다.In order to confirm the crystal structure of the positive electrode active material particles related to Example 5 obtained as described above, analysis was performed according to the electron diffraction method. In addition, in order to confirm the crystal structure of the positive electrode active material particles related to Examples 1 to 6 and Reference Example 1, analysis according to the XRD method was performed. In addition, in the above composition formula, the positive electrode active material particles in the case of x = 0 (Reference Example 1; LiCo 2 O 4 ) and in the case of x = 1 ( Example 5; LiCo 1.0 Ni 1.0 O 4 ) were respectively TEM was taken to confirm the appearance of the particles.

(전지의 전기 화학 평가)(electrochemical evaluation of battery)

앞의 공정으로 수득한 양극 활물질 입자들 중에서, 참고예 1및 실시예 4, 5와 관련되는 양극 활물질 입자를 포함하는 양극을 포함하는 평가 셀을 제조하여, 상기 평가 셀의 전기 화학 평가를 실시하였다. 구체적으로, 양극 활물질 입자, 아세틸렌 블랙 및 폴리테트라플루오르에틸렌(PTFE)을 80:10:10의 중량비로 유발을 이용하여 혼합하여, 수득한 재료를 양극 재료로 하였다.Among the positive electrode active material particles obtained in the above process, an evaluation cell including a positive electrode including the positive electrode active material particles related to Reference Example 1 and Examples 4 and 5 was prepared, and electrochemical evaluation of the evaluation cell was performed. . Specifically, the positive electrode active material particles, acetylene black, and polytetrafluoroethylene (PTFE) were mixed in a mortar in a weight ratio of 80:10:10, and the obtained material was used as a positive electrode material.

음극 재료로는 리튬 금속박을 사용하였다. 평가 셀 중에서는 양극 재료 및 음극 재료를 금속 메쉬에 각각 고정하고, 전해액(EC:DEC(1:1 부피) 중의 1M LiClO4)을 용기 중에 봉입하였다. 이 평가 셀을 이용하고, 4.7 V에서부터 2.7 V의 컷오프 전압까지, 0.1 C의 전류 밀도로 충방전 시험을 실시하였다.A lithium metal foil was used as an anode material. In the evaluation cell, the positive electrode material and the negative electrode material were each fixed to a metal mesh, and an electrolyte solution (1M LiClO 4 in EC:DEC (1:1 volume)) was sealed in a container. Using this evaluation cell, a charge/discharge test was conducted at a current density of 0.1 C from 4.7 V to a cutoff voltage of 2.7 V.

(측정 결과)(measurement result)

도 2는 실시예 5와 관련되는 리튬 코발트 니켈 복합 산화물의 전자 회절에 의한 사진을 나타내는 도면이다. 동 도면에 도시된 바와 같이, 조성식 LiCo2 - xNixO4의 x가 1.0인 범위에서 양극 활물질 입자가 6회 대칭(6-fold symmetry)을 나타내고, 상기 6회 대칭은 상기 양극 활물질 입자의 플레이트 표면이 스피넬형의 결정 구조의 [111] 면을 갖거나, 또는 층상 암염 결정 구조(layered rock salt crystal structure)의 [001] 면을 가짐을 나타낸다.FIG. 2 is a diagram showing a photograph by electron diffraction of a lithium cobalt nickel composite oxide related to Example 5. FIG. As shown in the same figure, in the range where x of the composition formula LiCo 2 - x Ni x O 4 is 1.0, the positive electrode active material particle exhibits 6-fold symmetry, and the 6-fold symmetry of the positive electrode active material particle This indicates that the plate surface has a [111] face of a spinel-type crystal structure or a [001] face of a layered rock salt crystal structure.

도 3은, 실시예 1~6 및 참고예 1과 관련되는 양극 활물질 입자의 XRD법에 따른 측정 결과를 나타내는 도면이다. 동 도면에 도시된 바와 같이, 조성식 LiCo2 -xNixO4의 x가 0~1.2인 범위에서 일반적인 회절 각도(도 2의 횡축)에서 강도의 피크를 볼 수 있으며, x가 0~1.2인 범위에서 양극 활물질 입자가 스피넬형의 결정 구조를 갖는 것을 확인할 수 있었다. 다만, LiCo0 . 8Ni1 . 2O4에서는 회절 각도가 20°부근인 위치에서의 강도의 피크가 현저하게 커져서 x가 1.2 미만의 경우와는 결정 구조에서 차이가 있음을 알 수 있었다.3 is a diagram showing measurement results according to the XRD method of positive electrode active material particles related to Examples 1 to 6 and Reference Example 1; As shown in the figure, an intensity peak can be seen at a general diffraction angle (abscissa axis in FIG. 2) in the range where x is 0 to 1.2 of the composition formula LiCo 2 -x Ni x O 4 , and x is 0 to 1.2. It was confirmed that the positive electrode active material particles had a spinel-type crystal structure within the range. However, LiCo 0 . 8 Ni 1 . In 2 O 4 , the intensity peak at the position where the diffraction angle is around 20° was significantly increased, and it was found that there was a difference in the crystal structure from the case where x was less than 1.2.

도 2 및 도 3의 결과의 조합으로부터, 실시예 5와 관련되는 리튬 코발트 니켈 복합 산화물(즉, 양극 활물질 입자)의 플레이트 표면은 스피넬형의 결정 구조의 [111] 면을 가짐을 확인할 수 있다.From the combination of the results of FIGS. 2 and 3, it can be confirmed that the surface of the plate of the lithium cobalt nickel composite oxide (i.e., the positive electrode active material particle) related to Example 5 has a [111] plane with a spinel-type crystal structure.

도 4는, 참고예 1과 관련되는 리튬 코발트 복합 산화물의 투과형 전자현미경(TEM)에 의한 사진을 나타내는 도면이며, 도 5는, 실시예 5와 관련되는 리튬 코발트 니켈 복합 산화물의 TEM에 의한 사진을 나타내는 도면이다.4 is a diagram showing a photograph taken by a transmission electron microscope (TEM) of a lithium cobalt composite oxide related to Reference Example 1, and FIG. 5 is a photograph taken by a TEM of a lithium cobalt nickel composite oxide related to Example 5. It is a drawing that represents

도 4에 도시된 현미경 사진으로부터, 조성이 LiCo2O4인 양극 활물질 입자의 상당수는 부호 A로 나타낸 입방체상의 결정 구조를 갖는 것을 확인할 수 있었다. 이에 반해, 도 5에 도시된 바와 같이, 조성이 LiCo1 . 0Ni1 . 0O4인 양극 활물질 입자의 상당수는 부호 B로 나타낸 육각형의 플레이트상인 것을 확인할 수 있었다. 입방체상으로부터 플레이트상으로의 결정 구조의 변화는, 니켈의 첨가에 의해서 발생하였다고 생각할 수 있다.From the photomicrograph shown in FIG. 4 , it was confirmed that many of the positive electrode active material particles having a composition of LiCo 2 O 4 had a cubic crystal structure indicated by symbol A. In contrast, as shown in FIG. 5, the composition is LiCo 1 . 0 Ni 1 . It was confirmed that most of the positive electrode active material particles of 0 O 4 were shaped like hexagonal plates indicated by symbol B. It is considered that the change in crystal structure from cubic to plate-like was caused by the addition of nickel.

도 6은, 실시예 4, 5및 참고예 1과 관련되는 양극 활물질의 방전 특성을 나타내는 도면이다. 동 도면에 나타낸 결과로부터, 양극 활물질 입자의 조성이 LiCo0.8Ni1.2O4인 경우에는 양극 활물질 입자의 조성이 LiCo2O4인 경우에 비해 방전 전위가 높고, 전지의 방전 용량도 높은 것을 확인할 수 있었다. 양극 활물질 입자의 조성이 LiCo1 . 0Ni1 . 0O4인 경우에는, 양극 활물질 입자의 조성이 LiCo0 . 8Ni1 . 2O4인 경우보다 한층 더 방전 용량이 높은 것도 확인할 수 있었다.6 is a diagram showing discharge characteristics of the positive electrode active materials according to Examples 4 and 5 and Reference Example 1. FIG. From the results shown in the figure, it can be seen that when the composition of the positive electrode active material particles is LiCo 0.8 Ni 1.2 O 4 , the discharge potential is higher and the discharge capacity of the battery is higher than when the composition of the positive electrode active material particles is LiCo 2 O 4 . there was. The composition of the positive electrode active material particles is LiCo 1 . 0 Ni 1 . 0 O 4 , the composition of the positive electrode active material particles is LiCo 0 . 8 Ni 1 . It was also confirmed that the discharge capacity was much higher than in the case of 2 O 4 .

이상으로 설명한 것처럼, 본 개시의 일례와 관련되는 양극 활물질 입자는, 리튬 이온 이차전지의 양극이나 리튬 이온 커패시터 등의 전극에 적용될 수 있다.As described above, the positive electrode active material particles according to one example of the present disclosure can be applied to a positive electrode of a lithium ion secondary battery or an electrode such as a lithium ion capacitor.

1: 리튬 이온 이차전지 3: 양극
5: 음극 7: 세퍼레이터
9: 전해질 11: 용기
1: lithium ion secondary battery 3: positive electrode
5: cathode 7: separator
9: electrolyte 11: container

Claims (9)

양극 활물질 입자를 포함하는 양극, 전해질 및 음극을 포함하고,
상기 양극 활물질 입자의 적어도 일부는, (111) 면이 적어도 일방향의 주면이 되는 플레이트상의 결정 구조 및 또한 스피넬형의 결정 구조를 가지고,
상기 양극 활물질 입자의 원소 조성은 LiCo2 - xNixO4(단, 0<x<2)로 나타내어지는 리튬 이온 이차전지.
Including a positive electrode, an electrolyte and a negative electrode including positive electrode active material particles,
At least some of the particles of the positive electrode active material have a plate-shaped crystal structure in which the (111) plane is a main surface in at least one direction, and also a spinel-type crystal structure,
The elemental composition of the positive active material particles is LiCo 2 - x Ni x O 4 (however, 0 < x < 2) represented by the lithium ion secondary battery.
제1항에 있어서,
상기 양극 활물질 입자의 원소 조성을 나타내는 상기 식 중의 x는, 0.8 이상 1.2 미만인, 리튬 이온 이차전지.
According to claim 1,
x in the above formula representing the elemental composition of the positive electrode active material particles is 0.8 or more and less than 1.2, a lithium ion secondary battery.
제1항 또는 제2항에 있어서,
상기 양극 활물질 입자의 원소 조성을 나타내는 상기 식 중의 x는 1인, 리튬 이온 이차전지.
According to claim 1 or 2,
In the above formula representing the elemental composition of the positive electrode active material particles, x is 1, a lithium ion secondary battery.
제1항에 있어서,
상기 양극 활물질 입자의 평균 입자 직경은 1000 nm이하인, 리튬 이온 이차전지.
According to claim 1,
The average particle diameter of the positive electrode active material particles is 1000 nm or less, a lithium ion secondary battery.
제4항에 있어서,
상기 양극 활물질 입자의 평균 입자 직경은 500 nm이하인, 리튬 이온 이차전지.
According to claim 4,
The average particle diameter of the positive electrode active material particles is 500 nm or less, a lithium ion secondary battery.
제1항에 있어서,
상기 양극 활물질 입자는 단결정 구조를 가지는, 리튬 이온 이차전지.
According to claim 1,
The positive electrode active material particle has a single crystal structure, a lithium ion secondary battery.
(111) 면이 적어도 일방향의 주면이 되는 플레이트상의 결정 구조 및 또한 스피넬형의 결정 구조를 가지고, 원소 조성이 LiCo2 - xNixO4(단, 0<x<2)로 나타내어지는 양극 활물질 입자.(111) A positive electrode active material having a plate-like crystal structure in which the plane becomes a main surface in at least one direction and a spinel-type crystal structure, and having an elemental composition represented by LiCo 2 - x Ni x O 4 (where 0 < x < 2) particle. 제7항에 있어서,
원소 조성을 나타내는 상기 식 중의 x는, 0.8 이상 1.2 미만인 양극 활물질 입자.
According to claim 7,
The positive electrode active material particle in which x in the above formula representing the elemental composition is 0.8 or more and less than 1.2.
코발트를 포함하는 재료, 니켈을 포함하는 재료 및 리튬을 포함하는 재료를 초임계 유체 중에서 반응시켜 코발트, 니켈 및 리튬을 포함하는 금속 복합 산화물을 생성시키는 단계;
상기 금속 복합 산화물과 리튬을 포함하는 재료를 혼합하여 250~450℃의 열처리로 반응시키는 단계로서, (111) 면이 적어도 일방향의 주면이 되는 플레이트상의 결정 구조 및 또한 스피넬형의 결정 구조를 가지고, 원소 조성이 LiCo2-xNixO4(단, 0<x<2)로 나타내어지는 양극 활물질 입자를 제조하는 단계를 포함하는 양극 활물질 입자의 제조 방법.
generating a metal composite oxide containing cobalt, nickel, and lithium by reacting a material containing cobalt, a material containing nickel, and a material containing lithium in a supercritical fluid;
A step of mixing the metal composite oxide and a material containing lithium and reacting by heat treatment at 250 to 450 ° C, having a plate-shaped crystal structure in which the (111) plane becomes a main surface in at least one direction and also a spinel-type crystal structure, A method of manufacturing a positive electrode active material particle comprising the step of preparing a positive electrode active material particle whose elemental composition is represented by LiCo 2-x Ni x O 4 (provided that 0<x<2).
KR1020150188906A 2015-09-09 2015-12-29 Cathodes active material for lithium ion batteries, and the batteries with them KR102568790B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/260,540 US10193152B2 (en) 2015-09-09 2016-09-09 Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2015-177397 2015-09-09
JP2015177397 2015-09-09
JPJP-P-2015-179886 2015-09-11
JP2015179886A JP6724271B2 (en) 2015-09-11 2015-09-11 Positive electrode active material particles, lithium ion secondary battery using the same, and method for producing positive electrode active material particles

Publications (2)

Publication Number Publication Date
KR20170030411A KR20170030411A (en) 2017-03-17
KR102568790B1 true KR102568790B1 (en) 2023-08-21

Family

ID=58502214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150188906A KR102568790B1 (en) 2015-09-09 2015-12-29 Cathodes active material for lithium ion batteries, and the batteries with them

Country Status (1)

Country Link
KR (1) KR102568790B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102485613B1 (en) * 2020-10-23 2023-01-09 한국과학기술연구원 Cathode for all solid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081637A (en) 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery
WO2009139397A1 (en) 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JP2011081926A (en) * 2009-10-02 2011-04-21 Nikkiso Co Ltd Method of manufacturing reformed fine powder-like positive electrode material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520634B1 (en) * 2012-05-10 2015-05-15 주식회사 엘지화학 Lithium Manganese-Based Oxide of High Capacity and Lithium Secondary Battery Comprising the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081637A (en) 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery
WO2009139397A1 (en) 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JP2011081926A (en) * 2009-10-02 2011-04-21 Nikkiso Co Ltd Method of manufacturing reformed fine powder-like positive electrode material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Electrochemical Society.(이태릭) The Electrochemical Society. 2014.6.24., vol.161(제A1440면 내지 제A1446면) 1부.*

Also Published As

Publication number Publication date
KR20170030411A (en) 2017-03-17

Similar Documents

Publication Publication Date Title
JP7120012B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP7077943B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7103222B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
CN108352526B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5590337B2 (en) Manganese composite hydroxide particles, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production methods thereof
WO2018021555A1 (en) Nickel manganese composite hydrhydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018021557A1 (en) Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101912546B1 (en) Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
US11967713B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery comprising tungsten coating film, and non-aqueous electrolyte secondary battery
WO2018021554A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2017162790A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
CN112768645A (en) Method for producing positive electrode active material and method for producing lithium ion battery
JP6930015B1 (en) Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2018049685A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JPWO2019163846A1 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JPWO2019163845A1 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP2018032543A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material
KR102568790B1 (en) Cathodes active material for lithium ion batteries, and the batteries with them
CN107851791B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2020218592A1 (en) Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US10193152B2 (en) Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
JP6724271B2 (en) Positive electrode active material particles, lithium ion secondary battery using the same, and method for producing positive electrode active material particles
JP6957846B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JPWO2019163847A1 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant