JP6957846B2 - Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6957846B2
JP6957846B2 JP2016182667A JP2016182667A JP6957846B2 JP 6957846 B2 JP6957846 B2 JP 6957846B2 JP 2016182667 A JP2016182667 A JP 2016182667A JP 2016182667 A JP2016182667 A JP 2016182667A JP 6957846 B2 JP6957846 B2 JP 6957846B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182667A
Other languages
Japanese (ja)
Other versions
JP2018049684A (en
Inventor
鈴木 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016182667A priority Critical patent/JP6957846B2/en
Publication of JP2018049684A publication Critical patent/JP2018049684A/en
Application granted granted Critical
Publication of JP6957846B2 publication Critical patent/JP6957846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.

近年、携帯電話やノート型パソコン等の携帯機器の普及にともない、高いエネルギー密度を有する小型かつ軽量な二次電池の開発が強く望まれている。また、XEVと呼ばれる環境対応自動車においても高容量化が求められており、高容量の二次電池の需要は、今後、大幅に増加することが予想されている。さらに、環境対応自動車における1回の充電当たりの走行距離の向上や小型化の必要性が増し、更なる高容量化が求められている。 In recent years, with the widespread use of mobile devices such as mobile phones and notebook computers, the development of compact and lightweight secondary batteries having a high energy density has been strongly desired. In addition, an environment-friendly vehicle called XEV is also required to have a high capacity, and the demand for a high-capacity secondary battery is expected to increase significantly in the future. Further, there is an increasing need for improvement of the mileage per charge and miniaturization of environment-friendly automobiles, and further increase in capacity is required.

このような高容量の二次電池として、非水系電解質二次電池がある。非水系電解質二次電池の代表的な電池としてはリチウムイオン二次電池があり、リチウムイオン二次電池の正極材料には、リチウム金属複合酸化物が正極活物質として使用される。リチウムコバルト複合酸化物(LiCoO)は、合成が比較的容易であり、かつ、リチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池において、4V級の高い電圧が得られるため、高いエネルギー密度を有する二次電池を実用化させるための材料として実用化されている。 As such a high-capacity secondary battery, there is a non-aqueous electrolyte secondary battery. A typical battery of a non-aqueous electrolyte secondary battery is a lithium ion secondary battery, and a lithium metal composite oxide is used as a positive electrode active material as a positive electrode material of the lithium ion secondary battery. Lithium cobalt composite oxide (LiCoO 2 ) is relatively easy to synthesize, and is high because a high voltage of 4V class can be obtained in a lithium ion secondary battery using lithium cobalt composite oxide as a positive electrode material. It has been put into practical use as a material for putting a secondary battery having energy density into practical use.

しかし、リチウムコバルト複合酸化物は、高容量化の要求に十分に対応できているとは言い難く、より高容量の代替材料が検討されている。リチウムコバルト複合酸化物に代替できる正極活物質の中でも、近年、高容量であり、また、高価なコバルトの含有量が少なくコスト的に有利であるリチウムニッケル複合酸化物(LiNiO)が注目されている。 However, it cannot be said that the lithium cobalt composite oxide can sufficiently meet the demand for higher capacity, and alternative materials with higher capacity are being studied. Among the positive electrode active materials that can replace the lithium cobalt composite oxide, the lithium nickel composite oxide (LiNiO 2 ), which has a high capacity and a low content of expensive cobalt and is advantageous in terms of cost, has been attracting attention in recent years. There is.

しかしながら、リチウムニッケル複合酸化物は、充電の際に結晶構造が崩れ、発熱や酸素放出が起こりやすく熱安定性が低いという問題がある。また、非水系電解質二次電池は、電解液として有機溶媒が用いられており、過度に発熱すると有機溶媒と反応してさらに発熱しやすくなるという問題があり、例えば特許文献1のようにマンガン等の熱安定化元素をリチウムニッケル複合酸化物へ添加して、これらの問題を防止している。 However, the lithium nickel composite oxide has a problem that the crystal structure is broken during charging, heat generation and oxygen release are likely to occur, and the thermal stability is low. Further, the non-aqueous electrolyte secondary battery uses an organic solvent as the electrolytic solution, and has a problem that if it generates heat excessively, it reacts with the organic solvent to further generate heat. For example, manganese or the like as in Patent Document 1. The heat-stabilizing element of is added to the lithium-nickel composite oxide to prevent these problems.

このように他の元素を添加した場合、リチウムニッケル複合酸化物の長所である高い容量が犠牲になってしまう。 When other elements are added in this way, the high capacity, which is an advantage of the lithium nickel composite oxide, is sacrificed.

このような容量低下を補うため、例えば特許文献2のように、正極活物質の二次粒子の空隙率を低くして高密度化することで、電池にした時の体積容量が向上する正極活物質が提供されている。 In order to compensate for such a decrease in capacity, for example, as in Patent Document 2, by lowering the void ratio of the secondary particles of the positive electrode active material and increasing the density, the positive electrode activity improves the volume capacity when made into a battery. The substance is provided.

また、特許文献3では、正極活物質の前駆体の空隙率を15%以下にすることで、正極活物質の空隙率を2%以下にする方法が提供されている。 Further, Patent Document 3 provides a method of reducing the porosity of the positive electrode active material to 2% or less by reducing the porosity of the precursor of the positive electrode active material to 15% or less.

特開2011−116580号公報Japanese Unexamined Patent Publication No. 2011-116580 特開2014−237573号公報Japanese Unexamined Patent Publication No. 2014-237573 特開2015−164123号公報JP-A-2015-164123

しかしながら、特許文献2の正極活物質では空隙率が5%程度までしか低下させることができておらず、十分に高密度化されているとは言えず、更なる高容量化の可能性が残っている。 However, in the positive electrode active material of Patent Document 2, the porosity can be reduced only to about 5%, and it cannot be said that the density is sufficiently high, and the possibility of further increasing the capacity remains. ing.

また、特許文献3の方法では、二次粒子の粒径が数μm以下の活物質で空隙率が2%以下の活物質を得ることは可能であるが、前駆体の空隙率と正極活物質との相関が十分ではなく、また、二次粒子径が5μm程度以上の活物質では低い空隙率が得られていない。 Further, in the method of Patent Document 3, it is possible to obtain an active material having a particle size of secondary particles of several μm or less and a void ratio of 2% or less, but the void ratio of the precursor and the positive electrode active material. The correlation with is not sufficient, and a low void ratio is not obtained with an active material having a secondary particle size of about 5 μm or more.

本発明は、上記課題に鑑みてなされたものであり、非水系電解質二次電池の正極活物質として用いられた際のリチウムニッケル複合酸化物系の非水系電解質二次電池用正極活物質を高密度化できる非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and a lithium nickel composite oxide-based positive electrode active material for a non-aqueous electrolyte secondary battery when used as a positive electrode active material for a non-aqueous electrolyte secondary battery is high. An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can be densified, a method for producing the same, and a non-aqueous electrolyte secondary battery.

本発明の一態様は、一次粒子が凝集して形成した二次粒子から構成されたリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質であって、リチウムと、金属元素と、添加元素からなり、リチウム金属複合酸化物は、層状岩塩型構造の結晶構造を有し、金属元素としてニッケル及びコバルトを含み、ニッケルの含有量が金属元素及び添加元素の合計に対して79.8〜90原子%であり、コバルトの含有量が金属元素及び添加元素の合計に対して5〜15.8原子%であり、かつ、添加元素は、珪素であり、珪素の含有量は、金属元素及び添加元素の合計に対して0.5〜7原子%であり、さらに、二次粒子の空隙率が1%以下であり、結晶子径が140nm以下であることを特徴とする。 One aspect of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery composed of a lithium metal composite oxide composed of secondary particles formed by agglomeration of primary particles, wherein lithium, a metal element, and the like. consists added elements, lithium metal composite oxide has a crystal structure of the layered rock-salt structure, comprising nickel and cobalt as the metal element, the content of nickel relative to the total of metal elements and additional element 79.8 a 90 atom%, the cobalt content is from 5 to 15.8 atomic% based on the total of metal elements and additive element, and additive elements is silicofluoride-containing, content of silicon, metal It is characterized in that it is 0.5 to 7 atomic% with respect to the total of the elements and the added elements, the void ratio of the secondary particles is 1% or less, and the crystallite diameter is 140 nm or less.

また、本発明の他の態様は、上述した非水系電解質二次電池用正極活物質を含む正極を備えることを特徴とする非水系電解質二次電池である。 Another aspect of the present invention is a non-aqueous electrolyte secondary battery, which comprises a positive electrode containing the above-mentioned positive electrode active material for a non-aqueous electrolyte secondary battery.

また、本発明の他の態様は、リチウムと、金属元素と、添加元素からなり、金属元素としてニッケルの含有量が金属元素及び添加元素の合計に対して79.8〜90原子%であり、金属元素としてコバルトの含有量が金属元素及び添加元素の合計に対して5〜15.8原子%であり、かつ、添加元素は、珪素であり、珪素の含有量は、金属元素及び添加元素の合計に対して0.5〜7原子%であり、さらに、二次粒子の空隙率が1%以下であり、結晶子径が140nm以下であるリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、少なくともニッケル塩及びコバルト塩を含む金属元素塩水溶液と、珪素を含む添加元素水溶液と、アンモニウムイオンを含む水溶液を混合して反応溶液とし、反応溶液の液温25℃基準のpH値が11.0〜12.5の範囲となるようにアルカリ性水溶液を用いて制御し、その際に、アンモニウムイオンを含む水溶液とアルカリ性水溶液を反応溶液の液中に供給してニッケル複合水酸化物の粒子を成長させる晶析工程と、晶析したニッケル複合水酸化物を洗浄した後、乾燥する乾燥工程と、乾燥後のニッケル複合水酸化物とリチウム化合物を混合して得た混合物を酸素雰囲気下で焼成してリチウム金属複合酸化物を得る焼成工程とを含むことを特徴とする。 In addition, another aspect of the present invention comprises lithium, a metal element, and an additive element , and the content of nickel as the metal element is 79.8 to 90 atomic% with respect to the total of the metal element and the additive element. The content of cobalt as a metal element is 5 to 15.8 atomic% with respect to the total of the metal element and the additive element, and the additive element is silicon, and the silicon content is that of the metal element and the additive element. A non-aqueous electrolyte secondary battery made of a lithium metal composite oxide having a total void ratio of 0.5 to 7 atomic%, a void ratio of secondary particles of 1% or less, and a crystallite diameter of 140 nm or less. A method for producing a positive electrode active material for use, in which a metal element salt aqueous solution containing at least a nickel salt and a cobalt salt, an additive element aqueous solution containing silicon, and an aqueous solution containing ammonium ions are mixed to prepare a reaction solution. Control using an alkaline aqueous solution so that the pH value based on a temperature of 25 ° C. is in the range of 11.0 to 12.5, and at that time, an aqueous solution containing ammonium ions and an alkaline aqueous solution are supplied into the reaction solution. A crystallization step for growing particles of the nickel composite hydroxide, a drying step for washing the crystallized nickel composite hydroxide and then drying, and mixing the dried nickel composite hydroxide and the lithium compound. It is characterized by including a firing step of calcining the obtained mixture in an oxygen atmosphere to obtain a lithium metal composite oxide.

本発明によれば、高温安定性に優れ、高密度な二次粒子の非水系電解質二次電池用正極活物質が得られる。また、当該正極活物質を含む正極を備える非水系電解質二次電池は、高温安定性に優れ、かつ、高密度なものとなり、安全かつ高容量な二次電池となることが期待される。 According to the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent high-temperature stability and high-density secondary particles can be obtained. Further, the non-aqueous electrolyte secondary battery including the positive electrode containing the positive electrode active material is expected to be a safe and high-capacity secondary battery having excellent high-temperature stability and high density.

本発明の一実施形態に係る非水系電解質二次電池用正極活物質の製造方法の概略を示すフロー図である。It is a flow chart which shows the outline of the manufacturing method of the positive electrode active material for a non-aqueous electrolyte secondary battery which concerns on one Embodiment of this invention. (A)及び(B)は、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の製造方法において、アンモニウムイオンを含む水溶液とアルカリ性水溶液の供給位置を説明するための図である。(A) and (B) are diagrams for explaining the supply positions of an aqueous solution containing ammonium ions and an alkaline aqueous solution in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. be. (A)及び(B)は、本発明の一実施形態に係る非水系電解質二次電池の構成図である。(A) and (B) are block diagrams of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. 実施例6の正極活物質の前駆体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the precursor of the positive electrode active material of Example 6. 実施例6の正極活物質の断面の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of a cross section of the positive electrode active material of Example 6. 比較例1の正極活物質の前駆体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the precursor of the positive electrode active material of Comparative Example 1. 比較例1の正極活物質の断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the positive electrode active material of Comparative Example 1. 比較例6の正極活物質の前駆体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the precursor of the positive electrode active material of Comparative Example 6. 比較例6の正極活物質の断面の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of a cross section of the positive electrode active material of Comparative Example 6.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てを本発明の解決手段として必須とするものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. It should be noted that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all of the configurations described in the present embodiment are indispensable as a means for solving the present invention. It is not something to do.

本発明者らは、ニッケルとコバルトを含む非水系電解質二次電池用正極活物質の高密度化について鋭意検討した結果、珪素を添加することで粒子密度を向上できることを見出し、本発明を完成した。以下、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の成分や構成、及びその製造方法について図面を参照しながら以下の順序で説明する。
1.非水系電解質二次電池用正極活物質
2.非水系電解質二次電池用正極活物質の製造方法
2−1.晶析工程
2−2.乾燥工程
2−3.焼成工程
3.非水系電解質二次電池
As a result of diligent studies on increasing the density of the positive electrode active material for a non-aqueous electrolyte secondary battery containing nickel and cobalt, the present inventors have found that the particle density can be improved by adding silicon, and completed the present invention. .. Hereinafter, the components and configurations of the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, and the manufacturing method thereof will be described in the following order with reference to the drawings.
1. 1. Non-aqueous electrolyte Positive electrode active material for secondary batteries 2. Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary batteries 2-1. Crystallization step 2-2. Drying process 2-3. Baking process 3. Non-aqueous electrolyte secondary battery

<1.非水系電解質二次電池用正極活物質>
本発明の一実施形態に係る非水系電解質二次電池用正極活物質は、一次粒子が凝集して形成した二次粒子から構成され、リチウムと、金属元素と、及び添加元素とを含むリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質である。本実施形態では、リチウム金属複合酸化物は、層状岩塩型構造の結晶構造を有し、金属元素としてニッケルおよびコバルトを含み、金属元素及び添加元素の合計に対してニッケルの含有量が60〜90原子%、コバルトの含有量が5〜30%であり、かつ、添加元素として珪素を含み、含有量が前記金属元素及び前記添加元素の合計に対して珪素の0.5〜7原子%であり、さらに、二次粒子の空隙率が1%以下であることを特徴とする。本明細書において、特に記載がない場合、数値範囲は「下限値以上、上限値以下」を意味する。
<1. Positive electrode active material for non-aqueous electrolyte secondary batteries>
The positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention is composed of secondary particles formed by agglomeration of primary particles, and is a lithium metal containing lithium, a metal element, and an additive element. It is a positive electrode active material for a non-aqueous electrolyte secondary battery made of a composite oxide. In the present embodiment, the lithium metal composite oxide has a crystal structure of a layered rock salt type structure, contains nickel and cobalt as metal elements, and has a nickel content of 60 to 90 with respect to the total of the metal elements and additive elements. The content of atomic% and cobalt is 5 to 30%, and silicon is contained as an additive element, and the content is 0.5 to 7 atomic% of silicon with respect to the total of the metal element and the additive element. Further, it is characterized in that the void ratio of the secondary particles is 1% or less. In the present specification, unless otherwise specified, the numerical range means "greater than or equal to the lower limit and less than or equal to the upper limit".

非水系電解質二次電池用正極活物質(以下、単に「正極活物質」ということがある。)を構成するリチウム金属複合酸化物は、層状岩塩型構造の結晶構造を有し、金属元素としてニッケル含み、金属元素及び添加元素の合計に対してニッケルの含有量が60〜90原子%である。このような層状岩塩型構造の結晶構造を有し、高いニッケル含有量のリチウム金属複合酸化物は、非水系電解質二次電池(以下、単に「電池」ということがある。)に用いられた際に高い充放電容量(以下、「電池容量」ということがある。)を実現できる。一方で、結晶構造の安定性が高くないため、コバルトを5〜30%含有させ結晶構造を安定化させているが、リチウムニッケル複合酸化物に比べ充放電容量が低くなる。 The lithium metal composite oxide constituting the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, may be simply referred to as “positive electrode active material”) has a crystal structure of a layered rock salt type structure, and nickel as a metal element. The content of nickel is 60 to 90 atomic% with respect to the total of the metal element and the additive element. When a lithium metal composite oxide having such a layered rock salt type crystal structure and a high nickel content is used in a non-aqueous electrolyte secondary battery (hereinafter, may be simply referred to as a “battery”). High charge / discharge capacity (hereinafter sometimes referred to as "battery capacity") can be realized. On the other hand, since the stability of the crystal structure is not high, the crystal structure is stabilized by containing 5 to 30% of cobalt, but the charge / discharge capacity is lower than that of the lithium nickel composite oxide.

また、金属元素としてニッケルとコバルトを含むリチウム金属複合酸化物は、通常、一次粒子が凝集して二次粒子を形成しているため、二次粒子内には多くの空隙を有しており、この空隙が容量密度を低下させている。 In addition, a lithium metal composite oxide containing nickel and cobalt as metal elements usually has many voids in the secondary particles because the primary particles are aggregated to form secondary particles. This void reduces the volume density.

本発明の非水系電解質二次電池用正極活物質は、ニッケルとコバルトを含むリチウム金属複合酸化物に、珪素を添加することにより、空隙率が増加する5〜20μmの比較的大きな二次粒子径においても低い空隙率を実現している。 The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a relatively large secondary particle diameter of 5 to 20 μm in which the porosity is increased by adding silicon to a lithium metal composite oxide containing nickel and cobalt. Also, a low porosity is achieved.

珪素は、添加することにより空隙率の低下効果があるが、珪素の含有量は、リチウム金属複合酸化物に含まれる金属元素及び添加元素の合計に対して0.5〜7原子であり、0.5〜3原子%であることが好ましい。珪素を0.5原子%以上添加することで空隙率は1%未満まで低下させることができる。珪素の添加量には上限は無いが、結晶格子の歪が大きくなり電池特性が低下しないように7原子%以下する。 Silicon has the effect of lowering the void ratio by adding it, but the content of silicon is 0.5 to 7 atoms with respect to the total of the metal elements and the added elements contained in the lithium metal composite oxide, which is 0. It is preferably 5 to 3 atomic%. Porosity can be reduced to less than 1% by adding 0.5 atomic% or more of silicon. There is no upper limit to the amount of silicon added, but the amount should be 7 atomic% or less so that the strain of the crystal lattice does not increase and the battery characteristics do not deteriorate.

なお、金属元素及び添加元素は上述した元素以外の元素をさらに含んでいてもよい、例えば、Mn、Al、Mg、Ti、Cr、Fe、Cu、Zn、Ca、V、Zr、Nb、Mo、Wから選択される少なくとも1種の元素を用いることができる。 The metal element and the additive element may further contain elements other than the above-mentioned elements, for example, Mn, Al, Mg, Ti, Cr, Fe, Cu, Zn, Ca, V, Zr, Nb, Mo, At least one element selected from W can be used.

さらに、二次粒子の空隙率が1%以下である。二次粒子は、一次粒子が緻密に凝集した粒子構造を有するため、粒子密度が極めて高く、高い密度を有する正極活物質となる。このため、正極活物質を電池に用いた場合、電池の容積当たりの高密度化が可能であり、高い体積エネルギー密度を有する電池が得られる。 Further, the porosity of the secondary particles is 1% or less. Since the secondary particles have a particle structure in which the primary particles are densely aggregated, the secondary particles have an extremely high particle density and are a positive electrode active material having a high density. Therefore, when the positive electrode active material is used in the battery, the density per volume of the battery can be increased, and a battery having a high volume energy density can be obtained.

ここで、正極活物質、すなわち二次粒子の内部の空隙率は、走査型電子顕微鏡(以下、「SEM」ということがある。)によって観察される画像(SEM像)を解析することにより求めることができる。たとえば、正極活物質(二次粒子)を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより断面観察が可能な状態でSEM像を撮影し、WinRoof6.1.1(商品名)などの画像解析ソフトを用いて、空隙を黒色部として検出し、二次粒子の全体の断面積に対する黒色部の面積の割合を算出することにより求めることができる。 Here, the porosity inside the positive electrode active material, that is, the secondary particles is determined by analyzing an image (SEM image) observed by a scanning electron microscope (hereinafter, may be referred to as “SEM”). Can be done. For example, a positive electrode active material (secondary particles) is embedded in a resin or the like, an SEM image is taken in a state where cross-section observation is possible by cross-section polisher processing, etc., and image analysis software such as WinLoof 6.1.1 (trade name) is used. It can be obtained by detecting the void as a black portion and calculating the ratio of the area of the black portion to the total cross-sectional area of the secondary particles.

また、上述のように金属元素としてコバルトを含むことによって、リチウム金属複合酸化物の構造が安定化し、熱安定性がより向上する。電池容量と熱安定性を高い次元で両立させる観点から、コバルトの含有量は、リチウム金属複合酸化物に含まれる金属元素と添加元素の合計に対して5〜30原子%であり、5〜20原子%であることが好ましい。ニッケル酸リチウム等のリチウム金属複合酸化物は、エネルギー密度が高いが、熱安定性が高いとは言えないため、本実施形態では、コバルトを加えることによって、結晶構造を安定化させ、熱安定性を向上させている。 Further, by containing cobalt as a metal element as described above, the structure of the lithium metal composite oxide is stabilized, and the thermal stability is further improved. From the viewpoint of achieving both battery capacity and thermal stability at a high level, the cobalt content is 5 to 30 atomic% with respect to the total of the metal elements and additive elements contained in the lithium metal composite oxide, and is 5 to 20. It is preferably atomic%. A lithium metal composite oxide such as lithium nickelate has a high energy density, but cannot be said to have high thermal stability. Therefore, in the present embodiment, cobalt is added to stabilize the crystal structure and provide thermal stability. Is improving.

前記リチウム金属複合酸化物は、平均粒径が5〜20μmであることが好ましい。この平均粒径を上記範囲とすることで、電池容量を維持しながら正極活物質の充填性を向上させ、電池の正極に用いた際により高い体積エネルギー密度が得られる。ここで、平均粒径は、D50であり、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の50%となる粒径を意味し、レーザー光回折散乱式粒度分析計を用いて測定することができる。 The lithium metal composite oxide preferably has an average particle size of 5 to 20 μm. By setting this average particle size within the above range, the filling property of the positive electrode active material is improved while maintaining the battery capacity, and a higher volume energy density can be obtained when used for the positive electrode of the battery. Here, the average particle size is D50, which means a particle size in which the number of particles in each particle size is accumulated from the smaller particle size side and the accumulated volume is 50% of the total volume of all particles. It can be measured using a diffraction / scattering particle size analyzer.

また、前記リチウム金属複合酸化物は、結晶子径が140nm以下であることが好ましく、10〜130nmであることがより好ましい。結晶粒径は一次粒子の大きさに影響する指標であり、結晶子径を制御することで一次粒子の大きさを適度なものとし、二次粒子の緻密度を高め、高い粒子密度を有する正極活物質を得ることができる。結晶子径が小さすぎると、一次粒子が小さくなり過ぎて一次粒子間での空隙数が大幅に増加し、粒子密度が低下することがある。一方、結晶子径が大きすぎると、一次粒子が大きくなり過ぎて一次粒子間での空隙が大きくなり、粒子密度が低下することがある。 The lithium metal composite oxide preferably has a crystallite diameter of 140 nm or less, more preferably 10 to 130 nm. The crystal grain size is an index that affects the size of the primary particles. By controlling the crystallite size, the size of the primary particles is made appropriate, the density of the secondary particles is increased, and the positive electrode has a high particle density. Active material can be obtained. If the crystallite diameter is too small, the primary particles become too small, the number of voids between the primary particles increases significantly, and the particle density may decrease. On the other hand, if the crystallite diameter is too large, the primary particles become too large, the voids between the primary particles become large, and the particle density may decrease.

前記リチウム金属複合酸化物は、a軸の格子定数が0.2868nm以上、c軸の格子定数が1.4177nm以上であることが好ましい。a軸およびc軸の格子定数を上記範囲とすることで、結晶格子の歪が大きくなくなり過ぎることを抑制して高い電池容量を維持することができる。電池容量の観点から、a軸の格子定数は0.2868〜0.2890nmであることがより好ましく、c軸の格子定数は1.4177〜1.4250nmであることがより好ましい。 The lithium metal composite oxide preferably has an a-axis lattice constant of 0.2868 nm or more and a c-axis lattice constant of 1.4177 nm or more. By setting the a-axis and c-axis lattice constants in the above range, it is possible to prevent the distortion of the crystal lattice from becoming too large and maintain a high battery capacity. From the viewpoint of battery capacity, the a-axis lattice constant is more preferably 0.2868 to 0.2890 nm, and the c-axis lattice constant is more preferably 1.4177 to 1.4250 nm.

このように、本発明の一実施形態に係る正極活物質は、上述したように、添加元素により高い電池容量と熱安定性を両立させるものであり、その他の粉体特性は、一般的な非水系電解質二次電池用正極活物質の特性を適用することができる。 As described above, the positive electrode active material according to the embodiment of the present invention has both high battery capacity and thermal stability due to the additive element, as described above, and other powder characteristics are general non-existent. The characteristics of the positive electrode active material for an aqueous electrolyte secondary battery can be applied.

<2.非水系電解質二次電池用正極活物質の製造方法>
図1は、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の製造方法の概略を示すフロー図である。本発明の一実施形態に係る非水系電解質二次電池用正極活物質の製造方法は、リチウムと、金属元素及び添加元素を含むリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法である。本実施形態の正極活物質の製造方法では、図1に示すように、晶析工程S11と、乾燥工程S12と、焼成工程S13とを有する。以下、各工程について詳細に説明する。
<2. Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary batteries >
FIG. 1 is a flow chart showing an outline of a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery composed of lithium and a lithium metal composite oxide containing a metal element and an additive element. It is a manufacturing method of. As shown in FIG. 1, the method for producing a positive electrode active material of the present embodiment includes a crystallization step S11, a drying step S12, and a firing step S13. Hereinafter, each step will be described in detail.

(2−1.晶析工程)
晶析工程S11は、少なくともニッケルとコバルトを含む水溶液と、珪素を含む水溶液と、アンモニウムイオンを含む水溶液を混合して反応溶液とし、反応水溶液の液温25℃基準のpH値が11.0〜12.5の範囲となるように制御してニッケル複合水酸化物を晶析させる工程である。晶析工程S11によって、リチウム金属複合酸化物の前駆体となるニッケル複合水酸化物(以下、単に「複合水酸化物」ということがある。)が得られる。
(2-1. Crystallization step)
In the crystallization step S11, an aqueous solution containing at least nickel and cobalt, an aqueous solution containing silicon, and an aqueous solution containing ammonium ions are mixed to prepare a reaction solution, and the pH value of the reaction solution based on a liquid temperature of 25 ° C. is 11.0 to 1. This is a step of crystallizing the nickel composite hydroxide in a range of 12.5. By the crystallization step S11, a nickel composite hydroxide (hereinafter, may be simply referred to as “composite hydroxide”) which is a precursor of the lithium metal composite oxide is obtained.

本発明の一実施形態に係る正極活物質は、添加元素である珪素がニッケル原子と置換しているものであるため、複合水酸化物の状態において、添加元素が複合水酸化物に固溶、又は複合水酸化物の粒子内に分散した状態として均一に含有させることが好ましい。このため、晶析工程S11において、添加元素を金属塩から生成される水酸化物と共沈殿させることが好ましい。 In the positive electrode active material according to the embodiment of the present invention, silicon, which is an additive element, is replaced with a nickel atom. Therefore, in the state of a composite hydroxide, the additive element is dissolved in the composite hydroxide. Alternatively, it is preferable that the composite hydroxide is uniformly contained in the particles in a dispersed state. Therefore, in the crystallization step S11, it is preferable to co-precipitate the additive element with the hydroxide generated from the metal salt.

複合水酸化物の組成は、得られる正極活物質に継承される。従って、複合水酸化物を晶析する際に用いる混合水溶液中の金属元素塩及び前記添加元素の組成を、得ようとする正極活物質と同様にする。複合水酸化物の組成によっては、混合すると混合液中で反応して固体を生成する場合がある。このような場合は、個別に金属元素塩及び前記添加元素を含む水溶液を供給し、反応液中での組成が複合水酸化物の組成となるようにすればよい。なお、晶析した水酸化物に複合水酸化物を構成する金属塩を被覆して組成を調整する場合には、被覆する金属塩に相当する量を混合水溶液から差し引いて調整すればよい。 The composition of the composite hydroxide is inherited by the resulting positive electrode active material. Therefore, the composition of the metal element salt and the additive element in the mixed aqueous solution used for crystallizing the composite hydroxide is the same as that of the positive electrode active material to be obtained. Depending on the composition of the composite hydroxide, when mixed, it may react in the mixed solution to form a solid. In such a case, an aqueous solution containing the metal element salt and the additive element may be individually supplied so that the composition in the reaction solution becomes the composition of the composite hydroxide. When the crystallized hydroxide is coated with a metal salt constituting the composite hydroxide to adjust the composition, the amount corresponding to the metal salt to be coated may be subtracted from the mixed aqueous solution for adjustment.

混合水溶液中の金属元素及び添加元素の合計の濃度は、1.5〜2.5mol/Lとすることが好ましい。これにより、混合水溶液中での金属元素塩や添加元素の化合物の析出を防止して組成の均一な複合水酸化物を得ることができる。また、粒径を十分に成長させて高い充填性が得られると共に粒径を安定させることができる。珪素を含む添加元素水溶液は、珪酸ナトリウム水溶液、もしくは珪酸カリウム水溶液を用いることが好ましく、珪酸ナトリウム水溶液を用いることがより好ましい。 The total concentration of the metal element and the additive element in the mixed aqueous solution is preferably 1.5 to 2.5 mol / L. As a result, it is possible to prevent precipitation of metal element salts and compounds of additive elements in the mixed aqueous solution and obtain a composite hydroxide having a uniform composition. In addition, the particle size can be sufficiently grown to obtain high filling property and the particle size can be stabilized. As the aqueous solution of the additive element containing silicon, it is preferable to use an aqueous solution of sodium silicate or an aqueous solution of potassium silicate, and it is more preferable to use an aqueous solution of sodium silicate.

反応水溶液は、液温25℃基準のpH値が11.0〜12.5の範囲となるように制御される。これにより、複合水酸化物の粒径を適度な大きさに制御することができ、得られる正極活物質の充填性を向上させることができる。pH値が11未満、又は12.5を超えると、複合水酸化物の粒径が小さくなり過ぎて正極活物質の充填性が低下したり、組成が不安定になることがあり、添加元素が共沈殿しない場合があるので好ましくない。 The reaction aqueous solution is controlled so that the pH value based on the liquid temperature of 25 ° C. is in the range of 11.0 to 12.5. Thereby, the particle size of the composite hydroxide can be controlled to an appropriate size, and the filling property of the obtained positive electrode active material can be improved. If the pH value is less than 11 or more than 12.5, the particle size of the composite hydroxide may become too small, the filling property of the positive electrode active material may decrease, or the composition may become unstable, and the additive element may be added. It is not preferable because it may not co-precipitate.

反応水溶液の温度は、45〜55℃の範囲で一定、例えば、温度の上下限を5℃以内に制御することが好ましい。これにより、複合水酸化物の粒径制御が容易になる。反応水溶液の温度が上記温度範囲外では、組成が不安定になることや、酸化が進行しやすくなることがある。また、45℃未満では、粒径が大きくなり過ぎることがあり、55℃を超えると粒径が小さくなり過ぎることがある。このため、本実施形態では、反応水溶液の温度をかかる温度範囲となるように制御している。 The temperature of the reaction aqueous solution is constant in the range of 45 to 55 ° C., for example, the upper and lower limits of the temperature are preferably controlled within 5 ° C. This facilitates the control of the particle size of the composite hydroxide. If the temperature of the reaction aqueous solution is outside the above temperature range, the composition may become unstable or oxidation may easily proceed. Further, if the temperature is lower than 45 ° C., the particle size may become too large, and if the temperature exceeds 55 ° C., the particle size may become too small. Therefore, in the present embodiment, the temperature of the reaction aqueous solution is controlled to be within such a temperature range.

反応水溶液中のアンモニウムイオン濃度は、5〜25mg/Lとすることが好ましく、5〜15mg/Lとすることがより好ましい。これにより、pH値の変動による粒径変動を抑制して粒径制御を容易にすることができる。また、複合水酸化物の球形度を向上させることができ、正極活物質の充填性を向上させることができる。 The ammonium ion concentration in the reaction aqueous solution is preferably 5 to 25 mg / L, more preferably 5 to 15 mg / L. Thereby, the particle size fluctuation due to the fluctuation of the pH value can be suppressed and the particle size control can be facilitated. Further, the sphericity of the composite hydroxide can be improved, and the filling property of the positive electrode active material can be improved.

晶析工程S11においては、アンモニウムイオンを含む水溶液とアルカリ性水溶液を直接反応溶液の液中に供給する。例えば供給管を反応溶液中に挿入してアルカリ性水溶液を反応溶液に供給する。これにより局部的なpH値やアンモニウムイオン濃度の変動が抑制され、珪素の分布が均一になるとともに粒子の成長が安定化する。珪素分布の均一化により、複合水酸化物の一次粒子は板状粒子へ成長が適度に抑制され、さらに粒子が安定して成長するため、一次粒子は緻密に凝集して二次粒子の緻密化が促進される。このため、複合水酸化物を前駆体として得た正極活物質も粒子密度が高い粒子構造とすることができる。 In the crystallization step S11, an aqueous solution containing ammonium ions and an alkaline aqueous solution are directly supplied into the reaction solution. For example, a supply tube is inserted into the reaction solution to supply an alkaline aqueous solution to the reaction solution. As a result, local fluctuations in pH value and ammonium ion concentration are suppressed, the distribution of silicon becomes uniform, and the growth of particles is stabilized. Due to the homogenization of the silicon distribution, the growth of the primary particles of the composite hydroxide into plate-like particles is appropriately suppressed, and the particles grow stably, so that the primary particles are densely aggregated and the secondary particles are densified. Is promoted. Therefore, the positive electrode active material obtained by using the composite hydroxide as a precursor can also have a particle structure having a high particle density.

図2(A)は、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の製造方法において、アンモニウムイオンを含む水溶液とアルカリ性水溶液の(例えば供給管13からの)供給位置Pの一態様を説明するための図である。局所的な高濃度部をできるだけ生じないようにするためには、アンモニウムイオンを含む水溶液とアルカリ性水溶液の供給位置Pは、垂直方向においては、反応溶液中の撹拌翼11の最深部Dから、撹拌翼11の最深部Dと反応溶液の液面Dとの距離の3分の1の位置Dまでの間(すなわち図2(A)におけるDからDまでの間)とし、水平方向においては、撹拌翼11の最外周Bと中心Cの中間位置Bから撹拌翼11の最外周Bまでの間(すなわち図2(A)におけるBからBまでの間)とすることが好ましい。これにより、反応溶液の流速の早い撹拌翼11近傍の中で最も流速の早い位置にアンモニウムイオンを含む水溶液とアルカリ性水溶液を供給することが可能であり、局所的な高濃度領域の形成を抑制して良好な複合水酸化物を得ることができる。 FIG. 2A shows a supply position P of an aqueous solution containing ammonium ions and an alkaline aqueous solution (for example, from the supply pipe 13) in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. It is a figure for demonstrating one aspect. To prevent possible cause local high density portion, the supply position P of the aqueous solution and an alkaline aqueous solution containing ammonium ions, in the vertical direction, from the deepest D 1 of the stirring blade 11 in the reaction solution, Between the deepest part D 1 of the stirring blade 11 and the position D 3 which is one-third of the distance between the liquid level D 2 of the reaction solution (that is, between D 1 and D 3 in FIG. 2 (A)). In the horizontal direction, between the outermost circumference B 1 of the stirring blade 11 and the intermediate position B 2 of the center C to the outermost circumference B 1 of the stirring blade 11 (that is, between B 1 and B 2 in FIG. 2 (A)). Is preferable. As a result, it is possible to supply the aqueous solution containing ammonium ions and the alkaline aqueous solution to the position where the flow velocity is the fastest in the vicinity of the stirring blade 11 where the flow velocity of the reaction solution is high, and the formation of a local high concentration region is suppressed. A good composite hydroxide can be obtained.

また、アンモニウムイオンを含む水溶液とアルカリ性水溶液を、反応溶液の流速の早い液面に供給することでも局部的なpH値やアンモニウムイオン濃度の変動が抑制される。図2(B)は、本発明の他の実施形態に係る非水系電解質二次電池用正極活物質の製造方法において、アンモニウムイオンを含む水溶液とアルカリ性水溶液の(例えば供給管13からの)供給位置Pの一態様を説明するための図である。本発明の他の実施形態では、反応溶液の液面の外周12(B)から、液面の外周12(B)と中心Cとの距離の3分の1の位置Bまでの間(すなわち図2(B)におけるBからBまでの間)の液面に供給することで、珪素の分布が均一になるとともに粒子の成長が安定化する。 Further, by supplying an aqueous solution containing ammonium ions and an alkaline aqueous solution to the liquid surface where the flow velocity of the reaction solution is high, local fluctuations in pH value and ammonium ion concentration can be suppressed. FIG. 2B shows the supply positions (for example, from the supply pipe 13) of the aqueous solution containing ammonium ions and the alkaline aqueous solution in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to another embodiment of the present invention. It is a figure for demonstrating one aspect of P. In another embodiment of the present invention, between the outer periphery of the liquid surface of the reaction solution 12 (B 3), to the outer periphery 12 (B 3) and 1 position-third of the distance between the center C B 4 of the liquid surface By supplying the liquid surface (that is, between B 3 and B 4 in FIG. 2 (B)), the distribution of silicon becomes uniform and the growth of particles is stabilized.

局部的なpH値やアンモニウムイオン濃度の変動をより抑制するためには、晶析に用いる反応槽10の中心軸Cに、反応溶液を撹拌する撹拌翼11とそのシャフト14を設置することが好ましい。これにより、反応槽中の反応溶液が均一に撹拌され、濃度の変動がより抑制される。 In order to further suppress fluctuations in local pH value and ammonium ion concentration, it is preferable to install a stirring blade 11 and its shaft 14 for stirring the reaction solution on the central axis C of the reaction tank 10 used for crystallization. .. As a result, the reaction solution in the reaction vessel is uniformly agitated, and the fluctuation of the concentration is further suppressed.

アンモニウムイオンを含む水溶液とアルカリ性水溶液の供給位置Pは、上述のようなものであるが、珪素分布の均一化を促進するためには、アンモニウムイオンを含む水溶液とアルカリ性水溶液の供給と同様に、珪素を含む添加元素水溶液を供給することが好ましい。 The supply positions P of the aqueous solution containing ammonium ions and the alkaline aqueous solution are as described above, but in order to promote the homogenization of the silicon distribution, silicon is similarly supplied to the aqueous solution containing ammonium ions and the alkaline aqueous solution. It is preferable to supply an aqueous solution of additive elements containing.

また、添加元素の酸化を抑制することで、複合水酸化物中により均一に含有させることができるため、反応水溶液中の酸素濃度を低く保つことが好ましい。例えば、反応槽内の反応水溶液の液面に不活性ガスを導入して反応槽を密封するか正圧とすることで、槽外からの酸素の侵入を防いで酸化を抑制することができる。さらに、酸化を抑制することで、複合水酸化物の粒子密度が向上し、高エネルギー密度の正極活物質が得られるため好ましい。 Further, it is preferable to keep the oxygen concentration in the reaction aqueous solution low because the compound hydroxide can be contained more uniformly by suppressing the oxidation of the additive element. For example, by introducing an inert gas into the liquid surface of the reaction aqueous solution in the reaction tank to seal the reaction tank or set the pressure to positive, it is possible to prevent the invasion of oxygen from the outside of the tank and suppress oxidation. Further, by suppressing oxidation, the particle density of the composite hydroxide is improved, and a positive electrode active material having a high energy density can be obtained, which is preferable.

(2−2.乾燥工程)
乾燥工程S12は、晶析したニッケル複合水酸化物を洗浄した後、乾燥する工程である。得られた複合水酸化物は、不純物が含まれるため、固液分離し、水、好ましくはイオン交換水で洗浄して、複合水酸化物に含まれるナトリウムや硫酸イオン等の不純物を取り除く。硫酸イオン等のオキソ酸イオンの不純物を除去するため、アルカリ性水溶液で洗浄してもよい。その後、好ましくは110〜150℃の範囲の温度で乾燥する。乾燥温度及び時間は、水分が除去できる程度とすればよい。
(2-2. Drying process)
The drying step S12 is a step of washing the crystallized nickel composite hydroxide and then drying it. Since the obtained composite hydroxide contains impurities, it is solid-liquid separated and washed with water, preferably ion-exchanged water, to remove impurities such as sodium and sulfate ions contained in the composite hydroxide. In order to remove impurities of oxoacid ion such as sulfate ion, it may be washed with an alkaline aqueous solution. Then, it is preferably dried at a temperature in the range of 110 to 150 ° C. The drying temperature and time may be such that moisture can be removed.

また、乾燥工程S12による乾燥後の複合水酸化物を600〜800℃の範囲の温度に加熱してニッケル複合酸化物(以下、単に「複合酸化物」ということがある。)へ変換させる熱処理工程を更に有することが好ましい。この熱処理より、後工程である焼成工程S13での水蒸気の発生を抑制してリチウム化合物との反応を促進すると共に、正極活物質における金属元素と添加元素の合計と、リチウムとの比を安定させることができる。さらに、添加元素である珪素を複合酸化物中に均一に拡散させ、正極活物質を得た際にニッケル原子と十分に置換している状態とすることができる。 Further, a heat treatment step of heating the composite hydroxide after drying in the drying step S12 to a temperature in the range of 600 to 800 ° C. to convert it into a nickel composite oxide (hereinafter, may be simply referred to as “composite oxide”). It is preferable to have more. By this heat treatment, the generation of water vapor in the firing step S13, which is a subsequent step, is suppressed to promote the reaction with the lithium compound, and the total of the metal elements and additive elements in the positive electrode active material and the ratio of lithium are stabilized. be able to. Further, silicon, which is an additive element, can be uniformly diffused in the composite oxide so that when the positive electrode active material is obtained, it is sufficiently replaced with nickel atoms.

熱処理工程での熱処理温度が600℃未満では、複合酸化物への変換が不十分となり、また、添加元素が複合酸化物中に均一に拡散した状態にならないことがある。一方、熱処理温度が800℃を超えると、複合酸化物の粒子同士が焼結して粗大粒子が生成されることがある。また、多くのエネルギーが必要となるため、工業的に適当でない。なお、熱処理を行う雰囲気は、特に制限されるものではなく、酸素を含む非還元性雰囲気であればよいが、簡易的に行える大気雰囲気中において行うことが好ましい。 If the heat treatment temperature in the heat treatment step is less than 600 ° C., the conversion to the composite oxide is insufficient, and the additive elements may not be uniformly diffused in the composite oxide. On the other hand, when the heat treatment temperature exceeds 800 ° C., the particles of the composite oxide may be sintered and coarse particles may be generated. In addition, it is not industrially suitable because it requires a lot of energy. The atmosphere in which the heat treatment is performed is not particularly limited, and may be a non-reducing atmosphere containing oxygen, but it is preferably performed in an air atmosphere that can be easily performed.

また、熱処理時間は、複合酸化物への変換が十分に可能な時間とすればよく、1〜12時間が好ましい。さらに、熱処理に用いられる設備は、特に限定されるものではなく、複合水酸化物を、酸素を含む非還元性雰囲気中、好ましくは、大気雰囲気中で加熱できるものであればよく、ガス発生がない電気炉等が好適に用いられる。 The heat treatment time may be a time that allows sufficient conversion to the composite oxide, preferably 1 to 12 hours. Further, the equipment used for the heat treatment is not particularly limited as long as the composite hydroxide can be heated in a non-reducing atmosphere containing oxygen, preferably in an air atmosphere, and gas generation is generated. An electric furnace or the like is preferably used.

(2−3.焼成工程)
焼成工程S13は、乾燥後のニッケル複合水酸化物とリチウム化合物を混合して得た混合物を酸素雰囲気下で焼成してリチウム金属複合酸化物を得る工程である。本実施形態では、複合水酸化物又は複合酸化物とリチウム化合物とは、混合物中の金属元素と添加元素の合計の原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が好ましくは0.98〜1.15、より好ましくは1.01〜1.09となるように、混合される。すなわち、焼成工程前後でLi/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるため、混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合される。
(2-3. Baking process)
The firing step S13 is a step of obtaining a lithium metal composite oxide by firing a mixture obtained by mixing the dried nickel composite hydroxide and the lithium compound in an oxygen atmosphere. In the present embodiment, the composite hydroxide or composite oxide and the lithium compound are the ratio of the sum of the total number of atoms of the metal element and the additive element (Me) in the mixture to the number of atoms of lithium (Li) (Li). Li / Me) is preferably mixed so as to be 0.98 to 1.15, more preferably 1.01 to 1.09. That is, since Li / Me does not change before and after the firing step, the Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material, so that the Li / Me in the mixture is in the positive electrode active material to be obtained. It is mixed so as to be the same as Li / Me.

Li/Me比を1.01〜1.09となるように混合することで、結晶化が促進され、ニッケル原子と添加元素である珪素の置換がさらに促進される。このLi/Me比が1.01より小さいとリチウムが一部の酸化物と反応せずに残存して十分な電池性能が得られないことがある。一方、Li/Me比が1.09より大きいと焼結が促進され、粒径や結晶子径が大きくなり十分な電池性能が得られないことがある。 By mixing so that the Li / Me ratio is 1.01 to 1.09, crystallization is promoted, and the substitution of the nickel atom and the additive element silicon is further promoted. If the Li / Me ratio is smaller than 1.01, lithium may remain without reacting with some oxides and sufficient battery performance may not be obtained. On the other hand, if the Li / Me ratio is larger than 1.09, sintering is promoted, the particle size and crystallite diameter become large, and sufficient battery performance may not be obtained.

リチウム混合物を形成するために使用されるリチウム化合物は、特に限定されるものではないが、例えば、水酸化リチウム、硝酸リチウム、炭酸リチウム、又はこれらの混合物が入手しやすいという点で好ましい。特に、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウム又は炭酸リチウムを用いることがより好ましい。水酸化リチウムは、複合酸化物と反応性が高く、結晶化が促進され、ニッケル原子と添加元素である珪素の置換がさらに促進される。 The lithium compound used to form the lithium mixture is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available. In particular, considering ease of handling and stability of quality, it is more preferable to use lithium hydroxide or lithium carbonate. Lithium hydroxide is highly reactive with the composite oxide, crystallization is promoted, and the substitution of the nickel atom with the additive element silicon is further promoted.

なお、リチウム混合物は、焼成前に十分混合しておくことが好ましい。混合が十分でない場合には、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られない間等の問題が生じる可能性があるため、焼成前に十分混合する必要がある。 The lithium mixture is preferably sufficiently mixed before firing. If the mixing is not sufficient, Li / Me may vary among the individual particles, which may cause problems such as when sufficient battery characteristics cannot be obtained. Therefore, it is necessary to mix the particles sufficiently before firing.

また、混合には、一般的な混合機を使用することができ、例えば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダ等を用いることができ、熱処理粒子等の形骸が破壊されない程度に、複合酸化物粒子とリチウムを含有する物質とが十分に混合されればよい。 In addition, a general mixer can be used for mixing, for example, a shaker mixer, a ladyge mixer, a julia mixer, a V blender, or the like can be used, and composite oxidation can be used to the extent that the skeleton of heat-treated particles and the like is not destroyed. It suffices if the physical particles and the substance containing lithium are sufficiently mixed.

次に、混合物を酸素雰囲気下、すなわち酸素を含む雰囲気で焼成してリチウム金属複合酸化物を得る。このときの焼成温度は、650〜950℃とすることが好ましく、700〜800℃とすることがより好ましい。これにより、結晶性が高くなり、置換が促進される。特に、700〜800℃とすることで、カチオンミキシングを抑制して結晶性をより高いものとすることができるので好ましい。 Next, the mixture is calcined in an oxygen atmosphere, that is, in an atmosphere containing oxygen to obtain a lithium metal composite oxide. The firing temperature at this time is preferably 650 to 950 ° C, more preferably 700 to 800 ° C. This increases crystallinity and promotes substitution. In particular, setting the temperature to 700 to 800 ° C. is preferable because cation mixing can be suppressed and the crystallinity can be further increased.

焼成温度が650℃未満であると、熱処理粒子中へのリチウムの拡散が十分に行われず、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、電池に用いられた場合に十分な電池特性が得られないことがある。一方、焼成温度が950℃を超えると、複合酸化物粒子間で激しく焼結が生じると共に、異常粒成長を生じる可能性がある。異常粒成長を生じると、焼成後の粒子が粗大となって、比表面積が低下するため、電池に用いた場合、正極の抵抗が上昇して電池容量が低下するという問題が生じる。 If the firing temperature is less than 650 ° C., lithium is not sufficiently diffused into the heat-treated particles, excess lithium and unreacted particles remain, and the crystal structure is not sufficiently arranged, so that the battery is used. In this case, sufficient battery characteristics may not be obtained. On the other hand, if the firing temperature exceeds 950 ° C., the composite oxide particles may be violently sintered and abnormal grain growth may occur. When abnormal grain growth occurs, the particles after firing become coarse and the specific surface area decreases. Therefore, when used in a battery, there arises a problem that the resistance of the positive electrode increases and the battery capacity decreases.

また、焼成時間は、少なくとも4時間以上とすることが好ましく、より好ましくは6〜10時間である。4時間未満では、リチウム金属複合酸化物の生成が十分に行われないことがある。 The firing time is preferably at least 4 hours or more, more preferably 6 to 10 hours. In less than 4 hours, the formation of the lithium metal composite oxide may not be sufficient.

リチウム化合物として、水酸化リチウムを使用した場合には、リチウム混合物を焼成する前に、焼成温度より低く、かつ、350〜800℃、好ましくは450〜780℃の温度で1〜10時間程度、好ましくは3〜6時間、保持して仮焼することが好ましい。すなわち、水酸化リチウムや炭酸リチウムと複合酸化物の反応温度において仮焼することが好ましい。この場合、水酸化リチウムや炭酸リチウムの上記反応温度付近で保持すれば、水酸化リチウムが溶融して複合酸化物内部までリチウムの拡散が十分に行われ、均一で結晶性が高いリチウム金属複合酸化物を得ることができ、添加元素の置換を促進することができる。 When lithium hydroxide is used as the lithium compound, it is preferably lower than the firing temperature and at a temperature of 350 to 800 ° C., preferably 450 to 780 ° C. for about 1 to 10 hours before firing the lithium mixture. Is preferably held for 3 to 6 hours and calcined. That is, it is preferable to perform calcining at the reaction temperature of lithium hydroxide or lithium carbonate and the composite oxide. In this case, if lithium hydroxide or lithium carbonate is held near the above reaction temperature, lithium hydroxide is melted and lithium is sufficiently diffused into the composite oxide, so that uniform and highly crystalline lithium metal composite oxidation is performed. The product can be obtained and the substitution of additive elements can be promoted.

焼成時の雰囲気は、酸素を含む雰囲気、すなわち、酸化性雰囲気とする。酸素濃度は、好ましくは18〜100容量%の酸素と不活性ガスの混合雰囲気とする。すなわち、焼成は、大気又は酸素気流中で行うことが好ましい。酸素濃度が18容量%未満であると、リチウム金属複合酸化物の結晶性が十分でない状態になる可能性がある。このため、大気雰囲気中での焼成が容易であり、より好ましい。 The atmosphere at the time of firing is an atmosphere containing oxygen, that is, an oxidizing atmosphere. The oxygen concentration is preferably a mixed atmosphere of 18 to 100% by volume of oxygen and an inert gas. That is, firing is preferably performed in the atmosphere or an oxygen stream. If the oxygen concentration is less than 18% by volume, the crystallinity of the lithium metal composite oxide may be insufficient. Therefore, firing in the atmosphere is easy, which is more preferable.

なお、焼成に用いられる炉は、特に限定されるものではなく、大気ないしは酸素気流中で混合物を加熱できるものであればよいが、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式又は連続式の炉を何れも用いることができる。 The furnace used for firing is not particularly limited as long as it can heat the mixture in the atmosphere or an oxygen stream, but from the viewpoint of keeping the atmosphere in the furnace uniform, electricity that does not generate gas is used. A furnace is preferable, and either a batch type or a continuous type furnace can be used.

また、焼成によって得られたリチウム金属複合酸化物は、凝集又は軽度の焼結が生じている場合がある。この場合には、解砕してもよく、これにより、リチウム金属複合酸化物、つまり、本発明の一実施形態に係る正極活物質を得ることができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキング等により生じた複数の二次粒子からなる凝集体に機械的エネルギーを投入して、二次粒子自体を殆ど破壊することなく二次粒子を分離させて、凝集体を解す操作をいうものとする。 In addition, the lithium metal composite oxide obtained by firing may be agglutinated or slightly sintered. In this case, it may be crushed, whereby a lithium metal composite oxide, that is, a positive electrode active material according to an embodiment of the present invention can be obtained. In addition, crushing means that mechanical energy is applied to an agglomerate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. It refers to the operation of separating the next particles and disassembling the agglomerates.

<3.非水系電解質二次電池>
本発明の一実施形態に係る非水系電解質二次電池は、上述した本発明の一実施形態に係る非水系電解質二次電池用正極活物質を含む正極と、負極及び非水系電解液等からなり、電池の構成自体は一般の非水系電解質二次電池と同様の構成要素により構成される。以下、本発明の一実施形態に係る非水系電解質二次電池の各構成要素について、詳細に説明する。
<3. Non-aqueous electrolyte secondary battery >
The non-aqueous electrolyte secondary battery according to an embodiment of the present invention comprises a positive electrode containing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the above-described embodiment of the present invention, a negative electrode, a non-aqueous electrolyte solution, and the like. The battery structure itself is composed of the same components as a general non-aqueous electrolyte secondary battery. Hereinafter, each component of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be described in detail.

(a)正極
前述した本発明の一実施形態に係る非水系電解質二次電池用正極活物質を用いて、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
(A) Positive Electrode Using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the above-described embodiment of the present invention, for example, a positive electrode for a non-aqueous electrolyte secondary battery is produced as follows.

まず、粉末状の正極活物質、導電材、結着剤を混合し、必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。その正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60〜95質量部とし、導電材の含有量を1〜20質量部とし、結着剤の含有量を1〜20質量部とすることが望ましい。 First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and if necessary, activated carbon, a solvent for viscosity adjustment and the like are added, and the mixture is kneaded to prepare a positive electrode mixture paste. The mixing ratio of each of the positive electrode mixture pastes is also an important factor in determining the performance of the non-aqueous electrolyte secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass and the conductive material is similar to the positive electrode of a general non-aqueous electrolyte secondary battery. It is desirable that the content of the binder is 1 to 20 parts by mass and the content of the binder is 1 to 20 parts by mass.

得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。 The obtained positive electrode mixture paste is applied to, for example, the surface of a current collector made of aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like in order to increase the electrode density. In this way, a sheet-shaped positive electrode can be produced. The sheet-shaped positive electrode can be cut into an appropriate size according to the target battery and used for manufacturing the battery. However, the method for producing the positive electrode is not limited to the example, and other methods may be used.

正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛等)や、アセチレンブラック、ケッチェンブラック(登録商標)等のカーボンブラック系材料等を用いることができる。 In producing the positive electrode, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black material such as acetylene black, Ketjen black (registered trademark), or the like can be used as the conductive agent.

結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸等を用いることができる。 The binder plays a role of binding the active material particles, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, and polyacrylic acid. Acids and the like can be used.

なお、必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的には、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。 If necessary, the positive electrode active material, the conductive material, and the activated carbon are dispersed, and a solvent for dissolving the binder is added to the positive electrode mixture. Specifically, as the solvent, an organic solvent such as N-methyl-2-pyrrolidone can be used. In addition, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

(b)負極
負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵及び脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(B) Negative electrode The negative electrode is a negative electrode mixture made into a paste by mixing a binder with a metallic lithium, a lithium alloy, or a negative electrode active material capable of occluding and desorbing lithium ions, and adding an appropriate solvent. Is applied to the surface of a metal foil current collector such as copper, dried, and if necessary, compressed to increase the electrode density.

負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質及び結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。 As the negative electrode active material, for example, a calcined product of an organic compound such as natural graphite, artificial graphite, or phenol resin, or a powdered material of a carbon substance such as coke can be used. In this case, as the negative electrode binder, a fluororesin such as PVDF can be used as in the positive electrode, and as a solvent for dispersing these active substances and the binder, N-methyl-2-pyrrolidone or the like can be used. An organic solvent can be used.

(c)セパレータ
正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(C) Separator A separator is sandwiched between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene, which has a large number of fine pores, can be used.

(d)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
(D) Non-aqueous electrolyte solution The non-aqueous electrolyte solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and tetrahydrofuran and 2-. One selected from ether compounds such as methyl tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butane sulton, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate are used alone or in combination of two or more. be able to.

支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、及びそれらの複合塩を用いることができる。さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤及び難燃剤等を含んでいてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2, etc., and a composite salt thereof can be used. Further, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant and the like.

(e)電池の形状、構成
以上のように説明してきた正極、負極、セパレータ及び非水系電解液で構成される本発明の一実施形態に係る非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができる。何れの形状を採る場合であっても、正極及び負極はセパレータを介して積層させて電極体とし、得られた電極体に非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、及び負極集電体と外部に通ずる負極端子との間は集電用リード等を用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
(E) Battery Shape and Configuration The shape of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention composed of the positive electrode, the negative electrode, the separator and the non-aqueous electrolyte solution described above is cylindrical. Various types such as a laminated type can be used. Regardless of the shape, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte solution to impregnate the positive electrode body with a non-aqueous electrolyte solution to communicate with the positive electrode current collector and the positive electrode terminal to the outside. The negative electrode current collector and the negative electrode terminal leading to the outside are connected to each other by using a current collecting lead or the like, and sealed in a battery case to complete a non-aqueous electrolyte secondary battery.

(f)特性
本発明の一実施形態に係る正極活物質を用いた非水系電解質二次電池は、高容量で熱安定に優れたものである。特により好ましい形態で得られた本発明の一実施形態に係る正極活物質を用いた非水系電解質二次電池は、例えば、2032型コイン電池の正極に用いた場合、組成と製造方法を最適化すれば195mAh/g以上の高い初期放電容量が得られ、さらに高容量である。
(F) Characteristics The non-aqueous electrolyte secondary battery using the positive electrode active material according to the embodiment of the present invention has a high capacity and excellent thermal stability. When the non-aqueous electrolyte secondary battery using the positive electrode active material according to the embodiment of the present invention obtained in a particularly preferable form is used for the positive electrode of a 2032 type coin battery, for example, the composition and manufacturing method are optimized. If this is done, a high initial discharge capacity of 195 mAh / g or more can be obtained, and the capacity is even higher.

以下に、本発明の一実施形態に係る非水系電解質二次電池用正極活物質について、実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例における正極活物質に含有される金属の分析方法及び正極活物質の各種評価方法は、以下の通りである。 Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The method for analyzing the metal contained in the positive electrode active material and the various evaluation methods for the positive electrode active material in Examples and Comparative Examples are as follows.

(1)組成の分析:ICP発光分析法で測定した。 (1) Composition analysis: Measured by ICP emission spectrometry.

(2)平均粒径D50:レーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)により行なった。 (2) Average particle size D50: Performed by a laser diffraction / scattering type particle size distribution measuring device (Microtrac HRA, manufactured by Nikkiso Co., Ltd.).

(3)結晶子径および格子定数:X線回折(XRD)回折装置(パナリティカル社製、X‘Pert PRO)により得た回折チャートから算出した。結晶子径は、(003)面のピークからScherrerの計算式により算出した。また、格子定数は、回折チャートをリートベルト解析することにより求めた。 (3) Crystallite diameter and lattice constant: Calculated from a diffraction chart obtained by an X-ray diffraction (XRD) diffractometer (X'Pert PRO manufactured by PANalytical Co., Ltd.). The crystallite diameter was calculated from the peak of the (003) plane by Scherrer's formula. The lattice constant was obtained by Rietveld analysis of the diffraction chart.

(4)空隙率:正極活物質(二次粒子)を樹脂に埋め込み、クロスセクションポリッシャ加工により走査型電子顕微鏡(SEM)で断面観察が可能な状態とした。空隙率は、断面のSEM像を撮影し、WinRoof6.1.1(商品名)などの画像解析ソフトを用いて、空隙を黒色部として検出し、二次粒子の全体の断面積に対する黒色部の面積の割合を算出することにより求めた。さらに、正極活物質の空隙率は、平均粒径D50の80%以上となる二次粒子の断面を無作為に20個選択し、それらの二次粒子の断面の空隙率をそれぞれ計測して、その平均値である平均空隙率を用いた。 (4) Void ratio: A positive electrode active material (secondary particles) was embedded in a resin, and cross-section polisher processing was performed to make it possible to observe a cross section with a scanning electron microscope (SEM). For the void ratio, an SEM image of the cross section is taken, and the void is detected as a black portion using image analysis software such as WinLoof 6.1.1 (trade name), and the void ratio is determined by measuring the black portion with respect to the total cross-sectional area of the secondary particles. It was obtained by calculating the ratio of the area. Further, for the porosity of the positive electrode active material, 20 cross sections of secondary particles having an average particle size of 80% or more were randomly selected, and the porosities of the cross sections of those secondary particles were measured. The average porosity, which is the average value, was used.

(5)初期放電容量:以下の電池容量評価法により行なった。
(電池容量評価)
本発明の一実施形態に係る非水系電解質二次電池を2032型コイン電池に適用した例について、図面を使用しながら説明する。図3(A)及び(B)は、本発明の一実施形態に係る非水系電解質二次電池の構成図であり、(A)は、斜視図、(B)は、図3(A)のA−A線断面図である。実施例1〜8及び比較例1〜6で得られた正極活物質を用いて、図3に示すような2032型コイン電池1を作製した。
(5) Initial discharge capacity: The battery capacity was evaluated by the following method.
(Battery capacity evaluation)
An example in which the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is applied to a 2032 type coin battery will be described with reference to the drawings. 3A and 3B are structural views of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, FIG. 3A is a perspective view, and FIG. 3B is FIG. 3A. It is a cross-sectional view taken along the line AA. Using the positive electrode active materials obtained in Examples 1 to 8 and Comparative Examples 1 to 6, a 2032 type coin battery 1 as shown in FIG. 3 was produced.

この2032型コイン電池1は、ケース2と、ケース2内に収容された電極3とから構成される。ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成される。電極3は、正極3a、セパレータ3c、及び負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容される。 The 2032 type coin battery 1 is composed of a case 2 and an electrode 3 housed in the case 2. The case 2 has a positive electrode can 2a that is hollow and has one end opened, and a negative electrode can 2b that is arranged in the opening of the positive electrode can 2a. When the negative electrode can 2b is arranged in the opening of the positive electrode can 2a, , A space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a. The electrode 3 is composed of a positive electrode 3a, a separator 3c, and a negative electrode 3b, and is laminated so as to be arranged in this order. The positive electrode 3a contacts the inner surface of the positive electrode can 2a, and the negative electrode 3b contacts the inner surface of the negative electrode can 2b. It is housed in the case 2 so as to do so.

なお、ケース2は、ガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が電気的に絶縁状態を維持するように固定される。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封して、ケース2内と外部との間を気密液密に遮断する機能も有している。 The case 2 is provided with a gasket 2c, and is fixed by the gasket 2c so as to electrically maintain an insulating state between the positive electrode can 2a and the negative electrode can 2b. Further, the gasket 2c also has a function of sealing the gap between the positive electrode can 2a and the negative electrode can 2b to seal the inside and the outside of the case 2 in an airtight and liquid-tight manner.

この2032型コイン電池1を以下のようにして作製した。最初に、正極活物質52.5mg、アセチレンブラック15mg、及びポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。作製した正極3aを、真空乾燥機中、120℃で12時間乾燥した。この正極3aと、負極3b、セパレータ3c、及び電解液とを用いて、コイン型電池1を、露点が−80℃に管理されたAr雰囲気のグローブボックス内で作製した。 This 2032 type coin battery 1 was manufactured as follows. First, 52.5 mg of the positive electrode active material, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) were mixed and press-molded to a diameter of 11 mm and a thickness of 100 μm at a pressure of 100 MPa to prepare a positive electrode 3a. .. The prepared positive electrode 3a was dried at 120 ° C. for 12 hours in a vacuum dryer. Using the positive electrode 3a, the negative electrode 3b, the separator 3c, and the electrolytic solution, a coin-type battery 1 was produced in a glove box having an Ar atmosphere with a dew point controlled at −80 ° C.

なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末と、ポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。また、セパレータ3cには、膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。 For the negative electrode 3b, graphite powder having an average particle diameter of about 20 μm punched into a disk shape having a diameter of 14 mm and a negative electrode sheet coated with polyvinylidene fluoride on a copper foil were used. Further, as the separator 3c, a polyethylene porous membrane having a film thickness of 25 μm was used. As the electrolytic solution, an equal amount mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte (manufactured by Tomiyama Pure Chemical Industries, Ltd.) was used.

2032型コイン電池1を作製してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cmとして、カットオフ電圧が4.8Vとなるまで充電し、1時間の休止後、カットオフ電圧が2.5Vになるまで放電したときの放電容量を測定する充放電試験を行い、電池容量として初期放電容量を求めた。この際、充放電容量の測定には、マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。 After the 2032 type coin battery 1 is manufactured and left to stand for about 24 hours, after the open circuit voltage OCV (Open Circuit Voltage) stabilizes, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cutoff voltage is 4.8 V. A charge / discharge test was conducted to measure the discharge capacity when the battery was charged until the battery capacity became 2.5 V after a one-hour rest period, and the initial discharge capacity was determined as the battery capacity. At this time, a multi-channel voltage / current generator (manufactured by Advantest Co., Ltd., R6741A) was used to measure the charge / discharge capacity.

(実施例1)
原子比で、ニッケル:コバルト=84.0:16.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液2mol/Lの混合水溶液3Lを作製した。50℃に保たれた反応槽に、液温25℃基準のpH値が13の水酸化ナトリウム水溶液1Lを入れ、アンモニア濃度が10mg/Lになるようアンモニア水を加えた。温度、pH値、アンモニア濃度を維持しながら、原料溶液40mlとアンモニア水、水酸化ナトリウム水溶液を反応槽内に供給し、成長して粒子を形成する核を生成させた。
(Example 1)
A mixed aqueous solution of 2 mol / L in which nickel sulfate and cobalt sulfate were dissolved in ion-exchanged water was prepared so that the atomic ratio was nickel: cobalt = 84.0: 16.0. In a reaction vessel kept at 50 ° C., 1 L of an aqueous sodium hydroxide solution having a pH value of 13 based on a liquid temperature of 25 ° C. was placed, and aqueous ammonia was added so that the ammonia concentration became 10 mg / L. While maintaining the temperature, pH value, and ammonia concentration, 40 ml of the raw material solution, aqueous ammonia, and aqueous sodium hydroxide solution were supplied into the reaction vessel to generate nuclei that grow to form particles.

その後、液温25℃基準のpH値を11.3にし、温度、pH値、アンモニア濃度を維持しながら、残りの原料溶液とアンモニア水、水酸化ナトリウム水溶液、および、ニッケル:コバルト:珪素=83.2:15.8:1.0となるよう珪酸ナトリウム水溶液を2時間かけて供給し、ニッケル複合水酸化物を晶析させた。晶析したニッケル複合水酸化物をろ過により固液分離した後、水酸化ナトリウム水溶液とイオン交換水で洗浄し、乾燥して正極活物質の前駆体となるニッケル複合水酸化物を得た。晶析を通じてアンモニア水および水酸化ナトリウム水溶液の供給位置は、垂直方向において、反応溶液中の撹拌翼最深部から、撹拌翼最深部と反応溶液の液面との距離の5分の1の位置とし、水平方向において、撹拌翼の最外周と中心の中間位置とした。 After that, the pH value based on the liquid temperature of 25 ° C. was set to 11.3, and while maintaining the temperature, pH value, and ammonia concentration, the remaining raw material solution, aqueous ammonia, aqueous sodium hydroxide solution, and nickel: cobalt: silicon = 83. An aqueous sodium silicate solution was supplied over 2 hours so as to have a ratio of .2: 15.8: 1.0, and the nickel composite hydroxide was crystallized. The crystallized nickel composite hydroxide was separated into solid and liquid by filtration, washed with an aqueous sodium hydroxide solution and ion-exchanged water, and dried to obtain a nickel composite hydroxide as a precursor of a positive electrode active material. Through crystallization, the supply position of aqueous ammonia and sodium hydroxide solution shall be one-fifth of the distance from the deepest part of the stirring blade in the reaction solution to the deepest part of the stirring blade and the liquid level of the reaction solution in the vertical direction. In the horizontal direction, the position was set between the outermost circumference and the center of the stirring blade.

次に、前駆体を大気雰囲気中で700℃に加熱し、6時間保持して熱処理し、ニッケル複合酸化物に変換した。ニッケル、コバルト、珪素の原子数の合計に対するリチウムの原子数の比(Li/Me比)が1.02となるように、ニッケル複合酸化物と水酸化リチウムを混合して混合物とした。得られた混合物を大気雰囲気中で、500℃で4時間仮焼した後、760℃で12時間焼成し、正極活物質を得た。得られた正極活物質を評価して初期放電容量を求めた。評価結果を表1に示す。 Next, the precursor was heated to 700 ° C. in the air atmosphere, held for 6 hours and heat-treated to convert it into a nickel composite oxide. A nickel composite oxide and lithium hydroxide were mixed to prepare a mixture so that the ratio of the number of atoms of lithium to the total number of atoms of nickel, cobalt and silicon (Li / Me ratio) was 1.02. The obtained mixture was calcined at 500 ° C. for 4 hours in an air atmosphere and then calcined at 760 ° C. for 12 hours to obtain a positive electrode active material. The obtained positive electrode active material was evaluated to determine the initial discharge capacity. The evaluation results are shown in Table 1.

(実施例2)
核を生成した後の原料溶液とアンモニア水、水酸化ナトリウム水溶液、珪酸ナトリウム水溶液の供給時間を4時間とした以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 2)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the supply time of the raw material solution after nucleation was formed, aqueous ammonia, aqueous sodium hydroxide solution, and aqueous sodium silicate solution was set to 4 hours. The evaluation results are shown in Table 1.

(実施例3)
原子比で、ニッケル:コバルト:珪素=82.3:15.7:2.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液と珪酸ナトリウム水溶液を反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 3)
Except that a mixed aqueous solution of nickel sulfate and cobalt sulfate dissolved in ion-exchanged water and an aqueous sodium silicate solution were supplied to the reaction vessel so that the atomic ratio was nickel: cobalt: silicon = 82.3: 15.7: 2.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例4)
原子比で、ニッケル:コバルト:珪素=82.3:15.7:2.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液と珪酸ナトリウム水溶液を反応槽に供給した以外は、実施例2と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 4)
Except that a mixed aqueous solution of nickel sulfate and cobalt sulfate dissolved in ion-exchanged water and an aqueous sodium silicate solution were supplied to the reaction vessel so that the atomic ratio was nickel: cobalt: silicon = 82.3: 15.7: 2.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1.

(実施例5)
原子比で、ニッケル:コバルト:珪素=81.5:15.5:3.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液と珪酸ナトリウム水溶液を反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 5)
Except for supplying a mixed aqueous solution in which nickel sulfate and cobalt sulfate were dissolved in ion-exchanged water and an aqueous sodium silicate solution so that the atomic ratio was nickel: cobalt: silicon = 81.5: 15.5: 3.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例6)
原子比で、ニッケル:コバルト:珪素=81.5:15.5:3.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液と珪酸ナトリウム水溶液を反応槽に供給した以外は、実施例2と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。また、図4に実施例6の正極活物質の前駆体の走査型電子顕微鏡写真を示し、図5に実施例6の正極活物質の走査型電子顕微鏡写真を示す。
(Example 6)
Except for supplying a mixed aqueous solution in which nickel sulfate and cobalt sulfate were dissolved in ion-exchanged water and an aqueous sodium silicate solution so that the atomic ratio was nickel: cobalt: silicon = 81.5: 15.5: 3.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1. Further, FIG. 4 shows a scanning electron micrograph of the precursor of the positive electrode active material of Example 6, and FIG. 5 shows a scanning electron micrograph of the positive electrode active material of Example 6.

(実施例7)
原子比で、ニッケル:コバルト:珪素=80.6:15.4:4.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液と珪酸ナトリウム水溶液を反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 7)
Except that a mixed aqueous solution of nickel sulfate and cobalt sulfate dissolved in ion-exchanged water and an aqueous sodium silicate solution were supplied to the reaction vessel so that the atomic ratio was nickel: cobalt: silicon = 80.6: 15.4: 4.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例8)
原子比で、ニッケル:コバルト:珪素=79.8:15.2:5.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液と珪酸ナトリウム水溶液を反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 8)
Except that a mixed aqueous solution of nickel sulfate and cobalt sulfate dissolved in ion-exchanged water and an aqueous sodium silicate solution were supplied to the reaction vessel so that the atomic ratio was nickel: cobalt: silicon = 79.8: 15.2: 5.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例9)
アンモニア水および水酸化ナトリウム水溶液の供給位置を、垂直方向において、反応溶液中の撹拌翼最深部から、撹拌翼最深部と反応溶液の液面との距離の3分の1の位置とした以外は実施例6同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 9)
Except that the supply position of the aqueous ammonia and sodium hydroxide solution was set to one-third of the distance from the deepest part of the stirring blade in the reaction solution to the deepest part of the stirring blade and the liquid level of the reaction solution in the vertical direction. A positive electrode active material was obtained and evaluated in the same manner as in Example 6. The evaluation results are shown in Table 1.

(実施例10)
アンモニア水および水酸化ナトリウム水溶液を、反応溶液の液面の外周から中心までの距離の4分の1の位置の液面に供給した以外は実施例6同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Example 10)
A positive electrode active material was obtained and evaluated in the same manner as in Example 6 except that aqueous ammonia and an aqueous sodium hydroxide solution were supplied to the liquid surface at a position of 1/4 of the distance from the outer periphery to the center of the liquid surface of the reaction solution. .. The evaluation results are shown in Table 1.

(比較例1)
添加元素を加えない従来技術として、原子比で、ニッケル:コバルト=84.0:16.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液のみを反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。また、図6に比較例1の正極活物質の前駆体の走査型電子顕微鏡写真を示し、図7に比較例1の正極活物質の走査型電子顕微鏡写真を示す。
(Comparative Example 1)
As a conventional technique in which no additive element is added, except that a mixed aqueous solution of nickel sulfate and cobalt sulfate dissolved in ion-exchanged water is supplied to the reaction vessel so that the atomic ratio is nickel: cobalt = 84.0: 16.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. Further, FIG. 6 shows a scanning electron micrograph of the precursor of the positive electrode active material of Comparative Example 1, and FIG. 7 shows a scanning electron micrograph of the positive electrode active material of Comparative Example 1.

(比較例2)
添加元素を加えない従来技術として、原子比で、ニッケル:コバルト=84.0:16.0となるよう硫酸ニッケル、硫酸コバルトをイオン交換水に溶解した混合水溶液のみを反応槽に供給した以外は、実施例2と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Comparative Example 2)
As a conventional technique in which no additive element is added, except that a mixed aqueous solution of nickel sulfate and cobalt sulfate dissolved in ion-exchanged water is supplied to the reaction vessel so that the atomic ratio is nickel: cobalt = 84.0: 16.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1.

(比較例3)
原子比で、ニッケル:コバルト:ホウ素=83.2:15.8:1.0となるよう硫酸ニッケル、硫酸コバルト、ホウ酸をイオン交換水に溶解した混合水溶液のみを反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Comparative Example 3)
Except for supplying only a mixed aqueous solution in which nickel sulfate, cobalt sulfate, and boric acid were dissolved in ion-exchanged water so that the atomic ratio was nickel: cobalt: boron = 83.2: 15.8: 1.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例4)
原子比で、ニッケル:コバルト:ホウ素=83.2:15.8:1.0となるよう硫酸ニッケル、硫酸コバルト、ホウ酸をイオン交換水に溶解した混合水溶液のみを反応槽に供給した以外は、実施例2と同様にして正極活物質を得ると共に評価した。評価結果を表1に示す。
(Comparative Example 4)
Except for supplying only a mixed aqueous solution in which nickel sulfate, cobalt sulfate, and boric acid were dissolved in ion-exchanged water so that the atomic ratio was nickel: cobalt: boron = 83.2: 15.8: 1.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1.

(比較例5)
原子比で、ニッケル:コバルト:ホウ素=82.3:15.7:2.0となるよう硫酸ニッケル、硫酸コバルト、ホウ酸をイオン交換水に溶解した混合水溶液のみを反応槽に供給した以外は、実施例1と同様にして正極活物質を得ると共に評価した。評価結果を表2に示す。
(Comparative Example 5)
Except for supplying only a mixed aqueous solution in which nickel sulfate, cobalt sulfate, and boric acid were dissolved in ion-exchanged water so that the atomic ratio was nickel: cobalt: boron = 82.3: 15.7: 2.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.

(比較例6)
原子比で、ニッケル:コバルト:ホウ素=82.3:15.7:2.0となるよう硫酸ニッケル、硫酸コバルト、ホウ酸をイオン交換水に溶解した混合水溶液のみを反応槽に供給した以外は、実施例2と同様にして正極活物質を得ると共に評価した。評価結果を表2に示す。また、図8に比較例6の正極活物質の前駆体の走査型電子顕微鏡写真を示し、図9に比較例6の正極活物質の走査型電子顕微鏡写真を示す。
(Comparative Example 6)
Except for supplying only a mixed aqueous solution in which nickel sulfate, cobalt sulfate, and boric acid were dissolved in ion-exchanged water so that the atomic ratio was nickel: cobalt: boron = 82.3: 15.7: 2.0. , A positive electrode active material was obtained and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 2. Further, FIG. 8 shows a scanning electron micrograph of the precursor of the positive electrode active material of Comparative Example 6, and FIG. 9 shows a scanning electron micrograph of the positive electrode active material of Comparative Example 6.

Figure 0006957846
Figure 0006957846

添加元素を入れていない比較例1および比較例2は粒径に関わらず二次粒子の空隙率が2%台であったが、珪素を添加した実施例1〜10は粒径に関わらず空隙率が1%未満で高密度な二次粒子の正極活物質が形成された。また、珪素の添加量が、金属元素及び添加元素の合計に対して3原子%以下の場合は、粒径に関わらず空隙率が0.5%以下の非常に高密度な二次粒子の正極活物質が形成された。 In Comparative Example 1 and Comparative Example 2 in which no additive element was added, the porosity of the secondary particles was in the 2% range regardless of the particle size, but in Examples 1 to 10 to which silicon was added, the porosity was not related to the particle size. A high density secondary particle positive electrode active material was formed with a porosity of less than 1%. When the amount of silicon added is 3 atomic% or less with respect to the total of metal elements and added elements, the positive electrode of extremely high-density secondary particles having a void ratio of 0.5% or less regardless of the particle size. The active material was formed.

一方、ホウ素を添加した比較例3〜6に関しては空隙率が1%以上と高く、ホウ素が2原子%では空隙率が10%近くまで増加した。 On the other hand, in Comparative Examples 3 to 6 to which boron was added, the porosity was as high as 1% or more, and when boron was 2 atomic%, the porosity increased to nearly 10%.

また、図4、図5は実施例6の正極活物質の前駆体と正極活物質の走査型電子顕微鏡写真であり、図6、図7は比較例1の正極活物質の前駆体と正極活物質の走査型電子顕微鏡写真であり、図8、図9は比較例6の正極活物質の前駆体と正極活物質の走査型電子顕微鏡写真である。これらの図からも分かるように、珪素の添加量を金属元素及び添加元素の合計に対して0.5原子%〜7原子%とした、実施例6の本発明の一実施形態に係る非水系電解質二次電池用正極活物質は、珪素を添加していない比較例1や、珪素の代わりにホウ素を添加した比較例6の図と比較して、空隙が少なく高密度となっていることが分かる。 4 and 5 are scanning electron micrographs of the positive electrode active material precursor and the positive electrode active material of Example 6, and FIGS. 6 and 7 are the positive electrode active material precursor and the positive electrode activity of Comparative Example 1. 9 is a scanning electron micrograph of the substance, and FIGS. 8 and 9 are scanning electron micrographs of the precursor of the positive electrode active material and the positive electrode active material of Comparative Example 6. As can be seen from these figures, the non-aqueous system according to the embodiment of the present invention of Example 6 in which the amount of silicon added is 0.5 atomic% to 7 atomic% with respect to the total of the metal element and the added element. The positive electrode active material for an electrolyte secondary battery has fewer voids and a higher density than the figures of Comparative Example 1 in which silicon is not added and Comparative Example 6 in which boron is added instead of silicon. I understand.

本発明の一実施形態に係る非水系電解質二次電池用正極活物質は、珪素を添加することで空隙を減らし、非常に高密度の正極活物質を得ることができるため、体積当たりの充放電容量の大きい非水系電解質二次電池を形成するのに有用な技術であり、車載用やモバイル用の非水系電解質二次電池の正極活物質への応用が期待できる。 In the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, voids can be reduced by adding silicon, and a very high density positive electrode active material can be obtained. It is a useful technology for forming a non-aqueous electrolyte secondary battery with a large capacity, and is expected to be applied to the positive electrode active material of a non-aqueous electrolyte secondary battery for automobiles and mobiles.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each embodiment of the present invention have been described in detail as described above, those skilled in the art will be able to make many modifications that do not substantially deviate from the new matters and effects of the present invention. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、非水系電解質二次電池用正極活物質の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. Further, the composition and operation of the positive electrode active material for the non-aqueous electrolyte secondary battery are not limited to those described in each embodiment and each embodiment of the present invention, and various modifications can be carried out.

S11 晶析工程、S12 乾燥工程、S13 焼成工程、1 非水系電解質二次電池(2032型コイン電池)、2 ケース、2a 正極缶、2b 負極缶、2c ガスケット、3 電極、3a 正極、3b 負極、3c セパレータ、10 反応槽、11 撹拌翼、12 外周、13 供給管、14 シャフト、B 撹拌翼の最外周、B 撹拌翼の最外周と中心の中間位置、B 液面の外周、B 液面の外周から液面の外周と中心との距離の3分の1の位置、C 中心(中心軸)、D 撹拌翼の最深部、D 液面、D 撹拌翼の最深部から撹拌翼の最深部と反応溶液の液面との距離の3分の1の位置、P 供給位置、W 撹拌翼の長さ、W’ 液面の外周から中心までの距離、L 撹拌翼の最深部から液面までの距離 S11 crystallization step, S12 drying step, S13 firing step, 1 non-aqueous electrolyte secondary battery (2032 type coin cell), 2 case, 2a positive electrode can, 2b negative electrode can, 2c gasket, 3 electrode, 3a positive electrode, 3b negative electrode, 3c separator, 10 reaction tank, 11 stirring blade, 12 outer circumference, 13 supply pipe, 14 shaft, B 1 outermost circumference of stirring blade, B 2 intermediate position between outermost circumference and center of stirring blade, B 3 outer circumference of liquid surface, B one-third position of the distance between the outer periphery and the center of the liquid surface from the outer periphery of the 4 liquid surface, C the center (central axis), the deepest portion, D 2 liquid surface of D 1 stirring blade deepest portion of the D 3 agitation wings One-third of the distance between the deepest part of the stirring blade and the liquid level of the reaction solution, P supply position, W length of the stirring blade, W'distance from the outer circumference to the center of the liquid level, L Distance from the deepest part to the liquid level

Claims (13)

一次粒子が凝集して形成した二次粒子から構成されたリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質であって、
リチウムと、
金属元素と、
添加元素からなり
前記リチウム金属複合酸化物は、層状岩塩型構造の結晶構造を有し、前記金属元素としてニッケル及びコバルトを含み、前記ニッケルの含有量が前記金属元素及び前記添加元素の合計に対して79.8〜90原子%であり、前記コバルトの含有量が前記金属元素及び前記添加元素の合計に対して5〜15.8原子%であり、
かつ、添加元素は、珪素であり、前記珪素の含有量は、前記金属元素及び前記添加元素の合計に対して0.5〜7原子%であり、
さらに、前記二次粒子の空隙率が1%以下であり、結晶子径が140nm以下であることを特徴とする非水系電解質二次電池用正極活物質。
A positive electrode active material for a non-aqueous electrolyte secondary battery made of a lithium metal composite oxide composed of secondary particles formed by agglomeration of primary particles.
With lithium
With metal elements
It consists of added elements,
The lithium metal composite oxide has a crystal structure of a layered rock salt type structure, contains nickel and cobalt as the metal elements, and the content of the nickel is 79.8 with respect to the total of the metal elements and the additive elements. It is ~ 90 atomic%, and the content of the cobalt is 5 to 15.8 atomic% with respect to the total of the metal element and the additive element.
And the additional element is a silicofluoride-containing content of the silicon is 0.5 to 7 atomic% of the total of the metal element and the additive element,
Further, a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that the void ratio of the secondary particles is 1% or less and the crystallite diameter is 140 nm or less.
前記珪素の含有量が0.5〜3原子%であることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the silicon content is 0.5 to 3 atomic%. 前記リチウム金属複合酸化物は、粒径が5〜20μmであることを特徴とする請求項1または2に記載の非水系電解質二次電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the lithium metal composite oxide has a particle size of 5 to 20 μm. 前記リチウム金属複合酸化物は、a軸の格子定数が0.2868nm以上、c軸の格子定数が1.4177nm以上であることを特徴とする請求項1〜3のいずれかに記載の非水系電解質二次電池用正極活物質。 The non-aqueous electrolyte according to any one of claims 1 to 3, wherein the lithium metal composite oxide has an a-axis lattice constant of 0.2868 nm or more and a c-axis lattice constant of 1.4177 nm or more. Positive electrode active material for secondary batteries. 前記リチウム金属複合酸化物は、断面観察による二次粒子内の空隙率が0.5%以下であることを特徴とする請求項1〜4のいずれかに記載の非水系電解質二次電池用正極活物質。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the lithium metal composite oxide has a void ratio in the secondary particles of 0.5% or less as observed in a cross section. Active material. 請求項1〜5のいずれかに記載の非水系電解質二次電池用正極活物質を含む正極を備えることを特徴とする非水系電解質二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for the non-aqueous electrolyte secondary battery according to any one of claims 1 to 5. リチウムと、金属元素と、添加元素からなり、前記金属元素としてニッケルの含有量が前記金属元素及び前記添加元素の合計に対して79.8〜90原子%であり、前記金属元素としてコバルトの含有量が前記金属元素及び前記添加元素の合計に対して5〜15.8原子%であり、かつ、前記添加元素は、珪素であり、前記珪素の含有量は、前記金属元素及び前記添加元素の合計に対して0.5〜7原子%であり、さらに、二次粒子の空隙率が1%以下であり、結晶子径が140nm以下であるリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、
少なくともニッケル塩及びコバルト塩を含む金属元素塩水溶液と、珪素を含む添加元素水溶液と、アンモニウムイオンを含む水溶液を混合して反応溶液とし、該反応溶液の液温25℃基準のpH値が11.0〜12.5の範囲となるようにアルカリ性水溶液を用いて制御し、その際に、アンモニウムイオンを含む水溶液とアルカリ性水溶液を前記反応溶液の液中に供給してニッケル複合水酸化物の粒子を成長させる晶析工程と、
晶析した前記ニッケル複合水酸化物を洗浄した後、乾燥する乾燥工程と、
乾燥後の前記ニッケル複合水酸化物とリチウム化合物を混合して得た混合物を酸素雰囲気下で焼成して前記リチウム金属複合酸化物を得る焼成工程と、
を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。
It is composed of lithium, a metal element, and an additive element , and the content of nickel as the metal element is 79.8 to 90 atomic% with respect to the total of the metal element and the additive element, and the content of cobalt as the metal element. The amount is 5 to 15.8 atomic% with respect to the total of the metal element and the additive element, and the additive element is silicon, and the content of the silicon is the metal element and the additive element. A non-aqueous electrolyte secondary battery made of a lithium metal composite oxide having a total void ratio of 0.5 to 7 atomic%, a void ratio of secondary particles of 1% or less, and a crystallite diameter of 140 nm or less. It is a method for producing a positive electrode active material for use.
An aqueous solution of a metal element salt containing at least a nickel salt and a cobalt salt, an aqueous solution of an additive element containing silicon, and an aqueous solution containing ammonium ions are mixed to prepare a reaction solution, and the pH value of the reaction solution based on a liquid temperature of 25 ° C. is 11. It is controlled by using an alkaline aqueous solution so as to be in the range of 0 to 12.5, and at that time, an aqueous solution containing ammonium ions and an alkaline aqueous solution are supplied into the reaction solution to produce nickel composite hydroxide particles. The crystallization process to grow and
A drying step of washing the crystallized nickel composite hydroxide and then drying it,
A firing step of obtaining the lithium metal composite oxide by firing a mixture obtained by mixing the dried nickel composite hydroxide and a lithium compound in an oxygen atmosphere.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises.
前記晶析工程において、前記金属元素及び前記添加元素の合計に対して、珪素が0.5〜3原子%であることを特徴とする請求項7に記載の非水系電解質二次電池用正極活物質の製造方法。 The positive electrode activity for a non-aqueous electrolyte secondary battery according to claim 7, wherein in the crystallization step, silicon is 0.5 to 3 atomic% with respect to the total of the metal element and the additive element. Method of manufacturing the substance. 前記晶析工程において、前記金属元素水溶液の濃度を1.5〜2.5mol/Lとすることを特徴とする請求項7または8のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 7 or 8, wherein the concentration of the aqueous metal element solution is 1.5 to 2.5 mol / L in the crystallization step. Manufacturing method. 前記晶析工程において、前記アンモニウムイオンを含む水溶液と前記アルカリ性水溶液の供給位置は、垂直方向においては、前記反応溶液中の撹拌翼の最深部から、該撹拌翼の最深部と前記反応溶液の液面との距離の3分の1の位置までの間とし、水平方向においては、前記撹拌翼の最外周と中心の中間位置から前記撹拌翼の最外周までの間とすることを特徴とする請求項7〜9のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 In the crystallization step, the supply positions of the aqueous solution containing ammonium ions and the alkaline aqueous solution are, in the vertical direction, from the deepest part of the stirring blade in the reaction solution to the deepest part of the stirring blade and the liquid of the reaction solution. The claim is to be between a position of one-third of the distance from the surface, and in the horizontal direction, from an intermediate position between the outermost circumference and the center of the stirring blade to the outermost circumference of the stirring blade. Item 8. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of Items 7 to 9. 前記晶析工程において、前記アンモニウムイオンを含む水溶液と前記アルカリ性水溶液の供給位置は、前記反応溶液の液面の外周から、該液面の外周と中心との距離の3分の1の位置までの間の液面に供給することを特徴とする請求項7〜9のいずれかに記載の非水系電解質二次電池用正極活物質の製造方法。 In the crystallization step, the supply position of the aqueous solution containing ammonium ions and the alkaline aqueous solution is from the outer periphery of the liquid surface of the reaction solution to a position of one-third of the distance between the outer periphery and the center of the liquid surface. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 7 to 9, wherein the solution is supplied to the liquid surface between the two. 前記焼成工程において、焼成温度を650〜950℃とすることを特徴とする請求項7〜11のいずれかに記載の非水系電解質二次電池用活物質の製造方法。 The method for producing an active material for a non-aqueous electrolyte secondary battery according to any one of claims 7 to 11, wherein in the firing step, the firing temperature is set to 650 to 950 ° C. 前記焼成工程において、前記リチウム化合物として、水酸化リチウム、炭酸リチウム、又はこれらの混合物を用いることを特徴とする請求項7〜12のいずれかに記載の非水系電解質二次電池用活物質の製造方法。 Production of the active material for a non-aqueous electrolyte secondary battery according to any one of claims 7 to 12, wherein lithium hydroxide, lithium carbonate, or a mixture thereof is used as the lithium compound in the firing step. Method.
JP2016182667A 2016-09-20 2016-09-20 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery Active JP6957846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182667A JP6957846B2 (en) 2016-09-20 2016-09-20 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182667A JP6957846B2 (en) 2016-09-20 2016-09-20 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2018049684A JP2018049684A (en) 2018-03-29
JP6957846B2 true JP6957846B2 (en) 2021-11-02

Family

ID=61767739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182667A Active JP6957846B2 (en) 2016-09-20 2016-09-20 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6957846B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102565910B1 (en) * 2019-01-21 2023-08-10 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery
JP7531096B2 (en) 2019-06-05 2024-08-09 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916768B2 (en) * 2016-03-30 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2018049684A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
KR102203425B1 (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6862727B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6798207B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP7135855B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP7260249B2 (en) TRANSITION METAL CONTAINING COMPOSITE HYDROXIDE PARTICLES AND MANUFACTURING METHOD THEREFOR, POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US11239463B2 (en) Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP6939567B2 (en) Method for manufacturing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery Manufacturing method
JP7293576B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same
US20240282959A1 (en) Method for manufacturing positive-electrode active material precursor and positive-electrode active material for nonaqueous electrolyte secondary battery
JP7224754B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery manufacturing method
CN111741928B (en) Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP2020177860A (en) Composite hydroxide containing nickel, manganese and cobalt and production method thereof, composite oxide containing lithium, nickel, manganese and cobalt and production method thereof, positive electrode active material for lithium ion secondary battery and production method thereof, and lithium ion secondary battery
WO2019163845A1 (en) Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP6737153B2 (en) Nickel-cobalt-manganese composite hydroxide, method for producing nickel-cobalt-manganese composite hydroxide, lithium metal composite oxide particles
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP7183815B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7183813B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7183812B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP6957846B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP7183814B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6957846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150