JP2012009151A - Positive electrode of lithium secondary battery, and lithium secondary battery - Google Patents

Positive electrode of lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP2012009151A
JP2012009151A JP2010141367A JP2010141367A JP2012009151A JP 2012009151 A JP2012009151 A JP 2012009151A JP 2010141367 A JP2010141367 A JP 2010141367A JP 2010141367 A JP2010141367 A JP 2010141367A JP 2012009151 A JP2012009151 A JP 2012009151A
Authority
JP
Japan
Prior art keywords
positive electrode
particles
plate
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010141367A
Other languages
Japanese (ja)
Other versions
JP5457953B2 (en
Inventor
Ryuta Sugiura
隆太 杉浦
Nobuyuki Kobayashi
伸行 小林
Shohei Yokoyama
昌平 横山
Tsutomu Nanataki
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010141367A priority Critical patent/JP5457953B2/en
Publication of JP2012009151A publication Critical patent/JP2012009151A/en
Application granted granted Critical
Publication of JP5457953B2 publication Critical patent/JP5457953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode of a lithium secondary battery and the lithium secondary battery comprising such positive electrode with a structure capable of attaining high rate characteristics and high capacity.SOLUTION: A positive electrode includes positive electrode active material particles which are particles of lithium composite oxide having a laminar rock salt structure. These positive electrode active material particles include plate particles and isometric particles. The plate particles have a peak intensity ratio [003]/[104] of 1.6 or less in X-ray diffraction, and an aspect ratio of 2.1 to 20. The isometric particles have an aspect ratio equal to or less than 2.

Description

本発明は、層状岩塩構造を有する正極活物質粒子を含む、リチウム二次電池の正極に関する。さらに、本発明は、かかる正極を備えたリチウム二次電池に関する。   The present invention relates to a positive electrode of a lithium secondary battery including positive electrode active material particles having a layered rock salt structure. Furthermore, this invention relates to the lithium secondary battery provided with this positive electrode.

リチウム二次電池(リチウムイオン二次電池と称されることもある)は、正極と、負極と、これらの間に介在する電解質と、を備えている。この正極を構成する正極活物質として、層状岩塩構造を有するリチウム複合酸化物(リチウム遷移金属酸化物)の粒子が、広く知られている(例えば、特開平5−226004号公報等参照。)。そして、正極は、所定のバインダー中に、かかる粒子とカーボン等の導電助剤とを分散させることによって構成された、正極活物質層(正極活物質膜)を備えている。   A lithium secondary battery (sometimes referred to as a lithium ion secondary battery) includes a positive electrode, a negative electrode, and an electrolyte interposed therebetween. As a positive electrode active material constituting this positive electrode, particles of lithium composite oxide (lithium transition metal oxide) having a layered rock salt structure are widely known (see, for example, JP-A-5-226004). And the positive electrode is equipped with the positive electrode active material layer (positive electrode active material film | membrane) comprised by disperse | distributing this particle | grain and conductive support agents, such as carbon, in a predetermined binder.

ここで、「層状岩塩構造」とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層された結晶構造(典型的にはα−NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。 Here, the “layered rock salt structure” is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer interposed therebetween, that is, a transition metal ion layer and a lithium through an oxide ion. It refers to a crystal structure in which single layers are alternately stacked (typically an α-NaFeO 2 type structure: a structure in which transition metals and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure).

かかる正極活物質粒子においては、(003)面以外の結晶面(リチウムイオン出入り面:例えば(101)面や(104)面)にて、リチウムイオン(Li)の出入りが生じる。このような、正極活物質粒子におけるリチウムイオンの出入りによって、リチウム二次電池における充放電動作が行われる。 In such positive electrode active material particles, lithium ions (Li + ) enter and exit on crystal planes other than the (003) plane (lithium ion entrance / exit surfaces: for example, (101) plane and (104) plane). The charging / discharging operation | movement in a lithium secondary battery is performed by the entrance / exit of the lithium ion in such positive electrode active material particles.

この種の電池の正極においては、正極活物質粒子におけるリチウムイオン出入り面の電解質への露出をより多くすることで、レート特性が高くなる。一方、正極におけるバインダー中の正極活物質粒子の充填率を高めることで、高容量化が図られる。   In the positive electrode of this type of battery, rate characteristics are enhanced by increasing the exposure of the lithium ion entrance / exit surfaces of the positive electrode active material particles to the electrolyte. On the other hand, the capacity can be increased by increasing the filling rate of the positive electrode active material particles in the binder in the positive electrode.

この点、従来の正極活物質粒子においては、粒子径を小さくすると、比表面積が大きくなるためにレート特性が高くなる一方、充填率が低くなるために容量も小さくなる。このように、従来の正極の構造においては、レート特性と容量とが、トレードオフの関係になっていた。   In this regard, in the conventional positive electrode active material particles, when the particle diameter is reduced, the specific surface area is increased and the rate characteristics are increased. On the other hand, the filling rate is decreased and the capacity is also decreased. Thus, in the conventional positive electrode structure, the rate characteristic and the capacity have a trade-off relationship.

本発明は、かかる課題を解決するためになされたものである。すなわち、本発明の目的は、高レート特性と高容量化とをともに達成することができる構造の、リチウム二次電池の正極、及びかかる正極を備えたリチウム二次電池を提供することにある。   The present invention has been made to solve such problems. That is, an object of the present invention is to provide a positive electrode of a lithium secondary battery and a lithium secondary battery including such a positive electrode having a structure capable of achieving both high rate characteristics and high capacity.

本発明のリチウム二次電池は、層状岩塩構造を有するリチウム複合酸化物の粒子である正極活物質粒子を含む正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。具体的には、前記正極は、バインダー中に前記正極活物質粒子(及び導電助剤)を分散させることによって形成された正極活物質膜を含んでいる。本発の特徴は、前記正極活物質粒子が、以下の特性を有する板状粒子と等軸粒子とを含むことにある。   The lithium secondary battery of the present invention includes a positive electrode including positive electrode active material particles that are particles of a lithium composite oxide having a layered rock salt structure, a negative electrode including a carbonaceous material or a lithium storage material as a negative electrode active material, and the positive electrode. And an electrolyte provided so as to be interposed between the negative electrode and the negative electrode. Specifically, the positive electrode includes a positive electrode active material film formed by dispersing the positive electrode active material particles (and a conductive additive) in a binder. A feature of the present invention is that the positive electrode active material particles include plate-like particles and equiaxed particles having the following characteristics.

前記板状粒子においては、ピーク強度比[003]/[104]が1.6以下(より好ましくは1.0以下)であり、アスペクト比が2.1〜20である。ここで、ピーク強度比[003]/[104]は、X線回折における、(104)面による回折強度(ピーク強度)に対する、(003)面による回折強度(ピーク強度)の比率である。また、アスペクト比は、粒子径(d)を厚さ(t)で除した値(d/t)である。前記板状粒子の前記厚さは、好ましくは、5〜100μmである。   In the plate-like particles, the peak intensity ratio [003] / [104] is 1.6 or less (more preferably 1.0 or less), and the aspect ratio is 2.1 to 20. Here, the peak intensity ratio [003] / [104] is the ratio of the diffraction intensity (peak intensity) of the (003) plane to the diffraction intensity (peak intensity) of the (104) plane in X-ray diffraction. The aspect ratio is a value (d / t) obtained by dividing the particle diameter (d) by the thickness (t). The thickness of the plate-like particle is preferably 5 to 100 μm.

前記等軸粒子は、前記アスペクト比が2以下である。また、前記等軸粒子の粒子径は、前記板状粒子の前記厚さ以下であることが好適である。   The equiaxed particles have an aspect ratio of 2 or less. Moreover, it is preferable that the particle diameter of the equiaxed particle is equal to or less than the thickness of the plate-like particle.

前記板状粒子と前記等軸粒子との合計に対する前記板状粒子の体積%である、板状粒子配合率は、5〜80%であることが好適である。   It is preferable that the plate-like particle mixture ratio, which is the volume% of the plate-like particles with respect to the sum of the plate-like particles and the equiaxed particles, is 5 to 80%.

ここで、「板状粒子」とは、外形形状が板状である粒子のことをいう。「板状」という概念は、本明細書にて特段の説明を加えなくても社会通念上明確であり、上述のように、「アスペクト比が2.1〜20である」という定義づけによってよりいっそう明確になっているが、敢えて付言すると、例えば、以下のように説明することが可能である。   Here, the “plate-like particle” means a particle whose outer shape is plate-like. The concept of “plate-like” is clear from a social wisdom without any special explanation in the present specification, and as described above, the “aspect ratio is 2.1 to 20” is more defined. Although it has become clearer, if it dares to add, it can be explained as follows, for example.

すなわち、「板状」とは、粒子を水平面(重力が作用する方向である鉛直方向と直交する平面)上に安定的に(外部からの衝撃(当該粒子が前記水平面から飛翔してしまうような強力な衝撃は除く)を受けてもさらに転倒することがないような態様で)載置した状態で、前記水平面と直交する第一の平面及び第二の平面(前記第一の平面と前記第二の平面とは交差し、典型的には直交する。)による当該粒子の断面を観察した場合に、いずれの断面においても、前記水平面に沿った(前記水平面と平行、あるいは前記水平面とのなす角度がα度(0<α<45)となる)方向である幅方向における寸法(かかる寸法が「粒子径」に対応する)の方が、当該幅方向と直交する方向である厚さ方向(板厚方向)における寸法(かかる寸法は粒子の「厚さ」と称される。)よりも大きい状態をいう。なお、上述の「厚さ」は、前記水平面と当該粒子との間の空隙部分を含まない。   In other words, “plate-like” means that particles are stably placed on a horizontal plane (a plane perpendicular to the vertical direction where gravity acts) (external impact (the particles will fly from the horizontal plane). The first plane and the second plane orthogonal to the horizontal plane (the first plane and the first plane) in a state of being placed (in a manner that will not fall down even if subjected to a strong impact) When the cross section of the particle is observed by crossing two planes (typically perpendicular to each other), the cross section along the horizontal plane (parallel to the horizontal plane or formed with the horizontal plane) is observed in any cross section. The thickness direction (the direction corresponding to the “particle diameter”) is the direction perpendicular to the width direction, and the dimension in the width direction is an α degree (0 <α <45) direction. In the thickness direction) It is called “thickness”.) The above-mentioned “thickness” does not include a void portion between the horizontal plane and the particle.

前記板状粒子は、通常、平板状に形成される。ここで、「平板状」とは、粒子を水平面上に安定的に載置した状態で、前記水平面と当該粒子との間に形成される空隙の高さが、粒子の厚さよりも小さい状態をいうものとする。これ以上屈曲したものは、この種の板状粒子では通常生じないため、前記板状粒子に対しては、上述の定義が適切なものとなる。   The plate-like particles are usually formed in a flat plate shape. Here, “flat plate” refers to a state in which the particle is stably placed on a horizontal plane, and the height of the void formed between the horizontal plane and the particle is smaller than the thickness of the particle. It shall be said. Since what is bent more than this usually does not occur in this kind of plate-like particle, the above definition is appropriate for the plate-like particle.

粒子を水平面上に安定的に載置した状態において、前記厚さ方向は、必ずしも前記鉛直方向と平行な方向になるとは限らない。例えば、粒子を水平面上に安定的に載置した状態における、前記第一の平面又は前記第二の平面による当該粒子の断面形状を、(1)長方形、(2)菱形、(3)楕円形、のいずれの形状に最も近似するかを分類した場合を想定する。この粒子断面形状が(1)長方形に近似するとき、前記幅方向は上述の状態における前記水平面と平行な方向となり、前記厚さ方向は上述の状態における前記鉛直方向と平行な方向となる。   In a state where particles are stably placed on a horizontal plane, the thickness direction is not necessarily parallel to the vertical direction. For example, when the particles are stably placed on a horizontal plane, the cross-sectional shape of the particles by the first plane or the second plane is (1) rectangle, (2) rhombus, (3) oval A case is assumed in which the most approximate shape is classified. When the particle cross-sectional shape approximates (1) a rectangle, the width direction is a direction parallel to the horizontal plane in the above state, and the thickness direction is a direction parallel to the vertical direction in the above state.

一方、(2)菱形や(3)楕円形のときは、前記幅方向は上述の状態における前記水平面と若干の角度(45度以下:典型的には数〜20度程度)をなすこととなる。このときは、前記幅方向は、当該断面による外形線上の2点であって互いの距離が最も長くなるもの同士を結んだ方向となる(かかる定義は上述の(1)長方形の場合は、対角線となってしまうために適切ではない)。   On the other hand, in the case of (2) rhombus or (3) ellipse, the width direction makes a slight angle (45 degrees or less: typically about several to 20 degrees) with the horizontal plane in the above state. . In this case, the width direction is a direction connecting two points on the outline by the cross section and having the longest distance between them (this definition is a diagonal line in the case of the above-mentioned (1) rectangle) Is not appropriate to end up).

また、粒子の「板面」とは、粒子を水平面上に安定的に載置した状態における、当該水平面と対向する面、又は、当該水平面からみて当該粒子よりも上方に位置し当該水平面と平行な仮想平面と対向する面をいう。「板面」は、前記板状粒子における最も広い面であるため、「主面(principal surface)」と称されることもある。なお、この板面(主面)と交差する(典型的には直交する)面、すなわち、前記厚さ方向と垂直な方向である板面方向(あるいは面内方向)と交差する面は、粒子を水平面上に安定的に載置した状態における、当該粒子の平面視(当該粒子を水平面上に安定的に載置した状態で前記鉛直方向における上方から見た場合)における端縁に生じることから、「端面」と称される。   In addition, the “plate surface” of the particle is a surface facing the horizontal plane in a state where the particle is stably placed on the horizontal plane, or is positioned above the particle and parallel to the horizontal plane when viewed from the horizontal plane. A surface that faces a virtual plane. Since the “plate surface” is the widest surface of the plate-like particle, it may be referred to as a “principal surface”. The plane intersecting (typically orthogonal) the plate surface (main surface), that is, the surface intersecting the plate surface direction (or in-plane direction) that is perpendicular to the thickness direction is a particle. From the edge of the particle in a state where the particle is stably placed on the horizontal plane (when the particle is stably placed on the horizontal surface and viewed from above in the vertical direction). , Referred to as “end face”.

もっとも、前記板状粒子は、その断面形状が上述の(1)長方形に近似することが多い。このため、前記板状粒子においては、前記厚さ方向は、当該粒子を水平面上に安定的に載置した状態における前記鉛直方向と平行な方向と云っても差し支えない。同様に、前記板状粒子においては、「板面」は、当該粒子の前記厚さ方向と直交する表面と云っても差し支えない。   However, the plate-like particles often have a cross-sectional shape that approximates the above-mentioned (1) rectangle. For this reason, in the plate-like particles, the thickness direction may be a direction parallel to the vertical direction in a state where the particles are stably placed on a horizontal plane. Similarly, in the plate-like particle, the “plate surface” may be said to be a surface orthogonal to the thickness direction of the particle.

前記板状粒子の厚さtは、例えば、断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される前記板面間の距離を測定することで得られる。また、前記板状粒子の粒子径dは、前記厚さ方向と直交する板面方向における最小寸法によって定義される。例えば、粒子径dは、前記板状粒子の平面視における外形形状をSEMによって観察した場合における、当該外形形状の内接円を描いたときの直径を測定することで得られる。   The thickness t of the plate-like particles can be obtained, for example, by measuring the distance between the plate surfaces observed substantially in parallel when the cross section is observed with an SEM (scanning electron microscope). Further, the particle diameter d of the plate-like particles is defined by the minimum dimension in the plate surface direction orthogonal to the thickness direction. For example, the particle diameter d is obtained by measuring the diameter when an inscribed circle of the outer shape is drawn when the outer shape of the plate-like particle in plan view is observed by SEM.

本発明の構成においては、前記等軸粒子に対してサイズの大きい前記板状粒子を混合することで、粒子間の隙間を減らすことが可能になる。さらに、前記板状粒子と前記等軸粒子とを適切な混合比で前記正極(前記正極活物質膜)内に分散させることで、前記板状粒子同士の隙間を埋めるように前記等軸粒子が配置される。これにより、当該正極内における前記正極活物質粒子の充填率が高められる。   In the structure of this invention, it becomes possible to reduce the clearance gap between particle | grains by mixing the said plate-shaped particle | grain with a large size with respect to the said equiaxed particle | grain. Further, by dispersing the plate-like particles and the equiaxed particles in the positive electrode (the positive electrode active material film) at an appropriate mixing ratio, the equiaxed particles are formed so as to fill the gaps between the plate-like particles. Be placed. Thereby, the filling rate of the positive electrode active material particles in the positive electrode is increased.

また、前記板状粒子においては、リチウムイオン出入り面が良好に表面(前記板面)に露出する。さらに、前記等軸粒子の表面に露出するリチウムイオン出入り面もまた、充放電に寄与する。よって、本発明の構成によれば、リチウムイオン出入り面の露出量より多くすることができる。これにより、良好なレート特性が得られる。   Moreover, in the said plate-shaped particle | grain, the lithium ion entrance / exit surface is exposed to the surface (the said plate surface) satisfactorily. Furthermore, the lithium ion entrance / exit surface exposed on the surface of the equiaxed particles also contributes to charge / discharge. Therefore, according to the structure of this invention, it can be made larger than the exposure amount of a lithium ion entrance / exit surface. Thereby, good rate characteristics can be obtained.

したがって、本発明によれば、従来技術においてトレードオフの関係であった、高レート特性と高容量化とを、ともに達成することが可能になる。   Therefore, according to the present invention, it is possible to achieve both high rate characteristics and high capacity, which are trade-offs in the prior art.

本発明の一実施形態であるリチウム二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the lithium secondary battery which is one Embodiment of this invention. 図1Aに示されている正極の拡大断面図である。It is an expanded sectional view of the positive electrode shown by FIG. 1A. 図1Bに示されている正極活物質板状粒子の拡大斜視図である。It is an expansion perspective view of the positive electrode active material plate-like particle | grains shown by FIG. 1B. 図1Bに示されている正極活物質等軸粒子の拡大斜視図である。It is an expansion perspective view of the positive electrode active material equiaxed particle | grains shown by FIG. 1B. 比較例の正極活物質板状粒子の拡大斜視図である。It is an expansion perspective view of the positive electrode active material plate-like particle of a comparative example.

以下、本発明の実施形態について、図面を参照しつつ説明する。なお、本実施形態に対して施され得る各種の変更(modification)は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、末尾にまとめて記載されている。   Embodiments of the present invention will be described below with reference to the drawings. It should be noted that various modifications that can be made to the present embodiment are described at the end of the description because if they are inserted during the description of the embodiment, the understanding of the consistent description of the embodiment is hindered. ing.

<リチウム二次電池の構成>
図1Aは、本発明の一実施形態であるリチウム二次電池10の概略構成を示す断面図である。
<Configuration of lithium secondary battery>
FIG. 1A is a cross-sectional view showing a schematic configuration of a lithium secondary battery 10 according to an embodiment of the present invention.

図1Aを参照すると、本実施形態のリチウム二次電池10は、いわゆる液体型であって、電池ケース11と、セパレータ12と、電解質13と、負極14と、正極15と、を備えている。   Referring to FIG. 1A, the lithium secondary battery 10 of the present embodiment is a so-called liquid type, and includes a battery case 11, a separator 12, an electrolyte 13, a negative electrode 14, and a positive electrode 15.

セパレータ12は、電池ケース11内を二分するように設けられている。電池ケース11内には、液体の電解質13が収容されているとともに、負極14及び正極15がセパレータ12を隔てて対向するように設けられている。   The separator 12 is provided so as to bisect the inside of the battery case 11. In the battery case 11, a liquid electrolyte 13 is accommodated, and a negative electrode 14 and a positive electrode 15 are provided so as to face each other with the separator 12 therebetween.

電解質13としては、例えば、電気特性や取り扱い易さから、有機溶媒等の非水系溶媒にリチウム塩等の電解質塩を溶解させた、非水溶媒系の電解液が好適に用いられる。非水電解液の溶媒としては、特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネート等の鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;等を用いることができ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。   As the electrolyte 13, for example, a non-aqueous solvent based electrolyte in which an electrolyte salt such as a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent is preferably used because of its electrical characteristics and ease of handling. The solvent for the non-aqueous electrolyte is not particularly limited, but for example, chain esters such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propion carbonate; dielectric constants such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate High cyclic esters; mixed solvents of chain esters and cyclic esters; and the like, and mixed solvents with cyclic esters having chain esters as the main solvent are particularly suitable.

非水電解液の調製にあたって上述の溶媒に溶解させる電解質塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(RfSO)(Rf′SO)、LiC(RfSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfとRf′はフルオロアルキル基]、等を用いることができる。これらは、それぞれ単独で用いられてもよく、2種以上が併用されてもよい。上述の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。この含フッ素有機リチウム塩は、アニオン性が大きく、かつイオン分離しやすいので、上述の溶媒に溶解し易いからである。非水電解液中における電解質塩の濃度は、特に限定されないが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下であることが望ましい。 As the electrolyte salt to be dissolved in the solvent described above when the preparation of the non-aqueous electrolyte, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [wherein Rf and Rf ′ are fluoroalkyl groups], etc. can be used. These may be used alone or in combination of two or more. Among the above electrolyte salts, a fluorine-containing organic lithium salt having 2 or more carbon atoms is particularly preferable. This is because this fluorine-containing organolithium salt has a large anionic property and is easily ion-separated, so that it is easily dissolved in the above-mentioned solvent. The concentration of the electrolyte salt in the nonaqueous electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less, more preferably 1. It is desirable that it is 5 mol / l or less.

負極14に係る負極活物質は、リチウムイオンを吸蔵、放出できるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭等の炭素質材料が用いられる。また、金属リチウムや、ケイ素,スズ、インジウム等を含む合金、リチウムに近い低電位で充放電できるケイ素,スズ等の酸化物、Li2.6Co0.4N等のリチウムとコバルトとの窒化物、等のリチウム吸蔵物質も、負極活物質として用いることができる。さらに、黒鉛の一部は、リチウムと合金化し得る金属や酸化物等と置き換えることもできる。負極活物質として黒鉛を用いた場合には、満充電時の電圧をリチウム基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極15の電位を便宜上計算することができることから、正極15の充電電位が制御しやすく好ましい。 The negative electrode active material according to the negative electrode 14 may be any material as long as it can occlude and release lithium ions. For example, graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, mesocarbon micro Carbonaceous materials such as beads, carbon fibers, activated carbon and the like are used. In addition, metal lithium, alloys containing silicon, tin, indium, etc., oxides of silicon, tin, etc. that can be charged and discharged at a low potential close to lithium, and nitriding of lithium such as Li 2.6 Co 0.4 N and cobalt Lithium storage materials such as materials can also be used as the negative electrode active material. Furthermore, a part of graphite can be replaced with a metal, oxide, or the like that can be alloyed with lithium. When graphite is used as the negative electrode active material, the voltage at the time of full charge can be regarded as about 0.1 V on the basis of lithium, so the potential of the positive electrode 15 is calculated for convenience by adding 0.1 V to the battery voltage. Therefore, it is preferable that the charging potential of the positive electrode 15 is easy to control.

図1Bは、図1Aに示されている正極15の拡大断面図である。図1Bを参照すると、正極15は、正極集電体15aと、正極活物質層15bと、を備えている。正極活物質層15bは、バインダー15b1と、正極活物質板状粒子15b2と、正極活物質等軸粒子15b3と、から構成されている。   FIG. 1B is an enlarged cross-sectional view of the positive electrode 15 shown in FIG. 1A. Referring to FIG. 1B, the positive electrode 15 includes a positive electrode current collector 15a and a positive electrode active material layer 15b. The positive electrode active material layer 15b includes a binder 15b1, positive electrode active material plate-like particles 15b2, and positive electrode active material equiaxed particles 15b3.

正極活物質層15bは、バインダー15b1中に正極活物質板状粒子15b2と正極活物質等軸粒子15b3と図示しない導電助剤とを分散させることによって形成されている。具体的には、正極活物質層15bにおいては、板状粒子配合率が5〜80%となるように、正極活物質板状粒子15b2及び正極活物質等軸粒子15b3が分散されている。ここで、「板状粒子配合率」は、正極活物質板状粒子15b2と正極活物質等軸粒子15b3との合計に対する正極活物質板状粒子15b2の体積%である。   The positive electrode active material layer 15b is formed by dispersing positive electrode active material plate-like particles 15b2, positive electrode active material equiaxed particles 15b3, and a conductive aid (not shown) in a binder 15b1. Specifically, in the positive electrode active material layer 15b, the positive electrode active material plate particles 15b2 and the positive electrode active material equiaxed particles 15b3 are dispersed so that the mixing ratio of the plate particles is 5 to 80%. Here, the “plate-like particle blending ratio” is the volume% of the positive electrode active material plate particles 15b2 with respect to the total of the positive electrode active material plate particles 15b2 and the positive electrode active material equiaxed particles 15b3.

なお、図1A及び図1Bに示されているリチウム二次電池10及び正極15の基本的な構成(電池ケース11、セパレータ12、電解質13、負極14、正極集電体15a、及びバインダー15b1を構成する材質を含む。)は周知であるので、本明細書においては、その詳細な説明は省略されている。   The basic configuration of the lithium secondary battery 10 and the positive electrode 15 shown in FIGS. 1A and 1B (the battery case 11, the separator 12, the electrolyte 13, the negative electrode 14, the positive electrode current collector 15a, and the binder 15b1 are configured. In this specification, the detailed description thereof is omitted.

図2Aは、図1に示されている正極活物質板状粒子15b2の拡大斜視図である。図2Bは、図1に示されている正極活物質等軸粒子15b3の拡大斜視図である。図2Cは、比較例の正極活物質粒子の拡大斜視図である。   FIG. 2A is an enlarged perspective view of the positive electrode active material plate-like particle 15b2 shown in FIG. FIG. 2B is an enlarged perspective view of the positive electrode active material equiaxed particles 15b3 shown in FIG. FIG. 2C is an enlarged perspective view of positive electrode active material particles of a comparative example.

図2Aに示されているように、正極活物質板状粒子15b2は、板状(すなわちアスペクト比が2.1〜20)に形成されている。また、正極活物質板状粒子15b2は、厚さが5〜100μmに形成されている。   As shown in FIG. 2A, the positive electrode active material plate-like particles 15b2 are formed in a plate shape (that is, the aspect ratio is 2.1 to 20). The positive electrode active material plate-like particles 15b2 are formed to have a thickness of 5 to 100 μm.

正極活物質板状粒子15b2は、厚さ方向(図中上下方向)と直交する表面である板面(上側表面A及び下側表面B:以下「上側表面A」及び「下側表面B」をそれぞれ「板面A」及び「板面B」と称する。)に(003)以外の面(例えば(101)面や(104)面)が露出するように形成されている。   The positive electrode active material plate-like particles 15b2 are plate surfaces (upper surface A and lower surface B: hereinafter referred to as “upper surface A” and “lower surface B”) that are surfaces orthogonal to the thickness direction (vertical direction in the drawing). Surfaces other than (003) (for example, (101) surface and (104) surface) are exposed at “plate surface A” and “plate surface B”, respectively.

すなわち、正極活物質板状粒子15b2は、(003)以外の面(例えば(104)面)が板面A及びBと平行となるように配向するように形成されている。これに対し、図2Cに示されている比較例の粒子は、板状であるものの、粒子の厚さ方向における両面(板面A及びB)に(003)が露出するように形成されている(図中黒色で塗りつぶされた面参照)。なお、正極活物質板状粒子15b2の板面方向(面内方向)と交差する端面Cには、(003)面が露出していても構わない。   That is, the positive electrode active material plate-like particles 15b2 are formed so that the surfaces other than (003) (for example, the (104) surface) are oriented so as to be parallel to the plate surfaces A and B. On the other hand, the particles of the comparative example shown in FIG. 2C are plate-like, but are formed such that (003) is exposed on both surfaces (plate surfaces A and B) in the thickness direction of the particles. (See the surface painted in black in the figure). Note that the (003) plane may be exposed at the end face C intersecting the plate surface direction (in-plane direction) of the positive electrode active material plate-like particle 15b2.

一方、図2Bに示されているように、正極活物質等軸粒子15b3は、等方形状(アスペクト比が2以下)に形成されている。また、正極活物質等軸粒子15b3は、その粒子径が正極活物質板状粒子15b2の厚さと同程度あるいはそれ以下となるように形成されている。   On the other hand, as shown in FIG. 2B, the positive electrode active material equiaxed particles 15b3 are formed in an isotropic shape (an aspect ratio of 2 or less). The positive electrode active material equiaxed particles 15b3 are formed so that the particle diameter thereof is approximately equal to or less than the thickness of the positive electrode active material plate-like particles 15b2.

<正極活物質粒子の製造方法の具体例>
本実施形態における正極活物質板状粒子15b2及び正極活物質等軸粒子15b3の製造方法の具体例は、以下の通りである。
<Specific example of manufacturing method of positive electrode active material particles>
The specific example of the manufacturing method of positive electrode active material plate-like particle 15b2 and positive electrode active material equiaxed particle 15b3 in this embodiment is as follows.

<<板状粒子>>
まず、以下の方法によって、スラリーを調製した:Co34粉末(粒径1−5μm、正同化学工業株式会社製)を粉砕して作製したCo34原料粒子(粒径0.3μm)に20wt%の割合でBi23(粒径0.3μm、太陽鉱工株式会社製)を添加したもの100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、500〜700cPの粘度に調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。
<< Plate-like particles >>
First, a slurry was prepared by the following method: Co 3 O 4 raw material particles (particle size: 0.3 μm) prepared by pulverizing Co 3 O 4 powder (particle size: 1-5 μm, manufactured by Shodo Chemical Industry Co., Ltd.) 100 parts by weight of Bi 2 O 3 (particle size 0.3 μm, manufactured by Taiyo Mining Co., Ltd.) at a rate of 20 wt%, and 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1), 10 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), 4 parts by weight of a plasticizer (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.) and a dispersant ( 2 parts by weight of a product name Rheodor SP-O30, manufactured by Kao Corporation) was mixed. The mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 500 to 700 cP. The viscosity was measured with an LVT viscometer manufactured by Brookfield.

上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが10μmとなるように、シート状に成形した。   The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 10 μm.

PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、1500℃で5h焼成後、降温速度50℃/hにて降温し、セッターに溶着していない部分を取り出した。   The sheet-like molded body peeled off from the PET film was cut into a 70 mm square with a cutter, and placed in the center of a zirconia setter (dimension 90 mm square, height 1 mm) with an embossed projection of 300 μm in size. After baking at 1500 ° C. for 5 h, the temperature was lowered at a temperature lowering rate of 50 ° C./h, and the portion not welded to the setter was taken out.

焼成後のCo34セラミックスシートを、開口径20μmのふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させることで、解砕した。 The fired Co 3 O 4 ceramic sheet was placed on a sieve (mesh) having an opening diameter of 20 μm, and crushed by passing through the mesh while lightly pressing with a spatula.

セラミックスシートを解砕することで得られたCo34粉末と、Li2CO3粉末(関東化学株式会社製)とを、Li/Co=1.0となるように混合し、坩堝中にて760℃で20時間加熱処理することで、正極活物質板状粒子15b2(LiCoO2板状粒子)を得た。 Co 3 O 4 powder obtained by pulverizing the ceramic sheet and Li 2 CO 3 powder (manufactured by Kanto Chemical Co., Inc.) were mixed so that Li / Co = 1.0, and the mixture was put into a crucible. The positive electrode active material plate-like particles 15b2 (LiCoO 2 plate-like particles) were obtained by heat treatment at 760 ° C. for 20 hours.

<<等軸粒子>>
焼成後のCo34セラミックスシートを、容積1Lのポリプロピレンポット中で、直径10mmのナイロンボールを用いて10h粉砕したこと以外は、板状粒子と同様の製造方法により、直径10μmの正極活物質等軸粒子15b3(LiCoO2等軸粒子)を得た。
<< Equiaxed particle >>
A positive electrode active material having a diameter of 10 μm was produced by the same manufacturing method as that for the plate-like particles, except that the fired Co 3 O 4 ceramic sheet was pulverized in a 1 L polypropylene pot for 10 hours using a nylon ball having a diameter of 10 mm. Equiaxial particles 15b3 (LiCoO 2 equiaxed particles) were obtained.

<評価方法>
得られた板状及び等軸状のLiCoO2粒子を所定の割合で混合したものと、アセチレンブラック、及びポリフッ化ビニリデン(PVDF)を、質量比で90:5:5となるように混合することで、正極材料を調製した。
<Evaluation method>
Mixing the obtained plate-like and equiaxed LiCoO 2 particles in a predetermined ratio, acetylene black, and polyvinylidene fluoride (PVDF) in a mass ratio of 90: 5: 5 Thus, a positive electrode material was prepared.

調製した正極材料を、厚さ21μmのアルミ箔上に厚さ100μmとなるように塗工し、直径20mmの円板状に打ち抜いた後、40℃にて500kg/cm2の圧力で一軸プレスすることで、正極活物質層を作製した。なお、正極活物質層における活物質充填率は、以下の通りに求めた。まず、塗工部分を剥離した後、Arイオンミリング(製品名クロスセクションポリッシャSM−09020CP JEOL社製)にて厚さ方向に断面研磨した。次に、この研磨した面の反射電子像を、走査電子顕微鏡(製品名JSM−6390 JEOL社製)を用いて撮影した。この撮影画像を画像処理ソフト(製品名Photoshop adobe社製)を用いて解析し、正極活物質層と活物質との面積比((活物質断面積/正極活物質層の断面積)×100)を求め、これを活物質充填率とした。 The prepared positive electrode material is coated on an aluminum foil having a thickness of 21 μm so as to have a thickness of 100 μm, punched into a disk shape having a diameter of 20 mm, and then uniaxially pressed at 40 ° C. with a pressure of 500 kg / cm 2. Thus, a positive electrode active material layer was produced. The active material filling rate in the positive electrode active material layer was determined as follows. First, after peeling off the coated portion, cross-section polishing was performed in the thickness direction by Ar ion milling (product name: Cross Section Polisher SM-09020CP JEOL). Next, the reflected electron image of the polished surface was taken using a scanning electron microscope (product name: JSM-6390, manufactured by JEOL). This captured image was analyzed using image processing software (product name: Photoshop Adobe), and the area ratio of the positive electrode active material layer to the active material ((active material cross-sectional area / positive electrode active material layer cross-sectional area) × 100). This was determined as the active material filling rate.

作製した正極活物質層、リチウム金属板からなる負極、ステンレス集電板、及びセパレータを、集電板−正極活物質層−セパレータ−負極−集電板の順に配置し、この集積体を電解液で満たすことで、コインセルを作製した。なお、電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解することで調製した。このようにして作製した電池(コインセル)を用いて、電池特性の評価を、以下のようにして行った。 The produced positive electrode active material layer, the negative electrode made of a lithium metal plate, the stainless steel current collector plate, and the separator are arranged in the order of current collector plate-positive electrode active material layer-separator-negative electrode-current collector plate, and this aggregate is used as an electrolyte solution. The coin cell was produced by filling with. The electrolytic solution was prepared by dissolving LiPF 6 in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio to a concentration of 1 mol / L. Using the battery thus manufactured (coin cell), the battery characteristics were evaluated as follows.

0.1Cレートの電流値で電池電圧が4.2Vとなるまで定電流充電し、次に電池電圧を4.2Vに維持しつつ電流値が1/20に低下するまで定電圧充電した後10分間休止し、続いて0.1Cレートの電流値で電池電圧が3.0Vになるまで定電流放電した後10分間休止する、という充放電操作を1サイクルとし、25℃の条件下で合計2サイクル繰り返し、2サイクル目の放電容量を測定した(0.1Cレートの放電容量)。   After charging at a constant current until the battery voltage reaches 4.2 V at a current value of 0.1 C rate, and then charging at a constant voltage until the current value decreases to 1/20 while maintaining the battery voltage at 4.2 V, 10 Charging / discharging operation of stopping for 10 minutes and then stopping at constant current until the battery voltage reaches 3.0 V at a current value of 0.1 C rate for 10 minutes is defined as one cycle, and a total of 2 at 25 ° C. The cycle was repeated and the discharge capacity at the second cycle was measured (discharge capacity at 0.1 C rate).

引き続き、充電時の電流値を0.1Cレートに固定し、放電電流値を1Cレート、5Cレートで各2サイクル放電を繰り返し、2サイクル目の放電容量を各レートにおける放電容量とした。レート特性の指標として、5Cレートにおける放電容量を0.1Cレートの放電容量で除した値(これを「放電容量維持率(%)」とする)を用いた。   Subsequently, the current value at the time of charging was fixed at the 0.1 C rate, the discharge current value was 1 C rate, 5 C rate was repeated for each two cycles, and the discharge capacity at the second cycle was defined as the discharge capacity at each rate. As an index of the rate characteristic, a value obtained by dividing the discharge capacity at the 5C rate by the discharge capacity at the 0.1C rate (this is referred to as “discharge capacity maintenance rate (%)”) was used.

<評価結果>
上述の具体例の製造方法によって作成された板状粒子に代えて従来のLiCoO2板状粒子(図2C参照)を用いた実験例1と、Bi23添加量、焼成・降温条件、及びリチウム導入条件を変更することで配向度を変えた5つの実験例(実験例2〜6:上述の製造方法と合致するものは「実験例5」である)との評価結果を、以下の表1に示す。また、配向度を一定(実験例5と同じ)として、板状粒子配合率を変えた9つの実験例(実験例7〜15)の評価結果を、以下の表2に示す(実験例12は実験例5と同一である)。

Figure 2012009151
Figure 2012009151
<Evaluation results>
Experimental example 1 using conventional LiCoO 2 plate-like particles (see FIG. 2C) instead of the plate-like particles prepared by the production method of the above-described specific example, Bi 2 O 3 addition amount, firing / cooling conditions, and The evaluation results of five experimental examples (experimental examples 2 to 6: those corresponding to the above-described manufacturing method are “experimental example 5”) in which the degree of orientation was changed by changing the lithium introduction conditions are shown in the following table. It is shown in 1. In addition, the evaluation results of nine experimental examples (experimental examples 7 to 15) in which the degree of orientation is constant (same as experimental example 5) and the plate-like particle mixture ratio is changed are shown in Table 2 below (experimental example 12 is It is the same as Experimental Example 5).
Figure 2012009151
Figure 2012009151

表1に示されているように、配向度が低い(ピーク強度比[003]/[104]が大きい)実験例1においては、レート特性が低下した。また、板状粒子配合率が低すぎる実験例7及び8、並びに高すぎる実験例15においては、活物質充填率が低下した。   As shown in Table 1, in Experimental Example 1 in which the degree of orientation is low (the peak intensity ratio [003] / [104] is large), the rate characteristics are lowered. Further, in Experimental Examples 7 and 8 where the plate-like particle blending ratio is too low, and in Experimental Example 15 where the plate-like particle blending ratio is too high, the active material filling rate decreased.

これに対し、ピーク強度比[003]/[104]が1.6以下であり、且つ板状粒子配合率が50%である実験例2〜6においては、良好なレート特性が得られた。また、板状粒子配合率が5〜80%である実験例9〜14においては、良好な活物質充填率が得られた。   On the other hand, favorable rate characteristics were obtained in Experimental Examples 2 to 6 in which the peak intensity ratio [003] / [104] was 1.6 or less and the plate-like particle mixture ratio was 50%. In Experimental Examples 9 to 14 in which the plate-like particle blending rate is 5 to 80%, a good active material filling rate was obtained.

<実施形態による効果>
上述のように、正極活物質板状粒子15b2においては、リチウムイオン出入り面(例えば(104)面)が、板面と平行となるように配向することで、表面の大部分にて露出される。一方、リチウムイオンの出入りが行えない(003)面は、端面にわずかに露出するのみである(図2A参照)。すなわち、正極活物質板状粒子15b2においては、電解質13(バインダー15b1に浸透しているものを含む)への、リチウムイオン出入り面の露出がより多くなるとともに、リチウムイオンの出入りが行えない(003)面の露出割合が極めて低くなる。
<Effect by embodiment>
As described above, in the positive electrode active material plate-like particle 15b2, the lithium ion entrance / exit surface (for example, the (104) surface) is oriented so as to be parallel to the plate surface, so that most of the surface is exposed. . On the other hand, the (003) plane where lithium ions cannot enter and exit is only slightly exposed at the end face (see FIG. 2A). That is, in the positive electrode active material plate-like particles 15b2, the exposure of the lithium ion entrance / exit surface to the electrolyte 13 (including those permeating the binder 15b1) is increased, and lithium ions cannot enter and exit (003). ) The exposure ratio of the surface is extremely low.

また、正極活物質板状粒子15b2と正極活物質等軸粒子15b3とが適切な混合比で正極活物質層15b内に分散することで、正極活物質板状粒子15b2同士の隙間を埋めるように正極活物質等軸粒子15b3が配置される。これにより、正極活物質層15b内における正極活物質粒子の充填率が高められる。すなわち、正極活物質層15b内におけるバインダー15b1の割合を可及的に低くすることができる。さらに、正極活物質等軸粒子15b3の表面に露出したリチウムイオン出入り面も充放電動作に寄与できることとなる。   Further, the positive electrode active material plate-like particles 15b2 and the positive electrode active material equiaxed particles 15b3 are dispersed in the positive electrode active material layer 15b at an appropriate mixing ratio so as to fill a gap between the positive electrode active material plate-like particles 15b2. Positive electrode active material equiaxed particles 15b3 are arranged. Thereby, the filling rate of the positive electrode active material particles in the positive electrode active material layer 15b is increased. That is, the ratio of the binder 15b1 in the positive electrode active material layer 15b can be made as low as possible. Further, the lithium ion entrance / exit surface exposed on the surface of the positive electrode active material equiaxed particles 15b3 can also contribute to the charge / discharge operation.

したがって、本実施形態の構成によれば、リチウムイオン出入り面の露出を可及的に多くすることによるレート特性の向上と、正極活物質板状粒子15b2の粒子径を大きくすることによる粒子強度の向上に伴う耐久性の向上と、充填率を高めることによる高容量化とが、同時に達成される。   Therefore, according to the configuration of the present embodiment, the rate characteristics are improved by increasing the exposure of the lithium ion entrance and exit surfaces as much as possible, and the particle strength of the positive electrode active material plate-like particles 15b2 is increased. The improvement in durability accompanying the improvement and the increase in capacity by increasing the filling rate are simultaneously achieved.

特に、携帯電話やノートPCに搭載される、モバイル機器向けのリチウムイオン二次電池においては、長時間の使用に対応可能程度に高容量化されることが求められる。かかる観点から、正極活物質板状粒子15b2として、粒子径が10μm以上の大きな粒子を用いることで、充填率を高めることが好ましい。   In particular, a lithium ion secondary battery for mobile devices mounted on a mobile phone or a notebook PC is required to have a capacity that can be used for a long time. From such a viewpoint, it is preferable to increase the filling rate by using large particles having a particle diameter of 10 μm or more as the positive electrode active material plate-like particles 15b2.

この点、従来技術では、粒子径を大きくすると、その反面、リチウムイオンが出入りできない面(003)が表面に広く露出してしまい(図2C参照)、出力特性がかえって悪化することがあった。   In this regard, in the prior art, when the particle size is increased, on the other hand, a surface (003) where lithium ions cannot enter and exit is widely exposed on the surface (see FIG. 2C), and the output characteristics may be deteriorated.

これに対し、本実施形態に係る正極活物質板状粒子15b2では、リチウムイオン出入り面が表面に広く露出している。このため、本実施形態によれば、出力特性に悪影響を及ぼすことなく、正極活物質板状粒子15b2を大粒子化することができる。また、上述のように、正極活物質板状粒子15b2同士の隙間を埋めるように正極活物質等軸粒子15b3が配置される。したがって、本実施形態によれば、従来よりも充填率が高められた、高容量化に対応した正極を提供することができる。   On the other hand, in the positive electrode active material plate-like particle 15b2 according to this embodiment, the lithium ion entry / exit surface is widely exposed on the surface. For this reason, according to this embodiment, the positive electrode active material plate-like particle 15b2 can be enlarged without adversely affecting the output characteristics. Further, as described above, the positive electrode active material equiaxed particles 15b3 are arranged so as to fill the gaps between the positive electrode active material plate-like particles 15b2. Therefore, according to the present embodiment, it is possible to provide a positive electrode that has a higher filling rate than conventional ones and that is compatible with higher capacity.

なお、正極活物質板状粒子15b2の厚さは、2〜100μm、より好ましくは5〜50μm、さらに好ましくは5〜20μmが望ましい。100μmより厚いと、レート特性が低下する点や、シート成形性の点から、好ましくない。また、正極活物質板状粒子15b2の厚さは、2μm以上が望ましい。2μmより薄いと、充填率を高める効果が小さくなる点で、好ましくない。   In addition, the thickness of the positive electrode active material plate-like particle 15b2 is 2 to 100 μm, more preferably 5 to 50 μm, and still more preferably 5 to 20 μm. If it is thicker than 100 μm, it is not preferable from the viewpoint of the rate characteristics decreasing and the sheet formability. The thickness of the positive electrode active material plate-like particle 15b2 is desirably 2 μm or more. If it is thinner than 2 μm, it is not preferable in that the effect of increasing the filling rate is reduced.

正極活物質板状粒子15b2のアスペクト比は、2.1〜20が望ましい。アスペクト比が小さすぎると、配向によるリチウムイオン出入り面の拡大効果が小さくなる。アスペクト比が20より大きいと、正極活物質板状粒子15b2の板面が正極活物質層15bの面内方向と平行になるように正極活物質板状粒子15b2が充填された場合、正極活物質層15bの厚み方向へのリチウムイオンの拡散経路が極度に長くなることで、レート特性が低下するので、好ましくない。   The aspect ratio of the positive electrode active material plate-like particles 15b2 is desirably 2.1 to 20. If the aspect ratio is too small, the effect of expanding the entrance / exit surface of lithium ions by orientation will be small. When the aspect ratio is larger than 20, when the positive electrode active material plate-like particle 15b2 is filled so that the plate surface of the positive electrode active material plate-like particle 15b2 is parallel to the in-plane direction of the positive electrode active material layer 15b, the positive electrode active material Since the diffusion path of lithium ions in the thickness direction of the layer 15b becomes extremely long, the rate characteristics deteriorate, which is not preferable.

<変形例の例示列挙>
なお、上述の実施形態や具体例は、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
<List of examples of modification>
It should be noted that the above-described embodiments and specific examples are merely examples of realization of the present invention that the applicant has considered to be the best at the time of filing of the present application, and the present invention is not limited to the above. It should not be limited at all by the embodiments and specific examples. Therefore, it goes without saying that various modifications can be made to the above-described embodiments and specific examples without departing from the essential part of the present invention.

以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。   Hereinafter, some modifications will be exemplified. In the following description of the modification, components having the same configurations and functions as the components in the above-described embodiment are given the same name and the same reference numerals in this modification. And about description of the said component, description in the above-mentioned embodiment shall be used suitably in the range which is not inconsistent.

もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。   However, it goes without saying that the modified examples are not limited to the following. The limited interpretation of the present invention based on the description of the above-described embodiment and the following modifications unfairly harms the interests of the applicant (especially rushing the application under the principle of prior application), but improperly imitates the imitator. It is beneficial and not allowed.

また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。   It goes without saying that the configuration of the above-described embodiment and the configuration described in each of the following modifications can be combined in an appropriate manner within a technically consistent range.

電解質としては、無機固体、有機ポリマー、あるいはゲルポリマー(有機ポリマーに電解液を染み込ませたゲル状のもの)が用いられ得る。   As the electrolyte, an inorganic solid, an organic polymer, or a gel polymer (a gel-like material in which an organic polymer is impregnated with an electrolytic solution) can be used.

正極活物質板状粒子15b2の製造方法は、上述の具体例に何ら限定されない。例えば、正極活物質板状粒子15b2は、従来周知の製造方法とは異なる、本出願人の先願に係る製造方法(例えば国際出願番号PCT/JP2009/071838等)によって製造され得る。   The manufacturing method of the positive electrode active material plate-like particle 15b2 is not limited to the above specific example. For example, the positive electrode active material plate-like particles 15b2 can be manufactured by a manufacturing method (for example, International Application No. PCT / JP2009 / 071838) according to the prior application of the present applicant, which is different from a conventionally known manufacturing method.

上述の具体例においては、正極活物質等軸粒子15b3として、配向度が高い(ピーク強度比[003]/[104]が1.6以下である)正極活物質板状粒子15b2を粉砕したものを用いたが、本発明はこれに限定されない。すなわち、例えば、正極活物質等軸粒子15b3として、従来周知の製造方法によって製造されたもの(図2Cに示されているものと同様の結晶構造で外形形状が等軸状のもの)も用いられ得る。   In the above specific example, the positive electrode active material equiaxed particles 15b3 are obtained by pulverizing the positive electrode active material plate-like particles 15b2 having a high degree of orientation (peak intensity ratio [003] / [104] is 1.6 or less). However, the present invention is not limited to this. That is, for example, as the positive electrode active material equiaxed particles 15b3, those produced by a conventionally known production method (with a crystal structure similar to that shown in FIG. 2C and having an equiaxial shape) are also used. obtain.

その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。   Other modifications not specifically mentioned are naturally included in the technical scope of the present invention without departing from the essential part of the present invention.

また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。   In addition, in each element constituting the means for solving the problems of the present invention, elements expressed functionally and functionally include the specific structures disclosed in the above-described embodiments and modifications, It includes any structure that can realize this action / function. Furthermore, the contents of the prior application and each publication (including the specification and the drawings) cited in the present specification may be incorporated as appropriate as part of the present specification.

10…リチウム二次電池 11…電池ケース
12…セパレータ 13…電解質
14…負極 15…正極
15a…正極集電体 15b…正極活物質層
15b1…バインダー 15b2…正極活物質板状粒子
15b3…正極活物質等軸粒子
A…板面(上側表面) B…板面(下側表面)
C…端面
DESCRIPTION OF SYMBOLS 10 ... Lithium secondary battery 11 ... Battery case 12 ... Separator 13 ... Electrolyte 14 ... Negative electrode 15 ... Positive electrode 15a ... Positive electrode collector 15b ... Positive electrode active material layer 15b1 ... Binder 15b2 ... Positive electrode active material plate-like particle 15b3 ... Positive electrode active material Equiaxial particle A ... Plate surface (upper surface) B ... Plate surface (lower surface)
C ... End face

特開平9−22693号公報Japanese Patent Laid-Open No. 9-22893 特開2003−132887号公報JP 2003-132877 A 特開2003−346809号公報JP 2003-346809 A

Claims (10)

層状岩塩構造を有し、X線回折における(104)面による回折強度に対する(003)面による回折強度の比率であるピーク強度比[003]/[104]が1.6以下であり、厚さを規定する板厚方向と直交する板面方向における最小寸法によって定義される粒子径を前記厚さで除した値であるアスペクト比が2.1〜20である、板状粒子と、
層状岩塩構造を有し、前記アスペクト比が2以下である、等軸粒子と、
を含むことを特徴とする、リチウム二次電池の正極。
It has a layered rock salt structure, and the peak intensity ratio [003] / [104], which is the ratio of the diffraction intensity by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction, is 1.6 or less, and the thickness A plate-like particle having an aspect ratio of 2.1 to 20, which is a value obtained by dividing the particle diameter defined by the minimum dimension in the plate surface direction orthogonal to the plate thickness direction defining
An equiaxed particle having a layered rock salt structure and having an aspect ratio of 2 or less;
A positive electrode for a lithium secondary battery, comprising:
請求項1に記載の、リチウム二次電池の正極であって、
前記等軸粒子の粒子径が前記板状粒子の前記厚さ以下であることを特徴とする、リチウム二次電池の正極。
The positive electrode of the lithium secondary battery according to claim 1,
The positive electrode of a lithium secondary battery, wherein a particle diameter of the equiaxed particles is equal to or less than the thickness of the plate-like particles.
請求項1又は請求項2に記載の、リチウム二次電池の正極であって、
前記板状粒子の前記厚さが、5〜100μmであることを特徴とする、リチウム二次電池の正極。
The positive electrode of the lithium secondary battery according to claim 1 or 2,
The positive electrode of a lithium secondary battery, wherein the thickness of the plate-like particles is 5 to 100 μm.
請求項1〜請求項3のうちのいずれか1項に記載の、リチウム二次電池の正極であって、
前記板状粒子と前記等軸粒子との合計に対する前記板状粒子の体積%である、板状粒子配合率が、5〜80%であることを特徴とする、リチウム二次電池の正極。
The positive electrode of the lithium secondary battery according to any one of claims 1 to 3,
The positive electrode of a lithium secondary battery, wherein a plate-like particle content ratio, which is a volume percent of the plate-like particles with respect to a total of the plate-like particles and the equiaxed particles, is 5 to 80%.
請求項1〜請求項4のうちのいずれか1項に記載の、リチウム二次電池の正極であって、
バインダー中に前記板状粒子と前記等軸粒子とを分散させることによって形成された正極活物質膜を含むことを特徴とする、リチウム二次電池の正極。
The positive electrode of the lithium secondary battery according to any one of claims 1 to 4,
A positive electrode of a lithium secondary battery, comprising a positive electrode active material film formed by dispersing the plate-like particles and the equiaxed particles in a binder.
層状岩塩構造を有し、X線回折における(104)面による回折強度に対する(003)面による回折強度の比率であるピーク強度比[003]/[104]が1.6以下であり、厚さを規定する板厚方向と直交する板面方向における最小寸法によって定義される粒子径を前記厚さで除した値であるアスペクト比が2.1〜20である、板状粒子と、層状岩塩構造を有し、前記アスペクト比が2以下である、等軸粒子と、を、正極活物質粒子として含む、正極と、
炭素質材料又はリチウム吸蔵物質を負極活物質として含む、負極と、
前記正極と前記負極との間に介在するように設けられた、電解質と、
を備えたことを特徴とする、リチウム二次電池。
It has a layered rock salt structure, and the peak intensity ratio [003] / [104], which is the ratio of the diffraction intensity by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction, is 1.6 or less, and the thickness A plate-like particle having an aspect ratio of 2.1 to 20 which is a value obtained by dividing a particle diameter defined by a minimum dimension in a plate surface direction perpendicular to the plate thickness direction defining the thickness by the thickness, and a layered rock salt structure A positive electrode comprising, as positive electrode active material particles, equiaxed particles having an aspect ratio of 2 or less,
A negative electrode containing a carbonaceous material or a lithium storage material as a negative electrode active material;
An electrolyte provided to be interposed between the positive electrode and the negative electrode;
A lithium secondary battery comprising:
請求項6に記載の、リチウム二次電池であって、
前記等軸粒子の粒子径が前記板状粒子の前記厚さ以下であることを特徴とする、リチウム二次電池。
The lithium secondary battery according to claim 6,
The lithium secondary battery, wherein the equiaxed particles have a particle diameter equal to or less than the thickness of the plate-like particles.
請求項6又は請求項7に記載の、リチウム二次電池であって、
前記板状粒子の前記厚さが、5〜100μmであることを特徴とする、リチウム二次電池。
The lithium secondary battery according to claim 6 or 7,
The lithium secondary battery, wherein the thickness of the plate-like particles is 5 to 100 µm.
請求項6〜請求項8のうちのいずれか1項に記載の、リチウム二次電池であって、
前記正極における、前記板状粒子と前記等軸粒子との合計に対する前記板状粒子の体積%である、板状粒子配合率が、5〜80%であることを特徴とする、リチウム二次電池。
A lithium secondary battery according to any one of claims 6 to 8,
Lithium secondary battery characterized in that a plate-like particle mixture ratio, which is the volume% of the plate-like particles with respect to the sum of the plate-like particles and the equiaxed particles in the positive electrode, is 5 to 80%. .
請求項6〜請求項9のうちのいずれか1項に記載の、リチウム二次電池の正極であって、
前記正極は、バインダー中に前記板状粒子と前記等軸粒子とを分散させることによって形成された正極活物質膜を含むことを特徴とする、リチウム二次電池の正極。
The positive electrode of the lithium secondary battery according to any one of claims 6 to 9,
The positive electrode of a lithium secondary battery, wherein the positive electrode includes a positive electrode active material film formed by dispersing the plate-like particles and the equiaxed particles in a binder.
JP2010141367A 2010-06-22 2010-06-22 Positive electrode of lithium secondary battery and lithium secondary battery Expired - Fee Related JP5457953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141367A JP5457953B2 (en) 2010-06-22 2010-06-22 Positive electrode of lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141367A JP5457953B2 (en) 2010-06-22 2010-06-22 Positive electrode of lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2012009151A true JP2012009151A (en) 2012-01-12
JP5457953B2 JP5457953B2 (en) 2014-04-02

Family

ID=45539492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141367A Expired - Fee Related JP5457953B2 (en) 2010-06-22 2010-06-22 Positive electrode of lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5457953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613938A (en) * 2022-03-25 2022-06-10 珠海冠宇电池股份有限公司 Positive plate, battery and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620367B2 (en) * 2015-03-10 2019-12-18 株式会社豊田自動織機 Lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2005222953A (en) * 2004-02-06 2005-08-18 Samsung Sdi Co Ltd Positive electrode active material used for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
WO2009139397A1 (en) * 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JP2009301850A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Lithium secondary battery
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2005222953A (en) * 2004-02-06 2005-08-18 Samsung Sdi Co Ltd Positive electrode active material used for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
WO2009139397A1 (en) * 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JP2009301850A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Lithium secondary battery
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613938A (en) * 2022-03-25 2022-06-10 珠海冠宇电池股份有限公司 Positive plate, battery and electronic equipment

Also Published As

Publication number Publication date
JP5457953B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4745463B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP4745464B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP5457947B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP5564649B2 (en) Positive electrode of lithium secondary battery and lithium secondary battery
JP5542694B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
JP4703786B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP5587052B2 (en) Positive electrode of lithium secondary battery and lithium secondary battery
JP4703785B2 (en) Plate-like particles for positive electrode active material of lithium secondary battery, and lithium secondary battery
JP4755727B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP2010219069A (en) Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
WO2011158575A1 (en) Method for producing positive electrode active material for lithium secondary battery
JP5752303B2 (en) Lithium composite oxide sintered plate
JP5457953B2 (en) Positive electrode of lithium secondary battery and lithium secondary battery
JP5703409B2 (en) Lithium composite oxide sintered plate for lithium secondary battery
WO2011162251A1 (en) Plate-shaped particles for positive-electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP2010219068A (en) Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
US8709662B2 (en) Method for producing cathode active material for a lithium secondary battery
JP2012003880A (en) Plate-like particle for positive electrode active material of lithium secondary battery and film of the same, as well as lithium secondary battery
WO2012029803A1 (en) Positive-electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140110

R150 Certificate of patent or registration of utility model

Ref document number: 5457953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees