WO2009139397A1 - Plate-like crystal grain and production method thereof, and secondary lithium battery - Google Patents

Plate-like crystal grain and production method thereof, and secondary lithium battery Download PDF

Info

Publication number
WO2009139397A1
WO2009139397A1 PCT/JP2009/058872 JP2009058872W WO2009139397A1 WO 2009139397 A1 WO2009139397 A1 WO 2009139397A1 JP 2009058872 W JP2009058872 W JP 2009058872W WO 2009139397 A1 WO2009139397 A1 WO 2009139397A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sheet
crystal
crystal particles
molded body
Prior art date
Application number
PCT/JP2009/058872
Other languages
French (fr)
Japanese (ja)
Inventor
小林伸行
七瀧努
由良幸信
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2010511993A priority Critical patent/JPWO2009139397A1/en
Publication of WO2009139397A1 publication Critical patent/WO2009139397A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to plate-like crystal particles useful as a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics.
  • Such a secondary battery is generally called a lithium secondary battery or a lithium-ion battery, and has a feature of high energy density and high single battery voltage of about 4 V.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • the battery characteristics of such a lithium secondary battery largely depend on the material characteristics of the positive electrode active material used.
  • Specific examples of the lithium transition element composite oxide contained in the positive electrode active material include lithium cobaltate (L i Co 0 2 ), lithium nickelate (L i N i 0 2 ), and lithium manganate (L i M n 2 0 4 ) etc.
  • lithium cobaltate Li Co 0 2
  • lithium nickelate Li i N i 0 2
  • lithium manganate Li i M n 2 0 4
  • Mn is eluted by the free acid generated from the refining and causes the crystallinity of lithium manganate to decrease, and the eluted Mn is deposited on the surface of the negative electrode material such as graphite and adversely affects the negative electrode itself.
  • the negative electrode material such as graphite and adversely affects the negative electrode itself.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 2 — 2 8 9 1 9 1
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 6-2 5 2 9 4 0
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 2 0 0 7-2 9 4 1 1 9
  • the present invention has been made in view of the above-described problems of the prior art, and the object is to provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics. It is an object of the present invention to provide a plate-like crystal particle useful as a positive electrode active material and a method for producing the same. Another object of the present invention is to provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics.
  • the following plate-like crystal particles and method for producing the plate-like crystal particles And a lithium secondary battery are provided.
  • [0011] It is composed of lithium manganate with a spinel structure containing Li and Mn as constituent elements, has an aspect ratio of 1.5 to 20 and a thickness of 1 to 20 m.
  • the single crystal particle includes a plurality of single crystal particles, and the number of the single crystal particles substantially existing in the thickness direction is one, and the plurality of single crystal particles includes the crystal plane (1 1 1 ) Are aligned, the plate-like crystal particles according to [1], which are bonded to each other between the grain boundary portions of the single crystal particles.
  • is Li, Fe, ⁇ ⁇ , Mg, Zn, Al, Co, Cr, Si, Sn, P, V, Sb, Nb. And one or more elements selected from the group consisting of Ta, Mo, and W, and two or more substitution elements including Ti, and X represents the number of substitutions of the substitution element M)
  • [0016] The method for producing plate-like crystal particles according to any one of [1] to [5], wherein a molding material containing lithium manganate particles is molded and has a thickness of 30 mm or less.
  • a method for producing plate-like crystal particles comprising: a firing step of firing in a state; and a grinding step of crushing and classifying the sheet-shaped formed body after firing.
  • the firing temperature in the firing step is 650 to 1250 ° C.
  • the above pulverizing step is a step of pulverizing and classifying the sheet-like molded body after firing by passing through an opening of a predetermined size.
  • [0022] [1 2] The method for producing plate-like crystal particles according to [1 1], wherein an average opening diameter of the opening is 1. Omm or less.
  • the plate-like crystal particles of the present invention can provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics, and are effective as a positive electrode active material.
  • plate-like crystal particles useful as a positive electrode active material capable of providing a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics are produced. be able to.
  • the lithium secondary battery of the present invention has an effect of being excellent in output characteristics and high-temperature cycle characteristics.
  • FIG. 1 is a perspective view schematically showing one embodiment of a plate-like crystal particle of the present invention.
  • FIG. 2A is a perspective view schematically showing another embodiment of the plate-like crystal particle of the present invention.
  • FIG. 2B is a perspective view schematically showing still another embodiment of the plate-like crystal particle of the present invention.
  • FIG. 2G is a perspective view schematically showing still another embodiment of the plate-like crystal particle of the present invention.
  • FIG. 3A is a side view showing an example of a calciner.
  • FIG. 3B is an AA cross-sectional view of FIG. 3A.
  • FIG. 4 is an explanatory view showing an example of a grinding process.
  • FIG. 5 is a cross-sectional view schematically showing an example of the microstructure of the positive electrode plate.
  • FIG. 6 is an electron micrograph showing the surface state (morphology) of the sheet-like molded body obtained in Example 8.
  • FIG. 7 is an electron micrograph showing the cross-sectional state (morphology) of the sheet-like molded body obtained in Example 8.
  • FIG. 1 is a perspective view schematically showing one embodiment of the plate-like crystal particle of the present invention.
  • the plate-like crystal particles 10 of the present embodiment are single crystal particles made of lithium manganate having a spinel structure containing Li and Mn as constituent elements.
  • the plate-like crystal particle 10 has a crystal plane (1 1 1) 2 as a development plane.
  • a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics can be provided.
  • “developmental aspects” Of the crystal planes that make up the plate-like crystal grains the plane with the widest area.
  • the plate-like crystal particle of the present invention is used as a positive electrode active material, the reason why it is possible to provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics is as follows.
  • lithium ion (L i +) de-insertion can occur on any crystal plane, while the dissolution rate of Mn may differ depending on the crystal plane. That is, the plate-like crystal particles of the present invention can smoothly remove and insert lithium ions (L i +), and the shape of the particles is plate-like. Since the diffusion distance of i +) is shorter than that of general isotropic particles of the same volume, it is presumed that a lithium secondary battery having excellent output characteristics can be provided.
  • the plate-like crystal particle of the present invention is a crystal particle having a crystal plane (1 1 1) with a slow Mn elution rate as a development plane, a lithium secondary battery excellent in high-temperature cycle characteristics is provided. It is estimated that
  • the longest grain length Y of plate-like crystal grains 1 0 (see Fig. 1)! Is usually 50 m or less, preferably 30 / m or less, more preferably 20 m or less.
  • the maximum particle length Y can be appropriately set according to the purpose.
  • the aspect ratio of the plate-like crystal particle 10 represented by the ratio of the longest particle length ⁇ to the particle thickness (Y ZWJ is 1.5 to 20, 1.5 to 10 Preferably, it is 1.5 to 5.
  • the positive electrode active that can provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics. It can be a substance.
  • the grain thickness ⁇ ⁇ of the plate-like crystal particle 10 is the thickness of the thickest portion of the plate-like crystal particle 10.
  • the plate-like crystal particle 10 has a particle thickness W of 20 m or less, preferably 15 mm or less, and more preferably 1 O im or less.
  • the particle thickness W is 1 mm or more, preferably 5 jUm or more. When the particle thickness is 1 m or more, the shape of the plate-like crystal particle 10 is easily maintained in a flat plate shape. If the grain thickness is 20 mm or less, the crystal plane (1 1 1) 2 The degree of orientation can be further increased.
  • FIG. 2A is a perspective view schematically showing another embodiment of the plate-like crystal particle of the present invention.
  • the plate-like crystal particle 20 of the present embodiment includes a plurality of single crystal particles 1 2, and the plurality of single crystal particles 1 2 are developed into crystal planes (1 1 1 ) In the state where 2 are aligned, it is constituted by being bonded at the grain boundary portions 14 of the single crystal particles 1 2. That is, the plate-like crystal particle 20 has a shape in which a plurality of single crystal particles 12 having aligned crystal faces (1 1 1) 2 as a development plane are connected in a substantially two-dimensional manner.
  • This “alignment of crystal planes (1 1 1) 2” means that the crystal planes (1 1 1) 2 of a plurality of single crystal particles 1 2 are on the same plane (Fig. 2A) If the crystal plane (1 1 1) 2 faces in the same direction ( Figure 2B), and the crystal plane (1 1 1) 2 faces in the same direction When the crystal plane (1 1 1) 2 of the single crystal particle 1 2 is on the same plane, or the crystal plane (1 1 1) 2 is the same direction ( Figure 2C), etc.
  • reference numerals 30 and 40 denote plate-like crystal particles.
  • substantially the number of single crystal particles 1 2 existing in the thickness direction is 1
  • the concept of “the number of single crystal particles substantially existing in the thickness direction” is substantially equal to the number of single crystal particles existing in the thickness direction in a narrow region such as an end. It is one, but in the wide area such as the center, it is not included if it is more than one
  • the plate-like crystal particles 20 are obtained by firing a sheet-like molded body obtained by molding a molding material containing lithium manganate particles, and crushing and classifying the fired molded body having grown grains. It can be obtained. That is, the number of single crystal grains 12 substantially existing in the thickness direction is one because the number of single crystal particles 12 existing in the thickness direction is limited when grains grow by firing. The grain growth in the surface direction Prompted. As a result, the flat single crystal particles 12 are arranged in the plane direction, and the crystal plane (1 1 1) which is a development plane is oriented.
  • the plate-like crystal particles of the present invention may include single crystal particles that do not grow to the thickness of the sheet-like molded body, or single crystal particles having different crystal plane (1 1 1) orientations. For this reason, as shown in FIG. 2B and FIG. 2C, there may be local portions where the single crystal particles 1 2 overlap each other or where the crystal plane (1 1 1) 2 faces differently. However, a plurality of single crystal grains 12 are bonded at the grain boundary portion 14 with the crystal plane (1 1 1) 2 directions being substantially aligned.
  • the number of single crystal particles 12 included in the plate crystal particles 20 in the thickness direction is 2
  • the ratio of only one part is preferably 70% or more, more preferably 800/0 or more, and 90% or more with respect to the entire area of the plate-like crystal particles 20. Is particularly preferred.
  • This area ratio can be calculated based on a SEM photograph taken by scanning electron microscope (SEM) observation with the plate crystal particles 20 dispersed as much as possible.
  • This area ratio can also be predicted from the total area of the plate-like crystal particles 20 when the length in the plane direction of the plate-like crystal particles 20 is equal to or greater than the thickness of the plate-like crystal particles 20. .
  • the portion where the single crystal particles 12 overlap is only a part of the whole (for example, 30% or less in area ratio). For this reason, it can be crushed relatively easily at the grain boundary part 14 where the single crystal grains 12 and 2 are bonded.
  • the longest grain length Y 2 of the plate-like crystal particle 20 (see FIG. 2A) is usually 100 m or less, preferably 7 Ojt m or less, and more preferably 50 / m or less.
  • the maximum particle length Y 2 can be appropriately set according to the purpose.
  • ⁇ scan Bae transfected ratio of plate crystal grains 20, represented by the ratio of the particle maximum length Y 2 (Y 2 ZW 2) is preferably 1. 5 to 20 2 to 15 is more preferable, and 2 to 10 is particularly preferable.
  • the aspect ratio is in the above numerical range, a positive electrode active material capable of providing a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics can be obtained.
  • grain thickness W 2 of the plate crystal grains 20 is a Thickness of the thickest portion of the plate crystal grains 20.
  • the particle thickness W 2 of the plate-like crystal particle 20 is preferably 2 OjUm or less, more preferably 15 // m or less, and particularly preferably 10 ⁇ m or less. Further, the particle thickness W 2 is preferably 1 m or more, and more preferably 5 m or more. When the particle thickness W 2 is 1 / m or more, the shape of the plate-like crystal particle 20 is easily maintained as a flat plate.
  • the particle thickness W 2 is 20 m or less, the degree of orientation of the crystal plane (1 1 1) 2 can be further increased, and the ion diffusion distance in the particle is shortened, resulting in degradation of output characteristics. Is preferable because it is difficult to occur.
  • the particle thickness W 2 is usually substantially the same as the thickness of the single crystal particle.
  • the aspect ratio of the plate-like crystal particles is calculated as follows. First, the particle thickness (W) is measured based on a SEM photograph taken using a scanning electron microscope (SEM). Next, a plate-like crystal particle is placed in a solvent such as alcohol so as to be 1 to 10% by mass, and a dispersion obtained by dispersing with ultrasonic waves is placed on the surface of the glass substrate at 1 000 to 4000. Spin coating is performed under the condition of r pm to prepare a measurement sample in which the particles do not overlap as much as possible and the plate surface of the particles is arranged parallel to the surface of the glass substrate.
  • a solvent such as alcohol
  • the degree of orientation of the crystal plane (1 1 1) measured by the Lotgering method is 20% or more, preferably 50 ⁇ 1 ⁇ 2 or more, more preferably 70 o / o or more, It is particularly preferable that it is 80% or more. This is because, when the orientation degree of the crystal plane (1 1 1) is 20% or more, the Mn elution suppression effect appears remarkably.
  • a method for measuring the degree of orientation of the crystal plane (1 1 1) (Lottgering method) will be described.
  • a plate-like crystal particle is put in a solvent such as alcohol so as to be 1 to 10% by mass, and a dispersion obtained by dispersing with ultrasonic waves is placed on the surface of a glass substrate under conditions of 1000 to 4000 rpm.
  • the sample for measurement is prepared in such a manner that the particles are not overlapped as much as possible and the plate surface of the particles is arranged parallel to the surface of the glass substrate.
  • using an XRD diffractometer measure the XRD diffraction pattern when the surface of the plate crystal particle in the prepared measurement sample is irradiated with X-rays. Using the peaks of (1 1 1), (31 1), (400), and (331) in the measured XRD diffraction pattern, the orientation of the crystal plane (1 1 1) from the following equation (2) The degree can be calculated.
  • ⁇ I (h k I) represents the total sum of X-ray diffraction intensities of all crystal planes (h k I) measured with the plate-like crystal particles
  • ⁇ I. (hk I) is the sum of the X-ray diffraction intensities of all crystal planes (hk I) measured for the same composition as the plate-like crystal grains and non-oriented
  • ⁇ 'I (HKL) is , Shows the sum of X-ray diffraction intensities (in this case only (1 1 1) plane) of crystallographically equivalent specific crystal planes measured in plate-like crystal grains
  • ⁇ 'I 0 (HKL) is The sum of the X-ray diffraction intensities of the crystal plane (1 1 1) measured for the same composition as the plate-like crystal grains and for the non-oriented ones.
  • the thickness (single crystal particle thickness Z) of the single crystal particle 12 contained in the plate crystal particle 20 is preferably 2 Ojum or less, and 15 mm or less. More preferably, it is particularly preferably 10 / m or less.
  • the single crystal particle thickness Z is preferably 1 mm or more, and more preferably 5 m or more. When the single crystal grain thickness Z is 1 jwm or more, It is easy to keep the shape of 20 flat.
  • the single crystal grain thickness Z is 2 O im or less, the grain growth in the thickness direction is limited even if inorganic particles that grow into isotropic and polyhedral crystal grains are included, Since the crystal growth of the single crystal particle 12 is further promoted in the plane direction of the plate crystal particle 20, the crystal plane (1 1 1) grows in the plane of the plate crystal particle 10, so that The specular ratio is large and the crystal plane (1 1 1) 2 has a high degree of orientation.
  • the aspect ratio of the single crystal particle 12 contained in the plate crystal particle 20 (see FIG. 2A) expressed by the ratio of the single crystal particle longest length X to the single crystal particle thickness Z.
  • the ratio (X / Z) is preferably 1 or more, more preferably 2 or more, and particularly preferably 4 or more.
  • the aspect ratio is preferably 50 or less.
  • the aspect ratio of the single crystal particles 12 can be calculated by a method similar to the method for calculating the aspect ratio of the plate-like crystal particles described above.
  • the longest length of the single crystal particles 12 included in the plate-like crystal particles 20 (see FIG. 2A) (the longest single crystal particle length X) is preferably 5 O / m or less, It is more preferably 0 im or less, and particularly preferably 2 O im or less.
  • the longest single crystal particle length X is 50 m or less, the size (particle size) of the obtained plate-like crystal particle 20 can be easily adjusted.
  • the value of Y 2 ⁇ expressed by the ratio of the longest particle length Y 2 to the longest single crystal particle length X is preferably 3 to 100. If the value of ⁇ 2 / ⁇ is 3 or more, it is easy to align the particle size. Also, if the value of ⁇ 2 ⁇ is less than 100, there are few grain boundary parts with weak mechanical strength, and it becomes difficult to break.
  • the plate-like crystal particles of the present invention are composed of lithium manganate.
  • the stoichiometric composition of lithium manganate is usually represented by Li M n 2 0 4 , but the lithium manganate constituting the plate crystal particles of the present invention has such a stoichiometric composition. It is not limited to. Specifically, the manpage represented by the following general formula (1) Gansan lithium can also be used to similarly good suitable lithium manganate represented by L i M n 2 0 4.
  • is Li, Fe, Ni, Mg, Zn, Al, Co, Cr, Si, Sn, P, V, Sb. , Nb, Ta, Mo, and W, and one or more elements selected from the group consisting of W and two or more substitution elements including Ti, and X represents the number of substitutions of the substitution element M.
  • L i is +1, F e, Mn, Ni, Mg, Z n is +2, B, A l, Co, and Cr are +3, S i, T i, and Sn are + Tetravalent, P, V, Sb, Nb, Ta are +5 valent, Mo, W are +6 valent ions, and both elements are theoretically fixed in Li M n 2 0 4 It melts.
  • the substitution element M may exist in a state having a mixed valence.
  • the amount of oxygen does not necessarily need to be 4 as represented by the theoretical chemical composition, and may be deficient or excessive in the range for maintaining the crystal structure. Absent.
  • the Li i ZMn ratio (molar ratio) is (1 + X) (2- X).
  • M n is substituted with a substitution element M other than Li
  • 1 (2-X) is obtained. Therefore, in either case, L; 1 ⁇ 10 ratio> 0.5.
  • the molar ratio of Li to Mn (L i ZMn) contained in the lithium manganate constituting the plate crystal particle of the present invention is preferably more than 0.5.
  • lithium manganate that satisfies the relationship L i ZM n> 0.5 further stabilizes the crystal structure compared to the case of using the stoichiometric composition (L i M n z 0 4 ). Therefore, it is possible to obtain a lithium secondary battery with excellent high-temperature cycle characteristics.
  • the method for producing plate-like crystal particles of the present invention comprises (1) a composition containing lithium manganate particles. Molding process to form a self-supporting sheet-like molded body having a thickness of 30 m or less by molding a molding material, (2) the sheet-shaped molded body into an inert layer that does not substantially react with the sheet-shaped molded body A firing step of firing in an adjacent state or in a state of a sheet-like shaped body, and (3) a grinding step of crushing and classifying the fired sheet-like shaped body.
  • the lithium manganate particles contained in the forming raw material include, for example, a mixture of raw material compounds containing various elements constituting lithium manganate (L i M n 2 0 4 ) in a predetermined ratio in an oxidizing atmosphere. It can be synthesized by calcining in the range of 50 ° C. to 1 250 ° C. for 2 hours to 50 hours.
  • the oxidizing atmosphere generally refers to an atmosphere having an oxygen partial pressure that causes an oxidation reaction of the in-furnace sample, and specifically includes an air atmosphere and an oxygen atmosphere.
  • the obtained lithium manganate particles are further pulverized after provisional firing.
  • the particle size of the lithium manganate particles is preferably set to a particle size according to the thickness of the sheet-like molded body.
  • the median diameter (D 50) is preferably 1 to 60% of the thickness of the sheet-like molded body.
  • the median diameter of the lithium manganate particles is set to 1% or more of the thickness of the sheet-like molded product, pulverization is easy.
  • the content is 60% or less, the lithium manganate particles contained in the sheet-shaped molded body are more uniformly distributed, so that the thickness of the sheet-shaped molded body can be easily adjusted.
  • the particle size of the lithium manganate particles can be measured by dispersing them in a dispersion medium such as an organic solvent or water using a laser diffraction / scattering particle size distribution analyzer.
  • the lithium manganate is preferably wet pulverized using, for example, a pole mill, a bead mill, a trommel, an attritor or the like.
  • L i 2 0 is the oxide
  • the oxide is not preferred for highly hygroscopic, difficult to handle. Therefore, chemically stable carbonate, hydrochloride Nitrate, sulfate, hydroxide, organic acid salt, halide and the like can be suitably employed, and these several types may be used in an appropriate combination.
  • raw material compounds containing other elements salts and oxides of the respective elements (including substitution element M when Mn is substituted) can be suitably used.
  • the salt of each element is not particularly limited, but it is preferable to use a raw material having a high purity and being inexpensive.
  • carbonates, hydroxides, and organic acid salts are preferably used, but nitrates, hydrochlorides, sulfates, and the like can also be used.
  • a raw material compound containing various elements constituting lithium manganate (L i M n 2 0 4 ) mixed in a predetermined ratio and pulverized may be used without being calcined. .
  • the obtained molding material is molded to obtain a self-supporting sheet-like formed body (green sheet) having a thickness of 30 m or less.
  • the “self-supporting sheet-like molded product” can be used to maintain the sheet shape by itself, or even if it cannot maintain the sheet shape by itself, it can be attached to a substrate or formed into a film. This includes those that can maintain the recite shape.
  • Examples of the method for forming a sheet-like molded body include a doctor blade method using a forming raw material (slurry) containing lithium manganate particles, an extrusion method using a clay containing inorganic particles, and the like. .
  • slurry is applied to a flexible plate (for example, an organic polymer plate such as a PET film).
  • a flexible plate for example, an organic polymer plate such as a PET film.
  • the sheet-like molded body formed by drying and solidifying the applied slurry can be removed from the plate to obtain a sheet-like molded body.
  • lithium manganate particles may be dispersed in an appropriate dispersion medium, and a binder, a plasticizer, or the like may be added as appropriate.
  • the viscosity of the slurry is preferably adjusted to 500 to 80 Om Pa s and preferably defoamed by reducing the pressure.
  • the thickness of the sheet-like shaped body is 30 / m or less, preferably 20 jum or less, more preferably 15 m or less.
  • the degree of orientation of the obtained plate-like crystal particles can be increased.
  • the thickness of the sheet-shaped molded body is 15 jum or less, The degree of orientation of the plate-like crystal particles can be further increased.
  • the thickness of the sheet-like molded body is preferably 1 im or more, and more preferably 5 m or more. If the thickness is 1 / m or more, the sheet-like molded body can be made self-supporting.
  • the thickness of the sheet-like molded body is 15 to 3 O jum. Since the thickness of the plate-like crystal particles is defined by the thickness of the sheet-like molded product, the thickness of the sheet-like molded product may be appropriately set according to the use of the plate-like crystal particles.
  • Other molding methods for sheet-like molded products include resin, glass, ceramics, or metal by high-speed spraying methods such as aerosol deposition, or vapor phase methods such as sputtering, CVD, and PVD. For example, there is a method of forming a film on a substrate, etc., and peeling it from the substrate.
  • the density of the resulting sheet-like shaped product can be increased, and thus there are advantages such as low-temperature grain growth, prevention of volatilization of constituent elements, and high density of the obtained plate-like crystal particles. is there.
  • the sheet-like molded body is fired in a state where it is adjacent to an inert layer that does not substantially react with the sheet-like molded body, or in a state where the sheet-like molded body remains.
  • the “inert layer that does not substantially react with the sheet-like molded body” include a fired ceramic plate, a Pt plate, a carbon plate, a graphite plate, a molybdenum plate, a tungsten plate, and an organic sheet that burns during firing. Etc. It should be noted that the compact may be placed on a layer that is inactive at the firing temperature of the compact, such as alumina, zirconia, spinel, carbon, graphite, molybdenum, tungsten, or platinum, and fired. In addition, as an organic substance sheet combusted at the time of baking, the thing which does not have thermoplasticity, such as the paper synthesize
  • a sheet-shaped molded body and an inert sheet may be stacked and rolled into a roll shape, or a sheet-shaped molded body may be formed on the inert layer, and the inert layer after firing. You may make it peel from.
  • a sheet-like molded body may be formed on the inert layer, and the inert layer may be removed after firing.
  • the heat treatment may be performed again in an oxidizing atmosphere at a temperature equal to or lower than the firing temperature to burn the graphite layer.
  • the thickness of the sheet-shaped compact is 30 m or less, and the grain growth in the thickness direction of the sheet-shaped compact is limited, and the grain growth in the surface direction of the sheet-shaped compact is promoted.
  • 1 1 1) grows along the surface of the sheet-like molded body, and plate-like crystal grains having a large aspect ratio and a highly oriented crystal face (1 1 1) can be produced.
  • a sheet-like molded body that has been crumpled or a sheet-shaped molded body that has been cut into a strip may be fired.
  • the sheet-shaped molded body cut into a strip shape may be fired in a state of being randomly entangled so as to have a predetermined shape (for example, a spherical shape).
  • a plate-like crystal grain having a highly oriented crystal face (1 1 1) is obtained because most of the sheet-like molded body is fired while maintaining a self-supporting state without using a special inert layer.
  • the child can be manufactured in large quantities.
  • the firing step it is preferable to fire the sheet-like molded body in a volatilization-suppressed state that suppresses the volatilization of specific components such as the Al force element contained in the sheet-like molded body.
  • a specific component such as an alkali element
  • the sheet-shaped molded body in a sheath with a lid, etc., and fire it in a sealed state in which a co-molded molded body and other lithium manganate particles coexist. It is preferable to make it small. It is also preferable to use a molded body in which the lithium content is excessive in anticipation of the volatilization of the specific component.
  • the sheet-like molded body coexisting inside the sheath and another lithium manganate particle If the amount is too large, sintering and grain growth of the sheet-like molded product will become too active, resulting in undulation in the sheet-like molded product and a decrease in the aspect ratio of the plate-like crystal particles. There is a case. Therefore, it is important to appropriately set the volume inside the sheath, the amount of the sheet-like molded body, the amount of lithium manganate particles to be coexisted, etc. so that the atmosphere inside the sheath is in an optimal state.
  • lithium manganate particles having the same composition as the lithium manganate particles contained in the sheet-like molded article coexist, but the lithium manganate particles contained in the sheet-like molded article.
  • the first firing temperature in the sheath controlled to the second atmosphere may be higher than that of the second baking temperature.
  • the firing atmosphere may be in the air, but in consideration of the suppression of volatilization of the constituent elements and reactivity with the inert layer, etc., reduction in a neutral atmosphere such as an oxygen atmosphere or nitrogen, in the presence of hydrogen or hydrocarbons, etc. It may be in an atmosphere or vacuum. Further, from the viewpoint of promoting in-plane grain growth, weighted firing may be performed by hot pressing or the like.
  • FIG. 3A is a side view showing an example of a calciner
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A.
  • the calciner 5 is used when the sheet-like molded body 15 is fired in a firing furnace (not shown), and has been fired on which an unfired molded body (sheet-like molded body 15) is placed.
  • Ceramic plate setter 2 2 thick coexisting green compact 2 4, which contains lithium manganese oxide particles, and coexisting green compact 2 4
  • a square plate 26 that is a fired ceramic plate that covers the upper portion of the sheet-like molded body 15.
  • the shape of the setter 2 2 shown in FIGS. 3A and 3B is a flat plate, but is a sheet.
  • Sheet shape such as a setter with a roughened surface on which the compact 15 is placed, a honeycomb-shaped setter having a plurality of through-holes on the surface on which the compact 15 is placed, a dimple processed setter, etc. It is preferable to use a setter that reduces the contact area with the molded body 15 and prevents the sheet-shaped molded body 15 from being welded.
  • an alumina powder or a zirconia powder that is stable even at the firing temperature of the sheet-like molded body 15 is laid, and on that surface. It is also preferable that the sheet-like molded body 15 is placed and fired.
  • the setting method of the setter, the size of the setter, and the stacking in the sheath can be uniformly adjusted by appropriately adjusting the method and the location where the powder is disposed. Thereby, when a plurality of sheet-like molded bodies are fired simultaneously, the crystal grain structure of the fired sheet-like molded body can be made uniform.
  • the sheet-like molded body is 50 0-compared to the temperature at which a re-equilibrated crystal can be obtained by firing (for example, the temperature at which densification and grain growth occur by firing the bulk). Baking is preferably performed at a temperature as high as 200 ° C. By firing at such a temperature, grain growth can be sufficiently advanced. It is preferable to fire at a temperature that is high enough not to decompose the molding material contained in the sheet-like molded body. In particular, when the thickness of the sheet-like molded body is thinner, it is difficult to grow the grains. Therefore, it is preferable to raise the firing temperature. In order to increase the particle size of the obtained plate-like crystal particles, firing at a higher temperature is preferable. Also, in order to promote the grain growth of plate crystal grains may be added to the low melting oxides such as B i 2 0 3 as a sintering aid.
  • the low melting oxides such as B i 2 0 3
  • the fired sheet-like molded body is crushed and classified by passing through an opening of a predetermined size.
  • a mesh having an opening having an opening diameter that matches the particle size of the target plate crystal particle is used.
  • the average opening diameter of the mesh used is usually 1. O mm It is as follows.
  • FIG. 4 is an explanatory diagram showing an example of a pulverization process.
  • a mesh 34 having an average opening diameter ⁇ 1 00 m, 70 m % 45 m, 25 jU m, 20 m, 10 jU m, 5 jL ⁇ m or the like is used. be able to.
  • the sheet-like molded body 32 after firing is brittle and relatively easy to disintegrate. For this reason, a sheet-like molded product after firing is obtained by sieving the mesh 3 4 while lightly pressing the fired sheet-like shaped product 3 2 placed on the mesh 34 with a spatula-shaped pressing member 36. The body can be crushed and classified at the same time, and plate-like crystal particles 1.5 can be obtained.
  • a mesh 34 having an opening with a large opening diameter may be used.
  • a mesh 34 having an opening having a small opening diameter may be used. That is, the characteristics of the obtained plate-like crystal particles can be changed by a simple selection of changing the opening diameter of the opening of the mesh 34.
  • Lithium secondary battery [0072] 3. Lithium secondary battery:
  • the lithium secondary battery of the present invention is manufactured using the plate-like crystal particles described above as a positive electrode active material. Therefore, the lithium secondary battery of the present invention is excellent in output characteristics and high temperature cycle characteristics. Such excellent output characteristics and high-temperature cycle characteristics are particularly noticeable in a large-capacity secondary battery manufactured using a large amount of electrode active material. For this reason, the lithium secondary battery of the present invention is suitable as a power source for driving a motor of an EV or HEV, for example. However, the lithium secondary battery of the present invention is also suitable as a small capacity battery such as a coin battery.
  • a member (material) other than the positive electrode active material for constituting the lithium secondary battery of the present invention various conventionally known materials can be used.
  • the negative electrode active material amorphous carbonaceous materials such as soft carbon and hard carbon, and highly graphitized carbon materials such as artificial graphite and natural graphite can be used. Among them, it is preferable to use a highly graphitized carbon material having a large lithium capacity.
  • Organic solvents used in the non-aqueous electrolyte include carbonate solvents such as ethylene carbonate (EC), jetyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC), and r- A single solvent such as petit mouth lactone, tetrahydrofuran, or acetonitrile, or a mixed solvent thereof is preferably used.
  • carbonate solvents such as ethylene carbonate (EC), jetyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC), and r-
  • a single solvent such as petit mouth lactone, tetrahydrofuran, or acetonitrile, or a mixed solvent thereof is preferably used.
  • electrolyte examples include lithium hexafluorophosphate (L i PF 6 ) and lithium borofluoride (L ⁇ BFJ and other lithium complex fluorine compounds: lithium perchlorate (L i CI 0 4 ) It should be noted that one or more of these electrolytes are usually used by dissolving in the above-mentioned organic solvent among these electrolytes. It is preferable to use Li PF 6 having high conductivity.
  • the battery structure include a coin-type battery (coin cell) in which a separator is disposed between a plate-shaped positive electrode active material and a negative electrode active material and filled with an electrolytic solution, or a metal foil.
  • a positive electrode plate formed by coating a positive electrode active material on the surface and a negative electrode plate formed by applying a negative electrode active material on the surface of a metal foil are wound or laminated with a separator used.
  • Various types of cylindrical or box type batteries can be given.
  • the filling rate of the positive electrode active material constituting the positive electrode plate is an important factor for determining the capacity of the battery, it is desirable to employ particles having high filling properties as the positive electrode active material. It is preferable to use the above-mentioned plate-like crystal particles (plate-like crystal particles of the present invention) because it is easy to increase the filling rate of the positive electrode active material constituting the positive electrode plate.
  • crystal particles having a large particle size are used as the positive electrode active material, the filling property is improved.
  • lithium manganate with a spinel structure is an octahedral angular particle. Since it tends to be a shape, it cannot be said that the filling property is good.
  • the plate-like crystal particles of the present invention are plate-like crystal particles having a flat surface spread, in particular, the particles can be easily filled by arranging them so that the directions of the particles are aligned. A high filling rate can be obtained.
  • FIG. 5 is a cross-sectional view schematically showing an example of the microstructure of the positive electrode plate.
  • the plate crystal particles 60 of the present embodiment are used as the positive electrode active material 65, and the positive electrode material (paste) containing the plate crystal particles 60 is used as a current collector plate (aluminum foil) 1
  • a positive electrode plate 110 obtained by coating on 0 0 is shown.
  • reference numeral 95 in FIG. 5 denotes a binder part containing acetylene black, polyvinylidene fluoride (P V D F), or the like.
  • the conventional equiaxed crystal particles 85 are used as the positive electrode active material 75 together with the plate crystal particles 60 of the present embodiment, that is, the plate crystal
  • the positive electrode plate 110 can also be produced by mixing the particles 60 and the conventional equiaxed crystal particles 85 in an appropriate ratio. Further, it is not necessary to use only the same size and shape of the plate-like crystal particle 60, and it is also possible to use a mixture of particles having different sizes and shapes.
  • the plate-like crystal particles of the present invention have a higher particle size homogeneity than the positive electrode active material particles produced by a conventional particle synthesis method. For this reason, it is preferable to use the plate-like crystal particles of the present invention as the positive electrode active material, because even when a large number of batteries are manufactured, a uniform battery with little variation in characteristics can be obtained.
  • L i 2 C 0 3 powder manufactured by Kanto Chemical Co., Inc.
  • L i M n 2 0 4 And Mn0 2 powder Kojundo Chemical Laboratory Co., Ltd.
  • the slurry was obtained by grinding.
  • the obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder.
  • the obtained calcined powder was wet pulverized with a ball mill for 5 hours using zirconia balls and ethanol as a dispersion medium. Drying was performed using an evaporator and a drier to obtain L ⁇ 2 0 4 powder (inorganic particles).
  • the average particle size of the L ⁇ Mn 2 0 4 powder (median diameter (D50) measured using water diffraction as a dispersion medium using a laser diffraction ⁇ scattering particle size distribution analyzer (model number “LA-750J” manufactured by HOR I BA) )) was 0.6 0m.
  • Dispersion media 1 00 parts by weight to prepare a toluene and isopropanol by mixing equal amounts, L i Mn 2 0 4 powder 1 00 parts by mass of the resultant polyvinyl as a binder butyral (trade name Ganmabetamyu- 2 ", manufactured by Sekisui Chemical Co., Ltd. ) 10 parts by mass, plasticizer (trade name “DOP”, manufactured by Kurokin Kasei Co., Ltd.) 4 parts by mass, and dispersant (trade name “SP-O 30”, manufactured by Kao Co., Ltd.) 2 parts by mass, A slurry-like forming raw material was obtained.
  • L i Mn 2 0 4 powder 1 00 parts by mass of the resultant polyvinyl as a binder butyral (trade name Ganmabetamyu- 2 ", manufactured by Sekisui Chemical Co., Ltd. ) 10 parts by mass
  • plasticizer trade name “DOP”, manufactured by Kurokin Kasei Co
  • the obtained slurry-like forming raw material was stirred and degassed under reduced pressure, and its viscosity was adjusted to 500 to 700 mPa ⁇ s.
  • the viscosity of the slurry molding raw material was measured using an LVT viscometer (manufactured by Brookfield). By using the doctor blade method, a slurry-like forming raw material whose viscosity was adjusted was formed on a PET film to obtain a sheet-like formed body. The thickness of the sheet-like molded body after drying was 5 / m.
  • the sheet-like molded body peeled from the PET film was cut into 5 Omm squares with a cutter and placed in the center of a zirconia setter (dimensions: 7 Omm X 7 Omm X thickness 1 mm).
  • a zirconia setter dimensions: 7 Omm X 7 Omm X thickness 1 mm.
  • an unfired molded body dimensions: 5mmX 40 mm, thickness 100 jU m
  • a zirconia square plate (dimensions: 7 Omm X 7 Omm, height 5 mm) was placed on the green body.
  • the space in which the sheet-shaped molded body is placed is made as small as possible, and the same molding raw material is allowed to coexist, degreased at 600 ° C for 2 hours, and then fired at 900 ° C for 24 hours. The portion not welded to the setter of the subsequent sheet-like molded body was taken out.
  • the sheet-like shaped body after firing was placed on a sieve having an average mesh opening diameter of 25 ⁇ m, and pressed lightly with a spatula to crush and classify to obtain plate-like crystal particles (Example 1). It was.
  • Example 1 Except that the dried sheet-like molded product had the thickness shown in Table 1, and that the baked sheet-like molded product was crushed and classified using a sieve having a mesh average opening diameter shown in Table 1. In the same manner as in Example 1 described above, plate-like crystal particles (Examples 2 to 7) were obtained.
  • L i L 05 Mn such that 95 0 4 composition ratio, L i 2 C0 (manufactured by Kanto Chemical Co., Inc.) 3 powder, and Mn0 2 powder (Kojundo Chemical Laboratory Co., Ltd.) were weighed to a resin cylinder and The mixture was placed in a wide-mouthed bottle, zirconia pol, and ethanol as a dispersion medium were further added, and wet-mixed and pulverized for 16 hours in a ball mill to obtain a slurry. The obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder.
  • the obtained calcined powder was wet pulverized with a pole mill for 5 hours using zirconia pole and ethanol as a dispersion medium. And dried using an evaporator and a dryer, L i, to obtain a. 05 ⁇ ⁇ ⁇ . 95 0 4 powder (inorganic particles).
  • L i ⁇ . 05 Mn L 95 0 4 Average particle diameter measured using a laser diffraction Z-scattering particle size distribution analyzer (model number ⁇ LA-750, manufactured by HOR I BA) with water as the dispersion medium The median diameter (D 50) was 1.0 ⁇ m.
  • Dispersion media 1 00 parts by weight to prepare a toluene and isopropanol by mixing equal amounts, the resulting L i!. 05 Mn n. 95 0 4 powder 1 00 parts by mass, Po polyvinyl butyral as a binder (trade name ⁇ - 2 ”, manufactured by Sekisui Chemical Co., Ltd.) 10 parts by mass, plasticizer (trade name“ DOP ”, manufactured by Kurokin Kasei Co., Ltd.) 4 parts by mass, and dispersant (trade name: ⁇ S P_O30, manufactured by Kao) 2 parts by mass The parts were mixed to obtain a slurry-like forming raw material.
  • the resulting slurry-like forming raw material was stirred and degassed under reduced pressure, and its viscosity was set to 4 OO OmPa ⁇ s.
  • the viscosity of the slurry molding raw material was measured using an LVT type viscometer (Brookfield). Using a doctor blade method, a slurry-like forming material with adjusted viscosity was formed on a PET film to obtain a sheet-like formed body. The thickness of the sheet-like molded body after drying was 17 jtim.
  • the sheet-like shaped product peeled from the PET film was cut into 5 Omm squares with a cutter and placed in the center of a zirconia setter (dimensions: 7 Omm X 7 Omm X thickness 1 mm). Place a set of 5 mm high Zirconia spacers at the four corners of this setter, and stack 10 sets of setters on which sheet-like molded bodies are placed in the same manner. Omm X height 6 Omm). Degrease at 600 ° C for 2 hours with the lid open, and further fire for 3 hours at 1100 ° C with the lid closed, and remove the part that is not welded to the setter of the fired sheet Removed.
  • Fig. 6 shows an electron micrograph showing the surface condition (morphology) of the sheet-shaped molded article taken out.
  • Fig. 7 shows an electron micrograph showing the cross-sectional state (morphology) of the sheet-like molded article taken out.
  • the calcined sheet-shaped product after firing was placed on a sieve having an average mesh opening diameter of 50 jt / m, and was lightly pressed against the sieve with a spatula to be unraveled and classified.
  • the particles obtained by crushing and classification are heat-treated at 700 ° C for 3 hours in an oxygen atmosphere.
  • plate-like crystal particles (Example 8) were obtained.
  • L i 2 C0 3 powder (manufactured by Kanto Chemical Co., Inc.),. And Mn0 2 powder (manufactured by High Purity Chemical Laboratory Co., Ltd.) are weighed so that the composition ratio of L i Mn 2 0 4 is obtained.
  • the mixture was placed in a wide-mouthed bottle, and zirconia balls and ethanol as a dispersion medium were further added, and wet mixing and pulverization were performed for 16 hours in a ball mill to obtain a slurry.
  • the obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder.
  • Li Mn 20 4 powder inorganic particles was obtained by drying using an evaporator and a dryer. Average particle diameter of Li Mn 2 0 4 powder (median diameter (D50)) measured using a laser diffraction / scattering particle size distribution analyzer (model number “LA-750J” manufactured by HOR I BA) with water as the dispersion medium ) was 0.6.
  • L i Mn 2 0 4 powder was put into Jirukonia steel sheath, to obtain a L i Mn 2 0 4 powder was grain growth by heat treatment between 24 hours at 900 ° C.
  • Jirukoniaporu and using ethanol as a dispersion medium, L i Mn 2 0 4 powder obtained was wet pulverized to the desired particle size in Porumi Le. And dried using an evaporator and a dryer, the average particle diameter of 0. 6 im (comparative example 1), 3 / m of Comparative Example 2, and 1 Oum (comparative example 3) Works i Mn 2 0 4 not Regular crystal particles were obtained.
  • polyvinyl petital (trade name “BM_2J, manufactured by Sekisui Chemical Co., Ltd.) 10 parts by mass, plasticizer (trade name“ DOP ”, manufactured by Kurokin Kasei Co., Ltd.) 4 parts by weight, and a dispersant (trade name“ SP ” —030 ”(manufactured by Kao Corporation) 2 parts by mass were mixed to obtain a slurry-like forming raw material.
  • the obtained slurry-like forming raw material was stirred and degassed under reduced pressure, and the viscosity was adjusted to 400 OmPa ⁇ s.
  • the viscosity of the slurry-like forming raw material was measured using an LVT viscometer (manufactured by Brookfield).
  • a slurry-like forming raw material with adjusted viscosity was formed on a PET film to obtain a sheet-like formed body.
  • the thickness of the sheet-like molded body after drying was 17 jt / m.
  • the sheet-like molded product peeled from the PET film was cut into 30 Omm squares with a force cutter and placed in an alumina sheath (dimensions: 9 Omm X 9 Omm X height 6 Omm) in a crumpled state. .
  • Degreasing was performed at 600 ° C for 2 hours with the lid open, and further, baking was performed at 1050 ° C for 3 hours with the lid closed.
  • the fired sheet-like molded body was placed on a sieve having a mesh average opening diameter of 5 Ojum, and pressed lightly with a spatula to be crushed and classified.
  • Particles obtained by crushing and classification were heat-treated at 650 ° C. for 3 hours in the air to obtain plate-like crystal particles (Example 9).
  • Example 1 1 Implementation as described above, except that the thickness of the dried sheet-like molded body was set to 4 and the fired sheet-like shaped body was crushed and classified using a sieve having an average mesh opening of 5 jum. In the same manner as in Example 1, plate-like crystal particles (Example 11) were obtained.
  • Example 1 described above, except that the firing temperature was set to 1 000 ° C, and the sheet-like molded product after firing was crushed and classified using a sieve having a mesh average opening diameter of 10 / m. In the same manner as in Example 1, plate-like crystal particles (Example 1 2) were obtained.
  • L i!. 05 Mn such that 95 0 4 composition ratio, L i 2 C0 (manufactured by Kanto Chemical Co., Inc.) 3 powder, and Mn0 2 powder (Kojundo Chemical Laboratory Co., Ltd.) made of resin was weighed It was put into a cylindrical wide-mouth bottle, further added with zirconia balls and ethanol as a dispersion medium, and wet-mixed and pulverized with a ball mill for 16 hours to obtain a slurry. The obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder.
  • the average particle diameter (median diameter (D) of Li Mn 2 0 4 powder measured using a laser diffraction / scattering particle size distribution analyzer (model number ⁇ LA-750) manufactured by HOR I BA with water as the dispersion medium. 50)) is at 0.6 ⁇ m.
  • Li Mn 2 0 4 powder was put in a zirconia sheath and heat-treated at 1 100 ° o for 24 hours to obtain Li L 05 ⁇ ⁇ . 95 0 4 powder. It was. Zirconyl two apo Lumpur, and using ethanol as a dispersion medium, a L i L 05 Mn L 9 5 o 4 powder obtained by wet grinding with a ball mill, and further Drying with an evaporator and dryer A powder having an average particle size of 10 m was obtained. The obtained powder was heat-treated at 700 ° C. for 3 hours in an oxygen atmosphere to obtain amorphous crystal particles of Li L 05 ⁇ ⁇ . G5 0 4 (Comparative Example 4). [0102] (Comparative Example 5)
  • G 0 4 powder was wet-ground with a ball mill using zirconia pol and ethanol as a dispersion medium, and further dried using an evaporator and a dryer. A powder with a particle size of 1 O im was obtained. The obtained powder was heat-treated in the atmosphere at 650 ° C. for 3 hours to obtain amorphous crystal particles of Li , Mni . 90 4 (Comparative Example 5).
  • a positive electrode material was prepared by adding and mixing so that the ratio was 50: 2: 3.
  • the prepared positive electrode material 0.02 g was press-molded into a disk shape having a diameter of 2 Omm ⁇ at a pressure of 300 kg Zcm 2 to produce a positive electrode.
  • a positive electrode was manufactured, and ethylene carbonate (EC) and an electrolyte prepared by dissolving in a mixed organic solvent in an equal volume of oxygenate chill carbonate (DEC) and L i PF 6 at a concentration of 1 mo I ZL
  • a coin cell was fabricated using a carbon negative electrode and a separator.
  • the plate crystal particles of the present invention are useful as a positive electrode active material, and can provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics.
  • the lithium secondary battery of the present invention is excellent in output characteristics and high-temperature cycle characteristics. It is effectively used as a drive battery for hybrid electric vehicles, electrical equipment, communication equipment, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a plate-like crystal grain which includes lithium manganate having Li and Mn as constituent elements in a spinel structure, has an aspect ratio of 1.5 to 20 and a thickness of 1 to 20mm, and includes, as a glowing face, a crystal face (111) having an amount of preferred orientation of 20% or more when measured by the Lotgering method.

Description

明 細 書  Specification
発明の名称 :  Invention title:
板状結晶粒子及びその製造方法、 並びにリチウム二次電池 Plate-like crystal particles, method for producing the same, and lithium secondary battery
技術分野  Technical field
[0001 ] 本発明は、 リチウム二次電池用の正極活物質として有用な板状結晶粒子及 びその製造方法、 並びに出力特性及び高温サイクル特性に優れたリチウム二 次電池に関する。  The present invention relates to plate-like crystal particles useful as a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics.
背景技術  Background art
[0002] 近年、 携帯電話、 V T R、 ノート型コンピュータ等の携帯型電子機器の小 型軽量化が加速度的に進行しており、 その電源用電池としては、 正極活物質 にリチウム遷移金属複合酸化物を、 負極活物質に炭素質材料を、 電解液に L iイオン電解質を有機溶媒に溶解した有機電解液を用いた二次電池が用いら れるようになってきている。  [0002] In recent years, portable electronic devices such as mobile phones, VTRs, notebook computers, and the like have been increasingly reduced in size and weight, and as a battery for power supplies, a positive electrode active material and a lithium transition metal composite oxide. Secondary batteries using an organic electrolytic solution in which a carbonaceous material is used as a negative electrode active material and an Li-ion electrolyte is dissolved in an organic solvent as an electrolytic solution are now being used.
[0003] このような二次電池は、 一般的にリチウム二次電池、 或いはリチウムィォ ン電池と称せられており、 エネルギー密度が大きく、 単電池電圧も約 4 V程 度と高いという特徴を有することから、 携帯型電子機器のみならず、 最近の 環境問題を背景に、 低公害車として積極的な一般への普及が図られている電 気自動車 (E V ) 或いはハイブリッド電気自動車 (H E V ) のモータ駆動電 源としても注目を集めている。  [0003] Such a secondary battery is generally called a lithium secondary battery or a lithium-ion battery, and has a feature of high energy density and high single battery voltage of about 4 V. In addition to portable electronic devices, the motor drive of electric vehicles (EVs) or hybrid electric vehicles (HEVs) that are actively popularized as low-emission vehicles against the background of recent environmental problems It is also attracting attention as a power source.
[0004] このようなリチウム二次電池の電池特性は、 用いる正極活物質の材料特性 に依存するところが大きい。 正極活物質に含有されるリチウム遷移元素複合 酸化物の具体例としては、 コバルト酸リチウム (L i C o 0 2) 、 ニッケル酸 リチウム (L i N i 0 2) 、 及びマンガン酸リチウム (L i M n 204 ) 等を挙 げることができる。 これらの正極活物質のなかでも、 安価で安全性に優れた スピネル構造を有するマンガン酸リチウムが主に使用されつつあるが、 高温 特性の改善が課題となっている。 [0004] The battery characteristics of such a lithium secondary battery largely depend on the material characteristics of the positive electrode active material used. Specific examples of the lithium transition element composite oxide contained in the positive electrode active material include lithium cobaltate (L i Co 0 2 ), lithium nickelate (L i N i 0 2 ), and lithium manganate (L i M n 2 0 4 ) etc. Among these positive electrode active materials, lithium manganate having a spinel structure that is inexpensive and excellent in safety is being used mainly, but improvement in high-temperature characteristics is an issue.
[0005] マンガン酸リチウムの高温特性が良好ではない要因として、 高温時に、 電 解質から生成する遊離酸によって M nが溶出してマンガン酸リチウムの結晶 性低下を招いたリ、 溶出した M nが黒鉛等の負極材料の表面に沈着して負極 自体に悪影響を及ぼしたりすること等が考えられている。 なお、 M n溶出抑 制の方策としては、 マンガン酸リチウム粒子の低比表面積化、 大粒径化、 高 結晶化、 及び一次粒子の略八面体形状化等が知られている (例えば、 特許文 献 1 ~ 3参照) 。 [0005] As a factor that the high temperature characteristics of lithium manganate are not good, Mn is eluted by the free acid generated from the refining and causes the crystallinity of lithium manganate to decrease, and the eluted Mn is deposited on the surface of the negative electrode material such as graphite and adversely affects the negative electrode itself. This is considered. As measures for suppressing Mn elution, low specific surface area, large particle size, high crystallization of lithium manganate particles, and substantially octahedral shape of primary particles are known (for example, patents). (See references 1-3).
先行技術文献  Prior art documents
特 δΫ义献  Special δ dedication
[0006] 特許文献 1 :特開 2 0 0 2— 2 8 9 1 9 1号公報  [0006] Patent Document 1: Japanese Patent Laid-Open No. 2 0 2 — 2 8 9 1 9 1
特許文献 2:特開 2 0 0 6— 2 5 2 9 4 0号公報  Patent Document 2: Japanese Patent Laid-Open No. 2 0 0 6-2 5 2 9 4 0
特許文献 3:特開 2 0 0 7— 2 9 4 1 1 9号公報  Patent Document 3: Japanese Laid-Open Patent Publication No. 2 0 0 7-2 9 4 1 1 9
発明の概要  Summary of the Invention
[0007] しかしながら、 特許文献 1 ~ 3等で開示された方策等によっては、 マンガ ン酸リチウムの高温特性を十分に改善することはできず、 未だ改良の余地が あった。 従って、 出力特性に優れ、 高温サイクル経過に伴う出力低下及び容 量低下が小さい (即ち、 サイクル特性に優れた) リチウム二次電池、 並びに このようなリチウム二次電池を提供可能な正極かつ物質として有用なマンガ ン酸リチウムの結晶粒子は未だに見出されていないのが現状である。  However, depending on the measures disclosed in Patent Documents 1 to 3, etc., the high temperature characteristics of lithium manganate cannot be sufficiently improved, and there is still room for improvement. Therefore, as a positive electrode and a substance capable of providing a lithium secondary battery having excellent output characteristics and small output decrease and capacity decrease with the passage of a high temperature cycle (that is, excellent cycle characteristics), and such a lithium secondary battery At present, useful lithium manganate crystal particles have not yet been found.
[0008] 本発明は、 このような従来技術の有する問題点に鑑みてなされたものであ リ、 その課題とするところは、 出力特性及び高温サイクル特性に優れたリチ ゥム二次電池を提供可能な、 正極活物質として有用な板状結晶粒子、 及びそ の製造方法を提供することにある。 また、 本発明の課題とするところは、 出 力特性及び高温サイクル特性に優れたリチウム二次電池を提供することにあ る。  [0008] The present invention has been made in view of the above-described problems of the prior art, and the object is to provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics. It is an object of the present invention to provide a plate-like crystal particle useful as a positive electrode active material and a method for producing the same. Another object of the present invention is to provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics.
[0009] 本発明者らは上記課題を達成すべく鋭意検討した結果、 以下の構成とする ことによって、 上記課題を達成することが可能であることを見出し、 本発明 を完成するに至った。  [0009] As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-described problems can be achieved by adopting the following configuration, and have completed the present invention.
[0010] 即ち、 本発明によれば、 以下に示す板状結晶粒子、 板状結晶粒子の製造方 法、 及びリチウム二次電池が提供される。 That is, according to the present invention, the following plate-like crystal particles and method for producing the plate-like crystal particles And a lithium secondary battery are provided.
[0011] [1 ] L i と Mnを構成元素として含むスピネル構造のマンガン酸リチウ ムからなるとともに、 アスペクト比が 1. 5~20であり、 かつ、 厚みが 1 〜20 mであり、 発達面として、 ロットゲーリング法により測定される配 向度が 2 θο/ο以上である結晶面 (1 1 1 ) を有する板状結晶粒子。  [0011] [1] It is composed of lithium manganate with a spinel structure containing Li and Mn as constituent elements, has an aspect ratio of 1.5 to 20 and a thickness of 1 to 20 m. As a plate-like crystal particle having a crystal face (1 1 1) having an orientation measured by the Lotgering method of 2 θο / ο or more.
[0012] [2] 単結晶の粒子である前記 [1 ] に記載の板状結晶粒子。  [0012] [2] The plate-like crystal particles according to [1], which are single crystal particles.
[0013] [3] 複数の単結晶粒子を含み、 厚さ方向に実質的に存在する前記単結晶 粒子の数が 1個であり、 複数の前記単結晶粒子が、 前記結晶面 (1 1 1 ) を 揃えた状態で、 前記単結晶粒子の粒界部どうしで結合されている前記 [1 ] に記載の板状結晶粒子。  [3] [3] The single crystal particle includes a plurality of single crystal particles, and the number of the single crystal particles substantially existing in the thickness direction is one, and the plurality of single crystal particles includes the crystal plane (1 1 1 ) Are aligned, the plate-like crystal particles according to [1], which are bonded to each other between the grain boundary portions of the single crystal particles.
[0014] [4] 前記マンガン酸リチウムが、 下記一般式 (1 ) で表される前記 [1 :! 〜 [3] のいずれかに記載の板状結晶粒子。 [4] The plate-like crystal particles according to any one of [1 :! to [3], wherein the lithium manganate is represented by the following general formula (1):
Figure imgf000004_0001
Figure imgf000004_0001
(前記一般式 (1 ) 中、 Μは、 L i 、 F e、 Ν ί、 Mg、 Z n、 A l 、 C o、 C r、 S i 、 S n、 P、 V、 S b、 N b、 T a、 Mo、 及び Wからなる 群より選択される一種以上の元素、 並びに T iを含む二種以上の置換元素を 示し、 Xは、 前記置換元素 Mの置換数を示す)  (In the general formula (1), Μ is Li, Fe, 、 ί, Mg, Zn, Al, Co, Cr, Si, Sn, P, V, Sb, Nb. And one or more elements selected from the group consisting of Ta, Mo, and W, and two or more substitution elements including Ti, and X represents the number of substitutions of the substitution element M)
[0015] [5] 前記マンガン酸リチウムに含まれる L i と Mnのモル比が、 L i / Mn>0. 5の関係を満たす前記 [1 ] 〜 [4] のいずれかに記載の板状結 晶粒子。 [5] The plate shape according to any one of [1] to [4], wherein a molar ratio between Li and Mn contained in the lithium manganate satisfies a relationship of Li / Mn> 0.5. Crystal particles.
[0016] [6] 前記 [1 ] 〜 [5] のいずれかに記載の板状結晶粒子の製造方法で あって、 マンガン酸リチウム粒子を含む成形材料を成形して、 厚み 30〃m 以下の自立可能なシート状成形体を得る成形工程と、 前記シート状成形体を 、 前記シート状成形体と実質的に反応しない不活性層に隣接させた状態、 又 は前記シート状成形体のままの状態で焼成する焼成工程と、 焼成後の前記シ 一ト状成形体を解砕及び分級する粉砕工程と、 を含む板状結晶粒子の製造方 法。  [0016] [6] The method for producing plate-like crystal particles according to any one of [1] to [5], wherein a molding material containing lithium manganate particles is molded and has a thickness of 30 mm or less. A molding step for obtaining a self-supporting sheet-shaped molded body, and a state in which the sheet-shaped molded body is adjacent to an inert layer that does not substantially react with the sheet-shaped molded body, or the sheet-shaped molded body remains as it is. A method for producing plate-like crystal particles, comprising: a firing step of firing in a state; and a grinding step of crushing and classifying the sheet-shaped formed body after firing.
[0017] [7] 前記焼成工程における焼成温度が、 650〜 1 250°Cである前記 [6] に記載の板状結晶粒子の製造方法。 [7] The firing temperature in the firing step is 650 to 1250 ° C. [6] The method for producing plate-like crystal particles according to [6].
[0018] [8] 前記マンガン酸リチウム粒子のメディアン径が、 前記シート状成形 体の厚みの 1 ~60%である前記 [6] 又は [7] に記載の板状結晶粒子の 製造方法。 [8] The method for producing plate-like crystal particles according to [6] or [7], wherein the median diameter of the lithium manganate particles is 1 to 60% of the thickness of the sheet-like molded body.
[0019] [9] 前記シート状成形体に含まれる特定成分の揮発を抑制し得る揮発抑 制状態で、 前記シート状成形体を焼成する前記 [6] ~ [8] のいずれかに 記載の板状結晶粒子の製造方法。  [9] The method according to any one of [6] to [8], wherein the sheet-shaped molded body is fired in a volatilization-suppressed state capable of suppressing volatilization of a specific component contained in the sheet-shaped molded body. A method for producing plate-like crystal particles.
[0020] [1 0] 前記揮発抑制状態が、 前記シート状成形体と別の、 前記マンガン 酸リチウム粒子を共存させた状態である前記 [9] に記載の板状結晶粒子の 製造方法。 [10] The method for producing plate-like crystal particles according to [9], wherein the volatilization suppression state is a state in which the lithium manganate particles coexist with the sheet-like molded body.
[0021] [1 1 ] 前記粉砕工程が、 所定サイズの開口部を通過させることにより、 焼成後の前記シート状成形体を解砕及び分級する工程である前記 [6] ~ [ [1 1] The above pulverizing step is a step of pulverizing and classifying the sheet-like molded body after firing by passing through an opening of a predetermined size.
1 0] のいずれかに記載の板状結晶粒子の製造方法。 [10] The method for producing plate-like crystal particles according to any one of [1].
[0022] [1 2] 前記開口部の平均開口径が、 1. Omm以下である前記 [1 1 ] に記載の板状結晶粒子の製造方法。 [0022] [1 2] The method for producing plate-like crystal particles according to [1 1], wherein an average opening diameter of the opening is 1. Omm or less.
[0023] [1 3] 焼成後の前記シート状成形体を押圧部材で押圧し、 前記開口部を 有するメッシュを通過させて焼成後の前記シート状成形体を解碎及び分級す る前記 [6] ~ [1 2] のいずれかに記載の板状結晶粒子の製造方法。 [13] The sheet-like molded body after firing is pressed with a pressing member, and passed through a mesh having the opening, and the sheet-like molded body after firing is unwound and classified. ] The method for producing plate-like crystal particles according to any one of [1 2].
[0024] [1 4] 前記 [1 ] ~ [5] のいずれかに記載の板状結晶粒子を正極活物 質として用いてなるリチウム二次電池。 [0024] [14] A lithium secondary battery using the plate-like crystal particles according to any one of [1] to [5] as a positive electrode active material.
[0025] 本発明の板状結晶粒子は、 出力特性及び高温サイクル特性に優れたリチウ ムニ次電池を提供可能な、 正極活物質として有用であるといった効果を奏す るものである。 [0025] The plate-like crystal particles of the present invention can provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics, and are effective as a positive electrode active material.
[0026] 本発明の板状結晶粒子の製造方法によれば、 出力特性及び高温サイクル特 性に優れたリチウム二次電池を提供可能な、 正極活物質として有用な板状結 晶粒子を製造することができる。  [0026] According to the method for producing plate-like crystal particles of the present invention, plate-like crystal particles useful as a positive electrode active material capable of providing a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics are produced. be able to.
[0027] 本発明のリチウム二次電池は、 出力特性及び高温サイクル特性に優れてい るといった効果を奏するものである。 図面の簡単な説明 [0027] The lithium secondary battery of the present invention has an effect of being excellent in output characteristics and high-temperature cycle characteristics. Brief Description of Drawings
[0028] [図 1 ]本発明の板状結晶粒子の一実施形態を模式的に示す斜視図である。  FIG. 1 is a perspective view schematically showing one embodiment of a plate-like crystal particle of the present invention.
[図 2A]本発明の板状結晶粒子の他の実施形態を模式的に示す斜視図である。  FIG. 2A is a perspective view schematically showing another embodiment of the plate-like crystal particle of the present invention.
[図 2B]本発明の板状結晶粒子の更に他の実施形態を模式的に示す斜視図であ る。  FIG. 2B is a perspective view schematically showing still another embodiment of the plate-like crystal particle of the present invention.
[図 2G]本発明の板状結晶粒子の更に他の実施形態を模式的に示す斜視図であ る。  FIG. 2G is a perspective view schematically showing still another embodiment of the plate-like crystal particle of the present invention.
[図 3A]焼成器の一例を示す側面図である。  FIG. 3A is a side view showing an example of a calciner.
[図 3B]図 3 Aの A— A断面図である。  FIG. 3B is an AA cross-sectional view of FIG. 3A.
[図 4]粉砕工程の一例を示す説明図である。  FIG. 4 is an explanatory view showing an example of a grinding process.
[図 5]正極板の微構造の一例を模式的に示す断面図である。  FIG. 5 is a cross-sectional view schematically showing an example of the microstructure of the positive electrode plate.
[図 6]実施例 8で得たシート状成形体の表面の状態 (モフォロジー) を示す電 子顕微鏡写真である。  FIG. 6 is an electron micrograph showing the surface state (morphology) of the sheet-like molded body obtained in Example 8.
[図 7]実施例 8で得たシート状成形体の断面の状態 (モフォロジー) を示す電 子顕微鏡写真である。  FIG. 7 is an electron micrograph showing the cross-sectional state (morphology) of the sheet-like molded body obtained in Example 8.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、 本発明を実施するための形態について説明するが、 本発明は以下の 実施の形態に限定されるものではなく、 本発明の趣旨を逸脱しない範囲で、 当業者の通常の知識に基づいて、 以下の実施の形態に対し適宜変更、 改良等 が加えられたものも本発明の範囲に入ることが理解されるべきである。  [0029] Hereinafter, modes for carrying out the present invention will be described. However, the present invention is not limited to the following embodiments, and the ordinary knowledge of those skilled in the art is within the scope of the present invention. Based on the above, it should be understood that modifications, improvements, and the like to the following embodiments are also included in the scope of the present invention.
[0030] 1 . 板状結晶粒子:  [0030] 1. Plate-like crystal particles:
図 1は、 本発明の板状結晶粒子の一実施形態を模式的に示す斜視図である 。 図 1に示すように、 本実施形態の板状結晶粒子 1 0は、 L i と M nを構成 元素として含むスピネル構造のマンガン酸リチウムからなる単結晶の粒子で ある。 また、 板状結晶粒子 1 0は、 発達面として結晶面 (1 1 1 ) 2を有す るものである。 このような構成を有する本実施形態の板状結晶粒子 1 0を正 極活物質として用いると、 出力特性及び高温サイクル特性に優れたリチウム 二次電池を提供することができる。 なお、 本明細書にいう 「発達面」 とは、 板状結晶粒子を構成する結晶面のうち、 最も広い面積を有する面のことをい FIG. 1 is a perspective view schematically showing one embodiment of the plate-like crystal particle of the present invention. As shown in FIG. 1, the plate-like crystal particles 10 of the present embodiment are single crystal particles made of lithium manganate having a spinel structure containing Li and Mn as constituent elements. The plate-like crystal particle 10 has a crystal plane (1 1 1) 2 as a development plane. When the plate-like crystal particle 10 of this embodiment having such a configuration is used as a positive electrode active material, a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics can be provided. As used herein, “developmental aspects” Of the crystal planes that make up the plate-like crystal grains, the plane with the widest area.
[0031] 本発明の板状結晶粒子を正極活物質として用いた場合に、 出力特性及び高 温サイクル特性に優れたリチウムニ次電池を提供することが可能となる理由 としては、 一般的なマンガン酸リチウムの結晶粒子においては、 リチウムィ オン (L i +) の脱挿入がどの結晶面でも起こり得る一方で、 Mnの溶出速度 が結晶面によって相違すること等が考えられる。 即ち、 本発明の板状結晶粒 子は、 リチウムイオン (L i +) のスムーズな脱挿入が可能であるとともに、 粒子の形状が板状であるために、 その板厚方向のリチウムイオン (L i +) の 拡散距離が、 同一体積の一般的な等方粒子に比して短くなつているので、 出 力特性に優れたリチゥム二次電池を提供することができるものと推測される 。 また、 本発明の板状結晶粒子は、 Mnの溶出速度の遅い結晶面 (1 1 1 ) を発達面として有する結晶粒子であるために、 高温サイクル特性に優れたリ チウムニ次電池を提供することができるものと推測される。 [0031] When the plate-like crystal particle of the present invention is used as a positive electrode active material, the reason why it is possible to provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics is as follows. In lithium crystal particles, lithium ion (L i +) de-insertion can occur on any crystal plane, while the dissolution rate of Mn may differ depending on the crystal plane. That is, the plate-like crystal particles of the present invention can smoothly remove and insert lithium ions (L i +), and the shape of the particles is plate-like. Since the diffusion distance of i +) is shorter than that of general isotropic particles of the same volume, it is presumed that a lithium secondary battery having excellent output characteristics can be provided. In addition, since the plate-like crystal particle of the present invention is a crystal particle having a crystal plane (1 1 1) with a slow Mn elution rate as a development plane, a lithium secondary battery excellent in high-temperature cycle characteristics is provided. It is estimated that
[0032] 板状結晶粒子 1 0 (図 1参照) の粒子最長長さ Y!は、 通常、 50 m以下 、 好ましくは 30/ m以下、 更に好ましくは 20 m以下である。 この粒子 最長長さ Y,は、 目的に応じて適宜設定することが可能である。 また、 粒子厚 み に対する、 粒子最長長さ Υ,の比で表される板状結晶粒子 1 0のァスぺ クト比 (Y ZWJ は、 1. 5~20であり、 1. 5~ 1 0であることが好 ましく、 1. 5~5であることが更に好ましい。 アスペクト比を上記数値範 囲とすると、 出力特性及び高温サイクル特性によリ優れたリチウムニ次電池 を提供可能な正極活物質とすることができる。  [0032] The longest grain length Y of plate-like crystal grains 1 0 (see Fig. 1)! Is usually 50 m or less, preferably 30 / m or less, more preferably 20 m or less. The maximum particle length Y can be appropriately set according to the purpose. In addition, the aspect ratio of the plate-like crystal particle 10 represented by the ratio of the longest particle length Υ to the particle thickness (Y ZWJ is 1.5 to 20, 1.5 to 10 Preferably, it is 1.5 to 5. When the aspect ratio is in the above numerical range, the positive electrode active that can provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics. It can be a substance.
[0033] 板状結晶粒子 1 0の粒子厚み \Λ は、 板状結晶粒子 1 0の最も厚い部分の厚 みである。 板状結晶粒子 1 0の粒子厚み W,は、 20 m以下であり、 1 5〃 m以下であることが好ましく、 1 O im以下であることが更に好ましい。 ま た、 粒子厚み W,は、 1〃m以上であり、 5 jUm以上であることが好ましい。 粒子厚み が 1 m以上であると、 板状結晶粒子 1 0の形状を平板状に維持 し易い。 また、 粒子厚み が 20〃m以下であると、 結晶面 (1 1 1 ) 2の 配向度をさらに高めることが可能となる。 [0033] The grain thickness \ Λ of the plate-like crystal particle 10 is the thickness of the thickest portion of the plate-like crystal particle 10. The plate-like crystal particle 10 has a particle thickness W of 20 m or less, preferably 15 mm or less, and more preferably 1 O im or less. The particle thickness W is 1 mm or more, preferably 5 jUm or more. When the particle thickness is 1 m or more, the shape of the plate-like crystal particle 10 is easily maintained in a flat plate shape. If the grain thickness is 20 mm or less, the crystal plane (1 1 1) 2 The degree of orientation can be further increased.
[0034] 図 2 Aは、 本発明の板状結晶粒子の他の実施形態を模式的に示す斜視図で ある。 図 2に示すように、 本実施形態の板状結晶粒子 20は、 複数の単結晶 粒子 1 2を含んでおり、 これら複数の単結晶粒子 1 2が、 発達面である結晶 面 (1 1 1 ) 2を揃えた状態で、 単結晶粒子 1 2の粒界部 14どうしで結合 されることによって構成されているものである。 即ち、 板状結晶粒子 20は 、 発達面としての結晶面 (1 1 1 ) 2を揃えた複数の単結晶粒子 1 2が略二 次元的に連なった形状を有するものである。 この 「結晶面 (1 1 1 ) 2を揃 えた状態」 とは、 複数の単結晶粒子 1 2の結晶面 (1 1 1 ) 2が同一面上に ある場合 (図 2A) の他、 同一面上ではないが結晶面 (1 1 1 ) 2の向いて いる方向が同じ場合 (図 2B) 、 及び結晶面 (1 1 1 ) 2の向いている方向 力、'異なるものがあってもおおよそ複数の単結晶粒子 1 2の結晶面 (1 1 1 ) 2が同一面上にあるか、 同一面上ではないが結晶面 (1 1 1 ) 2の向いてい る方向が同じ場合 (図 2C) 等の状態をいう。 なお、 図 2 B及び図 2 C中、 符号 30及び 40は板状結晶粒子を示す。  FIG. 2A is a perspective view schematically showing another embodiment of the plate-like crystal particle of the present invention. As shown in FIG. 2, the plate-like crystal particle 20 of the present embodiment includes a plurality of single crystal particles 1 2, and the plurality of single crystal particles 1 2 are developed into crystal planes (1 1 1 ) In the state where 2 are aligned, it is constituted by being bonded at the grain boundary portions 14 of the single crystal particles 1 2. That is, the plate-like crystal particle 20 has a shape in which a plurality of single crystal particles 12 having aligned crystal faces (1 1 1) 2 as a development plane are connected in a substantially two-dimensional manner. This “alignment of crystal planes (1 1 1) 2” means that the crystal planes (1 1 1) 2 of a plurality of single crystal particles 1 2 are on the same plane (Fig. 2A) If the crystal plane (1 1 1) 2 faces in the same direction (Figure 2B), and the crystal plane (1 1 1) 2 faces in the same direction When the crystal plane (1 1 1) 2 of the single crystal particle 1 2 is on the same plane, or the crystal plane (1 1 1) 2 is the same direction (Figure 2C), etc. The state of. In FIGS. 2B and 2C, reference numerals 30 and 40 denote plate-like crystal particles.
[0035] この板状結晶粒子 20の厚さ方向に実質的に存在する単結晶粒子 1 2の数  [0035] The number of single crystal particles 12 substantially existing in the thickness direction of the plate crystal particles 20
1個である。 この 「厚さ方向に実質的に存在する単結晶粒子 1 2の数は 1 個」 とは、 一部で単結晶粒子 1 2どうしが重なり合う部分があっても、 他の 大部分では単結晶粒子 1 2どうしが重なり合わない状態をいう。 なお、 「厚 さ方向に実質的に存在する単結晶粒子の数が 1個」 の概念には、 厚さ方向に 存在する単結晶粒子の数が、 端部等の狭領域においては実質的に 1個である が、 中心部等の広領域においては 2個以上であるようなものは包含されない  One. This “substantially the number of single crystal particles 1 2 existing in the thickness direction is 1” means that even if there is a part where the single crystal particles 1 2 overlap each other, most of the other single crystal particles 1 A state where the two do not overlap. The concept of “the number of single crystal particles substantially existing in the thickness direction” is substantially equal to the number of single crystal particles existing in the thickness direction in a narrow region such as an end. It is one, but in the wide area such as the center, it is not included if it is more than one
[0036] 板状結晶粒子 20 (図 2 A参照) は、 マンガン酸リチウム粒子を含む成形 材料を成形したシート状成形体を焼成し、 粒成長させた焼成成形体を解砕及 び分級して得ることができるものである。 即ち、 焼成によって粒成長する際 に厚さ方向に存在する材料が限られているため、 厚さ方向に実質的に存在す る単結晶粒子 1 2の数が 1個となり、 厚さ方向に比して面方向への粒成長が 促される。 これにより、 扁平な単結晶粒子 1 2が面方向に配列するとともに 、 発達面である結晶面 (1 1 1 ) が配向することになる。 本発明の板状結晶 粒子には、 シート状成形体の厚さにまで粒成長しない単結晶粒子や、 結晶面 (1 1 1 ) の向く方向が異なる単結晶粒子が含まれる場合がある。 このため 、 図 2 B及び図 2 Cに示すように、 単結晶粒子 1 2どうしが重なり合う部分 や、 結晶面 (1 1 1 ) 2の向いている方向が異なる部分が局所的に存在する 場合があるが、 複数の単結晶粒子 1 2が、 結晶面 (1 1 1 ) 2の方向を概ね 揃えた状態で、 粒界部 1 4で結合されている。 [0036] The plate-like crystal particles 20 (see FIG. 2A) are obtained by firing a sheet-like molded body obtained by molding a molding material containing lithium manganate particles, and crushing and classifying the fired molded body having grown grains. It can be obtained. That is, the number of single crystal grains 12 substantially existing in the thickness direction is one because the number of single crystal particles 12 existing in the thickness direction is limited when grains grow by firing. The grain growth in the surface direction Prompted. As a result, the flat single crystal particles 12 are arranged in the plane direction, and the crystal plane (1 1 1) which is a development plane is oriented. The plate-like crystal particles of the present invention may include single crystal particles that do not grow to the thickness of the sheet-like molded body, or single crystal particles having different crystal plane (1 1 1) orientations. For this reason, as shown in FIG. 2B and FIG. 2C, there may be local portions where the single crystal particles 1 2 overlap each other or where the crystal plane (1 1 1) 2 faces differently. However, a plurality of single crystal grains 12 are bonded at the grain boundary portion 14 with the crystal plane (1 1 1) 2 directions being substantially aligned.
[0037] 板状結晶粒子 20に含まれる、 厚さ方向に存在する単結晶粒子 1 2の数が  [0037] The number of single crystal particles 12 included in the plate crystal particles 20 in the thickness direction is 2
1個のみの部分の割合が、 板状結晶粒子 20全体の面積に対して、 70«½以 上であることが好ましく、 800/0以上であることが更に好ましく、 90%以 上であることが特に好ましい。 この面積割合は、 板状結晶粒子 20を可能な 限り分散させた状態で走査型電子顕微鏡 (SEM) 観察を行い、 撮影された S EM写真に基づいて算出することができる。 なお、 この面積割合は、 板状 結晶粒子 20の面方向の長さが、 板状結晶粒子 20の厚さ以上である場合に 、 板状結晶粒子 20の総面積から予測することも可能である。 この板状結晶 粒子 20は、 単結晶粒子 1 2が重なる部分は全体の一部分 (例えば、 面積割 合で 30%以下) のみである。 このため、 単結晶粒子 1 2どうしが結合する 粒界部 1 4において比較的簡単に解砕することができる。  The ratio of only one part is preferably 70% or more, more preferably 800/0 or more, and 90% or more with respect to the entire area of the plate-like crystal particles 20. Is particularly preferred. This area ratio can be calculated based on a SEM photograph taken by scanning electron microscope (SEM) observation with the plate crystal particles 20 dispersed as much as possible. This area ratio can also be predicted from the total area of the plate-like crystal particles 20 when the length in the plane direction of the plate-like crystal particles 20 is equal to or greater than the thickness of the plate-like crystal particles 20. . In this plate-like crystal particle 20, the portion where the single crystal particles 12 overlap is only a part of the whole (for example, 30% or less in area ratio). For this reason, it can be crushed relatively easily at the grain boundary part 14 where the single crystal grains 12 and 2 are bonded.
[0038] 板状結晶粒子 20 (図 2 A参照) の粒子最長長さ Y 2は、 通常、 1 00 m 以下、 好ましくは 7 Ojt m以下、 更に好ましくは 50/ m以下である。 この 粒子最長長さ Y2は、 目的に応じて適宜設定することが可能である。 また、 粒 子厚み W2に対する、 粒子最長長さ Y2の比で表される板状結晶粒子 20のァ スぺクト比 (Y2ZW2) は、 1. 5〜20であることが好ましく、 2~1 5 であることが更に好ましく、 2~1 0であることが特に好ましい。 ァスぺク ト比を上記数値範囲とすると、 出力特性及び高温サイクル特性によリ優れた リチウム二次電池を提供可能な正極活物質とすることができる。 なお、 ァス ぺクト比が 20超であると、 レート特性が低下する場合がある。 [0039] 板状結晶粒子 20の粒子厚み W2は、 板状結晶粒子 20の最も厚い部分の厚 みである。 板状結晶粒子 20の粒子厚み W2は、 2 OjUm以下であることが好 ましく、 1 5// m以下であることが更に好ましく、 1 0〃m以下であること が特に好ましい。 また、 粒子厚み W2は、 1 m以上であることが好ましく、 5 m以上であることが更に好ましい。 粒子厚み W2が 1 / m以上であると、 板状結晶粒子 20の形状を平板状に維持し易い。 また、 粒子厚み W2が 20 m以下であると、 結晶面 (1 1 1 ) 2の配向度を更に高めることが可能とな るとともに、 粒子内のイオン拡散距離が短くなリ、 出力特性劣化が起こり難 くなるために好ましい。 なお、 粒子厚み W2は、 通常、 単結晶粒子の厚み と 略同一である。 [0038] The longest grain length Y 2 of the plate-like crystal particle 20 (see FIG. 2A) is usually 100 m or less, preferably 7 Ojt m or less, and more preferably 50 / m or less. The maximum particle length Y 2 can be appropriately set according to the purpose. Further, with respect to particle Koatsumi W 2, § scan Bae transfected ratio of plate crystal grains 20, represented by the ratio of the particle maximum length Y 2 (Y 2 ZW 2) is preferably 1. 5 to 20 2 to 15 is more preferable, and 2 to 10 is particularly preferable. When the aspect ratio is in the above numerical range, a positive electrode active material capable of providing a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics can be obtained. Note that if the aspect ratio exceeds 20, the rate characteristics may deteriorate. [0039] grain thickness W 2 of the plate crystal grains 20 is a Thickness of the thickest portion of the plate crystal grains 20. The particle thickness W 2 of the plate-like crystal particle 20 is preferably 2 OjUm or less, more preferably 15 // m or less, and particularly preferably 10 μm or less. Further, the particle thickness W 2 is preferably 1 m or more, and more preferably 5 m or more. When the particle thickness W 2 is 1 / m or more, the shape of the plate-like crystal particle 20 is easily maintained as a flat plate. In addition, when the particle thickness W 2 is 20 m or less, the degree of orientation of the crystal plane (1 1 1) 2 can be further increased, and the ion diffusion distance in the particle is shortened, resulting in degradation of output characteristics. Is preferable because it is difficult to occur. The particle thickness W 2 is usually substantially the same as the thickness of the single crystal particle.
[0040] 板状結晶粒子のアスペクト比は、 以下のようにして算出する。 先ず、 走査 型電子顕微鏡 (S EM) を用いて撮影した S EM写真に基づき、 粒子厚み ( W) を測定する。 次に、 アルコール等の溶媒に 1〜 1 0質量%となるように 板状結晶粒子を入れ、 超音波により分散させて得られた分散液を、 ガラス基 板の面上に、 1 000〜4000 r pmの条件でスピンコー卜し、 粒子がで きるだけ重ならず、 かつ、 粒子の板面がガラス基板の面と平行に配置された 状態の測定用試料を作製する。 走査型電子顕微鏡 (S EM) を使用して、 作 製した測定用試料における、 板状結晶粒子が 5〜 30個程度含まれる視野中 の粒子の板面を観察し、 撮影した SEM写真から板状結晶粒子の最長長さ ( Y) を測定する。 このとき、 重なっている板状結晶粒子については無視する ものとする。 その後、 測定した最長長さ (Y) を板状結晶粒子の粒径と仮定 し、 この粒径 (Y) を粒子厚み (W) で除してそれぞれの板状結晶粒子の Γ YZW」 を算出し、 これを平均した値を 「板状結晶粒子のアスペクト比」 と する。  [0040] The aspect ratio of the plate-like crystal particles is calculated as follows. First, the particle thickness (W) is measured based on a SEM photograph taken using a scanning electron microscope (SEM). Next, a plate-like crystal particle is placed in a solvent such as alcohol so as to be 1 to 10% by mass, and a dispersion obtained by dispersing with ultrasonic waves is placed on the surface of the glass substrate at 1 000 to 4000. Spin coating is performed under the condition of r pm to prepare a measurement sample in which the particles do not overlap as much as possible and the plate surface of the particles is arranged parallel to the surface of the glass substrate. Using a scanning electron microscope (SEM), observe the plate surface of the particles in the field of view containing about 5 to 30 plate-like crystal particles in the manufactured sample for measurement, and take the plate from the SEM photograph taken. Measure the longest length (Y) of the crystal grains. At this time, the overlapping plate-like crystal particles are ignored. Then, assuming that the measured longest length (Y) is the particle size of the plate-like crystal particles, this particle size (Y) is divided by the particle thickness (W) to calculate Γ YZW for each plate-like crystal particle. The average of these values is referred to as “aspect ratio of plate-like crystal grains”.
[0041] ロットゲーリング法により測定される結晶面 (1 1 1 ) の配向度は 20% 以上であり、 50<½以上であることが好ましく、 70 o/o以上であることが更 に好ましく、 80%以上であることが特に好ましい。 結晶面 (1 1 1 ) の配 向度が 20%以上であると、 Mn溶出抑制効果が顕著に現れるからである。 [0042] 結晶面 (1 1 1 ) の配向度の測定方法 (ロットゲーリング法) について説 明する。 先ず、 アルコール等の溶媒に 1 ~10質量%となるように板状結晶 粒子を入れ、 超音波により分散させて得られた分散液を、 ガラス基板の面上 に、 1000〜4000 r pmの条件でスピンコートし、 粒子ができるだけ 重ならず、 かつ、 粒子の板面がガラス基板の面と平行に配置された状態の測 定用試料を作製する。 次に、 XRD回折装置を使用し、 作製した測定用試料 における板状結晶粒子の表面に対して X線を照射した際の X R D回折バタ一 ンを測定する。 測定した XRD回折パターンにおける (1 1 1 ) 面、 (31 1 ) 面、 (400) 面、 及び (331 ) 面のピークを用いて、 下記式 (2) から結晶面 (1 1 1 ) の配向度を算出することができる。 [0041] The degree of orientation of the crystal plane (1 1 1) measured by the Lotgering method is 20% or more, preferably 50 <½ or more, more preferably 70 o / o or more, It is particularly preferable that it is 80% or more. This is because, when the orientation degree of the crystal plane (1 1 1) is 20% or more, the Mn elution suppression effect appears remarkably. [0042] A method for measuring the degree of orientation of the crystal plane (1 1 1) (Lottgering method) will be described. First, a plate-like crystal particle is put in a solvent such as alcohol so as to be 1 to 10% by mass, and a dispersion obtained by dispersing with ultrasonic waves is placed on the surface of a glass substrate under conditions of 1000 to 4000 rpm. The sample for measurement is prepared in such a manner that the particles are not overlapped as much as possible and the plate surface of the particles is arranged parallel to the surface of the glass substrate. Next, using an XRD diffractometer, measure the XRD diffraction pattern when the surface of the plate crystal particle in the prepared measurement sample is irradiated with X-rays. Using the peaks of (1 1 1), (31 1), (400), and (331) in the measured XRD diffraction pattern, the orientation of the crystal plane (1 1 1) from the following equation (2) The degree can be calculated.
[0043] [数 1] [0043] [Equation 1]
_∑'I(HKL) _ ∑'I0(HKL) _∑'I (HKL) _∑'I 0 (HKL)
„ . 、 ∑I(hkl) ∑I。(hkl) ハ- . .  „., ∑I (hkl) ∑I. (Hkl)
配向度(%) = ~ X 100 ----(2)  Orientation degree (%) = ~ X 100 ---- (2)
1 ∑'Io(HKL) 1 ∑'Io (HKL)
∑I0(hkl) ∑I 0 (hkl)
[0044] 前記式 (2) 中、 ∑ I (h k I ) は、 板状結晶粒子で測定されたすベての 結晶面 (h k I ) の X線回折強度の総和を示し、 ∑ I。 (h k I ) は、 板状結 晶粒子と同一組成であリ無配向のものについて測定されたすべての結晶面 ( h k I ) の X線回折強度の総和を示し、 ∑' I (HKL) は、 板状結晶粒子 で測定された結晶学的に等価な特定の結晶面の X線回折強度の総和 (この場 合、 (1 1 1 ) 面のみ) を示し、 ∑' I 0 (HKL) は、 板状結晶粒子と同 —組成であり無配向のものについて測定された結晶面 (1 1 1 ) の X線回折 強度の総和を示す。 In the above formula (2), ∑ I (h k I) represents the total sum of X-ray diffraction intensities of all crystal planes (h k I) measured with the plate-like crystal particles, and ∑ I. (hk I) is the sum of the X-ray diffraction intensities of all crystal planes (hk I) measured for the same composition as the plate-like crystal grains and non-oriented, and ∑ 'I (HKL) is , Shows the sum of X-ray diffraction intensities (in this case only (1 1 1) plane) of crystallographically equivalent specific crystal planes measured in plate-like crystal grains, and ∑ 'I 0 (HKL) is The sum of the X-ray diffraction intensities of the crystal plane (1 1 1) measured for the same composition as the plate-like crystal grains and for the non-oriented ones.
[0045] 板状結晶粒子 20 (図 2 A参照) に含まれる単結晶粒子 1 2の厚み (単結 晶粒子厚み Z) は、 2 Ojum以下であることが好ましく、 1 5〃m以下であ ることが更に好ましく、 1 0/ m以下であることが特に好ましい。 また、 単 結晶粒子厚み Zは、 1〃m以上であることが好ましく、 5 m以上であるこ とが更に好ましい。 単結晶粒子厚み Zが 1 jwm以上であると、 板状結晶粒子 2 0の形状を平板状に維持し易い。 また、 単結晶粒子厚み Zが 2 O i m以下 であると、 等方的かつ多面体形状の結晶粒子に成長する無機粒子を含んでい ても、 厚さ方向への粒成長が限られており、 板状結晶粒子 2 0の面方向に単 結晶粒子 1 2の粒成長がより促されるため、 結晶面 (1 1 1 ) が板状結晶粒 子 1 0の面内に成長することにより、 ァスぺク卜比が大きく、 結晶面 (1 1 1 ) 2の配向度の高いものとなる。 [0045] The thickness (single crystal particle thickness Z) of the single crystal particle 12 contained in the plate crystal particle 20 (see FIG. 2A) is preferably 2 Ojum or less, and 15 mm or less. More preferably, it is particularly preferably 10 / m or less. The single crystal particle thickness Z is preferably 1 mm or more, and more preferably 5 m or more. When the single crystal grain thickness Z is 1 jwm or more, It is easy to keep the shape of 20 flat. In addition, if the single crystal grain thickness Z is 2 O im or less, the grain growth in the thickness direction is limited even if inorganic particles that grow into isotropic and polyhedral crystal grains are included, Since the crystal growth of the single crystal particle 12 is further promoted in the plane direction of the plate crystal particle 20, the crystal plane (1 1 1) grows in the plane of the plate crystal particle 10, so that The specular ratio is large and the crystal plane (1 1 1) 2 has a high degree of orientation.
[0046] 板状結晶粒子 2 0 (図 2 A参照) に含まれる単結晶粒子 1 2の、 単結晶粒 子厚み Zに対する、 単結晶粒子最長長さ Xの比で表されるァスぺク卜比 (X / Z ) は、 1以上であることが好ましく、 2以上であることが更に好ましく 、 4以上であることが特に好ましい。 アスペクト比が 1以上であると、 単結 晶粒子 1 2を配向させ易くなるため、 板状結晶粒子 2 0の配向度も高くなる 。 なお、 ァスぺクト比は 5 0以下であることが好ましい。 ァスぺク卜比が 5 0以下であると、 得られる板状結晶粒子 2 0の大きさ (粒子サイズ) を調整 し易い。 なお、 単結晶粒子 1 2のァスぺクト比は、 前述の板状結晶粒子のァ スぺクト比を算出する方法と同様の方法により算出することができる。  [0046] The aspect ratio of the single crystal particle 12 contained in the plate crystal particle 20 (see FIG. 2A) expressed by the ratio of the single crystal particle longest length X to the single crystal particle thickness Z. The ratio (X / Z) is preferably 1 or more, more preferably 2 or more, and particularly preferably 4 or more. When the aspect ratio is 1 or more, the single crystal particles 12 are easily oriented, and the degree of orientation of the plate crystal particles 20 is also increased. The aspect ratio is preferably 50 or less. When the aspect ratio is 50 or less, it is easy to adjust the size (particle size) of the obtained plate-like crystal particles 20. The aspect ratio of the single crystal particles 12 can be calculated by a method similar to the method for calculating the aspect ratio of the plate-like crystal particles described above.
[0047] 板状結晶粒子 2 0 (図 2 A参照) に含まれる単結晶粒子 1 2の最長長さ ( 単結晶粒子最長長さ X ) は、 5 O / m以下であることが好ましく、 3 0 i m 以下であることが更に好ましく、 2 O i m以下であることが特に好ましい。 単結晶粒子最長長さ Xが 5 0 m以下であると、 得られる板状結晶粒子 2 0 の大きさ (粒子サイズ) を調整し易い。  [0047] The longest length of the single crystal particles 12 included in the plate-like crystal particles 20 (see FIG. 2A) (the longest single crystal particle length X) is preferably 5 O / m or less, It is more preferably 0 im or less, and particularly preferably 2 O im or less. When the longest single crystal particle length X is 50 m or less, the size (particle size) of the obtained plate-like crystal particle 20 can be easily adjusted.
[0048] また、 単結晶粒子最長長さ Xに対する、 粒子最長長さ Y 2の比で表される Y 2Ζ Χの値は、 3 ~ 1 0 0であることが好ましい。 Υ 2/ Χの値が 3以上であ ると、 粒子サイズを揃え易い。 また、 Υ 2 Χの値が 1 0 0以下であると、 機 械強度の弱い粒界部が少なくなリ、 割れ難くなる。 [0048] The value of Y 2 Ζ expressed by the ratio of the longest particle length Y 2 to the longest single crystal particle length X is preferably 3 to 100. If the value of Υ 2 / Χ is 3 or more, it is easy to align the particle size. Also, if the value of Υ 2以下 is less than 100, there are few grain boundary parts with weak mechanical strength, and it becomes difficult to break.
[0049] 本発明の板状結晶粒子は、 マンガン酸リチウムにより構成されている。 マ ンガン酸リチウムの化学量論組成は、 通常、 L i M n 204で表されるが、 本 発明の板状結晶粒子を構成するマンガン酸リチウムは、 このような化学量論 組成のものに限定されない。 具体的には、 下記一般式 (1 ) で表されるマン ガン酸リチウムも、 L i M n 204で表されるマンガン酸リチウムと同様に好 適に用いることができる。[0049] The plate-like crystal particles of the present invention are composed of lithium manganate. The stoichiometric composition of lithium manganate is usually represented by Li M n 2 0 4 , but the lithium manganate constituting the plate crystal particles of the present invention has such a stoichiometric composition. It is not limited to. Specifically, the manpage represented by the following general formula (1) Gansan lithium can also be used to similarly good suitable lithium manganate represented by L i M n 2 0 4.
Figure imgf000013_0001
Figure imgf000013_0001
[0050] 前記一般式 (1 ) 中、 Μは、 L i 、 F e、 N i 、 M g、 Z n、 A l 、 C o 、 C r、 S i 、 S n、 P、 V、 S b、 N b、 T a、 Mo、 及び Wからなる群 より選択される一種以上の元素、 並びに T iを含む二種以上の置換元素を示 し、 Xは、 置換元素 Mの置換数を示す。 L iは + 1価、 F e、 Mn、 N i 、 M g、 Z nは +2価、 B、 A l 、 C o、 C rは +3価、 S i 、 T i、 S nは + 4価、 P、 V、 S b、 N b、 T aは +5価、 Mo、 Wは +6価のイオンと なり、 いずれの元素も、 理論上は L i M n 204中に固溶するものである。 な お、 C o、 S nについては +2価の場合、 F e、 S b及び T iについては + 3価の場合、 M nについては +3価、 +4価の場合、 C rについては +4価 、 +6価の場合もあり得る。 従って、 置換元素 Mは混合原子価を有する状態 で存在する場合がある。 また、 酸素の量については、 必ずしも理論化学組成 で表されるように 4であることを必要とせず、 結晶構造を維持するための範 囲内で欠損して、 又は過剰に存在していても構わない。 [0050] In the general formula (1), Μ is Li, Fe, Ni, Mg, Zn, Al, Co, Cr, Si, Sn, P, V, Sb. , Nb, Ta, Mo, and W, and one or more elements selected from the group consisting of W and two or more substitution elements including Ti, and X represents the number of substitutions of the substitution element M. L i is +1, F e, Mn, Ni, Mg, Z n is +2, B, A l, Co, and Cr are +3, S i, T i, and Sn are + Tetravalent, P, V, Sb, Nb, Ta are +5 valent, Mo, W are +6 valent ions, and both elements are theoretically fixed in Li M n 2 0 4 It melts. For Co and Sn, for +2, Val, for Fe, Sb and Ti, for +3, for Mn, +3, for +4, for Cr It can be +4 or +6. Therefore, the substitution element M may exist in a state having a mixed valence. Further, the amount of oxygen does not necessarily need to be 4 as represented by the theoretical chemical composition, and may be deficient or excessive in the range for maintaining the crystal structure. Absent.
[0051] M nを L iで置換した場合 (L i過剰の場合) には、 L i ZMn比 (モル 比) は、 (1 + X) (2— X) となる。 一方、 M nを L i以外の置換元素 Mで置換した場合には、 1 (2— X) となる。 従って、 いずれの場合であ つても L ; 1\10比>0. 5となる。 本発明の板状結晶粒子を構成するマン ガン酸リチウムに含まれる L i と M nのモル比 (L i ZMn) は、 0. 5超 であることが好ましい。 L i ZM n >0. 5の関係を満たすマンガン酸リチ ゥ厶を用いると、 化学量論組成 (L i M n z04) のものを用いた場合に比し て結晶構造が更に安定化されるため、 よリ高温サイクル特性に優れたリチウ ムニ次電池を得ることができる。 [0051] When M n is substituted with Li (when Li is excessive), the Li i ZMn ratio (molar ratio) is (1 + X) (2- X). On the other hand, when M n is substituted with a substitution element M other than Li, 1 (2-X) is obtained. Therefore, in either case, L; 1 \ 10 ratio> 0.5. The molar ratio of Li to Mn (L i ZMn) contained in the lithium manganate constituting the plate crystal particle of the present invention is preferably more than 0.5. Using lithium manganate that satisfies the relationship L i ZM n> 0.5 further stabilizes the crystal structure compared to the case of using the stoichiometric composition (L i M n z 0 4 ). Therefore, it is possible to obtain a lithium secondary battery with excellent high-temperature cycle characteristics.
[0052] 2. 板状結晶粒子の製造方法:  [0052] 2. Method for producing plate-like crystal particles:
次に、 本発明の板状結晶粒子の製造方法の実施形態について説明する。 本 発明の板状結晶粒子の製造方法は、 (1 ) マンガン酸リチウム粒子を含む成 形材料を成形して、 厚み 3 0 m以下の自立可能なシー卜状成形体を得る成 形工程、 (2 ) シート状成形体を、 シート状成形体と実質的に反応しない不 活性層に隣接させた状態、 又はシー卜状成形体のままの状態で焼成する焼成 工程、 及び (3 ) 焼成後のシート状成形体を解砕及び分級する粉砕工程を含 む方法である。 以下、 工程ごとに説明する。 Next, an embodiment of the method for producing plate-like crystal particles of the present invention will be described. The method for producing plate-like crystal particles of the present invention comprises (1) a composition containing lithium manganate particles. Molding process to form a self-supporting sheet-like molded body having a thickness of 30 m or less by molding a molding material, (2) the sheet-shaped molded body into an inert layer that does not substantially react with the sheet-shaped molded body A firing step of firing in an adjacent state or in a state of a sheet-like shaped body, and (3) a grinding step of crushing and classifying the fired sheet-like shaped body. Hereinafter, each process will be described.
[0053] ( 1 ) 成形工程 [0053] (1) Molding process
成形原料に含まれるマンガン酸リチウム粒子は、 例えば、 マンガン酸リチ ゥ厶 (L i M n 2 0 4 ) を構成する各種元素を含む原料化合物を所定比に混合 したものを、 酸化雰囲気中、 6 5 0 °C~ 1 2 5 0 °Cの範囲で、 2時間〜 5 0 時間かけて仮焼成することで合成することができる。 ここで、 酸化雰囲気と は、 一般に炉内試料が酸化反応を起こす酸素分圧を有する雰囲気を指し、 具 体的には、 大気雰囲気、 酸素雰囲気等が該当する。 The lithium manganate particles contained in the forming raw material include, for example, a mixture of raw material compounds containing various elements constituting lithium manganate (L i M n 2 0 4 ) in a predetermined ratio in an oxidizing atmosphere. It can be synthesized by calcining in the range of 50 ° C. to 1 250 ° C. for 2 hours to 50 hours. Here, the oxidizing atmosphere generally refers to an atmosphere having an oxygen partial pressure that causes an oxidation reaction of the in-furnace sample, and specifically includes an air atmosphere and an oxygen atmosphere.
[0054] なお、 仮焼成後、 得られたマンガン酸リチウム粒子を更に粉砕することが 好ましい。 この粉砕では、 マンガン酸リチウム粒子の粒径を、 シート状成形 体の厚みに応じた粒径とすることが好ましい。 具体的には、 メディアン径 ( D 5 0 ) を、 シート状成形体の厚みの 1 ~ 6 0 %とすることが好ましい。 マ ンガン酸リチウム粒子のメディアン径を、 シー卜状成形体厚みの 1 %以上に すると、 粉砕処理が容易である。 また、 6 0 %以下とすると、 シ一卜状成形 体に含まれるマンガン酸リチウム粒子がよリ均一に分布するため、 シート状 成形体の厚さを調整し易くなる。 なお、 単結晶粒子の大きさをより大きくし ようとする場合には、 マンガン酸リチウム粒子のメディアン径 (D 5 0 ) を 更に小さくすることが、 粒成長を促す点からみて好ましい。 マンガン酸リチ ゥム粒子の粒径は、 レーザ回折/散乱式粒度分布測定装置を使用し、 有機溶 剤や水等の分散媒に分散させて測定することができる。 マンガン酸リチウム は、 例えば、 ポールミル、 ビーズミル、 トロンメル、 アトライター等を用い て湿式粉砕することが好ましい。  [0054] It is preferable that the obtained lithium manganate particles are further pulverized after provisional firing. In this pulverization, the particle size of the lithium manganate particles is preferably set to a particle size according to the thickness of the sheet-like molded body. Specifically, the median diameter (D 50) is preferably 1 to 60% of the thickness of the sheet-like molded body. When the median diameter of the lithium manganate particles is set to 1% or more of the thickness of the sheet-like molded product, pulverization is easy. On the other hand, when the content is 60% or less, the lithium manganate particles contained in the sheet-shaped molded body are more uniformly distributed, so that the thickness of the sheet-shaped molded body can be easily adjusted. In order to increase the size of the single crystal particles, it is preferable from the viewpoint of promoting grain growth to further reduce the median diameter (D 50) of the lithium manganate particles. The particle size of the lithium manganate particles can be measured by dispersing them in a dispersion medium such as an organic solvent or water using a laser diffraction / scattering particle size distribution analyzer. The lithium manganate is preferably wet pulverized using, for example, a pole mill, a bead mill, a trommel, an attritor or the like.
[0055] リチウムを含む原料化合物として、 酸化物である L i 2 0は吸湿性が高く、 取り扱い難いために好ましくない。 従って、 化学的に安定な炭酸塩、 塩酸塩 、 硝酸塩、 硫酸塩、 水酸化物、 有機酸塩、 ハロゲン化物等を好適に採用する ことができ、 これらの数種類を適当な組み合わせで用いればよい。 他の元素 を含む原料化合物としては、 それぞれの元素 (M nの置換を行う場合には、 置換元素 Mを含む) の塩や酸化物を好適に用いることができる。 各元素の塩 は特に限定されるものではないが、 原料として純度が高く、 しかも安価なも のを使用することが好ましい。 具体的には、 炭酸塩、 水酸化物、 有機酸塩を 用いることが好ましいが、 硝酸塩や塩酸塩、 硫酸塩等を用いることもできる 。 なお、 成形材料として、 例えば、 マンガン酸リチウム (L i M n 204) を 構成する各種元素を含む原料化合物を所定比に混合し、 粉砕したものを、 仮 焼せずに用いてもよい。 As the starting compound containing [0055] lithium, L i 2 0 is the oxide is not preferred for highly hygroscopic, difficult to handle. Therefore, chemically stable carbonate, hydrochloride Nitrate, sulfate, hydroxide, organic acid salt, halide and the like can be suitably employed, and these several types may be used in an appropriate combination. As raw material compounds containing other elements, salts and oxides of the respective elements (including substitution element M when Mn is substituted) can be suitably used. The salt of each element is not particularly limited, but it is preferable to use a raw material having a high purity and being inexpensive. Specifically, carbonates, hydroxides, and organic acid salts are preferably used, but nitrates, hydrochlorides, sulfates, and the like can also be used. In addition, as a molding material, for example, a raw material compound containing various elements constituting lithium manganate (L i M n 2 0 4 ) mixed in a predetermined ratio and pulverized may be used without being calcined. .
[0056] 得られた成形材料を成形して、 厚み 3 0 m以下の自立可能なシート状成 形体 (グリーンシート) を得る。 「自立可能なシート状成形体」 には、 それ 単体でシート形状を維持可能なものや、 それ単体ではシー卜形状を維持不可 能であっても、 基板に貼り付ける或いは成膜する等によリシ一ト形状を維持 可能なものが含まれる。 シート状成形体の成形方法としては、 例えば、 マン ガン酸リチウム粒子を含む成形原料 (スラリー) を用いたドクターブレード 法や、 無機粒子を含む坏土を用いた押出成形法等を挙げることができる。  [0056] The obtained molding material is molded to obtain a self-supporting sheet-like formed body (green sheet) having a thickness of 30 m or less. The “self-supporting sheet-like molded product” can be used to maintain the sheet shape by itself, or even if it cannot maintain the sheet shape by itself, it can be attached to a substrate or formed into a film. This includes those that can maintain the recite shape. Examples of the method for forming a sheet-like molded body include a doctor blade method using a forming raw material (slurry) containing lithium manganate particles, an extrusion method using a clay containing inorganic particles, and the like. .
[0057] ドクターブレード法によってシート状成形体を製造する場合には、 先ず、 可撓性を有する板 (例えば、 P E Tフィルム等の有機ポリマ一板) にスラリ 一を塗布する。 塗布したスラリーを乾燥固化して形成されたシート状成形体 を板から剥がすことにより、 シート状成形体を得ることができる。 スラリー ゃ坏土等の成形原料を調製する際には、 マンガン酸リチウム粒子を適当な分 散媒に分散させ、 バインダーや可塑剤等を適宜加えてもよい。 また、 スラリ 一の粘度は、 5 0 0 ~ 8 0 0 O m P a ■ sに調整することが好ましく、 減圧 化で脱泡することが好ましい。 シー卜状成形体の厚みは、 3 0 / m以下、 好 ましくは 2 0 ju m以下、 更に好ましくは 1 5 m以下とする。 シート状成形 体の厚みを 3 O i m以下にすると、 得られる板状結晶粒子の配向度を高める ことができる。 また、 シ一卜状成形体の厚みを 1 5 ju m以下とすれば、 得ら れる板状結晶粒子の配向度を更に高めることができる。 なお、 シート状成形 体の厚みは、 1 i m以上とすることが好ましく、 5 m以上とすることが更 に好ましい。 厚みを 1 / m以上とすれば、 シート状成形体を自立可能とする ことができる。 [0057] When producing a sheet-like molded body by the doctor blade method, first, slurry is applied to a flexible plate (for example, an organic polymer plate such as a PET film). The sheet-like molded body formed by drying and solidifying the applied slurry can be removed from the plate to obtain a sheet-like molded body. When preparing a forming raw material such as slurry or clay, lithium manganate particles may be dispersed in an appropriate dispersion medium, and a binder, a plasticizer, or the like may be added as appropriate. Further, the viscosity of the slurry is preferably adjusted to 500 to 80 Om Pa s and preferably defoamed by reducing the pressure. The thickness of the sheet-like shaped body is 30 / m or less, preferably 20 jum or less, more preferably 15 m or less. When the thickness of the sheet-like compact is 3 Oim or less, the degree of orientation of the obtained plate-like crystal particles can be increased. In addition, if the thickness of the sheet-shaped molded body is 15 jum or less, The degree of orientation of the plate-like crystal particles can be further increased. Note that the thickness of the sheet-like molded body is preferably 1 im or more, and more preferably 5 m or more. If the thickness is 1 / m or more, the sheet-like molded body can be made self-supporting.
[0058] 板状結晶粒子のサイズをより大きくするには、 シート状成形体の厚みを 1 5 ~ 3 O ju mとすることが好ましい。 シート状成形体の厚みにより板状結晶 粒子の厚みが規定されるので、 板状結晶粒子の用途に合わせてシー卜状成形 体の厚みを適宜設定すればよい。 なお、 シート状成形体のその他の成形方法 としては、 エアロゾルデポジション法をはじめとする高速吹き付け法、 或い はスパッタ、 C V D、 P V D等の気相法により、 樹脂、 ガラス、 セラミック ス、 又は金属等の基板へ膜付けし、 基板から剥離させる方法がある。 これら の成形方法の場合、 得られるシー卜状成形体の密度を高くすることができる ため、 低温での粒成長、 構成元素の揮発防止、 得られる板状結晶粒子の高密 度化等の利点がある。  [0058] In order to further increase the size of the plate-like crystal particles, it is preferable that the thickness of the sheet-like molded body is 15 to 3 O jum. Since the thickness of the plate-like crystal particles is defined by the thickness of the sheet-like molded product, the thickness of the sheet-like molded product may be appropriately set according to the use of the plate-like crystal particles. Other molding methods for sheet-like molded products include resin, glass, ceramics, or metal by high-speed spraying methods such as aerosol deposition, or vapor phase methods such as sputtering, CVD, and PVD. For example, there is a method of forming a film on a substrate, etc., and peeling it from the substrate. In the case of these forming methods, the density of the resulting sheet-like shaped product can be increased, and thus there are advantages such as low-temperature grain growth, prevention of volatilization of constituent elements, and high density of the obtained plate-like crystal particles. is there.
[0059] ( 2 ) 焼成工程  [0059] (2) Firing process
焼成工程では、 シート状成形体を、 シート状成形体と実質的に反応しない 不活性層に隣接させた状態、 又はシー卜状成形体のままの状態で焼成する。 In the firing step, the sheet-like molded body is fired in a state where it is adjacent to an inert layer that does not substantially react with the sheet-like molded body, or in a state where the sheet-like molded body remains.
「シート状成形体と実質的に反応しない不活性層」 の具体例としては、 焼成 済みのセラミックス板、 P t板、 カーボン板、 黒鉛板、 モリブデン板、 タン グステン板、 焼成時に燃焼する有機物シート等を挙げることができる。 なお 、 アルミナ、 ジルコニァ、 スピネル、 カーボン、 黒鉛、 モリブデン、 タング ステン、 白金等の、 成形体の焼成温度では不活性な層の上に成形体を配置し て焼成してもよい。 なお、 焼成時に燃焼する有機物シートとしては、 パルプ から合成される紙等、 熱可塑性を有しないものを用いることができる。 Specific examples of the “inert layer that does not substantially react with the sheet-like molded body” include a fired ceramic plate, a Pt plate, a carbon plate, a graphite plate, a molybdenum plate, a tungsten plate, and an organic sheet that burns during firing. Etc. It should be noted that the compact may be placed on a layer that is inactive at the firing temperature of the compact, such as alumina, zirconia, spinel, carbon, graphite, molybdenum, tungsten, or platinum, and fired. In addition, as an organic substance sheet combusted at the time of baking, the thing which does not have thermoplasticity, such as the paper synthesize | combined from a pulp, can be used.
[0060] なお、 シート状成形体と不活性シートを重ねてロール状に巻いたものを焼 成してもよいし、 不活性層の上にシート状成形体を形成し、 焼成後に不活性 層から剥離させてもよい。 或いは、 不活性層の上にシート状成形体を成膜し 、 焼成後に不活性層を除去してもよい。 黒鉛層を不活性層として用いる場合 には、 窒素雰囲気等の非酸化性雰囲気中で焼成した後、 酸化雰囲気中、 焼成 温度以下の温度で再度熱処理し、 黒鉛層を燃焼させることで除去してもよい 。 シート状成形体の厚みは 3 0 m以下であり、 シート状成形体の厚み方向 への粒成長は限定され、 シート状成形体の面方向への粒成長が促進されるた め、 結晶面 (1 1 1 ) がシート状成形体の面に沿って成長し、 ァスぺクト比 が大きく、 配向度の高い結晶面 (1 1 1 ) を有する板状結晶粒子を製造する ことができる。 [0060] In addition, a sheet-shaped molded body and an inert sheet may be stacked and rolled into a roll shape, or a sheet-shaped molded body may be formed on the inert layer, and the inert layer after firing. You may make it peel from. Alternatively, a sheet-like molded body may be formed on the inert layer, and the inert layer may be removed after firing. When using a graphite layer as an inert layer Alternatively, after firing in a non-oxidizing atmosphere such as a nitrogen atmosphere, the heat treatment may be performed again in an oxidizing atmosphere at a temperature equal to or lower than the firing temperature to burn the graphite layer. The thickness of the sheet-shaped compact is 30 m or less, and the grain growth in the thickness direction of the sheet-shaped compact is limited, and the grain growth in the surface direction of the sheet-shaped compact is promoted. 1 1 1) grows along the surface of the sheet-like molded body, and plate-like crystal grains having a large aspect ratio and a highly oriented crystal face (1 1 1) can be produced.
[0061 ] なお、 シート状成形体をくしゃくしゃに丸めた状態のものや、 シート状成 形体を帯状 (リボン状) に切断したものを焼成してもよい。 或いは、 シ一卜 状成形体を帯状 (リボン状) に切断したものを、 所定の形状 (例えば球状) となるようにランダムに絡ませた状態で焼成してもよい。 これらの場合、 特 別な不活性層を用いることなく、 シート状成形体の大部分が自立状態を保ち ながら焼成されるため、 配向度の高い結晶面 (1 1 1 ) を有する板状結晶粒 子を大量に製造することができる。 更に、 シート同士の癒着を防ぐ目的で、 口一タリーキルン (回転炉) を使用して焼成することも好ましい。  [0061] It should be noted that a sheet-like molded body that has been crumpled or a sheet-shaped molded body that has been cut into a strip (ribbon) may be fired. Alternatively, the sheet-shaped molded body cut into a strip shape (ribbon shape) may be fired in a state of being randomly entangled so as to have a predetermined shape (for example, a spherical shape). In these cases, a plate-like crystal grain having a highly oriented crystal face (1 1 1) is obtained because most of the sheet-like molded body is fired while maintaining a self-supporting state without using a special inert layer. The child can be manufactured in large quantities. Further, for the purpose of preventing adhesion between sheets, it is also preferable to fire using a single-tally kiln (rotary furnace).
[0062] 焼成工程においては、 シー卜状成形体に含まれるアル力リ元素等の特定成 分の揮発を抑制する揮発抑制状態で、 シート状成形体を焼成することが好ま しい。 アルカリ元素等の特定成分の揮発を抑制することにより、 得られる板 状結晶粒子の組成のズレを抑制することができる。 なお、 シート状成形体と 別の、 マンガン酸リチウム粒子を共存させた状態で焼成することも好ましい 。 即ち、 共存させたマンガン酸リチウム粒子から特定成分を揮発させること により、 シート状成形体からの特定成分の揮発を比較的容易に抑制すること ができる。 なお、 シート状成形体を蓋付きの鞘等に入れ、 シ一卜状成形体と 別のマンガン酸リチウム粒子を共存させた密閉状態で焼成することも好まし く、 鞘内部の空間をできる限り小さくすることが好ましい。 また、 特定成分 が揮発する分を見込んで、 リチウムの含有割合が過剰な成形体を用いること も好ましい。  [0062] In the firing step, it is preferable to fire the sheet-like molded body in a volatilization-suppressed state that suppresses the volatilization of specific components such as the Al force element contained in the sheet-like molded body. By suppressing the volatilization of a specific component such as an alkali element, it is possible to suppress the deviation of the composition of the obtained plate-like crystal particles. It is also preferable to fire in a state where lithium manganate particles coexist with the sheet-like molded body. That is, by volatilizing the specific component from the coexisting lithium manganate particles, volatilization of the specific component from the sheet-like molded product can be suppressed relatively easily. It is also preferable to place the sheet-shaped molded body in a sheath with a lid, etc., and fire it in a sealed state in which a co-molded molded body and other lithium manganate particles coexist. It is preferable to make it small. It is also preferable to use a molded body in which the lithium content is excessive in anticipation of the volatilization of the specific component.
[0063] 但し、 鞘内部に共存させるシート状成形体と別のマンガン酸リチウム粒子 の量を多くし過ぎると、 シート状成形体の焼結及び粒成長が活発化し過ぎて しまい、 シート状成形体にうねりが生じたり、 板状結晶粒子のァスぺクト比 が小さくなつたりする場合がある。 従って、 鞘内部の雰囲気が最適な状態と なるように、 鞘内部の容積、 シート状成形体の量、 共存させるマンガン酸リ チウム粒子の量等を適当に設定すること重要である。 なお、 シート状成形体 を焼成する際に、 シート状成形体に含まれるマンガン酸リチウム粒子と同一 組成のマンガン酸リチウム粒子を共存させることが好ましいが、 シート状成 形体に含まれるマンガン酸リチウム粒子に比して特定成分が揮発しやすいも のを共存させることによリ、 揮発した特定成分を焼成後のシート状成形体に 補充することもできる。 [0063] However, the sheet-like molded body coexisting inside the sheath and another lithium manganate particle If the amount is too large, sintering and grain growth of the sheet-like molded product will become too active, resulting in undulation in the sheet-like molded product and a decrease in the aspect ratio of the plate-like crystal particles. There is a case. Therefore, it is important to appropriately set the volume inside the sheath, the amount of the sheet-like molded body, the amount of lithium manganate particles to be coexisted, etc. so that the atmosphere inside the sheath is in an optimal state. In addition, when firing the sheet-like molded article, it is preferable that lithium manganate particles having the same composition as the lithium manganate particles contained in the sheet-like molded article coexist, but the lithium manganate particles contained in the sheet-like molded article By allowing the specific component to be volatilized more easily than the coexisting material, the volatilized specific component can be replenished to the sheet-like molded body after firing.
[0064] また、 焼成工程においては、 第一の雰囲気に制御した鞘内において第一の 焼成温度で焼成し、 室温に戻した後、 第二の雰囲気に制御した鞘内において 第一の焼成温度に比して高い第二の焼成温度で焼成してもよい。 また、 焼成 雰囲気は大気中としてもよいが、 構成元素の揮発抑制や不活性層との反応性 等を考慮し、 酸素雰囲気、 窒素等の中性雰囲気、 水素や炭化水素の共存下等 の還元雰囲気、 真空中等としてもよい。 また、 面内の粒成長を促進する観点 から、 ホットプレス等により加重焼成してもよい。 [0064] Further, in the firing step, after firing at the first firing temperature in the sheath controlled to the first atmosphere, returning to room temperature, the first firing temperature in the sheath controlled to the second atmosphere The second baking temperature may be higher than that of the second baking temperature. The firing atmosphere may be in the air, but in consideration of the suppression of volatilization of the constituent elements and reactivity with the inert layer, etc., reduction in a neutral atmosphere such as an oxygen atmosphere or nitrogen, in the presence of hydrogen or hydrocarbons, etc. It may be in an atmosphere or vacuum. Further, from the viewpoint of promoting in-plane grain growth, weighted firing may be performed by hot pressing or the like.
[0065] 図 3 Aは、 焼成器の一例を示す側面図であり、 図 3 Bは、 図 3 Aの A— A 断面図である。 焼成器 5は、 焼成炉 (図示せず) でシート状成形体 1 5を焼 成する際に用いるものであり、 未焼成の成形体 (シート状成形体 1 5 ) を載 置する焼成済みのセラミックス板であるセッター 2 2と、 マンガン酸リチウ ム粒子を含有する、 シート状成形体 1 5に比して厚い共存用未焼成成形体 2 4と、 共存用未焼成成形体 2 4上に配置され、 シート状成形体 1 5の上方を 覆う焼成済みのセラミックス板である角板 2 6とにより構成されている。 シ 一ト状成形体 1 5の四方を共存用未焼成成形体 2 4で囲み込むことにより、 シート状成形体 1 5から特定成分が揮発し、 組成の変化を防止することがで さる。  FIG. 3A is a side view showing an example of a calciner, and FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A. The calciner 5 is used when the sheet-like molded body 15 is fired in a firing furnace (not shown), and has been fired on which an unfired molded body (sheet-like molded body 15) is placed. Placed on ceramic plate setter 2 2, thick coexisting green compact 2 4, which contains lithium manganese oxide particles, and coexisting green compact 2 4 And a square plate 26 that is a fired ceramic plate that covers the upper portion of the sheet-like molded body 15. By enclosing the four sides of the sheet-like molded body 15 with the coexisting unfired molded body 24, the specific components are volatilized from the sheet-like molded body 15 to prevent the composition from changing.
[0066] 図 3 A及び図 3 Bに示すセッター 2 2の形状は平板状であるが、 シート状 成形体 1 5が載置される面を粗くしたセッターや、 シート状成形体 1 5が載 置される面に貫通孔を複数設けたハニカム状のセッター、 ディンプル加工さ れたセッター等、 シート状成形体 1 5との接触面積を小さくして、 シート状 成形体 1 5の溶着を防止するセッターを用いることが好ましい。 また、 セッ ター 2 2の、 シ一卜状成形体 1 5が載置される面に、 シート状成形体 1 5の 焼成温度でも安定なアルミナ粉やジルコ二ァ粉等を敷き、 その上にシート状 成形体 1 5を載置して焼成することも好ましい。 [0066] The shape of the setter 2 2 shown in FIGS. 3A and 3B is a flat plate, but is a sheet. Sheet shape, such as a setter with a roughened surface on which the compact 15 is placed, a honeycomb-shaped setter having a plurality of through-holes on the surface on which the compact 15 is placed, a dimple processed setter, etc. It is preferable to use a setter that reduces the contact area with the molded body 15 and prevents the sheet-shaped molded body 15 from being welded. In addition, on the surface of the setter 2 2 on which the sheet-like molded body 15 is placed, an alumina powder or a zirconia powder that is stable even at the firing temperature of the sheet-like molded body 15 is laid, and on that surface. It is also preferable that the sheet-like molded body 15 is placed and fired.
[0067] なお、 共存用未焼成成形体を用いることに代えて、 鞘内部にマンガン酸リ チウ厶の粉末を共存させる場合には、 鞘内部におけるセッターの置き方、 セ ッターのサイズ、 段積みの方法、 粉末を配置する箇所等を適宜調整すること により、 鞘内部の雰囲気を均一に調整することができる。 これにより、 シー ト状成形体を複数枚同時に焼成する場合に、 焼成後のシート状成形体の結晶 粒子構造を均一にすることができる。  [0067] When the powder of lithium manganate coexists in the sheath instead of using the coexisting green compact, the setting method of the setter, the size of the setter, and the stacking in the sheath The atmosphere inside the sheath can be uniformly adjusted by appropriately adjusting the method and the location where the powder is disposed. Thereby, when a plurality of sheet-like molded bodies are fired simultaneously, the crystal grain structure of the fired sheet-like molded body can be made uniform.
[0068] シート状成形体は、 焼成によリ平衡形の結晶を得ることが可能な温度 (例 えば、 バルクを焼成することにより緻密化、 粒成長する温度) に比して、 5 0 - 2 0 0 °C高い温度で焼成することが好ましい。 このような温度で焼成す ることで、 粒成長を十分に進めることができる。 なお、 シート状成形体に含 まれる成形材料が分解しない程度に高い温度で焼成することが好ましい。 特 に、 シート状成形体の厚みがより薄い場合には粒成長し難くなるため、 焼成 温度をより高くすることが好ましい。 また、 得られる板状結晶粒子の粒径を より大きくしょうとする場合には、 より高い温度で焼成することが好ましい 。 また、 板状結晶粒子の粒成長を促進する目的で、 B i 20 3等の低融点酸化 物を焼結助剤として添加してもよい。 [0068] The sheet-like molded body is 50 0-compared to the temperature at which a re-equilibrated crystal can be obtained by firing (for example, the temperature at which densification and grain growth occur by firing the bulk). Baking is preferably performed at a temperature as high as 200 ° C. By firing at such a temperature, grain growth can be sufficiently advanced. It is preferable to fire at a temperature that is high enough not to decompose the molding material contained in the sheet-like molded body. In particular, when the thickness of the sheet-like molded body is thinner, it is difficult to grow the grains. Therefore, it is preferable to raise the firing temperature. In order to increase the particle size of the obtained plate-like crystal particles, firing at a higher temperature is preferable. Also, in order to promote the grain growth of plate crystal grains may be added to the low melting oxides such as B i 2 0 3 as a sintering aid.
[0069] ( 3 ) 粉砕工程  [0069] (3) Grinding process
粉砕工程では、 焼成後のシート状成形体を、 所定サイズの開口部を通過さ せることによリ解砕及び分級する。 この工程においては、 例えば、 目的とす る板状結晶粒子の粒子サイズに合わせた開口径の開口部を有するメッシュ ( ふるい) を使用する。 使用するメッシュの平均開口径は、 通常、 1 . O mm 以下である。 In the pulverization step, the fired sheet-like molded body is crushed and classified by passing through an opening of a predetermined size. In this step, for example, a mesh having an opening having an opening diameter that matches the particle size of the target plate crystal particle is used. The average opening diameter of the mesh used is usually 1. O mm It is as follows.
[0070] 図 4は、 粉砕工程の一例を示す説明図である。 粉砕工程では、 例えば、 平 均開口径力《 1 0 0 m、 7 0 m % 4 5 m、 2 5 jU m、 2 0 m、 1 0 jU m、 5 jL< m等のメッシュ 3 4を用いることができる。 焼成後のシート状成形 体 3 2は脆く、 比較的解砕し易い物である。 このため、 メッシュ 3 4上に載 置した焼成後のシー卜状成形体 3 2を、 へら状の押圧部材 3 6で軽く押圧し ながらメッシュ 3 4を篩うことにより、 焼成後のシート状成形体を解砕する と同時に分級することができ、 板状結晶粒子 1 . 5を得ることができる。 また 、 粒径が大きく、 ァスぺクト比の大きな板状結晶粒子を得ようとする場合に は、 開口径の大きい開口部を有するメッシュ 3 4を使用すればよい。 一方、 粒径が小さく、 ァスぺクト比の小さい板状結晶粒子を得ようとする場合には 、 開口径の小さい開口部を有するメッシュ 3 4を使用すればよい。 即ち、 メ ッシュ 3 4の開口部の開口径を変えるという簡単な選択により、 得られる板 状結晶粒子の特性を変化させることができる。 FIG. 4 is an explanatory diagram showing an example of a pulverization process. In the pulverization process, for example, a mesh 34 having an average opening diameter << 1 00 m, 70 m % 45 m, 25 jU m, 20 m, 10 jU m, 5 jL <m or the like is used. be able to. The sheet-like molded body 32 after firing is brittle and relatively easy to disintegrate. For this reason, a sheet-like molded product after firing is obtained by sieving the mesh 3 4 while lightly pressing the fired sheet-like shaped product 3 2 placed on the mesh 34 with a spatula-shaped pressing member 36. The body can be crushed and classified at the same time, and plate-like crystal particles 1.5 can be obtained. In order to obtain plate-like crystal particles having a large particle size and a large aspect ratio, a mesh 34 having an opening with a large opening diameter may be used. On the other hand, in order to obtain plate-like crystal particles having a small particle size and a small aspect ratio, a mesh 34 having an opening having a small opening diameter may be used. That is, the characteristics of the obtained plate-like crystal particles can be changed by a simple selection of changing the opening diameter of the opening of the mesh 34.
[0071 ] なお、 8 0 0 °C以上の高温で焼成を行った場合、 酸素の欠損が生じて正極 材としての性能が劣化する場合が想定される。 従って、 大気中又は酸素 *囲 気中、 6 0 0 ~ 7 0 0 °C程度で再度熱処理して酸素を供給することも好まし し、。  [0071] Note that, when firing at a high temperature of 800 ° C or higher, it is assumed that oxygen deficiency occurs and the performance as the positive electrode material deteriorates. Therefore, it is also preferable to supply oxygen by performing a heat treatment again in the atmosphere or in an oxygen * atmosphere at about 60 to 700 ° C.
[0072] 3 . リチウム二次電池:  [0072] 3. Lithium secondary battery:
次に、 本発明のリチウム二次電池の実施形態について説明する。 本発明の リチウム二次電池は、 前述の板状結晶粒子を正極活物質として用いて製造さ れたものである。 このため、 本発明のリチウム二次電池は、 出力特性及び高 温サイクル特性に優れたものである。 このような優れた出力特性及び高温サ ィクル特性は、 大量の電極活物質を用いて製造された大容量の二次電池にお いて特に顕著に現れることとなる。 このため、 本発明のリチウム二次電池は 、 例えば、 E Vや H E Vのモータ駆動用の電源として好適である。 但し、 本 発明のリチウム二次電池は、 コイン電池等の小容量電池としても好適である [0073] 本発明のリチウム二次電池を構成するための、 正極活物質以外の部材 (材 料) としては、 従来公知の種々の材料を用いることができる。 例えば、 負極 活物質としては、 ソフトカーボンやハードカーボンといったアモルファス系 炭素質材料や、 人造黒鉛、 天然黒鉛等の高黒鉛化炭素材料を用いることがで きる。 なかでも、 リチウム容量の大きい高黒鉛化炭素材料を用いることが好 ましい。 Next, an embodiment of the lithium secondary battery of the present invention will be described. The lithium secondary battery of the present invention is manufactured using the plate-like crystal particles described above as a positive electrode active material. Therefore, the lithium secondary battery of the present invention is excellent in output characteristics and high temperature cycle characteristics. Such excellent output characteristics and high-temperature cycle characteristics are particularly noticeable in a large-capacity secondary battery manufactured using a large amount of electrode active material. For this reason, the lithium secondary battery of the present invention is suitable as a power source for driving a motor of an EV or HEV, for example. However, the lithium secondary battery of the present invention is also suitable as a small capacity battery such as a coin battery. [0073] As a member (material) other than the positive electrode active material for constituting the lithium secondary battery of the present invention, various conventionally known materials can be used. For example, as the negative electrode active material, amorphous carbonaceous materials such as soft carbon and hard carbon, and highly graphitized carbon materials such as artificial graphite and natural graphite can be used. Among them, it is preferable to use a highly graphitized carbon material having a large lithium capacity.
[0074] 非水電解液に用いられる有機溶媒としては、 エチレンカーボネート (E C ) 、 ジェチルカーボネート (D E C ) 、 ジメチルカーボネート (D M C ) 、 プロピレンカーボネート (P C ) 等の炭酸エステル系溶媒の他、 r—プチ口 ラクトン、 テトラヒドロフラン、 ァセトニトリル等の単独溶媒、 又はこれら の混合溶媒が好適に用いられる。  [0074] Organic solvents used in the non-aqueous electrolyte include carbonate solvents such as ethylene carbonate (EC), jetyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC), and r- A single solvent such as petit mouth lactone, tetrahydrofuran, or acetonitrile, or a mixed solvent thereof is preferably used.
[0075] 電解質の具体例としては、 六フッ化リン酸リチウム (L i P F 6) やホウフ ッ化リチウム (L ί B F J 等のリチウム錯体フッ素化合物:過塩素酸リチウ ム (L i C I 0 4 ) 等のリチウムハロゲン化物を挙げることができる。 なお、 通常、 これらの電解質の一種以上を前述の有機溶媒に溶解して用いる。 これ らの電解質のなかでも、 酸化分解が起こり難く、 非水電解液の導電性の高い L i P F 6を用いることが好ましい。 [0075] Specific examples of the electrolyte include lithium hexafluorophosphate (L i PF 6 ) and lithium borofluoride (L ί BFJ and other lithium complex fluorine compounds: lithium perchlorate (L i CI 0 4 ) It should be noted that one or more of these electrolytes are usually used by dissolving in the above-mentioned organic solvent among these electrolytes. It is preferable to use Li PF 6 having high conductivity.
[0076] 電池構造の具体例としては、 板状に成形された正極活物質と負極活物質の 間にセパレータを配して電解液を充填させたコイン型の電池 (コインセル) や、 金属箔の表面に正極活物質を塗工してなる正極板と、 金属箔の表面に負 極活物質を塗工してなる負極板とを、 セパレータを介して捲回又は積層して なる電極体を用いた円筒型又は箱型の各種電池を挙げることができる。  [0076] Specific examples of the battery structure include a coin-type battery (coin cell) in which a separator is disposed between a plate-shaped positive electrode active material and a negative electrode active material and filled with an electrolytic solution, or a metal foil. A positive electrode plate formed by coating a positive electrode active material on the surface and a negative electrode plate formed by applying a negative electrode active material on the surface of a metal foil are wound or laminated with a separator used. Various types of cylindrical or box type batteries can be given.
[0077] 正極板を構成する正極活物質の充填率は、 電池の容量を決める重要な因子 であるため、 充填性の高い粒子を正極活物質として採用することが望ましい 。 前述の板状結晶粒子 (本発明の板状結晶粒子) を用いると、 正極板を構成 する正極活物質の充填率を上げ易くなる効果があるために好ましい。 粒径の 大きい結晶粒子を正極活物質として用いると、 充填性は向上する。 しかしな がら、 スピネル構造を有するマンガン酸リチウムは、 八面体の角張った粒子 形状となり易いため、 充填性が良好であるとはいえない。 これに対して、 本 発明の板状結晶粒子は、 平らな面の広がった板状を呈する結晶粒子であるた め、 特に、 粒子の向きが揃うように配列させつつ充填させることで、 容易に 高い充填率とすることができる。 [0077] Since the filling rate of the positive electrode active material constituting the positive electrode plate is an important factor for determining the capacity of the battery, it is desirable to employ particles having high filling properties as the positive electrode active material. It is preferable to use the above-mentioned plate-like crystal particles (plate-like crystal particles of the present invention) because it is easy to increase the filling rate of the positive electrode active material constituting the positive electrode plate. When crystal particles having a large particle size are used as the positive electrode active material, the filling property is improved. However, lithium manganate with a spinel structure is an octahedral angular particle. Since it tends to be a shape, it cannot be said that the filling property is good. On the other hand, since the plate-like crystal particles of the present invention are plate-like crystal particles having a flat surface spread, in particular, the particles can be easily filled by arranging them so that the directions of the particles are aligned. A high filling rate can be obtained.
[0078] 図 5は、 正極板の微構造の一例を模式的に示す断面図である。 図 5におい ては、 本実施形態の板状結晶粒子 6 0を正極活物質 6 5として使用し、 この 板状結晶粒子 6 0を含有する正極材料 (ペースト) を集電板 (アルミ箔) 1 0 0上に塗工して得られた正極板 1 1 0が示されている。 このように、 本実 施形態の多数の板状結晶粒子 6 0の向きを揃えて配列させることで、 高い充 填率で正極活物質 6 5が充填された正極板 1 1 0を得ることができる。 なお 、 図 5中の符号 9 5は、 アセチレンブラックやポリフッ化ビニリデン (P V D F ) 等を含有する結着材部を示す。  FIG. 5 is a cross-sectional view schematically showing an example of the microstructure of the positive electrode plate. In FIG. 5, the plate crystal particles 60 of the present embodiment are used as the positive electrode active material 65, and the positive electrode material (paste) containing the plate crystal particles 60 is used as a current collector plate (aluminum foil) 1 A positive electrode plate 110 obtained by coating on 0 0 is shown. In this way, by arranging the large number of plate-like crystal particles 60 of this embodiment in the same direction, it is possible to obtain the positive electrode plate 110 filled with the positive electrode active material 65 with a high filling rate. it can. Note that reference numeral 95 in FIG. 5 denotes a binder part containing acetylene black, polyvinylidene fluoride (P V D F), or the like.
[0079] なお、 図 5に示すように、 本実施形態の板状結晶粒子 6 0とともに、 従来 の等軸状結晶粒子 8 5を正極活物質 7 5として使用すること、 即ち、 板状結 晶粒子 6 0と従来の等軸状結晶粒子 8 5を適当な比率で混合して使用して正 極板 1 1 0を製造することも可能である。 また、 板状結晶粒子 6 0について も、 同一の大きさ■形状からなるもののみを用いなくてもよく、 異なる大き さ,形状からなるものを混合して使用することも可能である。 本発明の板状 結晶粒子は、 従来の粒子合成法によって製造される正極活物質粒子に比して 、 粒径の均質性が高い。 このため、 本発明の板状結晶粒子を正極活物質とし て用いれば、 多数の電池を製造した場合であっても、 特性にバラツキが少な <、 均質な電池を得ることができるために好ましい。  In addition, as shown in FIG. 5, the conventional equiaxed crystal particles 85 are used as the positive electrode active material 75 together with the plate crystal particles 60 of the present embodiment, that is, the plate crystal The positive electrode plate 110 can also be produced by mixing the particles 60 and the conventional equiaxed crystal particles 85 in an appropriate ratio. Further, it is not necessary to use only the same size and shape of the plate-like crystal particle 60, and it is also possible to use a mixture of particles having different sizes and shapes. The plate-like crystal particles of the present invention have a higher particle size homogeneity than the positive electrode active material particles produced by a conventional particle synthesis method. For this reason, it is preferable to use the plate-like crystal particles of the present invention as the positive electrode active material, because even when a large number of batteries are manufactured, a uniform battery with little variation in characteristics can be obtained.
実施例  Example
[0080] 以下、 本発明を実施例に基づいて具体的に説明するが、 本発明はこれらの 実施例に限定されるものではない。  Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
[0081 ] (実施例 1 ) [0081] (Example 1)
( 1 ) 無機粒子の合成  (1) Synthesis of inorganic particles
L i M n 2 0 4の組成比となるように、 L i 2 C 0 3粉末 (関東化学社製) 、 及び Mn02粉末 (高純度化学研究所社製) を秤量して樹脂製の円筒型広口瓶 に入れ、 ジルコニァボール、 及び分散媒としてエタノールを更に入れ、 ポー ルミルで 1 6時間、 湿式混合及び粉砕を行ってスラリーを得た。 得られたス ラリーをエバポレータ及び乾燥機を用いて乾燥した後、 800°C、 24時間 の条件で仮焼成して仮焼粉末を得た。 ジルコニァボール、 及び分散媒として エタノールを使用して、 得られた仮焼粉末をボールミルで 5時間湿式粉砕し た。 エバポレータ及び乾燥機を用いて乾燥して、 L ί Μη 204粉体 (無機粒 子) を得た。 レーザ回折 Ζ散乱式粒度分布測定装置 (型番 「LA— 750J 、 HOR I BA社製) を使用し、 水を分散媒として測定した L ί Mn 204粉 体の平均粒径 (メディアン径 (D50) ) は、 0. 6〃mであった。 L i 2 C 0 3 powder (manufactured by Kanto Chemical Co., Inc.), so that the composition ratio of L i M n 2 0 4 And Mn0 2 powder (Kojundo Chemical Laboratory Co., Ltd.) were weighed placed in cylindrical jar made of resin, Jirukoniaboru, and ethanol further put as a dispersion medium, 1 6 hours at Po mill, wet mixing and The slurry was obtained by grinding. The obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder. The obtained calcined powder was wet pulverized with a ball mill for 5 hours using zirconia balls and ethanol as a dispersion medium. Drying was performed using an evaporator and a drier to obtain L ίίη 2 0 4 powder (inorganic particles). The average particle size of the L ί Mn 2 0 4 powder (median diameter (D50) measured using water diffraction as a dispersion medium using a laser diffraction Ζscattering particle size distribution analyzer (model number “LA-750J” manufactured by HOR I BA) )) Was 0.6 0m.
[0082] (2) 成形工程 [0082] (2) Molding process
トルエン及びイソプロパノールを等量混合して調製した分散媒 1 00質量 部、 得られた L i Mn 204粉体 1 00質量部、 バインダーとしてポリビニル プチラール (商品名 ΓΒΜ— 2」 、 積水化学社製) 1 0質量部、 可塑剤 (商 品名 「DOP」 、 黒金化成社製) 4質量部、 及び分散剤 (商品名 「SP— O 30」 、 花王社製) 2質量部を混合して、 スラリー状成形原料を得た。 得ら れたスラリー状成形原料を減圧下で撹拌して脱泡し、 その粘度を 500~ 7 00m Pa ■ sとした。 なお、 スラリー状成形原料の粘度は、 LVT型粘度 計 (ブルックフィールド社製) を使用して測定した。 ドクターブレード法に より、 粘度を調整したスラリー状成形原料を P ETフィルムの上に成形して シ一卜状成形体を得た。 なお、 乾燥後のシート状成形体の厚みは 5 / mであ つた。 Dispersion media 1 00 parts by weight to prepare a toluene and isopropanol by mixing equal amounts, L i Mn 2 0 4 powder 1 00 parts by mass of the resultant polyvinyl as a binder butyral (trade name Ganmabetamyu- 2 ", manufactured by Sekisui Chemical Co., Ltd. ) 10 parts by mass, plasticizer (trade name “DOP”, manufactured by Kurokin Kasei Co., Ltd.) 4 parts by mass, and dispersant (trade name “SP-O 30”, manufactured by Kao Co., Ltd.) 2 parts by mass, A slurry-like forming raw material was obtained. The obtained slurry-like forming raw material was stirred and degassed under reduced pressure, and its viscosity was adjusted to 500 to 700 mPa · s. The viscosity of the slurry molding raw material was measured using an LVT viscometer (manufactured by Brookfield). By using the doctor blade method, a slurry-like forming raw material whose viscosity was adjusted was formed on a PET film to obtain a sheet-like formed body. The thickness of the sheet-like molded body after drying was 5 / m.
[0083] (3) 焼成工程  [0083] (3) Firing process
PETフイルムから剥離したシート状成形体をカッターで 5 Omm角に切 リ、 ジルコニァ製のセッター (寸法: 7 Omm X 7 Omm X厚さ 1 mm) の 中央に載置した。 このセッターに、 シート状成形体を得るのに用いたスラリ 一状成形原料と同一の成形原料からなる未焼成成形体 (寸法: 5mmX 40 mm, 厚み 100 jU m) をシー卜状成形体の四辺の外側に、 シート状成形体 を囲うように載置した。 未焼成成形体の上にジルコニァ製の角板 (寸法: 7 Omm X 7 Omm, 高さ 5 mm) を載置した。 このように、 シート状成形体 が配置される空間をできるだけ小さくするとともに、 同一の成形原料を共存 させた状態とし、 600°Cで 2時間脱脂後、 900°Cで 24時間焼成し、 焼 成後のシート状成形体のセッタ一に溶着していない部分を取リ出した。 The sheet-like molded body peeled from the PET film was cut into 5 Omm squares with a cutter and placed in the center of a zirconia setter (dimensions: 7 Omm X 7 Omm X thickness 1 mm). To this setter, an unfired molded body (dimensions: 5mmX 40 mm, thickness 100 jU m) made of the same molding raw material as the slurry-shaped molding raw material used to obtain the sheet-shaped molded body was placed on the four sides of the sheet-shaped molded body. Outside the sheet-shaped molded body It was placed so as to surround. A zirconia square plate (dimensions: 7 Omm X 7 Omm, height 5 mm) was placed on the green body. In this way, the space in which the sheet-shaped molded body is placed is made as small as possible, and the same molding raw material is allowed to coexist, degreased at 600 ° C for 2 hours, and then fired at 900 ° C for 24 hours. The portion not welded to the setter of the subsequent sheet-like molded body was taken out.
[0084] (4) 粉砕工程 [0084] (4) Grinding process
焼成後のシー卜状成形体を、 メッシュ平均開口径 25 μ mのふるい上に載 置するとともに、 へらで軽くふるいに押し付けて解砕及び分級し、 板状結晶 粒子 (実施例 1 ) を得た。  The sheet-like shaped body after firing was placed on a sieve having an average mesh opening diameter of 25 μm, and pressed lightly with a spatula to crush and classify to obtain plate-like crystal particles (Example 1). It was.
[0085] (実施例 2~7) [0085] (Examples 2 to 7)
乾燥後のシート状成形体を表 1に示す厚みとしたこと、 及び表 1に示すメ ッシュ平均開口径のふるいを使用して焼成後のシート状成形体を解砕及び分 級したこと以外は、 前述の実施例 1と同様にして板状結晶粒子 (実施例 2〜 7) を得た。  Except that the dried sheet-like molded product had the thickness shown in Table 1, and that the baked sheet-like molded product was crushed and classified using a sieve having a mesh average opening diameter shown in Table 1. In the same manner as in Example 1 described above, plate-like crystal particles (Examples 2 to 7) were obtained.
[0086] (実施例 8) [0086] (Example 8)
( 1 ) 無機粒子の合成  (1) Synthesis of inorganic particles
L i L 05Mn 9504の組成比となるように、 L i 2C03粉末 (関東化学 社製) 、 及び Mn02粉末 (高純度化学研究所社製) を秤量して樹脂製の円筒 型広口瓶に入れ、 ジルコニァポール、 及び分散媒としてエタノールを更に入 れ、 ボールミルで 1 6時間、 湿式混合及び粉砕を行ってスラリーを得た。 得 られたスラリーをエバポレータ及び乾燥機を用いて乾燥した後、 800°C、 24時間の条件で仮焼成して仮焼粉末を得た。 ジルコニァポール、 及び分散 媒としてエタノールを使用して、 得られた仮焼粉末をポールミルで 5時間湿 式粉砕した。 エバポレータ及び乾燥機を用いて乾燥して、 L i ,. 05Μη ι.95 04粉体 (無機粒子) を得た。 レーザ回折 Z散乱式粒度分布測定装置 (型番 Γ L A— 750」 、 HOR I BA社製) を使用し、 水を分散媒として測定した L i τ. 05Mn L 9504粉体の平均粒径 (メディアン径 (D 50) ) は、 1. 0 β mであった。 [0087] (2) 成形工程 L i L 05 Mn such that 95 0 4 composition ratio, L i 2 C0 (manufactured by Kanto Chemical Co., Inc.) 3 powder, and Mn0 2 powder (Kojundo Chemical Laboratory Co., Ltd.) were weighed to a resin cylinder and The mixture was placed in a wide-mouthed bottle, zirconia pol, and ethanol as a dispersion medium were further added, and wet-mixed and pulverized for 16 hours in a ball mill to obtain a slurry. The obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder. The obtained calcined powder was wet pulverized with a pole mill for 5 hours using zirconia pole and ethanol as a dispersion medium. And dried using an evaporator and a dryer, L i, to obtain a. 05 Μ η ι. 95 0 4 powder (inorganic particles). L i τ. 05 Mn L 95 0 4 Average particle diameter measured using a laser diffraction Z-scattering particle size distribution analyzer (model number Γ LA-750, manufactured by HOR I BA) with water as the dispersion medium The median diameter (D 50) was 1.0 β m. [0087] (2) Molding process
トルエン及びイソプロパノールを等量混合して調製した分散媒 1 00質量 部、 得られた L i !. 05Mn n. 9504粉体 1 00質量部、 バインダーとしてポ リビニルブチラール (商品名 ΓΒΜ— 2」 、 積水化学社製) 1 0質量部、 可 塑剤 (商品名 「DOP」 、 黒金化成社製) 4質量部、 及び分散剤 (商品名 Γ S P_O30」 、 花王社製) 2質量部を混合して、 スラリー状成形原料を得 た。 得られたスラリー状成形原料を減圧下で撹拌して脱泡し、 その粘度を 4 O O OmP a ■ sとした。 なお、 スラリー状成形原料の粘度は、 LVT型粘 度計 (ブルックフィールド社製) を使用して測定した。 ドクターブレード法 により、 粘度を調整したスラリ一状成形原料を P E Tフィルムの上に成形し てシート状成形体を得た。 なお、 乾燥後のシート状成形体の厚みは 1 7 jtim であった。 Dispersion media 1 00 parts by weight to prepare a toluene and isopropanol by mixing equal amounts, the resulting L i!. 05 Mn n. 95 0 4 powder 1 00 parts by mass, Po polyvinyl butyral as a binder (trade name ΓΒΜ- 2 ”, manufactured by Sekisui Chemical Co., Ltd.) 10 parts by mass, plasticizer (trade name“ DOP ”, manufactured by Kurokin Kasei Co., Ltd.) 4 parts by mass, and dispersant (trade name: Γ S P_O30, manufactured by Kao) 2 parts by mass The parts were mixed to obtain a slurry-like forming raw material. The resulting slurry-like forming raw material was stirred and degassed under reduced pressure, and its viscosity was set to 4 OO OmPa · s. The viscosity of the slurry molding raw material was measured using an LVT type viscometer (Brookfield). Using a doctor blade method, a slurry-like forming material with adjusted viscosity was formed on a PET film to obtain a sheet-like formed body. The thickness of the sheet-like molded body after drying was 17 jtim.
[0088] (3) 焼成工程  [0088] (3) Firing step
P ETフィルムから剥離したシー卜状成形体をカッターで 5 Omm角に切 リ、 ジルコニァ製のセッター (寸法: 7 Omm X 7 Omm X厚さ 1 mm) の 中央に載置した。 このセッターの四隅に高さ 5mmのジルコ二ァ製スぺ一サ 一を置き、 同様にシート状成形体を載置したセッターを 1 0段積み、 アルミ ナ製の鞘 (寸法: 9 Omm X 9 Omm X高さ 6 Omm) に入れた。 蓋を開け た状態で 600°Cで 2時間脱脂し、 更に蓋を閉めた状態で 1 1 00°Cで 3時 間焼成し、 焼成後のシート状成形体のセッターに溶着していない部分を取り 出した。 取り出したシート状成形体の表面の状態 (モフォロジー) を示す電 子顕微鏡写真を図 6に示す。 また、 取り出したシート状成形体の断面の状態 (モフォロジー) を示す電子顕微鏡写真を図 7に示す。  The sheet-like shaped product peeled from the PET film was cut into 5 Omm squares with a cutter and placed in the center of a zirconia setter (dimensions: 7 Omm X 7 Omm X thickness 1 mm). Place a set of 5 mm high Zirconia spacers at the four corners of this setter, and stack 10 sets of setters on which sheet-like molded bodies are placed in the same manner. Omm X height 6 Omm). Degrease at 600 ° C for 2 hours with the lid open, and further fire for 3 hours at 1100 ° C with the lid closed, and remove the part that is not welded to the setter of the fired sheet Removed. Fig. 6 shows an electron micrograph showing the surface condition (morphology) of the sheet-shaped molded article taken out. In addition, Fig. 7 shows an electron micrograph showing the cross-sectional state (morphology) of the sheet-like molded article taken out.
[0089] (4) 粉砕工程  [0089] (4) Grinding process
焼成後のシー卜状成形体を、 メッシュ平均開口径 50 jt/mのふるい上に載 置するとともに、 へらで軽くふるいに押し付けて解碎及び分級した。  The calcined sheet-shaped product after firing was placed on a sieve having an average mesh opening diameter of 50 jt / m, and was lightly pressed against the sieve with a spatula to be unraveled and classified.
[0090] (5) 再熱処理工程  [0090] (5) Reheat treatment process
解砕及び分級して得られた粒子を、 酸素雰囲気中、 700°Cで 3時間熱処 理し、 板状結晶粒子 (実施例 8) を得た。 The particles obtained by crushing and classification are heat-treated at 700 ° C for 3 hours in an oxygen atmosphere. Thus, plate-like crystal particles (Example 8) were obtained.
[0091] (比較例"!〜 3)  [0091] (Comparative example "! ~ 3)
L i Mn 204の組成比となるように、 L i 2C03粉末 (関東化学社製) 、 . 及び Mn02粉末 (高純度化学研究所社製) を秤量して樹脂製の円筒型広口瓶 に入れ、 ジルコニァボール、 及び分散媒としてエタノールを更に入れ、 ボー ルミルで 1 6時間、 湿式混合及び粉砕を行ってスラリーを得た。 得られたス ラリーをエバポレータ及び乾燥機を用いて乾燥した後、 800°C、 24時間 の条件で仮焼成して仮焼粉末を得た。 ジルコニァポール、 及び分散媒として ェタノールを使用して、 得られた仮焼粉末をボールミルで 5時間湿式粉砕し た。 エバポレータ及び乾燥機を用いて乾燥して、 L i Mn 204粉体 (無機粒 子) を得た。 レーザ回折 散乱式粒度分布測定装置 (型番 「LA—750J 、 HOR I BA社製) を使用し、 水を分散媒として測定した L i Mn 204粉 体の平均粒径 (メディアン径 (D50) ) は、 0. 6 仰 であった。 L i 2 C0 3 powder (manufactured by Kanto Chemical Co., Inc.),. And Mn0 2 powder (manufactured by High Purity Chemical Laboratory Co., Ltd.) are weighed so that the composition ratio of L i Mn 2 0 4 is obtained. The mixture was placed in a wide-mouthed bottle, and zirconia balls and ethanol as a dispersion medium were further added, and wet mixing and pulverization were performed for 16 hours in a ball mill to obtain a slurry. The obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder. The obtained calcined powder was wet-ground by a ball mill for 5 hours using zirconia pollen and ethanol as a dispersion medium. Li Mn 20 4 powder (inorganic particles) was obtained by drying using an evaporator and a dryer. Average particle diameter of Li Mn 2 0 4 powder (median diameter (D50)) measured using a laser diffraction / scattering particle size distribution analyzer (model number “LA-750J” manufactured by HOR I BA) with water as the dispersion medium ) Was 0.6.
[0092] 得られた L i Mn 204粉体をジルコニァ製の鞘に入れ、 900°Cで 24時 間熱処理して粒成長した L i Mn 204粉体を得た。 ジルコニァポール、 及び 分散媒としてエタノールを使用して、 得られた L i Mn 204粉体をポールミ ルで所望の粒径になるまで湿式粉砕した。 エバポレータ及び乾燥機を用いて 乾燥して、 平均粒径 0. 6 im (比較例 1) 、 3 /m (比較例 2) 、 及び 1 Oum (比較例 3) のし i Mn 204の不定形結晶粒子を得た。 [0,092] obtained L i Mn 2 0 4 powder was put into Jirukonia steel sheath, to obtain a L i Mn 2 0 4 powder was grain growth by heat treatment between 24 hours at 900 ° C. Jirukoniaporu, and using ethanol as a dispersion medium, L i Mn 2 0 4 powder obtained was wet pulverized to the desired particle size in Porumi Le. And dried using an evaporator and a dryer, the average particle diameter of 0. 6 im (comparative example 1), 3 / m of Comparative Example 2, and 1 Oum (comparative example 3) Works i Mn 2 0 4 not Regular crystal particles were obtained.
[0093] (実施例 9 )  [0093] (Example 9)
( 1 ) 無機粒子の合成 ·成形工程  (1) Synthesis and molding process of inorganic particles
L i L τΜη τ. 904の組成比となるように、 L i 2C03粉末 (本荘ケミカ ル社製、 ファイングレード、 平均粒径: 3jum) 、 及び Mn02粉末 (商品名 「電解二酸化マンガン グレード FMJ 、 東ソ一社製、 平均粒径: 5〃m) を秤量した秤量物を樹脂製の円筒型広口瓶に入れ、 ジルコニァボール、 並び に分散媒としてトルェン及びィソプロパノ一ルを等量混合して調製した混合 液を、 先の秤量物 1 00質量部に対して 100質量部入れ、 ボールミルで 1 6時間、 湿式混合及び粉砕を行った。 得られたスラリーの一部を取り出し ( サンプリングし) 、 乾燥させた粉末を走査型電子顕微鏡 (SEM) (型番 Γ J SM— 6390」 、 日本電子社製) を使用して観察したところ、 粉末の粒 径は 1 m以下であった。 更に、 バインダーとしてポリビニルプチラール ( 商品名 「BM_2J 、 積水化学社製) 1 0質量部、 可塑剤 (商品名 「DOP 」 、 黒金化成社製) 4質量部、 及び分散剤 (商品名 「SP— 030」 、 花王 社製) 2質量部を混合して、 スラリー状成形原料を得た。 得られたスラリー 状成形原料を減圧下で撹拌して脱泡し、 その粘度を 400 OmP a · sとし た。 なお、 スラリー状成形原料の粘度は、 LVT型粘度計 (ブルックフィー ルド社製) を使用して測定した。 ドクターブレード法により、 粘度を調整し たスラリー状成形原料を P ETフィルムの上に成形してシート状成形体を得 た。 なお、 乾燥後のシート状成形体の厚みは 1 7jt/mであった。 . L i L τΜη τ 9 0 so that the fourth composition ratio, L i 2 C0 3 powder (Honjo Chemicals Le Co., fine grade, average particle size: 3jum), and Mn0 2 powder (trade name "electrolytic dioxide Manganese grade FMJ, manufactured by Tosohichi Co., Ltd., average particle size: 5〃m) is weighed and placed in a resin-made cylindrical wide-mouthed jar, zirconia balls, as well as toluene and isopropanol as a dispersion medium, etc. 100 parts by mass of the mixed liquid prepared by mixing the quantity was added to 100 parts by mass of the previous weighed product, and wet-mixed and pulverized with a ball mill for 16 hours. The dried powder was sampled and observed using a scanning electron microscope (SEM) (Model No. Γ J SM-6390, manufactured by JEOL Ltd.). The particle diameter of the powder was 1 m or less. Furthermore, polyvinyl petital (trade name “BM_2J, manufactured by Sekisui Chemical Co., Ltd.) 10 parts by mass, plasticizer (trade name“ DOP ”, manufactured by Kurokin Kasei Co., Ltd.) 4 parts by weight, and a dispersant (trade name“ SP ” —030 ”(manufactured by Kao Corporation) 2 parts by mass were mixed to obtain a slurry-like forming raw material. The obtained slurry-like forming raw material was stirred and degassed under reduced pressure, and the viscosity was adjusted to 400 OmPa · s. The viscosity of the slurry-like forming raw material was measured using an LVT viscometer (manufactured by Brookfield). Using a doctor blade method, a slurry-like forming raw material with adjusted viscosity was formed on a PET film to obtain a sheet-like formed body. The thickness of the sheet-like molded body after drying was 17 jt / m.
[0094] (2) 焼成工程  [0094] (2) Firing process
P E Tフイルムから剥離したシー卜状成形体を力ッターで 30 Omm角に 切り、 アルミナ製の鞘 (寸法: 9 Omm X 9 Omm X高さ 6 Omm) に、 く しやくしゃに丸めた状態で入れた。 蓋を開けた状態で 600°Cで 2時間脱脂 し、 更に、 蓋を閉めた状態で 1 050°Cで 3時間焼成した。  The sheet-like molded product peeled from the PET film was cut into 30 Omm squares with a force cutter and placed in an alumina sheath (dimensions: 9 Omm X 9 Omm X height 6 Omm) in a crumpled state. . Degreasing was performed at 600 ° C for 2 hours with the lid open, and further, baking was performed at 1050 ° C for 3 hours with the lid closed.
[0095] (3) 粉砕工程  [0095] (3) Grinding process
焼成後のシート状成形体を、 メッシュ平均開口径 5 Ojumのふるい上に載 置するとともに、 へらで軽くふるいに押し付けて解砕及び分級した。  The fired sheet-like molded body was placed on a sieve having a mesh average opening diameter of 5 Ojum, and pressed lightly with a spatula to be crushed and classified.
[0096] (4) 再熱処理工程  [0096] (4) Reheating process
解砕及び分級して得られた粒子を、 大気中、 650°Cで 3時間熱処理し、 板状結晶粒子 (実施例 9) を得た。  Particles obtained by crushing and classification were heat-treated at 650 ° C. for 3 hours in the air to obtain plate-like crystal particles (Example 9).
[0097] (実施例 10 )  [Example 10]
L i n.05A I o. iMn ,. β 5 O 4の組成比となるように A I 203粉末 (商品 名 ΓΑΚΡ— 20J 、 住友化学社製:平均粒径: 0. 6 ym) を更に秤量し たこと、 及び焼成温度を 1 1 00°Cとした以外は、 前述の実施例 1と同様に して板状結晶粒子 (実施例 1 0) を得た。 ... L i n 05 AI o iMn, so as to have the composition ratio of the β 5 O 4 AI 2 0 3 powder (trade name ΓΑΚΡ- 20J, manufactured by Sumitomo Chemical Co., Ltd., average particle size:: 0. 6 ym) further Plate-like crystal particles (Example 10) were obtained in the same manner as in Example 1 except that weighing was performed and the firing temperature was 110 ° C.
[0098] (実施例 1 1 ) 乾燥後のシー卜状成形体の厚みを 4 としたこと、 及びメッシュ平均開 口径 5 jumのふるいを使用して焼成後のシー卜状成形体を解砕及び分級した こと以外は、 前述の実施例 1と同様にして板状結晶粒子 (実施例 1 1 ) を得 た。 [Example 1 1] Implementation as described above, except that the thickness of the dried sheet-like molded body was set to 4 and the fired sheet-like shaped body was crushed and classified using a sieve having an average mesh opening of 5 jum. In the same manner as in Example 1, plate-like crystal particles (Example 11) were obtained.
[0099] (実施例 1 2)  [0099] (Example 1 2)
焼成温度を 1 000°Cとしたこと、 及びメッシュ平均開口径 1 0/ mのふ るいを使用して焼成後のシート状成形体を解砕及び分級したこと以外は、 前 述の実施例 1 1と同様にして板状結晶粒子 (実施例 1 2) を得た。  Example 1 described above, except that the firing temperature was set to 1 000 ° C, and the sheet-like molded product after firing was crushed and classified using a sieve having a mesh average opening diameter of 10 / m. In the same manner as in Example 1, plate-like crystal particles (Example 1 2) were obtained.
[0100] (比較例 4)  [0100] (Comparative Example 4)
L i !. 05Mn 9504の組成比となるように、 L i 2C03粉末 (関東化学 社製) 、 及び Mn02粉末 (高純度化学研究所社製) を秤量して樹脂製の円筒 型広口瓶に入れ、 ジルコニァボール、 及び分散媒としてエタノールを更に入 れ、 ボールミルで 1 6時間、 湿式混合及び粉砕を行ってスラリーを得た。 得 られたスラリーをエバポレータ及び乾燥機を用いて乾燥した後、 800°C、 24時間の条件で仮焼成して仮焼粉末を得た。 ジルコニァボール、 及び分散 媒としてエタノールを使用して、 得られた仮焼粉末をポールミルで 5時間湿 式粉砕した。 エバポレータ及び乾燥機を用いて乾燥して、 L i !. 05Mn 95 o4粉体 (無機粒子) を得た。 レーザ回折 散乱式粒度分布測定装置 (型番 Γ LA— 750」 、 HOR I BA社製) を使用し、 水を分散媒として測定した L i Mn 204粉体の平均粒径 (メディアン径 (D 50) ) は、 0. 6〃 mで あつに。 L i!. 05 Mn such that 95 0 4 composition ratio, L i 2 C0 (manufactured by Kanto Chemical Co., Inc.) 3 powder, and Mn0 2 powder (Kojundo Chemical Laboratory Co., Ltd.) made of resin was weighed It was put into a cylindrical wide-mouth bottle, further added with zirconia balls and ethanol as a dispersion medium, and wet-mixed and pulverized with a ball mill for 16 hours to obtain a slurry. The obtained slurry was dried using an evaporator and a dryer, and then calcined at 800 ° C. for 24 hours to obtain a calcined powder. Using the zirconia balls and ethanol as the dispersion medium, the obtained calcined powder was wet pulverized with a pole mill for 5 hours. And dried using an evaporator and a dryer, to obtain L i!. 05 Mn 95 o 4 powder (inorganic particles). The average particle diameter (median diameter (D) of Li Mn 2 0 4 powder measured using a laser diffraction / scattering particle size distribution analyzer (model number Γ LA-750) manufactured by HOR I BA with water as the dispersion medium. 50)) is at 0.6〃 m.
[0101] 得られた L i Mn 204粉体をジルコニァ製の鞘に入れ、 1 1 00°〇で24 時間熱処理して粒成長した L i L 05Μη τ. 9504粉体を得た。 ジルコ二アポ ール、 及び分散媒としてエタノールを使用して、 得られた L i L 05Mn L 9 5 o4粉体をボールミルで湿式粉砕し、 更にエバポレータ及び乾燥機を用いて乾 燥して、 平均粒径 1 0 mの粉体を得た。 得られた粉末を、 酸素雰囲気中、 700°Cで 3時間熱処理し、 L i L 05 η τ. g504の不定形結晶粒子 (比較 例 4) を得た。 [0102] (比較例 5) [0101] The obtained Li Mn 2 0 4 powder was put in a zirconia sheath and heat-treated at 1 100 ° o for 24 hours to obtain Li L 05 Μη τ. 95 0 4 powder. It was. Zirconyl two apo Lumpur, and using ethanol as a dispersion medium, a L i L 05 Mn L 9 5 o 4 powder obtained by wet grinding with a ball mill, and further Drying with an evaporator and dryer A powder having an average particle size of 10 m was obtained. The obtained powder was heat-treated at 700 ° C. for 3 hours in an oxygen atmosphere to obtain amorphous crystal particles of Li L 05 η τ. G5 0 4 (Comparative Example 4). [0102] (Comparative Example 5)
L i L τΜ η L 904の組成比となるように、 L i 2C03粉末 (本荘ケミカ ル社製、 ファイングレード、 平均粒径: 3 im) 、 及び Mn 02粉末 (商品名L i 2 C0 3 powder (Made by Honjo Chemical Co., fine grade, average particle size: 3 im) and Mn 0 2 powder (trade name) so that the composition ratio of L i L τΜ η L 9 0 4
「電解二酸化マンガン グレード FM」 、 東ソ一社製、 平均粒径: 5 / m) を秤量した秤量物を樹脂製の円筒型広口瓶に入れ、 ジルコニァボール、 及び 分散媒としてエタノールを更に入れ、 ボールミルで 1 6時間、 湿式混合及び 粉砕を行ってスラリーを得た。 得られたスラリーをエバポレータ及び乾燥機 を用いて乾燥した後、 1 1 00°C、 24時間熱処理して粒成長した L i τ. ,Μ η τ. 904粉体を得た。 ジルコニァポール、 及び分散媒としてエタノールを使 用して、 得られた L i L τΜη !. g04粉体をボールミルで湿式粉砕し、 更に 、 エバポレータ及び乾燥機を用いて乾燥して、 平均粒径 1 O imの粉体を得 た。 得られた粉体を、 大気中、 650°Cで 3時間熱処理し、 L i ,M n i. 9 04の不定形結晶粒子 (比較例 5) を得た。 Weighed “Electrolytic Manganese Dioxide Grade FM”, manufactured by Tosohichi Co., Ltd., average particle size: 5 / m) into a plastic cylindrical wide-mouthed jar, and then added zirconia balls and ethanol as a dispersion medium. A slurry was obtained by wet mixing and grinding for 16 hours in a ball mill. The resulting slurry was dried using an evaporator and a dryer, 1 1 00 ° C, 24 hours heat treatment to grain grown L i tau., Was obtained Μ η τ. 9 0 4 powder. The obtained Li L τΜη!. G 0 4 powder was wet-ground with a ball mill using zirconia pol and ethanol as a dispersion medium, and further dried using an evaporator and a dryer. A powder with a particle size of 1 O im was obtained. The obtained powder was heat-treated in the atmosphere at 650 ° C. for 3 hours to obtain amorphous crystal particles of Li , Mni . 90 4 (Comparative Example 5).
[0103] [0103]
1] 1]
Figure imgf000030_0001
[配向性] :エタノール 2 gに粒子 0. 1 gを加えて超音波分散機 (超音 波洗浄機) で 30分間分散させて分散液を調製した。 25mmx 5 Ommの ガラス基板の面上に、 2000 r pmで分散液をスピンコートし、 粒子がで きるだけ重ならず、 かつ、 粒子の板面が、 ガラス基板の面と平行に配置され た状態の測定用試料を作製した。 XRD回折装置 (型番 「RAD— I B」 、 リガク社製) を使用し、 作製した測定用試料における粒子の表面に対して X 線を照射した際の X R D回折バタ一ンを測定した。 測定した X R D回折バタ —ンにおける ( 1 1 1 ) 面、 (31 1 ) 面、 (400) 面、 及び (331 ) 面のピークを用いて、 ロットゲーリング法により、 (1 1 1 ) 面の配向度を 前述の式 (2) から算出した。 結果を表 2に示す。
Figure imgf000030_0001
[Orientation] 0.1 g of particles was added to 2 g of ethanol and dispersed for 30 minutes with an ultrasonic disperser (ultrasonic cleaner) to prepare a dispersion. Spin coating of the dispersion liquid at 2000 rpm on the surface of a 25 mm x 5 Omm glass substrate so that the particles do not overlap as much as possible and the plate surface of the particles is arranged parallel to the surface of the glass substrate Samples for measurement were prepared. Using the XRD diffractometer (model number “RAD—IB”, manufactured by Rigaku Corporation) The XRD diffraction pattern was measured when the line was irradiated. The orientation of the (1 1 1) plane by the Lotgering method using the peaks of the (1 1 1) plane, (31 1) plane, (400) plane, and (331) plane in the measured XRD diffraction pattern The degree was calculated from Equation (2) above. The results are shown in Table 2.
[0105] [粒子厚みの測定] :導電性テープ上に粒子をランダムに配置した状態で 、 走査型電子顕微鏡 (SEM) (型番 「J SM— 6390」 、 日本電子社製 ) を使用して観察し、 その板面が観察方向と平行に配置された粒子 (即ち、 垂直に立った状態の粒子) を選び、 その粒子厚み (W) を測定した。 測定結 果を表 2に示す。 [0105] [Measurement of particle thickness]: Observation using a scanning electron microscope (SEM) (model number “J SM-6390”, manufactured by JEOL Ltd.) with particles randomly arranged on a conductive tape Then, the particles whose plate surface was arranged parallel to the observation direction (ie, particles standing in a vertical state) were selected, and the particle thickness (W) was measured. Table 2 shows the measurement results.
[0106] [アスペクト比の算出] :エタノール 2 gに粒子 0. 1 gを加えて超音波 分散機 (超音波洗浄機) で 30分間分散させて分散液を調製した。 25mm X 5 Ommのガラス基板の面上に、 2000 r pmで分散液をスピンコート し、 粒子ができるだけ重ならず、 かつ、 粒子の板面が、 ガラス基板の面と平 行に配置された状態の測定用試料を作製した。 走査型電子顕微鏡 (SEM) [Calculation of aspect ratio]: 0.1 g of particles was added to 2 g of ethanol and dispersed for 30 minutes with an ultrasonic dispersing machine (ultrasonic cleaner) to prepare a dispersion. Spin coating the dispersion liquid at 2000 rpm on the surface of a 25mm x 5 Omm glass substrate, the particles are not overlapping as much as possible, and the particle plate surface is arranged parallel to the surface of the glass substrate Samples for measurement were prepared. Scanning electron microscope (SEM)
(型番 「J SM— 6390」 、 日本電子社製) を使用して、 作製した測定用 試料における、 粒子が 5 ~ 30個程度含まれる視野中の粒子の板面を観察し て、 粒子の最長長さ (Y) を測定した。 最長長さ (Y) を粒子の粒径と仮定 し、 この粒径 (Y) を粒子厚み (W) で除してそれぞれの粒子の 「YZWJ の値を算出し、 これを平均した値を 「板状結晶粒子のアスペクト比」 とした 。 結果を表 2に示す。 また、 板状結晶粒子に含まれる単結晶粒子のァスぺク ト比について、 前記 Γ丫」 と同様の方法で Γχ」 を算出し、 更に、 「Z=W(Model No. “J SM-6390”, manufactured by JEOL Ltd.) is used to observe the plate surface of the particles in the field of view containing about 5 to 30 particles in the sample for measurement. The length (Y) was measured. Assuming that the longest length (Y) is the particle size of the particle, this particle size (Y) is divided by the particle thickness (W) to calculate the YZWJ value for each particle, and the average value is The aspect ratio of the plate-like crystal grains ”. The results are shown in Table 2. Also, with respect to the aspect ratio of the single crystal particles contained in the plate-like crystal particles, Γχ ”is calculated in the same manner as the above Γ 丫, and“ Z = W
J と仮定した上で Γχ ζ」 値を算出した。 算出した 「χ ζ」 値を平均し た値を、 「単結晶粒子のアスペクト比」 とした。 結果を表 2に示す。 Assuming J, Γχ ζ ”value was calculated. The average value of the calculated “χ ζ” values was defined as “aspect ratio of single crystal grains”. The results are shown in Table 2.
[0107] [電池 (コインセル) の作製] :実施例 1 ~1 2の板状結晶粒子及び比較 例 1 ~ 5の不定形結晶粒子のそれぞれに、 アセチレンブラック及びポリフッ 化ビニリデン (PVDF) を、 質量比で 50 : 2 : 3となるように添加及び 混合して正極材料を調製した。 調製した正極材料 0. 02 gを 300 k gZ cm2の圧力で直径 2 Omm øの円板状にプレス成形して正極を作製した。 作 製した正極と、 エチレンカーボネート (EC) 及びジェチルカーボネート ( DEC) を等体積比で混合した有機溶媒に L i P F6を 1 mo I ZLの濃度と なるように溶解して調製した電解液と、 カーボン製の負極、 並びにセパレー タを用いてコインセルを作製した。 [Production of battery (coin cell)]: Acetylene black and polyvinylidene fluoride (PVDF) were added to each of the plate-like crystal particles of Examples 1 to 12 and the amorphous crystal particles of Comparative Examples 1 to 5. A positive electrode material was prepared by adding and mixing so that the ratio was 50: 2: 3. The prepared positive electrode material 0.02 g was press-molded into a disk shape having a diameter of 2 Omm ø at a pressure of 300 kg Zcm 2 to produce a positive electrode. Product A positive electrode was manufactured, and ethylene carbonate (EC) and an electrolyte prepared by dissolving in a mixed organic solvent in an equal volume of oxygenate chill carbonate (DEC) and L i PF 6 at a concentration of 1 mo I ZL A coin cell was fabricated using a carbon negative electrode and a separator.
[0108] [容量維持率の測定] :作製した電池 (コインセル) について、 試験温度 を 45°Cとして、 (1 ) 1 Cレートの定電流一定電圧で 4. 1 Vまでの充電 、 及び (2) 1 Cレートの定電流で 2. 5 Vまでの放電、 を繰り返すサイク ル充放電を行った。 1 00回のサイクル充放電終了後の電池の放電容量を、 初回の電池の放電容量で除した値を容量維持率 (%) とした。 結果を表 2に 示す。 なお、 容量維持率 (%) の値が大きいほど、 電池の放電容量の減少率 が少なく、 サイクル特性に優れた二次電池であると評価することができる。 [0108] [Measurement of capacity maintenance ratio]: With respect to the manufactured battery (coin cell), the test temperature was set to 45 ° C. (1) Charging up to 4.1 V with constant current and constant voltage of 1 C rate, and (2 ) Cyclic charge / discharge was repeated with a constant current of 1 C rate until discharge to 2.5 V. The capacity retention rate (%) was obtained by dividing the discharge capacity of the battery after the end of 100 cycles of charge / discharge by the discharge capacity of the first battery. The results are shown in Table 2. It can be evaluated that the larger the value of the capacity retention rate (%), the smaller the rate of decrease in the discharge capacity of the battery, and the more excellent the cycle characteristics.
[0109] [0109]
: :
Figure imgf000033_0001
Figure imgf000033_0001
産業上の利用可能性 Industrial applicability
本発明の板状結晶粒子は、 正極活物質として有用なものであり、 出力特性 及び高温サイクル特性に優れたリチウムニ次電池を提供することができる。 また、 本発明のリチウム二次電池は、 出力特性及び高温サイクル特性に優れ たものであり、 ハイブリッド電気自動車、 電気機器、 通信機器等の駆動用電 池として有効に用いられる。 The plate crystal particles of the present invention are useful as a positive electrode active material, and can provide a lithium secondary battery excellent in output characteristics and high-temperature cycle characteristics. The lithium secondary battery of the present invention is excellent in output characteristics and high-temperature cycle characteristics. It is effectively used as a drive battery for hybrid electric vehicles, electrical equipment, communication equipment, etc.
符号の説明 Explanation of symbols
2 :結晶面 (1 1 1 ) 、 5 :焼成器、 1 0, 20, 30, 40, 50, 60 :板状結晶粒子、 1 2 :単結晶粒子、 1 4 :粒界部、 1 5 : シート状成形体 、 22 :セッタ一、 24 :共存用未焼成成形体、 26 :角板、 32 :焼成後 のシ一卜状成形体、 34 : メッシュ、 36 :押圧部材、 65, 75 :正極活 物質、 85 :等軸状結晶粒子、 95 :結着材部、 1 00 :集電板 (アルミ箔 ) 、 1 1 0 :正極板、 Wh W2:粒子厚み、 X :単結晶粒子最長長さ、 Y,, Υ2:粒子最長長さ、 Ζ :単結晶粒子厚み 2: crystal plane (1 1 1), 5: calciner, 10, 20, 30, 40, 50, 60: plate crystal particles, 12: single crystal particles, 14: grain boundaries, 15: Sheet-shaped molded body, 22: Setter, 24: Unsintered green molded body, 26: Square plate, 32: Sintered molded body after firing, 34: Mesh, 36: Press member, 65, 75: Positive electrode active material, 85: equiaxed crystal grains, 95: binder part, 1 00: current collector plate (aluminum foil), 1 1 0: positive electrode plate, Wh W 2: the grain thickness, X: a single crystal grains longest length , Y, Υ 2 : Maximum length of particle, :: Single crystal particle thickness

Claims

請求の範囲 The scope of the claims
[請求項 1] L i と Mnを構成元素として含むスピネル構造のマンガン酸リチウ ムからなるとともに、 アスペクト比が 1. 5〜20であり、 かつ、 厚 みが 1 ~20 mであり、  [Claim 1] It is composed of lithium manganate having a spinel structure containing L i and Mn as constituent elements, has an aspect ratio of 1.5 to 20, and a thickness of 1 to 20 m.
発達面として、 ロットゲーリング法により測定される配向度が 20 %以上である結晶面 (1 1 1 ) を有する板状結晶粒子。  Plate-like crystal grains having a crystal plane (1 1 1) having a degree of orientation of 20% or more as measured by the Lotgering method.
[請求項 2] 単結晶の粒子である請求項 1に記載の板状結晶粒子。 [Claim 2] The plate-like crystal particle according to claim 1, which is a single crystal particle.
[請求項 3] 複数の単結晶粒子を含み、  [Claim 3] comprising a plurality of single crystal particles,
厚さ方向に実質的に存在する前記単結晶粒子の数が 1個であり、 複数の前記単結晶粒子が、 前記結晶面 (1 1 1 ) を揃えた状態で結 合されている請求項 1に記載の板状結晶粒子。  The number of the single crystal particles substantially existing in the thickness direction is one, and a plurality of the single crystal particles are bonded in a state where the crystal planes (1 1 1) are aligned. 2. Plate-like crystal particles according to 1.
[請求項 4] 前記マンガン酸リチウムが、 下記一般式 (1 ) で表される請求項 1[Claim 4] The lithium manganate is represented by the following general formula (1):
〜 3のいずれか一項に記載の板状結晶粒子。The plate-like crystal particle according to any one of to 3.
Figure imgf000035_0001
Figure imgf000035_0001
(前記一般式 (1 ) 中、 Μは、 L i 、 F e、 N i 、 Mg、 Z n、 A I、 Co、 C r、 S i 、 S n、 P、 V、 S b、 N b、 T a、 Mo、 及 び Wからなる群より選択される一種以上の元素、 並びに T iを含む二 種以上の置換元素を示し、 Xは、 前記置換元素 Mの置換数を示す)  (In the above general formula (1), 、 is Li, Fe, Ni, Mg, Zn, AI, Co, Cr, Si, Sn, P, V, Sb, Nb, T one or more elements selected from the group consisting of a, Mo, and W, and two or more substitution elements including Ti, and X represents the number of substitutions of the substitution element M)
[請求項 5] 前記マンガン酸リチウムに含まれる L i と Mnのモル比が、 L i / [Claim 5] The molar ratio of Li to Mn contained in the lithium manganate is Li /
Mn>0. 5の関係を満たす請求項 1 ~ 4のいずれか一項に記載の板 状結晶粒子。  The plate-like crystal particle according to any one of claims 1 to 4, which satisfies a relationship of Mn> 0.5.
[請求項 6] 請求項 1 ~ 5のいずれか一項に記載の板状結晶粒子の製造方法であ つて、  [Claim 6] The method for producing plate-like crystal particles according to any one of claims 1 to 5,
マンガン酸リチウム粒子を含む成形材料を成形して、 厚み 3 OjUm 以下の自立可能なシー卜状成形体を得る成形工程と、 前記シート状成形体を、 前記シー卜状成形体と実質的に反応しない 不活性層に隣接させた状態、 又は前記シート状成形体のままの状態で 焼成する焼成工程と、 焼成後の前記シー卜状成形体を解砕及び分級する粉砕工程と、 を含む板状結晶粒子の製造方法。 A molding step of molding a molding material containing lithium manganate particles to obtain a self-supporting sheet-like shaped body having a thickness of 3 OjUm or less, and the sheet-like shaped body substantially reacts with the sheet-like shaped body A firing step of firing in a state adjacent to the inert layer, or in the state of the sheet-like molded body, A crushing step of crushing and classifying the sheet-like shaped product after firing, and a method for producing plate-like crystal particles.
[請求項 7] 前記焼成工程における焼成温度が、 6 5 0 ~ 1 2 5 0 °Cである請求 項 6に記載の板状結晶粒子の製造方法。  7. The method for producing plate-like crystal particles according to claim 6, wherein a firing temperature in the firing step is 6500 to 1250 ° C.
[請求項 8] 前記マンガン酸リチウム粒子のメディアン径が、 前記シート状成形 体の厚みの 1 ~ 6 0 ·½である請求項 6又は 7に記載の板状結晶粒子の 製造方法。 8. The method for producing plate-like crystal particles according to claim 6 or 7, wherein a median diameter of the lithium manganate particles is 1 to 60 · ½ of a thickness of the sheet-like molded body.
[請求項 9] 前記シー卜状成形体に含まれる特定成分の揮発を抑制し得る揮発抑 制状態で、 前記シ一卜状成形体を焼成する請求項 6〜 8のいずれか一 項に記載の板状結晶粒子の製造方法。  [Claim 9] The method according to any one of claims 6 to 8, wherein the sheet-shaped molded body is fired in a volatilization-suppressed state capable of suppressing volatilization of a specific component contained in the sheet-shaped molded body. A method for producing plate-like crystal particles.
[請求項 10] 前記揮発抑制状態が、 前記シート状成形体と別の、 前記マンガン酸 リチウム粒子を共存させた状態である請求項 9に記載の板状結晶粒子 の製造方法。  10. The method for producing plate-like crystal particles according to claim 9, wherein the volatilization suppression state is a state in which the lithium manganate particles coexist with the sheet-like molded body.
[請求項 1 1 ] 前記粉砕工程が、 所定サイズの開口部を通過させることにより、 焼 成後の前記シート状成形体を解砕及び分級する工程である請求項 6 ~ 1 0のいずれか一項に記載の板状結晶粒子の製造方法。  [Claim 11] The pulverizing step is a step of pulverizing and classifying the sheet-like molded body after firing by passing through an opening of a predetermined size. The manufacturing method of the plate-shaped crystal particle as described in a term.
[請求項 12] 前記開口部の平均開口径が、 1 . O mm以下である請求項 1 1に記 載の板状結晶粒子の製造方法。  12. The method for producing plate-like crystal particles according to claim 11, wherein an average opening diameter of the opening is 1. O mm or less.
[請求項 13] 焼成後の前記シート状成形体を押圧部材で押圧し、 前記開口部を有 するメッシュを通過させて焼成後の前記シート状成形体を解砕及び分 級する請求項 6〜 1 2のいずれか一項に記載の板状結晶粒子の製造方 法。 [Claim 13] The sheet-shaped molded body after firing is pressed by a pressing member, and the mesh having the opening is passed through to crush and classify the sheet-shaped molded body after firing. 1. A method for producing plate-like crystal particles according to any one of 2 above.
[請求項 14] 請求項 1 ~ 5のいずれか一項に記載の板状結晶粒子を正極活物質と して用いてなるリチウム二次電池。  [Claim 14] A lithium secondary battery obtained by using the plate-like crystal particles according to any one of claims 1 to 5 as a positive electrode active material.
PCT/JP2009/058872 2008-05-01 2009-05-01 Plate-like crystal grain and production method thereof, and secondary lithium battery WO2009139397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511993A JPWO2009139397A1 (en) 2008-05-01 2009-05-01 Plate-like crystal particles, method for producing the same, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-119633 2008-05-01
JP2008119633 2008-05-01
JP2009-045329 2009-02-27
JP2009045329 2009-02-27

Publications (1)

Publication Number Publication Date
WO2009139397A1 true WO2009139397A1 (en) 2009-11-19

Family

ID=41318764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058872 WO2009139397A1 (en) 2008-05-01 2009-05-01 Plate-like crystal grain and production method thereof, and secondary lithium battery

Country Status (2)

Country Link
JP (1) JPWO2009139397A1 (en)
WO (1) WO2009139397A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219068A (en) * 2010-06-23 2010-09-30 Ngk Insulators Ltd Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
JP2010219069A (en) * 2010-06-23 2010-09-30 Ngk Insulators Ltd Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
WO2011162194A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for producing spinel lithium manganese oxide
WO2011162195A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for producing spinel lithium manganese oxide
WO2011162193A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for manufacturing spinel-type lithium manganate
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
JP2012009151A (en) * 2010-06-22 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery, and lithium secondary battery
EP2642563A1 (en) * 2010-11-17 2013-09-25 NGK Insulators, Ltd. Positive electrode for lithium secondary battery
JP2014110240A (en) * 2012-11-30 2014-06-12 Ngk Insulators Ltd Power storage element
JP2014141357A (en) * 2013-01-22 2014-08-07 Ibaraki Univ Method for producing lithium manganese-based composite oxide
JP2017054783A (en) * 2015-09-11 2017-03-16 株式会社サムスン日本研究所 Positive electrode active material particle, lithium ion secondary battery arranged by use thereof, and method for manufacturing positive electrode active material particles
KR20170030411A (en) * 2015-09-09 2017-03-17 삼성전자주식회사 Cathodes active material for lithium ion batteries, and the batteries with them
WO2017104363A1 (en) * 2015-12-18 2017-06-22 日本碍子株式会社 Plate-shaped lithium composite oxide, and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291664A (en) * 1989-05-02 1990-12-03 Fuji Elelctrochem Co Ltd Manufacture of electrode in sheet form
JPH10255797A (en) * 1997-03-12 1998-09-25 Kao Corp Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor
JP2000149942A (en) * 1998-11-02 2000-05-30 Toyota Central Res & Dev Lab Inc Lithium-manganese composite oxide and lithium secondary battery using it as positive electrode active material
JP2003326637A (en) * 2002-05-17 2003-11-19 National Institute For Materials Science Manganic acid nano-sheet ultrathin film and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291664A (en) * 1989-05-02 1990-12-03 Fuji Elelctrochem Co Ltd Manufacture of electrode in sheet form
JPH10255797A (en) * 1997-03-12 1998-09-25 Kao Corp Positive electrode active material for nonaqueous electrolyte secondary battery and manufacture therefor
JP2000149942A (en) * 1998-11-02 2000-05-30 Toyota Central Res & Dev Lab Inc Lithium-manganese composite oxide and lithium secondary battery using it as positive electrode active material
JP2003326637A (en) * 2002-05-17 2003-11-19 National Institute For Materials Science Manganic acid nano-sheet ultrathin film and manufacturing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
WO2011162194A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for producing spinel lithium manganese oxide
WO2011162195A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for producing spinel lithium manganese oxide
WO2011162193A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for manufacturing spinel-type lithium manganate
JP2012009151A (en) * 2010-06-22 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery, and lithium secondary battery
JP2010219068A (en) * 2010-06-23 2010-09-30 Ngk Insulators Ltd Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
JP2010219069A (en) * 2010-06-23 2010-09-30 Ngk Insulators Ltd Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
EP2642563A4 (en) * 2010-11-17 2014-05-14 Ngk Insulators Ltd Positive electrode for lithium secondary battery
EP2642563A1 (en) * 2010-11-17 2013-09-25 NGK Insulators, Ltd. Positive electrode for lithium secondary battery
US9515347B2 (en) 2010-11-17 2016-12-06 Ngk Insulators, Ltd. Lithium secondary battery cathode
JP2014110240A (en) * 2012-11-30 2014-06-12 Ngk Insulators Ltd Power storage element
JP2014141357A (en) * 2013-01-22 2014-08-07 Ibaraki Univ Method for producing lithium manganese-based composite oxide
KR20170030411A (en) * 2015-09-09 2017-03-17 삼성전자주식회사 Cathodes active material for lithium ion batteries, and the batteries with them
KR102568790B1 (en) 2015-09-09 2023-08-21 삼성전자주식회사 Cathodes active material for lithium ion batteries, and the batteries with them
JP2017054783A (en) * 2015-09-11 2017-03-16 株式会社サムスン日本研究所 Positive electrode active material particle, lithium ion secondary battery arranged by use thereof, and method for manufacturing positive electrode active material particles
WO2017104363A1 (en) * 2015-12-18 2017-06-22 日本碍子株式会社 Plate-shaped lithium composite oxide, and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2009139397A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2009139397A1 (en) Plate-like crystal grain and production method thereof, and secondary lithium battery
JP6723545B2 (en) Positive electrode active material for secondary battery, method for producing the same, and secondary battery including the same
EP3537521B1 (en) Lithium cobalt oxide positive electrode material and preparation method therefor and lithium ion secondary battery
JP5043203B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
JP6968428B2 (en) Manufacturing method of positive electrode active material for secondary battery and positive electrode active material for secondary battery manufactured by this method
JP5542694B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
JP6949785B2 (en) Lithium composite oxide sintered body plate
CN109715561B (en) Cathode active material having improved particle morphology
JP4703785B2 (en) Plate-like particles for positive electrode active material of lithium secondary battery, and lithium secondary battery
JP4703786B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP2023523667A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
US20120258369A1 (en) Lithium secondary battery and cathode active material therefor
JP6129853B2 (en) Positive electrode active material for lithium secondary battery
EP2369662A1 (en) Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2016068436A1 (en) Cathode active material for lithium secondary battery, preparation method therefor and lithium secondary battery comprising same
EP2584632A1 (en) Method for producing positive electrode active material for lithium secondary battery
JP2014049407A (en) Method of manufacturing cathode active material for lithium secondary battery
JP2010219068A (en) Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
JP5926746B2 (en) Oxide and method for producing the same
JP7061688B2 (en) Lithium secondary battery
CN118231644A (en) Ternary material, preparation method thereof, positive plate, lithium ion battery and electric equipment
WO2012029803A1 (en) Positive-electrode active material for lithium secondary battery
JP2011113857A (en) Method of manufacturing electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746603

Country of ref document: EP

Kind code of ref document: A1