JP2010116302A - Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010116302A
JP2010116302A JP2008291451A JP2008291451A JP2010116302A JP 2010116302 A JP2010116302 A JP 2010116302A JP 2008291451 A JP2008291451 A JP 2008291451A JP 2008291451 A JP2008291451 A JP 2008291451A JP 2010116302 A JP2010116302 A JP 2010116302A
Authority
JP
Japan
Prior art keywords
lithium
particle powder
cobalt
positive electrode
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291451A
Other languages
Japanese (ja)
Other versions
JP5321802B2 (en
Inventor
Masaichi Fujino
昌市 藤野
Kazushi Nishimoto
一志 西本
Masayuki Uekami
雅之 上神
Daisuke Morita
大輔 森田
Masafumi Obino
雅史 小尾野
Katsuhiro Fujita
勝弘 藤田
Akihisa Kajiyama
亮尚 梶山
Kenji Okinaka
健二 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2008291451A priority Critical patent/JP5321802B2/en
Priority to KR1020107017792A priority patent/KR101562686B1/en
Priority to CN200980104913.5A priority patent/CN101945825B/en
Priority to CN201310083045.5A priority patent/CN103259011B/en
Priority to EP09725552.5A priority patent/EP2314545B1/en
Priority to PCT/JP2009/001377 priority patent/WO2009119104A1/en
Publication of JP2010116302A publication Critical patent/JP2010116302A/en
Application granted granted Critical
Publication of JP5321802B2 publication Critical patent/JP5321802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium cobaltate particulate powder which has high density, a uniformly-grown crystal and is useful as a positive electrode active material for a non-aqueous electrolyte secondary battery. <P>SOLUTION: The lithium cobaltate particulate powder is characterized in that the average secondary particle diameter (D50) is 15.0-25.0 μm, the BET specific surface area (BET) is 0.10-0.30 m<SP>2</SP>/g, and the compression density (CD 2.5 t/cm<SP>2</SP>) is 3.65-4.00 g/cm<SP>3</SP>. The lithium cobaltate particulate powder is obtained by using a specified cobalt oxyhydroxide particulate powder as a precursor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、密度が高く、均一に結晶が成長したコバルト酸リチウム粒子粉末に関する。本発明に係るコバルト酸リチウム粒子粉末は、非水電解質二次電池に用いられる正極活物質(コバルト酸リチウム粒子粉末)として有用である。   The present invention relates to a lithium cobalt oxide particle powder having a high density and having crystals uniformly grown. The lithium cobalt oxide particle powder according to the present invention is useful as a positive electrode active material (lithium cobalt oxide particle powder) used in a non-aqueous electrolyte secondary battery.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOを用いたリチウムイオン二次電池は高い充放電電圧と充放電容量を有する点で優れているが、更なる特性改善が求められている。 Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known, and among them, a lithium ion secondary battery using LiCoO 2 is excellent in that it has a high charge / discharge voltage and charge / discharge capacity. There is a need for further improvement in characteristics.

即ち、LiCoOはリチウムを引き抜いた際に、Co3+がCo4+となりヤーンテラー歪を生じ、Liを0.45引き抜いた領域で六方晶から単斜晶へ、さらに引き抜くと単斜晶から六方晶と結晶構造が変化する。そのため、充放電反応を繰り返すことによって、結晶構造が不安定となり、酸素放出や電解液との反応などが起こる。 That is, when LiCoO 2 pulls out lithium, Co 3+ becomes Co 4+ and yarn teller distortion occurs, and in the region where Li is pulled 0.45, from hexagonal to monoclinic, when further drawn, it changes from monoclinic to hexagonal. The crystal structure changes. Therefore, by repeating the charge / discharge reaction, the crystal structure becomes unstable, and oxygen release, reaction with the electrolytic solution, and the like occur.

そこで、充放電反応を繰り返しても、安定して特性を維持できる、サイクル特性に優れるLiCoOが必要とされている。 Therefore, there is a need for LiCoO 2 having excellent cycle characteristics that can stably maintain characteristics even after repeated charge / discharge reactions.

また、充填密度に関しては、正極での高容量化も望まれており、正極の電極密度を向上させるためには、コバルト酸リチウムの圧縮密度(電極圧延を想定した圧力下)など充填性を向上させることが要求されている。   In addition, regarding the packing density, it is also desired to increase the capacity of the positive electrode, and in order to improve the electrode density of the positive electrode, the packing properties such as the compression density of lithium cobaltate (under pressure assuming electrode rolling) are improved. It is required to make it.

また、比表面積に関しては、電池膨れ防止、熱安定性向上のためにコバルト酸リチウムの比表面積をできるだけ小さくすることが要求されている。   Further, regarding the specific surface area, it is required to make the specific surface area of lithium cobalt oxide as small as possible in order to prevent battery swelling and improve thermal stability.

更に、高温になると電解液との反応が活性になるため、二次電池としての安全性を確保するためには、高温下でも正極活物質の構造が安定であって熱安定性向上が必要とされている。   Furthermore, since the reaction with the electrolytic solution becomes active at high temperatures, the structure of the positive electrode active material is stable even at high temperatures and thermal stability needs to be improved to ensure safety as a secondary battery. Has been.

コバルト酸リチウムは、通常、オキシ水酸化コバルト(CoOOH)、水酸化コバルト(Co(OH))又は酸化コバルト(Co)等のコバルト原料と炭酸リチウム又は水酸化リチウムなどのリチウム原料とを混合焼成して得られる。 Lithium cobaltate is usually a cobalt raw material such as cobalt oxyhydroxide (CoOOH), cobalt hydroxide (Co (OH) 2 ) or cobalt oxide (Co 3 O 4 ), and a lithium raw material such as lithium carbonate or lithium hydroxide. Obtained by mixing and firing.

従来、コバルト酸リチウム粒子粉末のタップ密度、圧縮密度などを制御することが知られている(特許文献1〜4)   Conventionally, it is known to control the tap density, compression density, and the like of lithium cobalt oxide particle powder (Patent Documents 1 to 4).

特開2003−2661号公報Japanese Patent Laid-Open No. 2003-2661 特開2004−182564号公報JP 2004-182564 A 特開2004−196603号公報JP 2004-196603 A 特開2005−206422号公報JP 2005-206422 A

前記諸特性を満たす正極活物質及びコバルト酸リチウム粒子粉末は現在最も要求されているところであるが、未だ得られていない。   A positive electrode active material and lithium cobalt oxide particle powder satisfying the above-mentioned properties are currently most demanded, but have not yet been obtained.

前記特許文献1には、重量平均粒径が5〜15μm、比表面積が0.15〜0.6m/gであるコバルト酸リチウム粒子粉末が記載されているが、前駆体の比表面積が高いため、該前駆体を焼成した場合、一次粒子が焼結し、サイクル特性が優れるとは言い難い。 Patent Document 1 describes a lithium cobalt oxide particle powder having a weight average particle diameter of 5 to 15 μm and a specific surface area of 0.15 to 0.6 m 2 / g, but the precursor has a high specific surface area. Therefore, when the precursor is fired, it is difficult to say that the primary particles are sintered and the cycle characteristics are excellent.

前記特許文献2には、タップ密度が1.8g/cm以上であり、2ton/cmで加圧した圧縮密度が3.5〜4.0g/cmであるコバルト酸リチウム粒子粉末が記載されているが、2成分混合で達成し得る物性であり、また、レート特性、サイクル特性が優れているとは言い難い。 The Patent Document 2, a tap density of 1.8 g / cm 3 or more, 2 ton / cm 2 by pressurized compressed density described lithium cobaltate particles is 3.5~4.0g / cm 3 However, it is a physical property that can be achieved by mixing two components, and it is difficult to say that rate characteristics and cycle characteristics are excellent.

前記特許文献3には、平均粒子径が10〜15μmであるコバルト酸リチウム粒子粉末が記載されているが、SEM写真からは一次粒径が小さいので熱安定性に優れるとは言い難く、また、前駆体のタップ密度が低いので電極密度が高いとは言い難いものである。   Patent Document 3 describes a lithium cobalt oxide particle powder having an average particle size of 10 to 15 μm. However, it is difficult to say that the primary particle size is small from the SEM photograph, so that it is excellent in thermal stability. Since the tap density of the precursor is low, it is difficult to say that the electrode density is high.

前記特許文献4には、特定の粒度分布を有するとともに、嵩密度が1.20〜2.20g/cmであり、タップ密度が2.30〜3.00g/cmであるコバルト酸リチウム粒子粉末が記載されているが、平均粒子径が小さいため圧縮密度が低くなり、電極(正極)とした場合に密度が低いものになる。 Patent Document 4 discloses a lithium cobalt oxide particle having a specific particle size distribution, a bulk density of 1.20 to 2.20 g / cm 3 , and a tap density of 2.30 to 3.00 g / cm 3. Although powder is described, since the average particle size is small, the compression density is low, and when the electrode (positive electrode) is used, the density is low.

そこで、本発明は、充填密度が高く、比表面積が低く、結晶成長が均一なコバルト酸リチウム粒子粉末を得ることを目的とする。   Therefore, an object of the present invention is to obtain a lithium cobalt oxide particle powder having a high packing density, a low specific surface area, and uniform crystal growth.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、二次粒子の平均粒子径(D50)が15.0〜25.0μm、BET比表面積値(BET)が0.10〜0.30m/g、圧縮密度(CD 2.5t/cm)が3.65〜4.00g/cmであることを特徴とするコバルト酸リチウム粒子粉末である(本発明1)。 That is, in the present invention, the average particle diameter (D50) of the secondary particles is 15.0 to 25.0 μm, the BET specific surface area value (BET) is 0.10 to 0.30 m 2 / g, and the compression density (CD2. 5t / cm < 2 >) is 3.65 to 4.00 g / cm < 3 >, It is a lithium cobaltate particle powder characterized by the above-mentioned (Invention 1).

また、本発明は、本発明1記載のコバルト酸リチウム粒子粉末のX線回折パターンにおいて(003)面と(104)面の強度比I(104)/I(003)が、0.70〜1.20であるコバルト酸リチウム粒子粉末である(本発明2)。   Further, according to the present invention, in the X-ray diffraction pattern of the lithium cobalt oxide particle powder according to the present invention 1, the intensity ratio I (104) / I (003) of the (003) plane to the (104) plane is 0.70 to 1. 20 (invention 2).

また、本発明は、本発明1記載のコバルト酸リチウム粒子粉末において、総アルカリ量が0.10wt%以下であって残存Co量が1000ppm以下であるコバルト酸リチウム粒子粉末である(本発明3)。 Further, the present invention is a lithium cobalt oxide particle powder according to the present invention 1, wherein the total alkali amount is 0.10 wt% or less and the residual Co 3 O 4 amount is 1000 ppm or less (this book) Invention 3).

また、本発明は、水溶液中にコバルト塩を含有する溶液とアルカリ溶液とを同時に滴下中和し、速やかに酸化反応を行ってオキシ水酸化コバルト粒子を得、該オキシ水酸化コバルト粒子とリチウム化合物とを混合し、当該混合物を600〜1100℃の温度範囲で熱処理を行うコバルト酸リチウム粒子粉末の製造法であって、前記オキシ水酸化コバルト粒子粉末は、二次粒子の平均粒子径(D50)が15.0〜25.0μmであり、BET比表面積値(BET)が0.1〜20.0m/gであり、タップ密度(TD)が1.0〜3.5g/cmであり、X線回折パターンにおける(110)面と(003)面との結晶子サイズ比(D110/D003)が0.50〜2.00であり、(003)面の結晶子サイズが300〜700Åであることを特徴とする請求項1乃至3のいずれかに記載のコバルト酸リチウム粒子粉末の製造法である(本発明4)。 Further, the present invention provides a solution containing a cobalt salt in an aqueous solution and an alkaline solution by neutralization at the same time, and promptly oxidizes to obtain cobalt oxyhydroxide particles. The cobalt oxyhydroxide particles and the lithium compound And the mixture is heat-treated in a temperature range of 600 to 1100 ° C., wherein the cobalt oxyhydroxide particle powder has an average particle diameter (D50) of secondary particles. Is 15.0-25.0 μm, the BET specific surface area value (BET) is 0.1-20.0 m 2 / g, and the tap density (TD) is 1.0-3.5 g / cm 3 . The crystallite size ratio (D110 / D003) between the (110) plane and the (003) plane in the X-ray diffraction pattern is 0.50 to 2.00, and the crystallite size on the (003) plane is 300 to 700 mm. It is a manufacturing method of a lithium cobaltate particles according to any one of claims 1 to 3, characterized in that (present invention 4).

また、本発明は、本発明1乃至3のいずれかに記載のコバルト酸リチウム粒子粉末を含有する正極からなる非水電解質二次電池である(本発明5)。   Moreover, this invention is a nonaqueous electrolyte secondary battery which consists of a positive electrode containing the lithium cobaltate particle powder in any one of this invention 1 thru | or 3 (this invention 5).

本発明に係るコバルト酸リチウム粒子粉末は、BET比表面積値が小さいので、二次電池の電極とした場合、正極由来の電池膨れを抑制できるとともに、熱安定性の向上が期待できる。
また、本発明に係るコバルト酸リチウム粒子粉末は、圧縮密度が大きいので、電極密度向上が期待でき、高容量化が期待できる。
さらに、本発明に係るコバルト酸リチウム粒子粉末は、特定の回折面のピーク強度比を制御しており、均一な結晶成長が期待できるので、電極とした場合、レート、サイクル特性が向上することが期待できる
Since the lithium cobalt oxide particle powder according to the present invention has a small BET specific surface area value, when it is used as an electrode for a secondary battery, it is possible to suppress battery swelling derived from the positive electrode and to improve thermal stability.
Moreover, since the lithium cobalt oxide particle powder according to the present invention has a high compression density, an improvement in electrode density can be expected, and an increase in capacity can be expected.
Furthermore, since the lithium cobalt oxide particle powder according to the present invention controls the peak intensity ratio of a specific diffraction surface and can expect uniform crystal growth, when it is used as an electrode, the rate and cycle characteristics may be improved. Can expect

また、本発明に係るコバルト酸リチウム粒子粉末の製造方法は、前駆体としてオキシ水酸化コバルト粒子粉末を用いることで、特性に優れたコバルト酸リチウム粒子粉末が得られる。   Moreover, the manufacturing method of the lithium cobalt oxide particle powder which concerns on this invention uses the cobalt oxyhydroxide particle powder as a precursor, and can obtain the lithium cobalt oxide particle powder excellent in the characteristic.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係るコバルト酸リチウム粒子粉末(LiCoO)について述べる。 First, lithium cobalt oxide particle powder (LiCoO 2 ) according to the present invention will be described.

本発明に係るコバルト酸リチウム粒子粉末の二次粒子の平均粒子径(D50)は15.0〜25.0μmである。二次粒子の平均粒子径(D50)が15.0μm未満の場合には、圧縮密度が低く、電極(正極)とした場合密度の非常に低いものになる。二次粒子の平均粒子径(D50)が25.0μmを超える場合には、電極厚みの関係から、電極の折れ、曲がりなどで、電極から粒子剥がれ生じ、粒子が露出する可能性があり好ましくない。二次粒子の平均粒子径(D50)は15.0〜23.0μmが好ましく、より好ましくは15.5〜20.0μmである。   The average particle diameter (D50) of the secondary particles of the lithium cobalt oxide particle powder according to the present invention is 15.0 to 25.0 μm. When the average particle diameter (D50) of the secondary particles is less than 15.0 μm, the compression density is low, and when the electrode (positive electrode) is used, the density is very low. When the average particle diameter (D50) of the secondary particles exceeds 25.0 μm, the electrode may be peeled off due to the bending or bending of the electrode due to the electrode thickness, and the particle may be exposed, which is not preferable. . The average particle diameter (D50) of the secondary particles is preferably 15.0 to 23.0 μm, more preferably 15.5 to 20.0 μm.

本発明に係るコバルト酸リチウム粒子粉末のBET比表面積値(BET)は0.10〜0.30m/gである。BET比表面積値が0.10m/g未満の場合には、現実的には合成して得るのは非常に困難であり、0.30m/gを越える場合には、電極(正極)とした場合、サイクル特性、電池の膨れの抑制が優れるとは言い難い。より好ましいBET比表面積値は0.10〜0.25m/gである。 The BET specific surface area value (BET) of the lithium cobaltate particles according to the present invention is 0.10 to 0.30 m 2 / g. When the BET specific surface area value is less than 0.10 m 2 / g, it is practically difficult to obtain by synthesis, and when it exceeds 0.30 m 2 / g, the electrode (positive electrode) and In this case, it is difficult to say that the cycle characteristics and the suppression of battery swelling are excellent. A more preferable BET specific surface area value is 0.10 to 0.25 m 2 / g.

本発明に係るコバルト酸リチウム粒子粉末の圧縮密度(CD:2.5t/cm)は、3.65〜4.00g/cmである。圧縮密度が3.65g/cm未満の場合には、目標とする電極密度(正極)が得られない。圧縮密度が4.00g/cmを超える場合でも良いが、電極にした際電解液の浸透が不十分な場合もあり、現実的には製造するのが困難である。より好ましい圧縮密度は3.70〜3.95g/cmである。 The compression density (CD: 2.5 t / cm 2 ) of the lithium cobalt oxide particle powder according to the present invention is 3.65 to 4.00 g / cm 3 . When the compression density is less than 3.65 g / cm 3 , the target electrode density (positive electrode) cannot be obtained. Although the compression density may exceed 4.00 g / cm 3 , there may be insufficient penetration of the electrolyte when the electrode is used, and it is difficult to manufacture in practice. A more preferable compression density is 3.70 to 3.95 g / cm 3 .

本発明に係るコバルト酸リチウム粒子粉末のX線回折パターンにおいて、(003)面と(104)面の強度比I(104)/I(003)が0.70〜1.20であることが好ましい。前記強度比が1.20を超えても良いが、現実的には製造するのが困難である。前記強度比が0.70未満の場合には、結晶成長方向がab軸方向となり、Li脱挿入が困難となり、サイクル特性が劣化するため好ましくない。より好ましい強度比I(104)/I(003)は0.70〜1.15であり、更により好ましくは0.75〜1.10である。   In the X-ray diffraction pattern of the lithium cobaltate particles according to the present invention, the intensity ratio I (104) / I (003) between the (003) plane and the (104) plane is preferably 0.70 to 1.20. . The intensity ratio may exceed 1.20, but it is practically difficult to manufacture. When the intensity ratio is less than 0.70, the crystal growth direction is the ab axis direction, Li insertion / extraction becomes difficult, and cycle characteristics deteriorate, which is not preferable. A more preferred intensity ratio I (104) / I (003) is 0.70 to 1.15, and even more preferably 0.75 to 1.10.

本発明に係るコバルト酸リチウム粒子粉末の総アルカリ量は、0.10wt%以下が好ましい。コバルト酸リチウム粒子粉末の総アルカリ量が0.10wt%を超える場合には、電極(正極)した場合、電池の膨れが起こる可能性があり好ましくない。更に好ましくは0.001〜0.08wt%である。   The total alkali amount of the lithium cobalt oxide particle powder according to the present invention is preferably 0.10 wt% or less. If the total alkali amount of the lithium cobalt oxide particle powder exceeds 0.10 wt%, the battery may swell when the electrode (positive electrode) is used. More preferably, it is 0.001-0.08 wt%.

本発明に係るコバルト酸リチウム粒子粉末の残存Co量は、1000ppm以下が好ましい。コバルト酸リチウム粒子粉末の残存Co量が1000ppmを超える場合には、電極(正極)とした場合、電池でのOCV不良を引き起こす可能性があり好ましくない。更に好ましくは10〜800ppmである。 The amount of residual Co 3 O 4 in the lithium cobalt oxide particle powder according to the present invention is preferably 1000 ppm or less. When the amount of residual Co 3 O 4 in the lithium cobalt oxide particle powder exceeds 1000 ppm, an electrode (positive electrode) may cause an OCV defect in the battery, which is not preferable. More preferably, it is 10-800 ppm.

次に、本発明に係るコバルト酸リチウム粒子粉末の製造法について述べる。   Next, a method for producing lithium cobalt oxide particle powder according to the present invention will be described.

本発明に係るコバルト酸リチウム粒子粉末は、オキシ水酸化コバルト粒子粉末とリチウム化合物とをコバルト(異種金属を含む)のモル数に対して1.00〜1.02となるように混合し、当該混合物を600〜1100℃の温度範囲で熱処理を行って得ることができる。   The lithium cobalt oxide particle powder according to the present invention is obtained by mixing cobalt oxyhydroxide particle powder and a lithium compound so as to be 1.00 to 1.02 with respect to the number of moles of cobalt (including different metals), The mixture can be obtained by heat treatment in a temperature range of 600 to 1100 ° C.

本発明におけるオキシ水酸化コバルト粒子粉末とリチウム化合物との混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。   The mixing treatment of the cobalt oxyhydroxide particle powder and the lithium compound in the present invention may be either dry or wet as long as it can be uniformly mixed.

リチウム化合物は水酸化リチウム、炭酸リチウム何れでも良いが、炭酸リチウムが好ましい。   The lithium compound may be either lithium hydroxide or lithium carbonate, but lithium carbonate is preferred.

必要に応じて、Mg、Al、Ti、Zr、Ni、Mn、Snなどの異種金属を微量添加しても構わない。   If necessary, a small amount of different metals such as Mg, Al, Ti, Zr, Ni, Mn, and Sn may be added.

オキシ水酸化コバルト粒子粉末とリチウム化合物の混合物の加熱処理温度が600℃未満の場合、擬スピネル構造を有する低温相であるLiCoOが生成するので好ましくない。加熱処理温度が1100℃を超える場合、リチウムとコバルトの位置がランダムである高温不規則相のLiCoOが生成する。焼成時の雰囲気は酸化性ガス雰囲気が好ましい。反応時間は5〜20時間が好ましい。 When the heat treatment temperature of the mixture of the cobalt oxyhydroxide particle powder and the lithium compound is less than 600 ° C., LiCoO 2 which is a low temperature phase having a pseudo spinel structure is generated, which is not preferable. When the heat treatment temperature exceeds 1100 ° C., LiCoO 2 having a high temperature irregular phase in which the positions of lithium and cobalt are random is generated. The atmosphere during firing is preferably an oxidizing gas atmosphere. The reaction time is preferably 5 to 20 hours.

本発明におけるオキシ水酸化コバルト粒子粉末について述べる。   The cobalt oxyhydroxide particle powder in the present invention will be described.

本発明におけるオキシ水酸化コバルト粒子粉末は、水溶液に、コバルト塩を含有する溶液とアルカリ水溶液とを滴下し、瞬時に中和反応を行った後、速やかに酸化反応を行って得たオキシ水酸化コバルト粒子粉末を用いることができる。   The cobalt oxyhydroxide particle powder according to the present invention is obtained by dropping a solution containing a cobalt salt and an aqueous alkali solution into an aqueous solution, performing an instantaneous neutralization reaction, and then performing an oxidation reaction promptly. Cobalt particle powder can be used.

アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の水溶液を用いることができるが、水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いるのが好ましい。なお、アンモニア溶液は環境負荷の観点から好ましくない。   As the alkaline aqueous solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate or the like can be used, but it is preferable to use sodium hydroxide, sodium carbonate or a mixed solution thereof. An ammonia solution is not preferable from the viewpoint of environmental load.

中和反応に用いるアルカリ水溶液の添加量は、含有する全金属塩の中和分に対して当量比1.0でよいが、pH調整のためにアルカリ過剰分を合わせて添加することが好ましい。   The addition amount of the alkaline aqueous solution used for the neutralization reaction may be an equivalent ratio of 1.0 with respect to the neutralized content of the total metal salt contained, but it is preferable to add the alkali excess together for pH adjustment.

反応溶液のpHは11.0〜13.0の範囲に制御することが好適である。反応溶液のpHが11.0未満の場合は、一次粒子を凝集させることが難しく、二次粒子を形成させることが困難になるか、あるいは、微粉が発生し、粒子個数が増加するため好ましくない。反応溶液のpHが13.0を超える場合は、一次粒子が板状に成長し、二次粒子が疎となり、充填密度が低下するため好ましくない。より好ましい反応溶液のpHは12.0〜13.0が好ましい。   The pH of the reaction solution is preferably controlled in the range of 11.0 to 13.0. When the pH of the reaction solution is less than 11.0, it is difficult to aggregate the primary particles and it becomes difficult to form secondary particles, or fine powder is generated and the number of particles increases, which is not preferable. . When the pH of the reaction solution exceeds 13.0, the primary particles grow in a plate shape, the secondary particles become sparse, and the packing density decreases, which is not preferable. The pH of the reaction solution is more preferably 12.0 to 13.0.

コバルト塩としては、硫酸コバルト、硝酸コバルト、酢酸コバルト、炭酸コバルトを用いることができる。特に、硫酸コバルトが好ましい。   As the cobalt salt, cobalt sulfate, cobalt nitrate, cobalt acetate, and cobalt carbonate can be used. In particular, cobalt sulfate is preferable.

また、コバルト溶液の滴下速度(m値)は、0.005〜0.300mol/(l・h)に制御することが好ましい。なお、本単位は、反応容積1L、反応時間1h当りに滴下するコバルトモル濃度である。さらに、塩濃度を安定せるために、硫酸ナトリウムを予め反応母液に含有させておいても良い。より好ましいコバルト溶液の滴下速度(m値)は、0.010〜0.280mol/(l・h)である。   Moreover, it is preferable to control the dripping speed | rate (m value) of a cobalt solution to 0.005-0.300 mol / (l * h). In addition, this unit is a cobalt molar concentration dripped per reaction volume 1L and reaction time 1h. Furthermore, in order to stabilize the salt concentration, sodium sulfate may be previously contained in the reaction mother liquor. A more preferable dropping rate (m value) of the cobalt solution is 0.010 to 0.280 mol / (l · h).

酸化反応は、酸素含有ガス、あるいは窒素含有ガスを混合したガスを通気することによって行う。酸素ガスは、ドラフトチューブの内部、反応器下部から通気することが好ましい。   The oxidation reaction is performed by venting a gas containing an oxygen-containing gas or a nitrogen-containing gas. The oxygen gas is preferably vented from the inside of the draft tube and the lower part of the reactor.

反応温度は30℃以上が好ましく、より好ましくは35〜70℃である。   The reaction temperature is preferably 30 ° C or higher, more preferably 35 to 70 ° C.

必要に応じて、Mg、Al、Ti、Zr、Ni、Mn、Sn等の異種金属を微量添加してもよく、あらかじめコバルト塩と混合する方法、コバルト塩と同時に添加する方法、反応途中で反応溶液に添加する方法、のいずれの手段を用いても構わない。   If necessary, a small amount of different metals such as Mg, Al, Ti, Zr, Ni, Mn, Sn may be added. A method of mixing with a cobalt salt in advance, a method of adding simultaneously with a cobalt salt, or a reaction in the middle of the reaction Any means of adding to the solution may be used.

本発明においては、反応器に濃縮器を連結し、反応器の水溶液中にコバルト塩を含有する溶液とアルカリ溶液とを同時に滴下・中和し、速やかに酸化反応を行ってコバルト酸リチウム粒子を含有する反応スラリーとし、反応器で生成した反応スラリーを反応器と濃縮器との間を循環させることが好ましい。そのため、反応器にバッフル、ドラフトチューブ及び外部に濃縮器を具備した装置を用い、反応スラリーを反応器と濃縮器との間をライン循環させることが好ましい。   In the present invention, a concentrator is connected to the reactor, and a solution containing a cobalt salt and an alkaline solution are dropped and neutralized simultaneously in the aqueous solution of the reactor, and a rapid oxidation reaction is performed to obtain lithium cobalt oxide particles. It is preferable to circulate the reaction slurry produced in the reactor between the reactor and the concentrator as a reaction slurry containing. Therefore, it is preferable to circulate the reaction slurry between the reactor and the concentrator by using a device equipped with a baffle, a draft tube and an external concentrator in the reactor.

反応器と濃縮器との循環流量は、反応器の攪拌状態を変化させない程度が好ましい。濃縮は滴下する原料溶液を遅滞なく濾過する速度が好ましい。濾過方法は、連続的、間欠的何れでも構わない。   The circulation flow rate between the reactor and the concentrator is preferably such that the stirring state of the reactor is not changed. Concentration is preferably performed at a rate at which the raw material solution to be dropped is filtered without delay. The filtration method may be either continuous or intermittent.

反応時間は目的とする粒径に依存するので特に限定されるものではない。また、反応濃度の上限は、反応スラリーの粘度などの性状から、配管内への付着がなく、閉塞しない程度に設備が安定的に稼動する範囲であれば特に規定はない。現実的には上限は20mol/l程度が好ましい。   The reaction time is not particularly limited because it depends on the target particle size. In addition, the upper limit of the reaction concentration is not particularly defined as long as the facility operates stably to such an extent that it does not adhere to the piping and does not block due to properties such as the viscosity of the reaction slurry. Practically, the upper limit is preferably about 20 mol / l.

上記製造条件によって得られたオキシ水酸化コバルト粒子粉末は、二次粒子の平均粒子径(D50)が3.0〜25.0μm、BET比表面積値(BET)が0.1〜20.0m/g、タップ密度(TD)が1.0〜3.5g/cm、X線回折パターンにおける(110)面と(003)面の結晶子サイズ比(D110/D003)が0.50〜2.00、(003)面の結晶子サイズが300〜700Åであることが好ましい。 The cobalt oxyhydroxide particle powder obtained under the above production conditions has an average particle diameter (D50) of secondary particles of 3.0 to 25.0 μm and a BET specific surface area value (BET) of 0.1 to 20.0 m 2. / G, the tap density (TD) is 1.0 to 3.5 g / cm 3 , and the crystallite size ratio (D110 / D003) of the (110) plane to the (003) plane in the X-ray diffraction pattern is 0.50 to 2 The crystallite size on the .00 and (003) planes is preferably 300 to 700 mm.

また、本発明においては、オキシ水酸化コバルト粒子粉末の二次粒子の平均粒子径(D50)とBET比表面積値(BET)とが関係式1を満たすことが好ましい。   Moreover, in this invention, it is preferable that the average particle diameter (D50) and BET specific surface area value (BET) of the secondary particle of cobalt oxyhydroxide particle powder satisfy | fill the relational expression 1.

(関係式1)
D50<12、BET≦−12.536×LN(D50)+32.65
D50≧12、BET≦1.5
(Relational formula 1)
D50 <12, BET ≦ -12.536 × LN (D50) +32.65
D50 ≧ 12, BET ≦ 1.5

本発明において、オキシ水酸化コバルト粒子粉末の二次粒子の平均粒子径(D50)と比表面積値(BET)とが関係式1の範囲外となる場合には、コバルト酸リチウムとした場合、目標とする比表面積に満たない場合があり、電極(正極)とした場合、サイクル特性、電池の膨れの抑制が優れるとは言い難い。   In the present invention, when the average particle diameter (D50) and the specific surface area value (BET) of the secondary particles of the cobalt oxyhydroxide particle powder are outside the range of the relational expression 1, When the electrode (positive electrode) is used, it is difficult to say that the cycle characteristics and the suppression of battery swelling are excellent.

また、本発明においては、オキシ水酸化コバルト粒子粉末の二次粒子の平均粒子径(D50)とタップ密度(TD)とが関係式2を満たすことが好ましい。   In the present invention, it is preferable that the average particle diameter (D50) and tap density (TD) of the secondary particles of the cobalt oxyhydroxide particle powder satisfy the relational expression 2.

(関係式2)
D50<17、TD≧1.627×LN(D50)−1.65
D50≧17、TD≧3.0
(Relational expression 2)
D50 <17, TD ≧ 1.627 × LN (D50) −1.65
D50 ≧ 17, TD ≧ 3.0

本発明において、オキシ水酸化コバルト粒子粉末の二次粒子の平均粒子径(D50)とタップ密度(TD)とが関係式2の範囲外となる場合には、コバルト酸リチウムとした場合、目標とする高い圧縮密度、電極密度(正極)を得ることが困難となる。   In the present invention, when the average particle diameter (D50) and the tap density (TD) of the secondary particles of the cobalt oxyhydroxide particle powder are outside the range of the relational expression 2, It is difficult to obtain a high compression density and electrode density (positive electrode).

本発明において、オキシ水酸化コバルト粒子粉末の二次粒子の平均粒子径(D50)と結晶子サイズ比(D110/D003)とが関係式3を満たすことが好ましい。   In the present invention, it is preferable that the average particle diameter (D50) of the secondary particles of the cobalt oxyhydroxide particle powder and the crystallite size ratio (D110 / D003) satisfy the relational expression 3.

(関係式3)
D50<12、D110/D003≦−1.083×LN(D50)+3.65
D50≧12、D110/D003≦1.00
(Relational expression 3)
D50 <12, D110 / D003 ≦ −1.083 × LN (D50) +3.65
D50 ≧ 12, D110 / D003 ≦ 1.00

本発明において、オキシ水酸化コバルト粒子粉末の二次粒子の平均粒子径(D50)と結晶子サイズ比(D110/D003)とが関係式3の範囲外となる場合には、コバルト酸リチウムとした場合、目標とする高い圧縮密度、電極密度(正極)を得ることが困難となる。   In the present invention, when the average particle diameter (D50) of the secondary particles of the cobalt oxyhydroxide particle powder and the crystallite size ratio (D110 / D003) are outside the range of the relational expression 3, lithium cobalt oxide is used. In this case, it becomes difficult to obtain a target high compression density and electrode density (positive electrode).

コバルト酸リチウム粒子粉末の前駆体としてより好ましいオキシ水酸化コバルト粒子粉末としては、二次粒子の平均粒子径(D50)が15.0〜25.0μmであり、BET比表面積値(BET)が0.1〜20.0m/gであり、タップ密度(TD)が1.0〜3.5g/cmであり、X線回折パターンにおける(110)面と(003)面との結晶子サイズ比(D110/D003)が0.50〜2.00であり、(003)面の結晶子サイズが300〜700Åであり、且つ、前記関係式1〜3を満足するオキシ水酸化コバルト粒子粉末である。 As a cobalt oxyhydroxide particle powder more preferable as a precursor of lithium cobaltate particle powder, the average particle diameter (D50) of secondary particles is 15.0 to 25.0 μm, and the BET specific surface area value (BET) is 0. 0.1 to 20.0 m 2 / g, tap density (TD) is 1.0 to 3.5 g / cm 3 , and crystallite size between (110) plane and (003) plane in X-ray diffraction pattern Cobalt oxyhydroxide particles having a ratio (D110 / D003) of 0.50 to 2.00, a crystallite size of (003) plane of 300 to 700 mm, and satisfying the relational expressions 1 to 3 is there.

次に、本発明に係るコバルト酸リチウム粒子粉末からなる正極活物質を用いた正極について述べる。   Next, the positive electrode using the positive electrode active material which consists of lithium cobaltate particle powder concerning this invention is described.

本発明に係る正極活物質を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When a positive electrode is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode active material according to the present invention includes the positive electrode, the negative electrode, and an electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係るコバルト酸リチウム粒子粉末を用いて、後述する方法に従って製造した正極の電極密度は、3.5〜4.0g/cmが好ましい。 The electrode density of the positive electrode produced by using the lithium cobalt oxide particle powder according to the present invention in accordance with the method described later is preferably 3.5 to 4.0 g / cm 3 .

本発明に係るコバルト酸リチウム粒子粉末を用いて製造した二次電池について、充電後に取り出したコバルト酸リチウム粒子粉末の重量減少率は、1.0%以下が好ましい。   About the secondary battery manufactured using the lithium cobaltate particle powder which concerns on this invention, 1.0% or less of the weight decreasing rate of the lithium cobaltate particle powder taken out after charge is preferable.

<作用>
本発明において最も重要な点は、前駆体として比表面積が小さく、圧縮密度の高いコバルト酸リチウム前駆体を用いることにより、コバルト酸リチウムとした際に、比表面積が小さく、圧縮密度が高いコバルト酸リチウム粉末を得ることができる。更に、電極とした際には、高密度、高容量の電極(正極)が得られるとともに、熱安定性が良好で膨れが少なく、且つサイクル特性に優れた電池が得られることである。
特に、LiCoOの結晶成長性を前駆体の特性及び焼成条件で制御することにより、LiCoO結晶を等方的に成長させ、ab軸からのLiの拡散をスムーズにし、電池でのサイクル特性を改良できたものと本発明者は推定している。
<Action>
In the present invention, the most important point is that a cobalt oxide having a small specific surface area and a high compression density is used as a precursor, so that the lithium cobaltate has a small specific surface area and a high compression density. Lithium powder can be obtained. Furthermore, when an electrode is used, a high-density, high-capacity electrode (positive electrode) can be obtained, and a battery having good thermal stability, less swelling, and excellent cycle characteristics can be obtained.
In particular, by controlling the crystal growth properties of LiCoO 2 by the characteristics of the precursor and the firing conditions, LiCoO 2 crystals are grown isotropically, Li diffusion from the ab axis is smoothed, and the cycle characteristics in the battery are improved. The inventor presumes that this has been improved.

本発明の代表的な実施の形態は、次の通りである。   A typical embodiment of the present invention is as follows.

コバルト酸リチウム粒子粉末の粒子形状は、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察した。   The particle shape of the lithium cobalt oxide particle powder was observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].

オキシ水酸化コバルト粒子粉末、コバルト酸リチウム粒子粉末の二次粒子の平均粒子径(D50)と体積基準のメジアン径の頻度は、粒度分布計マイクロトラックHRA9320−X100(日機装社製)を用いて測定した。   The average particle diameter (D50) of secondary particles of cobalt oxyhydroxide particle powder and lithium cobaltate particle powder and the frequency of volume-based median diameter were measured using a particle size distribution meter Microtrac HRA9320-X100 (manufactured by Nikkiso Co., Ltd.). did.

オキシ水酸化コバルト粒子粉末、コバルト酸リチウム粒子粉末の比表面積はMacsorb HM model−1208(マウンテック社製)を用いて、BET法にて測定した。   The specific surface areas of the cobalt oxyhydroxide particle powder and the lithium cobaltate particle powder were measured by BET method using Macsorb HM model-1208 (manufactured by Mountech Co., Ltd.).

コバルト酸リチウム粒子粉末の圧縮密度(CD)は、円柱金型に秤量した試料10gを入れ、卓上プレス機(RIKEN S1−150)で2.5t/cmで加圧後の体積から算出した。 The compression density (CD) of the lithium cobalt oxide particle powder was calculated from the volume after pressurizing at 2.5 t / cm 2 with a desktop press machine (RIKEN S1-150) by putting 10 g of a sample weighed into a cylindrical mold.

オキシ水酸化コバルト粒子粉末のタップ密度(TD)は、粉末試料40gを、100mlのメスシリンダーに充填し、タンプデンサー(KYT−3000、セイシン企業社製)を用いて、300回タップした後の粉末密度を測定した。   The tap density (TD) of the cobalt oxyhydroxide particle powder is a powder density after filling a sample of 40 g into a 100 ml measuring cylinder and tapping 300 times using a tamp denser (KYT-3000, manufactured by Seishin Enterprise Co., Ltd.). Was measured.

コバルト酸リチウム粒子粉末の同定は、粉末X線回折(RIGAKU Cu−Kα 40kV 40mA)を用いた。また、強度比((104)面、(003)面)は、以下の方法により試料板を作成し、下記条件で測定して強度を算出した。   Powder X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA) was used to identify the lithium cobalt oxide particle powder. Further, the strength ratio ((104) plane, (003) plane) was calculated by preparing a sample plate by the following method and measuring it under the following conditions.

まず、アセトン溶液70gに市販の接着剤(セメダインなど)30gを溶解し、約30%濃度のセメダイン溶媒を作製する。次に、コバルト酸リチウム粒子粉末2.0gに前記セメダイン溶媒1.5gを加え、メノウ乳鉢で混ぜ合わせてスラリー状態にする。その後、スラリーをガラス試料板に流し込み、アセトンが揮発する前にナイフ等を用いて余分量を取り除く。このとき、ガラス板と平面が出るよう注意する。最後に、アセトンが完全に揮発した後、XRD測定を開始する。   First, 30 g of a commercially available adhesive (such as cemedine) is dissolved in 70 g of an acetone solution to prepare a cemedine solvent having a concentration of about 30%. Next, 1.5 g of the cemedine solvent is added to 2.0 g of lithium cobaltate particles, and mixed in an agate mortar to form a slurry. Thereafter, the slurry is poured into a glass sample plate, and an excess amount is removed using a knife or the like before acetone volatilizes. At this time, be careful that the glass plate and flat surface come out. Finally, XRD measurement is started after the acetone is completely volatilized.

オキシ水酸化コバルト粒子粉末の同定も、粉末X線回折(RIGAKU Cu−Kα 40kV 40mA)を用いた。また、結晶子サイズ((D110)面、(D003)面)は、前記粉末X線回折の各々の回折ピークから計算した。   For identification of the cobalt oxyhydroxide particle powder, powder X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA) was also used. The crystallite size ((D110) plane, (D003) plane) was calculated from each diffraction peak of the powder X-ray diffraction.

粉末X線回折の測定条件は、Rigaku製RINT 使用管球Cu、管電圧40kV、電流40kVに調整した。(003)面の強度は、測定角度18.2°〜19.5°、(104)面の強度は測定角度44.2°〜46.1°にて測定した。なお、ステップ角度0.002°、スキャンスピード0.05°/minで測定した。   The measurement conditions of powder X-ray diffraction were adjusted to Rigaku's RINT use tube Cu, tube voltage 40 kV, and current 40 kV manufactured by Rigaku. The strength of the (003) plane was measured at a measurement angle of 18.2 ° to 19.5 °, and the strength of the (104) plane was measured at a measurement angle of 44.2 ° to 46.1 °. The measurement was performed at a step angle of 0.002 ° and a scan speed of 0.05 ° / min.

残アルカリは、ワルダー法を用いて炭酸リチウム量に換算した数値を用いた。   As the remaining alkali, a numerical value converted into the amount of lithium carbonate using the Walder method was used.

即ち、試料10.0gを水50mlに1時間分散させ、その後、1時間静置した後、上澄み液を塩酸で滴定した。その際の指示薬はフェノールフタレインとブロモフェノールブルーを用い水酸化リチウムと炭酸リチウムを定量し、全て炭酸リチウム量に換算した。   That is, 10.0 g of a sample was dispersed in 50 ml of water for 1 hour, then allowed to stand for 1 hour, and then the supernatant was titrated with hydrochloric acid. In this case, phenolphthalein and bromophenol blue were used as indicators, and lithium hydroxide and lithium carbonate were quantified, and all were converted to the amount of lithium carbonate.

残存Co量は、試料5.0gを、窒素ガスを通気し酸化を抑制した状態で濃塩酸(35%)を用いて加熱溶解し、アスコルビン酸を少量滴下し、pHを5.0〜6.0に調整した後、沈殿物を濾別し、濾液のpHを3.0〜4.0に調整し、煮沸するまで加熱しつつEDTA(指示薬Cu−PAN)で滴定して2価コバルトを定量し、Co量に換算した数値を用いた。 The amount of residual Co 3 O 4 was obtained by dissolving 5.0 g of a sample by heating with concentrated hydrochloric acid (35%) in a state in which nitrogen gas was passed and suppressing oxidation, adding a small amount of ascorbic acid dropwise, and adjusting the pH to 5.0. After adjusting to ˜6.0, the precipitate is filtered off, the pH of the filtrate is adjusted to 3.0 to 4.0, and titrated with EDTA (indicator Cu-PAN) while heating until boiling. Cobalt was quantified and a numerical value converted to Co 3 O 4 amount was used.

TG評価は、アルゴン中で0.1C、4.3V充電後のコイン型電池を分解し、電極(正極)を取り出し、炭酸ジメチル(DMC)で洗浄、乾燥し、その後、正極活物質を剥離し、TG/DTA(セイコーインスツルメンツ製TG/DTA6300)で、酸素雰囲気中10℃/minで、400℃まで昇温し、重量変化を測定した。   The TG evaluation is performed by disassembling a coin-type battery after charging 0.1C and 4.3V in argon, taking out the electrode (positive electrode), washing with dimethyl carbonate (DMC) and drying, and then peeling off the positive electrode active material. The temperature was raised to 400 ° C. at 10 ° C./min in an oxygen atmosphere using TG / DTA (TG / DTA 6300 manufactured by Seiko Instruments Inc.), and the change in weight was measured.

正極活物質の電池特性、熱安定性は、下記製造法によって正極、負極及び電解液を調製しコイン型の電池セルを作製して評価した。   The battery characteristics and thermal stability of the positive electrode active material were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following production method to produce a coin-type battery cell.

<コインセル評価>
<正極の作製>
正極活物質と導電剤であるアセチレンブラック、グラファイト及び結着剤のポリフッ化ビニリデンを重量比93:3:4となるよう精秤し、N−メチル−2−ピロリドンに分散させ、高速混練装置で十分に混合して正極合剤スラリーを調整した。次にこのスラリーを集電体のアルミニウム箔にドクターブレードで塗布し、120℃で乾燥してからφ16mmの円板状に打ち抜き正極板とした。
<Coin cell evaluation>
<Preparation of positive electrode>
The positive electrode active material and the conductive agent acetylene black, graphite, and the binder polyvinylidene fluoride were precisely weighed to a weight ratio of 93: 3: 4 and dispersed in N-methyl-2-pyrrolidone. Thorough mixing was performed to prepare a positive electrode mixture slurry. Next, this slurry was applied to an aluminum foil as a current collector with a doctor blade, dried at 120 ° C., and then punched into a disk shape of φ16 mm to obtain a positive electrode plate.

<負極の作製>
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
<Production of negative electrode>
A metal lithium foil was punched into a disk shape of φ16 mm to produce a negative electrode.

<電解液の調製>
炭酸エチレンと炭酸ジエチルとの体積比30:70の混合溶液に電解質として六フッ化リン酸リチウム(LiPF6)を1モル/リットル混合して電解液とした。
<Preparation of electrolyte>
An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF6) as an electrolyte in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 30:70.

<コイン型電池セルの組み立て>
アルゴン雰囲気のグローブボックス中でSUS316L製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入して直径20mm厚さ3.2mmのコイン電池を作製した。
<Assembly of coin-type battery cells>
A SUS316L case was used in a glove box in an argon atmosphere, and a coin battery having a diameter of 20 mm and a thickness of 3.2 mm was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.

<レート特性の評価>
前記コイン型電池を用いて、二次電池の充放電試験を行った。測定条件としてはカットオフ電圧が3.0Vから4.3Vの間で、0.1Cで1サイクル充放電、次いで1Cで1サイクル充放電を行い、放電容量の比率(1C/0.1C)を算出してレート特性とした。
<Evaluation of rate characteristics>
A charge / discharge test of a secondary battery was performed using the coin-type battery. Measurement conditions include a cut-off voltage of 3.0V to 4.3V, one cycle charge / discharge at 0.1C, then one cycle charge / discharge at 1C, and the discharge capacity ratio (1C / 0.1C). The rate characteristic was calculated.

<熱安定性評価>
前記コイン型電池を0.1Cで4.3Vまで充電し、その後、前述の方法に従って、正極活物質をTG/DTAで測定した。250℃での重量減少率が0.7%であった。
<Thermal stability evaluation>
The coin-type battery was charged at 0.1 C to 4.3 V, and then the positive electrode active material was measured by TG / DTA according to the method described above. The weight loss rate at 250 ° C. was 0.7%.

<ラミネートセル評価>
<正極の作製>
正極活物質と導電剤であるアセチレンブラック、グラファイト及び結着剤のポリフッ化ビニリデンを重量比93:3:4となるよう精秤し、N−メチル−2−ピロリドンに分散させ、高速混練装置で十分に混合して正極合剤スラリーを調整した。次にこのスラリーを集電体のアルミニウム箔にドクターブレードで塗布し、120℃で乾燥して乾燥させた後、ロールプレス機でプレスして正極シートを作製した。
ついで、上記正極シートを切り出して、縦25mm、横25mmの正極とした。なお、正極の一端において、正極集電体上から縦25mm、横5mmの範囲の正極活物質層を削り取り、リード溶接部とした。そして、このリード溶接部にアルミニウム製のリードを溶接して正極端子とした。
<Lamination cell evaluation>
<Preparation of positive electrode>
The positive electrode active material and the conductive agent acetylene black, graphite, and the binder polyvinylidene fluoride were precisely weighed to a weight ratio of 93: 3: 4 and dispersed in N-methyl-2-pyrrolidone. Thorough mixing was performed to prepare a positive electrode mixture slurry. Next, this slurry was applied to an aluminum foil as a current collector with a doctor blade, dried at 120 ° C. and dried, and then pressed with a roll press to produce a positive electrode sheet.
Next, the positive electrode sheet was cut out to obtain a positive electrode having a length of 25 mm and a width of 25 mm. At one end of the positive electrode, a positive electrode active material layer having a length of 25 mm and a width of 5 mm was scraped from the positive electrode current collector to form a lead welded portion. Then, an aluminum lead was welded to the lead welded portion to form a positive electrode terminal.

<負極の作製>
負極合剤の成分として、負極活物質として黒鉛と、ポリフッ化ビニリデンを重量比94:6となるよう精秤し、N−メチル−2−ピロリドンに分散させ、高速混練装置で十分に混合して負極合剤スラリーを調整した。次にこのスラリーを集電体の銅箔にドクターブレードで塗布し、120℃で乾燥した後、ロールプレス機でプレスして負極シートを作製した。
ついで、上記負極シートを切り出して、縦25mm、横25mmの正極とした。なお、正極の一端において、正極集電体上から縦25mm、横5mmの範囲の負極活物質層を削り取り、リード溶接部とした。そして、このリード溶接部にニッケル製のリードを溶接して負極端子とした。
<Production of negative electrode>
As a component of the negative electrode mixture, graphite as a negative electrode active material and polyvinylidene fluoride are precisely weighed to a weight ratio of 94: 6, dispersed in N-methyl-2-pyrrolidone, and thoroughly mixed with a high-speed kneader. A negative electrode mixture slurry was prepared. Next, this slurry was applied to the copper foil of the current collector with a doctor blade, dried at 120 ° C., and then pressed with a roll press to produce a negative electrode sheet.
Subsequently, the negative electrode sheet was cut out to obtain a positive electrode having a length of 25 mm and a width of 25 mm. At one end of the positive electrode, a negative electrode active material layer having a length of 25 mm and a width of 5 mm was scraped from the positive electrode current collector to form a lead welded portion. Then, a nickel lead was welded to the lead welded portion to form a negative electrode terminal.

<電解液の調製>
炭酸エチレンと炭酸ジメチルとの体積比1:2の混合溶液に電解質として六フッ化リン酸リチウム(LiPF6)を1モル/リットル混合して電解液とした。
<Preparation of electrolyte>
An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF6) as an electrolyte in a mixed solution of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2.

<ラミネートセルの組み立て>
次いで、上述のようにして得た正極と負極とをセパレータを介して積層し、電極体を得た。そして、この電極体を非水電解液中に浸し、正極活物質層、負極活物質層およびセパレータに非水電解液を含浸させた。
次いで、非水電解液が含浸された電極体を、ラミネートフィルムで挟み、ラミネートフィルムの外周縁部を減圧下において熱融着して封口し、電極体をラミネートフィルム中に密封した。
<Assembly of laminate cell>
Next, the positive electrode and the negative electrode obtained as described above were laminated via a separator to obtain an electrode body. And this electrode body was immersed in the non-aqueous electrolyte solution, and the positive electrode active material layer, the negative electrode active material layer, and the separator were impregnated with the non-aqueous electrolyte solution.
Next, the electrode body impregnated with the non-aqueous electrolyte was sandwiched between laminate films, and the outer peripheral edge of the laminate film was heat-sealed under reduced pressure and sealed, and the electrode body was sealed in the laminate film.

以上のようにして、非水電解液電池を作製した。なお、正極端子および負極端子は、ラミネートフィルムの外部に導出されている。   A nonaqueous electrolyte battery was produced as described above. The positive electrode terminal and the negative electrode terminal are led out of the laminate film.

<電池評価>
カットオフ電圧が4.2−3.0V、尚、充電は、電流1C定電流でカットオフまで通電した後、C/200まで電流値が収束するまで充電を行った。放電は、電流1Cの定電流でカットオフまで通電し、このサイクルを100サイクル繰り返した。なお、測定は25℃の恒温槽内にて行った。
<Battery evaluation>
The cut-off voltage was 4.2-3.0 V. Charging was performed until the current value converged to C / 200 after energization to the cut-off with a constant current of 1 C. In discharging, a constant current of 1 C was applied to cut off, and this cycle was repeated 100 cycles. In addition, the measurement was performed in a 25 degreeC thermostat.

実施例1
<正極活物質の製造>
ドラフトチューブ、バッフル、羽根型攪拌機を具備した有効容積10Lの反応器内に、イオン交換水を8L張り、十分な攪拌をしながら、温度を50℃に調整し、反応器下部から十分な酸素含有ガスを通気し、pH=12.5となるように4mol/lの水酸化ナトリウム水溶液を滴下した。1.5mol/lの硫酸コバルト水溶液を、平均で0.025mol/(l・hr)の供給速度とし、連続的に反応器に連続的に供給した。同時にpH=12.5となるように4mol/lの水酸化ナトリウム水溶液を連続的に供給した。速やかに酸化し生成したオキシ水酸化コバルト粒子は反応器上部からオーバーフローされ、オーバーフロー管に連結された0.4Lの濃縮器で濃縮し、反応器へ循環を行い、反応器内のオキシ水酸化コバルト粒子の濃度が15mol/lになるまで反応を行った。
Example 1
<Manufacture of positive electrode active material>
In a 10 L reactor equipped with a draft tube, baffle, and blade-type stirrer, 8 L of ion-exchanged water is stretched, the temperature is adjusted to 50 ° C. while stirring sufficiently, and sufficient oxygen is contained from the bottom of the reactor. A gas was vented, and a 4 mol / l sodium hydroxide aqueous solution was added dropwise so that the pH was 12.5. A 1.5 mol / l aqueous solution of cobalt sulfate was continuously fed to the reactor at an average feed rate of 0.025 mol / (l · hr). At the same time, a 4 mol / l aqueous sodium hydroxide solution was continuously supplied so that the pH was 12.5. Cobalt oxyhydroxide particles generated by rapid oxidation overflow from the top of the reactor, concentrate in a 0.4 L concentrator connected to the overflow pipe, circulate to the reactor, and the cobalt oxyhydroxide in the reactor The reaction was continued until the particle concentration reached 15 mol / l.

反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、乾燥を行い、オキシ水酸化コバルト粒子を得た。得られたオキシ水酸化コバルト粒子は、XRDで分析したところ、オキシ水酸化コバルト単相であり、二次粒子の平均粒子径(D50)が17.6μm、頻度が9.7%、比表面積BET値(BET)が1.26m/g、タップ密度(TD)が3.08g/cm、(003)面の結晶子サイズ(D003)が602Å、(110)面の結晶子サイズ(D110)が470Å、結晶子サイズ比(D110/D003)が0.78であった(前駆体1)。 After the reaction, the suspension taken out was washed with water using a filter press and then dried to obtain cobalt oxyhydroxide particles. The obtained cobalt oxyhydroxide particles were analyzed by XRD. As a result, the cobalt oxyhydroxide particles were a single phase of cobalt oxyhydroxide, the secondary particles had an average particle diameter (D50) of 17.6 μm, a frequency of 9.7%, and a specific surface area BET. The value (BET) is 1.26 m 2 / g, the tap density (TD) is 3.08 g / cm 3 , the (003) plane crystallite size (D003) is 602 mm, and the (110) plane crystallite size (D110). Was 470 mm and the crystallite size ratio (D110 / D003) was 0.78 (precursor 1).

得られたオキシ水酸化コバルト粒子粉末(前駆体1)とリチウム化合物とを、リチウム/コバルトのモル比が1.01となるように所定量を十分混合し、混合粉を酸化雰囲気下、1030℃で10時間焼成してコバルト酸リチウム粒子粉末を得た。   The obtained cobalt oxyhydroxide particle powder (precursor 1) and the lithium compound are sufficiently mixed in a predetermined amount so that the lithium / cobalt molar ratio is 1.01, and the mixed powder is heated at 1030 ° C. in an oxidizing atmosphere. Was calcined for 10 hours to obtain lithium cobaltate particles.

得られたコバルト酸リチウム粒子粉末のX線回折の結果、コバルト酸リチウム単相であり不純物相は存在しなかった(図1)。また、二次粒子の平均粒子径(D50)は15.7μmであり、BET比表面積値は0.19m/gであり、圧縮密度CD(2.5ton/cm)は3.73g/cmであり、XRD強度比I(104)/I(003)は0.80であり、総アルカリ量は0.06%であり、残存Co量は208ppmであった。 As a result of X-ray diffraction of the obtained lithium cobaltate particle powder, it was a lithium cobaltate single phase and no impurity phase was present (FIG. 1). The average particle diameter (D50) of the secondary particles is 15.7 μm, the BET specific surface area value is 0.19 m 2 / g, and the compression density CD (2.5 ton / cm 2 ) is 3.73 g / cm. 3 , the XRD intensity ratio I (104) / I (003) was 0.80, the total alkali amount was 0.06%, and the residual Co 3 O 4 amount was 208 ppm.

図2に得られたコバルト酸リチウム粒子粉末のSEM観察結果を示す。図2に示すとおり、一次粒子の凝集体であり、鋭角な部分は無く、また、微粉も存在しなかった。   The SEM observation result of the lithium cobaltate particle powder obtained in FIG. 2 is shown. As shown in FIG. 2, it was an aggregate of primary particles, there were no sharp parts, and there was no fine powder.

前記正極活物質を用いて作製したコイン型電池は、電極密度が3.7g/cm、レート特性(1C/0.1C)が95%であった。また、前記充電後電極から剥離した正極活物質のTG測定での250℃における重量減少率は0.7%であり、ラミネートセルでの1C−1Cでの100サイクルでの容量維持率が95%であった。 The coin-type battery produced using the positive electrode active material had an electrode density of 3.7 g / cm 3 and a rate characteristic (1C / 0.1C) of 95%. Further, the weight loss rate at 250 ° C. in the TG measurement of the positive electrode active material peeled off from the electrode after charging was 0.7%, and the capacity retention rate at 100 cycles at 1C-1C in the laminate cell was 95%. Met.

比較例1
<正極活物質の製造>
コバルト含有溶液を0.5mol/lに調整し、コバルトの中和分に対して1.05当量の水酸化ナトリウム水溶液を添加し中和反応させた。次いで、空気を吹き込みながら90℃で20時間、酸化反応を行ってコバルト酸化物粒子を得た。得られたコバルト酸化物粒子はCo単相であって、二次粒子の平均粒子径が0.1μmであり、BET比表面積は12.0m/g、タップ密度TDが1.30g/cmであった(前駆体5)。
Comparative Example 1
<Manufacture of positive electrode active material>
The cobalt-containing solution was adjusted to 0.5 mol / l, and 1.05 equivalent of an aqueous sodium hydroxide solution was added to the neutralized portion of cobalt to cause a neutralization reaction. Next, an oxidation reaction was performed at 90 ° C. for 20 hours while blowing air to obtain cobalt oxide particles. The obtained cobalt oxide particles are Co 3 O 4 single phase, the average particle diameter of the secondary particles is 0.1 μm, the BET specific surface area is 12.0 m 2 / g, and the tap density TD is 1.30 g. / Cm 3 (Precursor 5).

得られたコバルト酸化物粒子粉末(前駆体5)とリチウム化合物とを、リチウム/コバルトのモル比が1.04となるように所定量を十分混合し、混合粉を酸化雰囲気下、1030℃で10時間焼成してコバルト酸リチウム粒子粉末を得た。   A predetermined amount of the obtained cobalt oxide particle powder (precursor 5) and the lithium compound are sufficiently mixed so that the lithium / cobalt molar ratio is 1.04, and the mixed powder is subjected to an oxidizing atmosphere at 1030 ° C. Calcination was performed for 10 hours to obtain lithium cobalt oxide particle powder.

得られたコバルト酸リチウム粒子粉末のX線回折の結果、コバルト酸リチウム単相であり不純物相は存在しなかった(図3)。また、二次粒子の平均粒子径(D50)が13.5μmであり、BET比表面積値が0.35m/gであり、圧縮密度CD(2.5ton/cm)が3.58g/cmであり、XRD強度比I(104)/I(003)が0.60であり、総アルカリ量が0.12%であり、残存Co量が100ppmであった。 As a result of X-ray diffraction of the obtained lithium cobaltate particle powder, it was a lithium cobaltate single phase and no impurity phase was present (FIG. 3). The average particle diameter (D50) of the secondary particles is 13.5 μm, the BET specific surface area value is 0.35 m 2 / g, and the compression density CD (2.5 ton / cm 2 ) is 3.58 g / cm. 3 , the XRD intensity ratio I (104) / I (003) was 0.60, the total alkali amount was 0.12%, and the residual Co 3 O 4 amount was 100 ppm.

図4に得られたコバルト酸リチウム粒子粉末のSEM観察結果を示す。図4に示すとおり、角張った部分を有する粒子であり、粒子表面に微粉が認められた。   The SEM observation result of the lithium cobaltate particle powder obtained in FIG. 4 is shown. As shown in FIG. 4, the particles had an angular portion, and fine powder was observed on the particle surface.

前記正極活物質を用いて作製したコイン型電池は、電極密度が3.4g/cm、レート特性(1.0C/0.1C)が92%であった。また、前記充電後電極から剥離した正極活物質のTG測定での250℃における重量減少率は0.3%であり、ラミネートセルでの1C−1Cでの100サイクルでの容量維持率が87%であった。 The coin-type battery produced using the positive electrode active material had an electrode density of 3.4 g / cm 3 and a rate characteristic (1.0 C / 0.1 C) of 92%. Further, the weight loss rate at 250 ° C. in the TG measurement of the positive electrode active material peeled from the post-charge electrode was 0.3%, and the capacity retention rate at 100 cycles at 1C-1C in the laminate cell was 87%. Met.

前駆体2〜4、6
硫酸コバルト水溶液の供給速度、反応温度、反応溶液のpHを種々変化させた以外は、前記前駆体1と同様にしてオキシ水酸化コバルト粒子粉末を得た。オキシ水酸化コバルト粒子粉末の製造条件を表1に、得られたオキシ水酸化コバルト粒子粉末の諸特性を表2に示す。
Precursors 2-4, 6
A cobalt oxyhydroxide particle powder was obtained in the same manner as in the precursor 1 except that the supply rate of the aqueous cobalt sulfate solution, the reaction temperature, and the pH of the reaction solution were variously changed. The production conditions of the cobalt oxyhydroxide particle powder are shown in Table 1, and various characteristics of the obtained cobalt oxyhydroxide particle powder are shown in Table 2.

実施例2〜15、比較例2〜8
前駆体の種類、Liとの混合比及び加熱温度を種々変化させた以外は、前記実施例1と同様にしてコバルト酸リチウム粒子粉末を得た。コバルト酸リチウム粒子粉末の製造条件を表3に、得られたコバルト酸リチウム粒子粉末の諸特性を表4に示す。
Examples 2 to 15 and Comparative Examples 2 to 8
A lithium cobalt oxide particle powder was obtained in the same manner as in Example 1 except that the type of precursor, the mixing ratio with Li, and the heating temperature were variously changed. Table 3 shows the production conditions of the lithium cobalt oxide particle powder, and Table 4 shows the characteristics of the obtained lithium cobalt oxide particle powder.

前記実施例に示すとおり、本発明に係るコバルト酸リチウム粒子粉末を用いた二次電池(実施例1〜15)は、いずれも、レート特性が94%以上であって、しかも、ラミネートセルでの容量維持率が93%以上であるので、二次電池として好適であることが確認された。   As shown in the above examples, all the secondary batteries (Examples 1 to 15) using the lithium cobalt oxide particle powder according to the present invention have a rate characteristic of 94% or more, and in the laminate cell. Since the capacity retention rate was 93% or more, it was confirmed that the capacity maintenance rate was suitable as a secondary battery.

本発明に係るコバルト酸リチウム粒子粉末を前駆体とした正極活物質を用いることで、比表面積が小さく、圧縮密度も高く、二次電池としての電極密度も高く、サイクル特性、熱安定性も良好な非水電解質二次電池を得ることができる。   By using the positive electrode active material having the lithium cobalt oxide particle powder as a precursor according to the present invention as a precursor, the specific surface area is small, the compression density is high, the electrode density as a secondary battery is also high, and the cycle characteristics and thermal stability are also good. A non-aqueous electrolyte secondary battery can be obtained.

実施例1で得られたコバルト酸リチウム粒子粉末のX線回折パターンである。2 is an X-ray diffraction pattern of lithium cobaltate particles obtained in Example 1. FIG. 実施例1で得られたコバルト酸リチウム粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。It is an electron micrograph (SEM) of the lithium cobaltate particle powder obtained in Example 1 (5000 times magnification). 比較例1で得られたコバルト酸リチウム粒子粉末のX線回折パターンである。3 is an X-ray diffraction pattern of lithium cobaltate particles obtained in Comparative Example 1. 比較例1で得られたコバルト酸リチウム粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。It is an electron micrograph (SEM) of the lithium cobalt oxide particle powder obtained in Comparative Example 1 (magnification 5000 times).

Claims (5)

二次粒子の平均粒子径(D50)が15.0〜25.0μm、BET比表面積値(BET)が0.10〜0.30m/g、圧縮密度(CD 2.5t/cm)が3.65〜4.00g/cmであることを特徴とするコバルト酸リチウム粒子粉末。 The average particle diameter (D50) of the secondary particles is 15.0 to 25.0 μm, the BET specific surface area value (BET) is 0.10 to 0.30 m 2 / g, and the compression density (CD 2.5 t / cm 2 ) is. 3. Cobalt-acid lithium particle powder characterized by being 3.65 to 4.00 g / cm 3 . 請求項1記載のコバルト酸リチウム粒子粉末のX線回折パターンにおいて(003)面と(104)面の強度比I(104)/I(003)が、0.70〜1.20であるコバルト酸リチウム粒子粉末。 The cobalt acid whose intensity ratio I (104) / I (003) of (003) plane and (104) plane is 0.70-1.20 in the X-ray-diffraction pattern of the lithium cobalt oxide particle powder of Claim 1 Lithium particle powder. 請求項1記載のコバルト酸リチウム粒子粉末において、総アルカリ量が0.10wt%以下であって残存Co量が1000ppm以下であるコバルト酸リチウム粒子粉末。 The lithium cobalt oxide particle powder according to claim 1, wherein the total alkali amount is 0.10 wt% or less and the residual Co 3 O 4 amount is 1000 ppm or less. 水溶液中にコバルト塩を含有する溶液とアルカリ溶液とを同時に滴下中和し、速やかに酸化反応を行ってオキシ水酸化コバルト粒子を得、該オキシ水酸化コバルト粒子とリチウム化合物とを混合し、当該混合物を600〜1100℃の温度範囲で熱処理を行うコバルト酸リチウム粒子粉末の製造法であって、前記オキシ水酸化コバルト粒子粉末は、二次粒子の平均粒子径(D50)が15.0〜25.0μmであり、BET比表面積値(BET)が0.1〜20.0m/gであり、タップ密度(TD)が1.0〜3.5g/cmであり、X線回折パターンにおける(110)面と(003)面との結晶子サイズ比(D110/D003)が0.50〜2.00であり、(003)面の結晶子サイズが300〜700Åであることを特徴とする請求項1乃至3のいずれかに記載のコバルト酸リチウム粒子粉末の製造法 A solution containing a cobalt salt in an aqueous solution and an alkali solution are simultaneously neutralized dropwise, and a rapid oxidation reaction is performed to obtain cobalt oxyhydroxide particles. The cobalt oxyhydroxide particles and a lithium compound are mixed, A method for producing lithium cobaltate particles, wherein the mixture is heat-treated at a temperature in the range of 600 to 1100 ° C., wherein the cobalt oxyhydroxide particles have an average secondary particle size (D50) of 15.0 to 25. 0.0 μm, a BET specific surface area value (BET) of 0.1 to 20.0 m 2 / g, a tap density (TD) of 1.0 to 3.5 g / cm 3 , and an X-ray diffraction pattern The crystallite size ratio (D110 / D003) of the (110) plane to the (003) plane is 0.50 to 2.00, and the crystallite size of the (003) plane is 300 to 700 mm. Preparation of lithium cobaltate particles according to any one of claims 1 to 3, 請求項1乃至3のいずれかに記載のコバルト酸リチウム粒子粉末を含有する正極からなる非水電解質二次電池。 The nonaqueous electrolyte secondary battery which consists of a positive electrode containing the lithium cobaltate particle powder in any one of Claims 1 thru | or 3.
JP2008291451A 2008-03-28 2008-11-13 Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery Active JP5321802B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008291451A JP5321802B2 (en) 2008-11-13 2008-11-13 Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery
KR1020107017792A KR101562686B1 (en) 2008-03-28 2009-03-26 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
CN200980104913.5A CN101945825B (en) 2008-03-28 2009-03-26 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
CN201310083045.5A CN103259011B (en) 2008-03-28 2009-03-26 Oxycobalt hydroxide particulate powder and manufacturing method therefor
EP09725552.5A EP2314545B1 (en) 2008-03-28 2009-03-26 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder and non-aqueous electrolyte secondary battery using the same
PCT/JP2009/001377 WO2009119104A1 (en) 2008-03-28 2009-03-26 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291451A JP5321802B2 (en) 2008-11-13 2008-11-13 Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010116302A true JP2010116302A (en) 2010-05-27
JP5321802B2 JP5321802B2 (en) 2013-10-23

Family

ID=42304200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291451A Active JP5321802B2 (en) 2008-03-28 2008-11-13 Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5321802B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162253A1 (en) * 2010-06-23 2011-12-29 日本碍子株式会社 Plate-shaped particles for positive-electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
WO2011162251A1 (en) * 2010-06-23 2011-12-29 日本碍子株式会社 Plate-shaped particles for positive-electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
JP2012009151A (en) * 2010-06-22 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery, and lithium secondary battery
WO2015118956A1 (en) * 2014-02-05 2015-08-13 住友金属鉱山株式会社 Cobalt hydroxide particles and manufacturing method therefor and positive electrode active material and manufacturing method therefor
JP2015201432A (en) * 2014-03-31 2015-11-12 戸田工業株式会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016041653A (en) * 2013-03-04 2016-03-31 三井金属鉱業株式会社 Lithium metal composite oxide powder
JP2019149368A (en) * 2017-12-27 2019-09-05 財團法人工業技術研究院Industrial Technology Research Institute Positive electrode for lithium ion battery
JP2020031058A (en) * 2018-08-22 2020-02-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Cathode active material, manufacturing method of the same, and cathode containing them and lithium secondary battery
CN113196528A (en) * 2018-12-19 2021-07-30 尤米科尔公司 Cobalt oxides as precursors for positive electrode materials for rechargeable lithium ion batteries
US11228028B2 (en) 2017-12-27 2022-01-18 Industrial Technology Research Institute Cathode of lithium ion battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027032A1 (en) * 1999-10-08 2001-04-19 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2002042811A (en) * 2000-07-24 2002-02-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2003002661A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2004035342A (en) * 2002-07-04 2004-02-05 Sumitomo Metal Mining Co Ltd High bulk density cobalt compound for lithium cobaltate raw material and method for manufacturing the same
JP2004182564A (en) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd Lithium cobaltate, manufacturing method of the same and non-aqueous electrolyte secondary battery
JP2004196603A (en) * 2002-12-19 2004-07-15 Nippon Chem Ind Co Ltd Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery
JP2005104771A (en) * 2003-09-30 2005-04-21 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same
JP2005206422A (en) * 2004-01-22 2005-08-04 Honjo Chemical Corp High density lithium cobaltate and its producing method
JP2007001809A (en) * 2005-06-23 2007-01-11 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027032A1 (en) * 1999-10-08 2001-04-19 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2002042811A (en) * 2000-07-24 2002-02-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2003002661A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2004035342A (en) * 2002-07-04 2004-02-05 Sumitomo Metal Mining Co Ltd High bulk density cobalt compound for lithium cobaltate raw material and method for manufacturing the same
JP2004182564A (en) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd Lithium cobaltate, manufacturing method of the same and non-aqueous electrolyte secondary battery
JP2004196603A (en) * 2002-12-19 2004-07-15 Nippon Chem Ind Co Ltd Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery
JP2005104771A (en) * 2003-09-30 2005-04-21 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same
JP2005206422A (en) * 2004-01-22 2005-08-04 Honjo Chemical Corp High density lithium cobaltate and its producing method
JP2007001809A (en) * 2005-06-23 2007-01-11 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
JP2012009151A (en) * 2010-06-22 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery, and lithium secondary battery
US9236601B2 (en) 2010-06-23 2016-01-12 Ngk Insulators, Ltd. Plate-like particle of cathode active material for lithium secondary battery, cathode of the lithium secondary battery and lithium secondary battery
WO2011162251A1 (en) * 2010-06-23 2011-12-29 日本碍子株式会社 Plate-shaped particles for positive-electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP5631992B2 (en) * 2010-06-23 2014-11-26 日本碍子株式会社 Plate-like particles for positive electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP5631993B2 (en) * 2010-06-23 2014-11-26 日本碍子株式会社 Plate-like particles for positive electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
WO2011162253A1 (en) * 2010-06-23 2011-12-29 日本碍子株式会社 Plate-shaped particles for positive-electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
US9257702B2 (en) 2010-06-23 2016-02-09 Ngk Insulators, Ltd. Plate-like particle of cathode active material for lithium secondary battery, cathode of the lithium secondary battery and lithium secondary battery
JP2016041653A (en) * 2013-03-04 2016-03-31 三井金属鉱業株式会社 Lithium metal composite oxide powder
US10230105B2 (en) 2014-02-05 2019-03-12 Sumitomo Metal Mining Co., Ltd. Cobalt hydroxide particles and manufacturing process therefor and positive electrode active material and manufacturing process therefor
JP2015165477A (en) * 2014-02-05 2015-09-17 住友金属鉱山株式会社 Cobalt hydroxide particle, manufacturing method thereof, and positive electrode active material and method for manufacturing the same
WO2015118956A1 (en) * 2014-02-05 2015-08-13 住友金属鉱山株式会社 Cobalt hydroxide particles and manufacturing method therefor and positive electrode active material and manufacturing method therefor
JP2015201432A (en) * 2014-03-31 2015-11-12 戸田工業株式会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2019149368A (en) * 2017-12-27 2019-09-05 財團法人工業技術研究院Industrial Technology Research Institute Positive electrode for lithium ion battery
US11228028B2 (en) 2017-12-27 2022-01-18 Industrial Technology Research Institute Cathode of lithium ion battery
JP2020031058A (en) * 2018-08-22 2020-02-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Cathode active material, manufacturing method of the same, and cathode containing them and lithium secondary battery
US11271202B2 (en) 2018-08-22 2022-03-08 Samsung Sdi Co., Ltd. Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
CN113196528A (en) * 2018-12-19 2021-07-30 尤米科尔公司 Cobalt oxides as precursors for positive electrode materials for rechargeable lithium ion batteries
CN113196528B (en) * 2018-12-19 2024-04-30 尤米科尔公司 Cobalt oxide as precursor for positive electrode material of rechargeable lithium ion battery

Also Published As

Publication number Publication date
JP5321802B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5321802B2 (en) Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery
WO2009119104A1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5229472B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5672442B2 (en) Nickel / cobalt / manganese compound particle powder and method for producing the same, lithium composite oxide particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
CN105680032B (en) Positive active material and non-aqueous electrolyte secondary battery
JP5344111B2 (en) Method for producing lithium manganate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
TWI584520B (en) Li-Ni composite oxide particles and nonaqueous electrolyte batteries
JP5472602B2 (en) Method for producing lithium manganate particles and non-aqueous electrolyte secondary battery
WO2014061653A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US11239463B2 (en) Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
JPWO2005096416A1 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP7216059B2 (en) Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JPWO2019163846A1 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP5206948B2 (en) Cobalt oxyhydroxide particle powder and method for producing the same
WO2020218592A1 (en) Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5152456B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP6957846B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP5594500B2 (en) Lithium manganate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2024001041A (en) Positive electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2020180032A (en) Nickel composite hydroxide, production method of nickel composite hydroxide, positive electrode active substance for lithium ion secondary battery, production method of positive electrode active substance for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5321802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250