JPWO2005096416A1 - Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery - Google Patents

Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery Download PDF

Info

Publication number
JPWO2005096416A1
JPWO2005096416A1 JP2006511851A JP2006511851A JPWO2005096416A1 JP WO2005096416 A1 JPWO2005096416 A1 JP WO2005096416A1 JP 2006511851 A JP2006511851 A JP 2006511851A JP 2006511851 A JP2006511851 A JP 2006511851A JP WO2005096416 A1 JPWO2005096416 A1 JP WO2005096416A1
Authority
JP
Japan
Prior art keywords
lithium
powder
complex
positive electrode
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006511851A
Other languages
Japanese (ja)
Other versions
JP4833058B2 (en
Inventor
河里 健
健 河里
内田 めぐみ
めぐみ 内田
敏明 阿部
敏明 阿部
斎藤 尚
尚 斎藤
数原 学
学 数原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2006511851A priority Critical patent/JP4833058B2/en
Publication of JPWO2005096416A1 publication Critical patent/JPWO2005096416A1/en
Application granted granted Critical
Publication of JP4833058B2 publication Critical patent/JP4833058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

体積容量密度が大きく、安全性が高く、均一塗工性に優れ、高い充電電圧においても充放電サイクル耐久性、低温特性に優れたリチウム二次電池用の正極活物質を提供する。一般式LipNxMmOzFa(但し、NはCo、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、MはN以外の遷移金属元素、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素である。0.9≦p≦1.2、0.9≦x<1.00、0<m≦0.03、1.9≦z≦2.2、x+m=1、0≦a≦0.02)で表されるリチウム含有複合酸化物の製造方法であって、M元素を含む錯体(M元素含有錯体)が有機溶媒中に溶解している溶液、N源、リチウム源、及び必要に応じてフッ素源を用い、これらの混合工程、有機溶媒除去工程及び焼成工程を通じて製造する。Provided is a positive electrode active material for a lithium secondary battery having a large volumetric capacity density, high safety, excellent uniform coatability, and excellent charge / discharge cycle durability and low temperature characteristics even at a high charge voltage. General formula LipNxMmOzFa (where N is at least one element selected from the group consisting of Co, Mn and Ni, and M is at least selected from the group consisting of transition metal elements other than N, Al and alkaline earth metal elements) One element: 0.9 ≦ p ≦ 1.2, 0.9 ≦ x <1.00, 0 <m ≦ 0.03, 1.9 ≦ z ≦ 2.2, x + m = 1, 0 ≦ a ≦ 0.02), which is a method for producing a lithium-containing composite oxide, a solution in which a complex containing M element (M element-containing complex) is dissolved in an organic solvent, an N source, a lithium source , And if necessary, using a fluorine source, through a mixing process, an organic solvent removal process and a baking process.

Description

本発明は、体積容量密度が大きく、安全性が高く、充放電サイクル耐久性、及び低温特性に優れた、リチウム二次電池の正極用リチウム含有複合酸化物の製造方法、製造されたリチウム含有複合酸化物を含むリチウム二次電池用正極、及びリチウム二次電池に関する。   The present invention provides a method for producing a lithium-containing composite oxide for a positive electrode of a lithium secondary battery, which has a large volumetric capacity density, high safety, excellent charge / discharge cycle durability, and low-temperature characteristics, and a lithium-containing composite produced The present invention relates to a positive electrode for a lithium secondary battery including an oxide and a lithium secondary battery.

近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有するリチウム二次電池などの非水電解液二次電池に対する要求がますます高まっている。かかる非水電解液二次電池用の正極活物質には、LiCoO2、LiNiO2、LiNi0.8Co0.22、LiMn24、LiMnO2などのリチウムと遷移金属の複合酸化物が知られている。In recent years, as devices become more portable and cordless, demands for non-aqueous electrolyte secondary batteries such as lithium secondary batteries that are small, lightweight, and have high energy density are increasing. As such positive electrode active materials for non-aqueous electrolyte secondary batteries, composite oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 , LiMnO 2 are known. Yes.

なかでも、リチウム含有複合酸化物(LiCoO2)を正極活物質として用い、リチウム合金、グラファイト、カーボンファイバーなどのカーボンを負極として用いたリチウム二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。Among them, a lithium secondary battery using lithium-containing composite oxide (LiCoO 2 ) as a positive electrode active material and using carbon such as lithium alloy, graphite, or carbon fiber as a negative electrode can obtain a high voltage of 4V, It is widely used as a battery having a high energy density.

しかしながら、LiCoO2を正極活物質として用いた非水系二次電池の場合、正極電極層の単位体積当たりの容量密度及び安全性の更なる向上が望まれるとともに、充放電サイクルを繰り返し行うことにより、その電池放電容量が徐々に減少するというサイクル特性の劣化、重量容量密度の問題、あるいは低温での放電容量低下が大きいという問題などがあった。However, in the case of a non-aqueous secondary battery using LiCoO 2 as a positive electrode active material, further improvement in capacity density per unit volume and safety of the positive electrode layer is desired, and by repeatedly performing a charge / discharge cycle, There have been problems such as deterioration in cycle characteristics in which the battery discharge capacity gradually decreases, problems in weight capacity density, and large reductions in discharge capacity at low temperatures.

これらの問題の一部を解決するために、特許文献1には、正極活物質であるLiCoO2の平均粒径を3〜9μm、及び粒径3〜15μmの粒子群の占める体積を全体積の75%以上とし、かつCuKαを線源とするX線回折によって測定される2θ=約19°と2θ=45°との回折ピーク強度比を特定値とすることにより、塗布特性、自己放電特性、サイクル性に優れた活物質とすることが提案されている。更に、該公報には、LiCoO2の粒径が1μm以下又は25μm以上の粒径分布を実質的に有さないものが好ましい態様として提案されている。しかし、かかる正極活物質では、塗布特性ならびにサイクル特性は向上するものの、安全性、体積容量密度、重量容量密度を充分に満足するものは得られていない。In order to solve a part of these problems, Patent Document 1 discloses that the average particle diameter of LiCoO 2 that is a positive electrode active material is 3 to 9 μm, and the volume occupied by a particle group having a particle diameter of 3 to 15 μm is the total volume. By setting the diffraction peak intensity ratio between 2θ = about 19 ° and 2θ = 45 ° measured by X-ray diffraction using CuKα as a radiation source to a specific value, the coating characteristics, self-discharge characteristics, It has been proposed to make an active material excellent in cycle performance. Further, the publication proposes a preferred embodiment in which the particle size of LiCoO 2 does not substantially have a particle size distribution of 1 μm or less or 25 μm or more. However, such a positive electrode active material has improved coating characteristics and cycle characteristics, but has not been sufficiently satisfactory in safety, volume capacity density, and weight capacity density.

また、電池特性に関する課題を解決するために、特許文献2にCo原子の5〜35%をW、Mn、Ta、Ti又はNbで置換することがサイクル特性改良のために提案されている。また、特許文献3には、格子定数のc軸長が14.051Å以下であり、結晶子の(110)方向の結晶子径が45〜100nmである、六方晶系のLiCoO2を正極活物質とすることによりサイクル特性を向上させることが提案されている。Moreover, in order to solve the problem regarding battery characteristics, Patent Document 2 proposes to replace 5 to 35% of Co atoms with W, Mn, Ta, Ti, or Nb in order to improve cycle characteristics. In Patent Document 3, hexagonal LiCoO 2 having a c-axis length of a lattice constant of not more than 14.051 mm and a crystallite diameter in the (110) direction of 45 to 100 nm is used as a positive electrode active material. It has been proposed to improve cycle characteristics.

更に、特許文献4には、式LixNi1-m2(式中、0<x<1.1、0≦m≦1である。)を有し、一次粒子が板状ないし柱状であり、かつ(体積基準累積95%径−体積基準累積5%径)/体積基準累積5%径が3以下で、平均粒径が1〜50μmを有するリチウム複合酸化物が、重量あたりの初期放電容量が高く、また充放電サイクル耐久性に優れることが提案されている。Further, Patent Document 4 has the formula Li x Ni 1-m N m O 2 (where 0 <x <1.1, 0 ≦ m ≦ 1), and the primary particles are plate-like or Lithium composite oxide having a columnar shape and (volume-based cumulative 95% diameter−volume-based cumulative 5% diameter) / volume-based cumulative 5% diameter of 3 or less and an average particle diameter of 1 to 50 μm is It has been proposed that the initial discharge capacity is high and the charge / discharge cycle durability is excellent.

また、特許文献5には、平均粒子径0.01〜2μmを有する、コバルト水酸化物やコバルトオキシ水酸化物やコバルト酸化物の一次粒子を凝集させて平均粒子径0.5〜30μmの二次粒子を形成したコバルト化合物粉末をリチウム化することが提案されている。しかし、この場合にも高い体積容量密度の正極物質は得られず、また、サイクル特性、安全性や大電流放電特性の点でもなお充分ではない。   In Patent Document 5, primary particles having an average particle diameter of 0.01 to 2 μm and agglomeration of primary particles of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide are aggregated. It has been proposed to lithiate cobalt compound powders that have formed secondary particles. However, even in this case, a positive electrode material having a high volume capacity density cannot be obtained, and the cycle characteristics, safety and large current discharge characteristics are still insufficient.

上記のように、上記従来の技術では、リチウム複合酸化物を正極活物質に用いたリチウム二次電池において、体積容量密度、安全性、塗工均一性、サイクル特性更には低温特性などの全てを充分に満足するものは未だ得られていない。
特開平6−243897号公報 特開平3−201368号公報 特開平10−312805号公報 特開平10−72219号公報 特開2002−60225号公報
As described above, in the above-described conventional technology, in a lithium secondary battery using a lithium composite oxide as a positive electrode active material, all of volume capacity density, safety, coating uniformity, cycle characteristics, and low temperature characteristics are all achieved. We have not yet obtained a satisfactory content.
JP-A-6-2443897 Japanese Patent Laid-Open No. 3-201368 JP 10-31805 A JP-A-10-72219 JP 2002-60225 A

本発明は、体積容量密度が大きく、安全性が高く、充放電サイクル耐久性に優れ、更には、低温特性に優れた、リチウム二次電池正極用リチウム含有複合酸化物の製造方法、製造されたリチウム含有複合酸化物を含む、リチウム二次電池用正極、及びリチウム二次電池の提供を目的とする。   The present invention is a method for producing a lithium-containing composite oxide for a lithium secondary battery positive electrode, which has a large volumetric capacity density, high safety, excellent charge / discharge cycle durability, and excellent low-temperature characteristics, It aims at provision of the positive electrode for lithium secondary batteries containing a lithium containing complex oxide, and a lithium secondary battery.

本発明者は、鋭意研究を続けたところ、以下の知見を通じて本発明に到達した。即ち、コバルト酸リチウムなどのリチウム含有複合酸化物は、基本的には、体積容量密度に優れた特性を有するが、充放電時のリチウムの出入りに伴い結晶構造が六方晶と単斜晶との相転移を起こし、膨張と収縮を繰り返すため、結晶構造の破壊が生じサイクル特性が劣化するという問題がある。この問題は、上記のように、コバルト酸リチウムのコバルトの一部をW、Mn、Ta、Ti又はNbなどの特定の添加元素で置換し、結晶構造の安定化を通じて解決することが図られている。   As a result of intensive research, the present inventor has reached the present invention through the following findings. That is, lithium-containing composite oxides such as lithium cobaltate basically have excellent volume capacity density, but the crystal structure of hexagonal crystals and monoclinic crystals as lithium enters and exits during charging and discharging. Since the phase transition occurs and the expansion and contraction are repeated, there is a problem that the crystal structure is broken and the cycle characteristics are deteriorated. As described above, this problem is solved by substituting a part of cobalt of lithium cobaltate with a specific additive element such as W, Mn, Ta, Ti, or Nb and stabilizing the crystal structure. Yes.

しかし、上記した従来法による場合には、必ずしも狙いどおりの結果は得られていない。即ち、従来の粉末同士の固相による混合では、粉末同士を均一に混合することは困難で、得られた複合酸化物は全体に渡って均一な組成を有さず、一部不純物相ともみなされる不均一な組成を有することになる。これを解決するため、複合酸化物を形成する全ての成分を液相から均一に析出させる共沈法などが検討されているが、組成や粒径の制御が困難であるという問題がある。   However, in the case of the above-described conventional method, the intended result is not necessarily obtained. That is, with conventional mixing of powders by solid phase, it is difficult to mix the powders uniformly, and the obtained composite oxide does not have a uniform composition throughout and is also regarded as partly an impurity phase. Will have a non-uniform composition. In order to solve this, a coprecipitation method for uniformly depositing all the components forming the composite oxide from the liquid phase has been studied, but there is a problem that it is difficult to control the composition and particle size.

本発明者は、一般式Li(但し、NはCo、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、MはN以外の遷移金属元素、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素である。0.9≦p≦1.2、0.9≦x<1.00、0<m≦0.03、1.9≦z≦2.2、x+m=1、0≦a≦0.02)で表されるリチウム含有複合酸化物を製造する場合において、上記M元素源として、M元素を含む錯体が有機溶媒中に溶解している溶液を使用し、これを他の成分である、N元素源、リチウム源、及び必要に応じてフッ素源をそれぞれ単独又は複合して含む化合物粉末と混合し、得られる混合物から有機溶媒を除去し、焼成して製造することにより、上記課題を達成し得ることを見出した。The inventor has a general formula Li p N x M m O z Fa (where N is at least one element selected from the group consisting of Co, Mn and Ni, and M is a transition metal element other than N, It is at least one element selected from the group consisting of Al and alkaline earth metal elements: 0.9 ≦ p ≦ 1.2, 0.9 ≦ x <1.00, 0 <m ≦ 0.03, 1 .9 ≦ z ≦ 2.2, x + m = 1, 0 ≦ a ≦ 0.02), the complex containing M element is an organic solvent as the M element source. A solution obtained by using a solution dissolved therein and mixing it with a compound powder containing other components, N element source, lithium source, and, if necessary, fluorine source alone or in combination, respectively. The above problems can be achieved by removing the organic solvent from It was found that it can be achieved.

かくして、本発明は以下の構成を要旨とするものである。
(1)一般式Li(但し、NはCo、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、MはN以外の遷移金属元素、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素である。0.9≦p≦1.2、0.9≦x<1.00、0<m≦0.03、1.9≦z≦2.2、x+m=1、0≦a≦0.02)で表されるリチウム含有複合酸化物の製造方法であって、上記M元素源として、M元素を含む錯体が有機溶媒中に溶解している溶液を使用することを特徴とするリチウム二次電池正極用リチウム含有複合酸化物の製造方法。
(2)M元素を含む錯体が、M元素のキレート錯体、M元素の硝酸塩若しくは塩化物のグリコール錯体、又はM元素の硝酸塩若しくは塩化物のβ-ジケトン錯体であり、有機溶媒が極性有機溶媒である上記(1)に記載の製造方法。
(3)M元素を含む錯体が、M元素のキレート錯体、M元素のβ-ジケトン基とアルコキシド基を含有する錯体、及び/又はM元素の硝酸塩のジエチレングリコールとトリエチレングリコールの錯体である上記(1)に記載の製造方法。
(4)M元素が、Ti、Zr、Hf、Nb、Ta、Mg、Cu、Sn、Zn、及びAlからなる群から選ばれる少なくとも1種である上記(1)〜(3)のいずれかに記載の製造方法。
(5)M元素が少なくともAlとMgからなり、Al/Mgが原子比で1/5〜5/1であり、かつ0.002≦m≦0.025である上記(1)〜(4)のいずれかに記載の製造方法。
(6)M元素がMgとM2(M2は少なくともTi、Zr、Ta、及びNbからなる群から選ばれる少なくとも1種の元素)からなり、M2/Mgが原子比で1/40〜2/1であり、かつ0.002≦m≦0.025である上記(1)〜(4)のいずれかに記載の製造方法。
(7)M元素を含む錯体が有機溶媒中に溶解している溶液、N源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、得られる混合物から有機溶媒を除去した後、リチウム源化合物粉末、及び必要に応じてフッ素源化合物を加えて混合し、次いで酸素含有雰囲気において800〜1050℃で焼成する上記(1)〜(6)のいずれかに記載の製造方法。
(8)M元素を含む錯体が有機溶媒中に溶解している溶液、N源化合物粉末、リチウム源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、得られる混合物から有機溶媒を除去した後、酸素含有雰囲気において800〜1050℃で焼成する上記(1)〜(6)のいずれかに記載の製造方法。
(9)リチウム源化合物粉末、N源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、焼成して得られるリチウム含有複合酸化物粉末とM元素を含む錯体が有機溶媒中に溶解している溶液とを混合し、得られる混合物から有機溶媒を除去した後、酸素含有雰囲気において300〜1050℃で焼成する上記(1)〜(6)のいずれかに記載の製造方法。
(10)リチウム含有複合酸化物の、CuKαを線源とするX線回折によって測定される、2θ=66〜67°の(110)面の回折ピークの積分幅が0.08〜0.14、表面積が0.2〜0.6m2/g、発熱開始温度が160℃以上である上記(1)〜(9)のいずれかに記載の製造方法。
(11)リチウム含有複合酸化物の充填プレス密度が3.15〜3.60g/cm3である上記(1)〜(10)〜のいずれかに記載の製造方法。
(12)リチウム含有複合酸化物に含有される残存アルカリ量が0.03質量%以下である上記(1)〜(11)のいずれかに記載の製造方法。
(13)上記(1)〜(12)のいずれかに記載の製造方法により製造されたリチウム含有複合酸化物を含むリチウム二次電池用正極。
(14)上記(13)に記載された正極を使用したリチウム二次電池。
Thus, the gist of the present invention is as follows.
(1) In formula Li p N x M m O z F a ( where, N is at least one element selected from the group consisting of Co, Mn and Ni, M is a transition metal element other than N, Al and It is at least one element selected from the group consisting of alkaline earth metal elements: 0.9 ≦ p ≦ 1.2, 0.9 ≦ x <1.00, 0 <m ≦ 0.03, 1.9 ≦ z ≦ 2.2, x + m = 1, 0 ≦ a ≦ 0.02), wherein the complex containing M element is an organic solvent as the M element source. The manufacturing method of the lithium containing complex oxide for lithium secondary battery positive electrodes characterized by using the solution melt | dissolved in the.
(2) The M element complex is an M element chelate complex, an M element nitrate or chloride glycol complex, or an M element nitrate or chloride β-diketone complex, and the organic solvent is a polar organic solvent. The manufacturing method as described in said (1).
(3) The complex containing M element is a chelate complex of M element, a complex containing β-diketone group and alkoxide group of M element, and / or a complex of diethylene glycol and triethylene glycol of nitrate of M element ( The manufacturing method as described in 1).
(4) In any one of the above (1) to (3), the M element is at least one selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Mg, Cu, Sn, Zn, and Al. The manufacturing method as described.
(5) The above (1) to (4), wherein the M element comprises at least Al and Mg, Al / Mg is 1/5 to 5/1 in atomic ratio, and 0.002 ≦ m ≦ 0.025. The manufacturing method in any one of.
(6) M element consists of Mg and M2 (M2 is at least one element selected from the group consisting of at least Ti, Zr, Ta, and Nb), and M2 / Mg is in an atomic ratio of 1/40 to 2/1. And the production method according to any one of the above (1) to (4), wherein 0.002 ≦ m ≦ 0.025.
(7) A solution in which a complex containing M element is dissolved in an organic solvent, an N source compound powder, and, if necessary, a fluorine source compound powder are mixed, and after removing the organic solvent from the resulting mixture, a lithium source The production method according to any one of (1) to (6) above, wherein the compound powder and, if necessary, a fluorine source compound are added and mixed, and then fired at 800 to 1050 ° C. in an oxygen-containing atmosphere.
(8) A solution in which a complex containing M element is dissolved in an organic solvent, an N source compound powder, a lithium source compound powder, and, if necessary, a fluorine source compound powder are mixed, and the organic solvent is removed from the resulting mixture. Then, the manufacturing method according to any one of (1) to (6) above, wherein firing is performed at 800 to 1050 ° C. in an oxygen-containing atmosphere.
(9) Lithium source compound powder, N source compound powder, and, if necessary, fluorine source compound powder are mixed and fired to obtain a lithium-containing composite oxide powder and a complex containing M element dissolved in an organic solvent. The manufacturing method according to any one of (1) to (6) above, wherein the organic solvent is removed from the resulting mixture after mixing with the solution, and then fired at 300 to 1050 ° C. in an oxygen-containing atmosphere.
(10) The integral width of the diffraction peak of the (110) plane of 2θ = 66 to 67 ° measured by X-ray diffraction using CuKα as the radiation source of the lithium-containing composite oxide is 0.08 to 0.14, The manufacturing method according to any one of (1) to (9), wherein the surface area is 0.2 to 0.6 m 2 / g and the heat generation start temperature is 160 ° C. or higher.
(11) The production method according to any one of (1) to (10), wherein the lithium-containing composite oxide has a filling press density of 3.15 to 3.60 g / cm 3 .
(12) The production method according to any one of (1) to (11), wherein the remaining alkali amount contained in the lithium-containing composite oxide is 0.03% by mass or less.
(13) A positive electrode for a lithium secondary battery comprising a lithium-containing composite oxide produced by the production method according to any one of (1) to (12).
(14) A lithium secondary battery using the positive electrode described in (13) above.

本発明によれば、体積容量密度が大きく、安全性が高く、充放電サイクル耐久性に優れ、低温特性に優れる等、リチウム二次電池正極用として優れた特性を有するリチウム含有複合酸化物を得ることができるのみならず、中間体の保管安定性に優れた高い生産性を有するリチウム含有複合酸化物の製造方法、更には製造されたリチウム含有複合酸化物を含むリチウム二次電池用正極、及びリチウム二次電池が提供される。
かかる本発明により何故に上記のごとき優れた効果が達成されるかについては、必ずしも明らかではないが、ほぼ次のように推定される。すなわち、従来の固相法でのM元素の添加では、M元素の添加量が非常に少ないため、N元素原料あるいは正極材への均一な添加が困難であり、所望のM元素の添加効果を得ることが困難だった。しかし、本発明の方法によれば、M元素の溶液の形態でN元素原料あるいは正極材へ作用させるので正極活物質の細孔内にもM元素が均一に分散できるので所望のM元素の添加により電池性能の向上効果が発現するものと推察される。また、M元素をN元素化合物に作用させたり、正極材に作用させるので正極活物質の組成や粒径の制御が従来の共沈方法に比べて容易であり、工業的な優位性がある。
According to the present invention, a lithium-containing composite oxide having excellent characteristics for a lithium secondary battery positive electrode such as a large volumetric capacity density, high safety, excellent charge / discharge cycle durability, and excellent low temperature characteristics is obtained. And a method for producing a lithium-containing composite oxide having high productivity that is excellent in storage stability of the intermediate, and further, a positive electrode for a lithium secondary battery including the produced lithium-containing composite oxide, and A lithium secondary battery is provided.
The reason why such an excellent effect is achieved by the present invention is not necessarily clear, but is estimated as follows. That is, with the addition of M element in the conventional solid phase method, since the amount of M element added is very small, uniform addition to the N element material or the positive electrode material is difficult, and the desired effect of adding the M element is achieved. It was difficult to get. However, according to the method of the present invention, since it acts on the N element raw material or the positive electrode material in the form of a solution of M element, the M element can be uniformly dispersed in the pores of the positive electrode active material. Therefore, it is assumed that the effect of improving battery performance is exhibited. Further, since the M element is allowed to act on the N element compound or the positive electrode material, the composition of the positive electrode active material and the control of the particle size are easier than in the conventional coprecipitation method, and there is an industrial advantage.

本発明で製造されるリチウム二次電池正極用のリチウム含有複合酸化物は、一般式 Lipxzaで表される。かかる一般式における、p、x、m、z及びaは上記に定義される。なかでも、p、x、m、z及びaは下記が好ましい。0.9≦p≦1.1、特に好ましくは、0.97≦p≦1.03、0.975≦x<1.00、0.002≦m≦0.025、1.9≦z≦2.1、特に好ましくは1.95≦z≦2.05、x+m=1、0.001≦a≦0.01。ここで、aが0より大きいときには、酸素原子の一部がフッ素原子で置換された複合酸化物になるが、この場合には、得られた正極活物質の安全性が向上する。本発明において、カチオンの原子数の総和がアニオンの原子数の総和と等しい。即ち、p、x、mの総和がzとaの総和と等しいことが好ましい。Lithium-containing composite oxide for a lithium secondary battery positive electrode produced in the present invention is represented by the general formula Li p N x M m O z F a. In this general formula, p, x, m, z and a are defined above. Among these, p, x, m, z and a are preferably as follows. 0.9 ≦ p ≦ 1.1, particularly preferably 0.97 ≦ p ≦ 1.03, 0.975 ≦ x <1.00, 0.002 ≦ m ≦ 0.025, 1.9 ≦ z ≦ 2.1, particularly preferably 1.95 ≦ z ≦ 2.05, x + m = 1, 0.001 ≦ a ≦ 0.01. Here, when a is larger than 0, a composite oxide in which some of the oxygen atoms are substituted with fluorine atoms is obtained. In this case, the safety of the obtained positive electrode active material is improved. In the present invention, the total number of cations atoms is equal to the total number of anions atoms. That is, it is preferable that the sum of p, x, and m is equal to the sum of z and a.

Nは、Co、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、なかでも、Co、Ni、CoとNi、MnとNi、CoとNiとMnである場合が好ましい。また、Mは、Nを除く遷移金属元素、Al及びアルカリ土類金属からなる群から選ばれる少なくとも1種の元素である。本発明では、かかるM元素を添加元素と呼ぶことがある。なお、上記遷移金属元素は周期表の4族、5族、6族、7族、8族、9族、10族又は11族の遷移金属を表す。なかでも、Mは、Ti、Zr、Hf、Nb、Ta、Mg、Cu、Sn、Zn、及びAlからなる群から選ばれる少なくとも1つの元素が好ましい。なかでも、容量発現性、安全性、サイクル耐久性などの見地より、Ti、Zr、Hf、Mg又はAlが好ましい。   N is at least one element selected from the group consisting of Co, Mn and Ni, and among them, Co, Ni, Co and Ni, Mn and Ni, and Co, Ni and Mn are preferable. M is at least one element selected from the group consisting of transition metal elements excluding N, Al, and alkaline earth metals. In the present invention, such an M element is sometimes referred to as an additive element. The transition metal element represents a transition metal of Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11 of the periodic table. Among these, M is preferably at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Mg, Cu, Sn, Zn, and Al. Among these, Ti, Zr, Hf, Mg, or Al is preferable from the viewpoint of capacity development, safety, cycle durability, and the like.

本発明において、特に、MがAlとMgからなり、AlとMgが原子比で好ましくは1/5〜5/1、より好ましくは1/3〜3/1であり、特に好ましくは2/3〜3/2であり、且つ、好ましくは、0.002≦m≦0.025、より好ましくは、0.005≦m≦0.025、特に好ましくは、0.01≦m≦0.02である場合には、電池性能のバランス、即ち、初期重量容量密度、安全性、充放電サイクル安定性のバランスが良いので特に好ましい。また、本発明において、MがMgとM2(M2はTi、Zr、Ta、及びNbからなる群から選ばれる少なくとも1種の元素である)とからなり、M2とMgが原子比で、好ましくは1/40〜2/1、特に好ましくは1/30〜1/5であり、且つ、好ましくは、0.002≦m≦0.025、より好ましくは、0.005≦m≦0.025、特に好ましくは0.01≦m≦0.02である場合には、電池性能のバランス、即ち、初期重量容量密度、安全性、充放電サイクル安定性のバランスが良いので特に好ましい。   In the present invention, in particular, M is composed of Al and Mg, and Al and Mg are preferably in an atomic ratio of 1/5 to 5/1, more preferably 1/3 to 3/1, and particularly preferably 2/3. ˜3 / 2, and preferably 0.002 ≦ m ≦ 0.025, more preferably 0.005 ≦ m ≦ 0.025, and particularly preferably 0.01 ≦ m ≦ 0.02. In some cases, the balance of battery performance, that is, the balance of initial weight capacity density, safety, and charge / discharge cycle stability is particularly favorable. In the present invention, M is composed of Mg and M2 (M2 is at least one element selected from the group consisting of Ti, Zr, Ta, and Nb), and M2 and Mg are preferably in atomic ratio. 1/40 to 2/1, particularly preferably 1/30 to 1/5, and preferably 0.002 ≦ m ≦ 0.025, more preferably 0.005 ≦ m ≦ 0.025, It is particularly preferable that 0.01 ≦ m ≦ 0.02 because the balance of battery performance, that is, the balance of initial weight capacity density, safety, and charge / discharge cycle stability is good.

本発明において、上記F元素を含有せしめる場合は、このF元素は、いずれもリチウム含有複合酸化物粒子の表面に存在していることが好ましい。これらの元素が表面に存在することにより、少量の添加で電池性能の低下を招来することなく、安全性、充放電サイクル特性等の重要な電池特性を改良できる。これらの元素が表面に存在するか否かは正極粒子について、分光分析、例えば、XPS分析を行うことにより判断できる。   In the present invention, when the F element is contained, it is preferable that the F element is present on the surface of the lithium-containing composite oxide particles. The presence of these elements on the surface can improve important battery characteristics such as safety and charge / discharge cycle characteristics without causing a decrease in battery performance when added in a small amount. Whether or not these elements are present on the surface can be determined by performing spectroscopic analysis, for example, XPS analysis, on the positive electrode particles.

本発明のリチウム含有複合酸化物の製造法において、添加元素であるM元素は有機溶媒中にM元素を含む錯体が溶解している溶液の形態で使用される。この用語は、M元素の錯体化合物を有機溶媒中に溶解した溶液や、有機溶媒に溶解する前には錯体を形成していないが、有機溶媒とM元素とが錯体を形成して溶解している溶液などを意味する。前者の場合のM元素の錯体化合物の好ましい例としては、M元素キレート錯体、M元素の硝酸塩若しくはM元素の塩化物のグリコール錯体、又は、M元素硝酸塩若しくはM元素の塩化物のβ−ジケトン錯体が挙げられる。M元素キレート錯体を形成するキレート剤としてはβ−ジケトン化合物や、グリコール化合物が好ましい。キレート剤がβ−ジケトンの場合は、アルコキシド基とβ−ジケトン基とを両方もつ金属化合物が溶媒に対する溶解性が高いのでより好ましい。M元素の硝酸塩やM元素の塩化物のグリコール錯体としては、2種類以上のグルコール類、好ましくは、ジエチレングリコールとトリエチレングリコールの混合物が好ましい。   In the method for producing a lithium-containing composite oxide of the present invention, the element M as an additive element is used in the form of a solution in which a complex containing the element M is dissolved in an organic solvent. This term refers to a solution in which a complex compound of M element is dissolved in an organic solvent or a complex is not formed before dissolving in the organic solvent, but the organic solvent and M element are dissolved to form a complex. It means the solution that is. Preferred examples of the complex element of M element in the former case include an M element chelate complex, a glycol complex of M element nitrate or M element chloride, or a β-diketone complex of M element nitrate or M element chloride. Is mentioned. As a chelating agent that forms an M element chelate complex, β-diketone compounds and glycol compounds are preferred. When the chelating agent is a β-diketone, a metal compound having both an alkoxide group and a β-diketone group is more preferable because it has high solubility in a solvent. As the glycol complex of M element nitrate or M element chloride, two or more kinds of glycols, preferably a mixture of diethylene glycol and triethylene glycol are preferable.

有機溶媒中にM元素を含む錯体が溶解している溶液の調製に使用される有機溶媒は極性の有機溶媒が好ましい。極性の有機溶媒としては、沸点が好ましくは60〜200℃、特に好ましくは80〜150℃のものが好適である。その好ましい具体例としては、エタノール、2−プロパノールなどのアルコール類、ヘキシレングリコールなどのグリコール類、キシレンなどの芳香族炭化水素が挙げられる。極性の有機溶媒中には、ヘキサンなどの非極性溶媒が通常30重量%以下含有されていてもよい。有機溶媒中のM元素を含む錯体の濃度は、後の工程で使用した有機溶媒を除去するため、大きい方が好ましく、例えば金属換算で好ましくは3〜15重量%、特に好ましくは5〜10重量%が使用される。   The organic solvent used for preparing the solution in which the complex containing the M element is dissolved in the organic solvent is preferably a polar organic solvent. The polar organic solvent preferably has a boiling point of 60 to 200 ° C, particularly preferably 80 to 150 ° C. Preferred examples thereof include alcohols such as ethanol and 2-propanol, glycols such as hexylene glycol, and aromatic hydrocarbons such as xylene. In the polar organic solvent, a nonpolar solvent such as hexane may usually be contained in an amount of 30% by weight or less. The concentration of the complex containing the element M in the organic solvent is preferably larger in order to remove the organic solvent used in the subsequent step, for example, preferably 3 to 15% by weight, particularly preferably 5 to 10% by weight in terms of metal. % Is used.

本発明において、有機溶媒中にM元素を含む錯体が溶解している溶液は、次いで、好ましくは、以下の(1)、(2)又は(3)の態様で混合される。
(1)N源化合物粉末及び必要に応じてフッ素源化合物粉末と、有機溶媒中にM元素を含む錯体が溶解している溶液とを混合する。
(2)N源化合物粉末、リチウム源化合物粉末及び必要に応じてフッ素源化合物粉末と、有機溶媒中にM元素を含む錯体が溶解している溶液とを混合する。
(3)N源化合物粉末、リチウム源化合物粉末及び必要に応じてフッ素源化合物粉末を混合し、酸素含有雰囲気下において好ましくは800から1050℃(特に好適には900〜1000℃)で5〜20時間焼成後、粉砕、分級して得たリチウム含有複合酸化物粉末と有機溶媒中にM元素を含む錯体が溶解している溶液とを混合する。
In the present invention, the solution in which the complex containing the M element is dissolved in the organic solvent is then preferably mixed in the following mode (1), (2) or (3).
(1) An N source compound powder and, if necessary, a fluorine source compound powder and a solution in which a complex containing an M element is dissolved in an organic solvent are mixed.
(2) The N source compound powder, the lithium source compound powder and, if necessary, the fluorine source compound powder, and a solution in which a complex containing M element is dissolved in an organic solvent are mixed.
(3) An N source compound powder, a lithium source compound powder and, if necessary, a fluorine source compound powder are mixed and preferably 5 to 20 at 800 to 1050 ° C. (particularly preferably 900 to 1000 ° C.) in an oxygen-containing atmosphere. After the time firing, the lithium-containing composite oxide powder obtained by pulverization and classification is mixed with a solution in which a complex containing M element is dissolved in an organic solvent.

上記における各成分の混合比率は、最終的に得られる正極活物質の一般式である上記Lipxzaの範囲内で所望とする各元素の比率になるように選ばれる。また、N源化合物粉末及び必要に応じて使用されるフッ素源化合物粉末の粒径は、特に制限されるものではないが、良好な混合が達成されるために、好ましくは0.1〜20μm、特に好ましくは0.5〜15μmが選択される。
ここで使用される、N源化合物としては、Nがコバルトの場合には、炭酸コバルト、水酸化コバルトあるいはオキシ水酸化コバルト、酸化コバルトが好ましく使用される。特に水酸化コバルトあるいはオキシ水酸化コバルトが性能が発現しやすいので好ましい。また、Nがニッケルの場合には、水酸化ニッケル、炭酸ニッケルが好ましく使用される。また、Nがマンガンの場合には、炭酸マンガンが好ましく使用される。
The mixing ratio of each component in the above, chosen so that the ratio of each element desired and within the scope of a general formula of the finally obtained positive-electrode active material described above Li p N x M m O z F a . Further, the particle size of the N source compound powder and the fluorine source compound powder used as necessary is not particularly limited, but preferably 0.1 to 20 μm in order to achieve good mixing, Particularly preferably, 0.5 to 15 μm is selected.
As N source compound used here, when N is cobalt, cobalt carbonate, cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide are preferably used. In particular, cobalt hydroxide or cobalt oxyhydroxide is preferable because performance is easily exhibited. When N is nickel, nickel hydroxide and nickel carbonate are preferably used. When N is manganese, manganese carbonate is preferably used.

N元素が2種以上の元素からなる化合物の場合は、2種以上の元素は共沈により原子レベルで均一に分散していることが好ましい。共沈化合物としては、共沈水酸化物、共沈オキシ水酸化物、共沈酸化物、共沈炭酸塩等が好ましい化合物である。N元素がニッケルとコバルトの化合物からなる場合は、ニッケルとコバルトの原子比は、90:10〜70:30が好ましい。また、そのコバルトをアルミニウムやマンガンで一部を置換してもよい。N元素がニッケルとコバルトとマンガンの化合物からなる場合、ニッケルとコバルトとマンガンの原子比率は、それぞれ(10−50):(7−40):(20−70)が好ましい。
また、Nがニッケルとコバルトの化合物の場合は、Ni0.8Co0.2OOH、Ni0.8Co0.2(OH)、が、Nがニッケルとマンガンの化合物の場合はNi0.5Mn0.5OOHが、Nがニッケルとコバルトとマンガンの化合物の場合はNi0.4Co0.2Mn0.4(OH)、Ni1/3Co1/3Mn1/3OOHがそれぞれ好ましく例示される。
When the N element is a compound composed of two or more elements, it is preferable that the two or more elements are uniformly dispersed at the atomic level by coprecipitation. As a coprecipitation compound, a coprecipitation hydroxide, a coprecipitation oxyhydroxide, a coprecipitation oxide, a coprecipitation carbonate, etc. are preferable compounds. When N element consists of a compound of nickel and cobalt, the atomic ratio of nickel and cobalt is preferably 90:10 to 70:30. The cobalt may be partially substituted with aluminum or manganese. When N element consists of a compound of nickel, cobalt, and manganese, the atomic ratio of nickel, cobalt, and manganese is preferably (10-50) :( 7-40) :( 20-70), respectively.
Further, when N is a compound of nickel and cobalt, Ni 0.8 Co 0.2 OOH and Ni 0.8 Co 0.2 (OH) 2 , but when N is a compound of nickel and manganese, Ni 0 .5 Mn 0.5 OOH, when N is a compound of nickel, cobalt and manganese, Ni 0.4 Co 0.2 Mn 0.4 (OH) 2 , Ni 1/3 Co 1/3 Mn 1/3 OOH is each preferably exemplified.

上記(1)の態様によるM元素を含む錯体の溶液との混合物を得る方法としては、適宜な混合手段を選択することができるが、例えば、(A)M元素を含む錯体の溶液にN元素源化合物粉末、及び必要に応じてフッ素源化合物粉末を分散させ、撹拌する方法、(B)N源化合物粉末、及び必要に応じて混合されたフッ素源化合物粉末にスプレーを利用し、M元素を含む錯体の溶液を噴霧する方法などを例示することができる。   As a method of obtaining the mixture with the solution of the complex containing M element according to the aspect of (1) above, an appropriate mixing means can be selected. For example, (A) N element in the solution of the complex containing M element A method of dispersing and stirring the source compound powder and, if necessary, the fluorine source compound powder, (B) spraying the N source compound powder, and optionally mixing the fluorine source compound powder, The method of spraying the solution of the complex containing can be illustrated.

また、上記(1)〜(3)の態様によるM元素を含む錯体の溶液との混合は、アキシアルミキサーなどを使用して充分均一に混合することが好ましい。混合物中の固形分濃度としては、均一に混合される限り高い濃度の方が好ましいが、通常、固体/液体比は50/50〜90/10、特に好ましくは60/40〜80/20が好適である。   Moreover, it is preferable to mix with the solution of the complex containing M element by the aspect of said (1)-(3) sufficiently uniformly using an axial mixer etc. As the solid content concentration in the mixture, a higher concentration is preferable as long as it is uniformly mixed. Usually, the solid / liquid ratio is preferably 50/50 to 90/10, particularly preferably 60/40 to 80/20. It is.

適宜な混合手段により得られた混合物は次いで、混合物中の有機溶媒が除去される。有機溶媒の除去は、好ましくは50〜200℃、特に好ましくは80〜120℃にて、通常1〜10時間乾燥することにより行われる。混合物中の有機溶媒は、後の焼成工程で焼却されるために、この段階で必ずしも完全に除去する必要はないが、原料、又は正極材の還元が懸念されるので、できる限り除去しておくのが好ましい。   The organic solvent in the mixture is then removed from the mixture obtained by a suitable mixing means. The removal of the organic solvent is preferably performed by drying at 50 to 200 ° C., particularly preferably at 80 to 120 ° C., usually for 1 to 10 hours. Since the organic solvent in the mixture is incinerated in the subsequent baking step, it is not always necessary to completely remove it at this stage. However, since there is a concern about reduction of the raw material or the positive electrode material, it is removed as much as possible. Is preferred.

上記(2)又は(3)の態様により混合され、上記のようにして有機溶媒が除去された混合物は、後記の方法により焼成される。一方、上記(1)の態様により混合され、上記のようにして有機溶媒が除去された混合物は、好ましくは適宜の大きさの粉末に粉砕され、リチウム源化合物粉末と混合され、混合物は後記する手段にて焼成される。かかる混合においても、アキシアルミキサー、ドラムミキサーなどの攪拌機を使用し、充分に均一に混合することが好ましい。
使用するリチウム源化合物としては、上記(1)、(2)又は(3)のいずれの態様でも、炭酸リチウムあるいは水酸化リチウムが好ましく使用される。特に炭酸リチウムが安価で好ましい。同様に、フッ素源としては、金属フッ化物、LiF、MgF2などが選択される。リチウム源化合物粉末の粒径は、特に制限されるものではないが、良好な混合が達成されるために、好ましくは0.1〜20μm、特に好ましくは0.5〜15μmが選択される。
The mixture that has been mixed according to the above aspect (2) or (3) and from which the organic solvent has been removed as described above is fired by the method described below. On the other hand, the mixture that has been mixed according to the embodiment (1) and from which the organic solvent has been removed as described above is preferably pulverized into a powder of an appropriate size and mixed with the lithium source compound powder, and the mixture will be described later. Baking by means. Even in such mixing, it is preferable to use a stirrer such as an axial mixer or a drum mixer and mix sufficiently uniformly.
As the lithium source compound to be used, lithium carbonate or lithium hydroxide is preferably used in any of the above aspects (1), (2) or (3). In particular, lithium carbonate is preferable because it is inexpensive. Similarly, metal fluoride, LiF, MgF 2 or the like is selected as the fluorine source. The particle size of the lithium source compound powder is not particularly limited, but is preferably 0.1 to 20 μm, particularly preferably 0.5 to 15 μm, in order to achieve good mixing.

上記(1)又は(2)の態様で得られる混合物の焼成は、酸素含有雰囲気下において好ましくは800〜1050℃で通常、5〜20時間行われる。焼成温度が、800℃より小さい場合にはリチウム化が不完全となり、逆に1050℃を超える場合には充放電サイクル耐久性や初期容量が低下してしまう。特に、焼成温度は900〜1000℃が好適である。得られた焼成物は冷却後、粉砕、分級することによりリチウム含有複合酸化物粒子が製造される。
上記(3)の態様においては、N源化合物粉末、リチウム減粉末及び必要に応じて、フッ素源化合物粉末を含有する混合物が上述した混合方法と同様にして得られる。また、この混合物は上述した焼成方法と同様にして焼成される。上記(3)の態様において得られる混合物、すなわち、M元素含有錯体を含有するリチウム含有複合酸化物粉末の混合物は、酸素含有雰囲気下において300〜1050℃で焼成される。焼成温度が300℃よりも低い場合は、有機物の分解が不充分となり好ましくない。また、1050℃を超える場合には、充放電サークル耐久性や初期容量が低下してしまう。特に、焼成温度は400〜900℃が好適である。得られた焼成物は冷却後、粉砕、分級することによりリシウム含有複合酸化物粒子が製造される。
Firing of the mixture obtained in the above aspect (1) or (2) is preferably performed at 800 to 1050 ° C. for 5 to 20 hours in an oxygen-containing atmosphere. When the firing temperature is less than 800 ° C., lithiation becomes incomplete, and when it exceeds 1050 ° C., charge / discharge cycle durability and initial capacity are lowered. In particular, the firing temperature is preferably 900 to 1000 ° C. The obtained fired product is cooled, pulverized and classified to produce lithium-containing composite oxide particles.
In the above aspect (3), an N source compound powder, a lithium reduced powder and, if necessary, a mixture containing a fluorine source compound powder can be obtained in the same manner as the mixing method described above. This mixture is fired in the same manner as described above. The mixture obtained in the above aspect (3), that is, the mixture of the lithium-containing composite oxide powder containing the M element-containing complex is fired at 300 to 1050 ° C. in an oxygen-containing atmosphere. When the firing temperature is lower than 300 ° C., the decomposition of the organic matter is insufficient, which is not preferable. Moreover, when it exceeds 1050 degreeC, charging / discharging circle durability and initial stage capacity | capacitance will fall. In particular, the firing temperature is preferably 400 to 900 ° C. The obtained fired product is cooled, pulverized and classified to produce lithium-containing composite oxide particles.

このようにして製造される本発明のリチウム含有複合酸化物は、その平均粒径D50が好ましくは8〜18μm、特に好ましくは10〜16μm、比表面積が好ましくは0.2〜0.6m2/g、特に好ましくは0.3〜0.5m2/g、CuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅が好ましくは0.08〜0.14°、特に好ましくは0.08〜0.12°、かつプレス密度が好ましくは3.15〜3.60g/cm3、特に好ましくは3.20〜3.50g/cm3であるのが好適である。なお、本発明におけるプレス密度は、実施例における記載も含めて、特に断りのない限り、粒子粉末を0.3t/cm2の圧力でプレス圧縮後したときの見かけのプレス密度をいう。また、本発明のリチウム含有複合酸化物は、そこに含有される残存アルカリ量が0.03質量%以下が好ましく、特には0.01質量%以下であるのが好適である。The lithium-containing composite oxide of the present invention thus produced has an average particle diameter D50 of preferably 8 to 18 μm, particularly preferably 10 to 16 μm, and a specific surface area of preferably 0.2 to 0.6 m 2 / g, particularly preferably 0.3 to 0.5 m 2 / g, (110) plane diffraction peak half-value width of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using CuKα as a radiation source is preferably 0 0.08 to 0.14 °, particularly preferably 0.08 to 0.12 °, and the press density is preferably 3.15 to 3.60 g / cm 3 , particularly preferably 3.20 to 3.50 g / cm 3. Is preferred. In addition, the press density in this invention means the apparent press density when press-compressing particle powder by the pressure of 0.3 t / cm < 2 > unless there is particular notice including the description in an Example. In the lithium-containing composite oxide of the present invention, the amount of residual alkali contained therein is preferably 0.03% by mass or less, and particularly preferably 0.01% by mass or less.

このようにして製造されたリチウム含有複合酸化物からリチウム二次電池用の正極を製造する場合には、かかる複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチエンブラックなどのカーボン系導電材と結合材を混合することにより形成される。上記結合材には、好ましくは、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。本発明のリチウム含有複合酸化物の粉末、導電材及び結合材を溶媒又は分散媒を使用し、スラリー又は混練物とされる。これをアルミニウム箔、ステンレス箔などの正極集電体に塗布などにより担持せしめてリチウム二次電池用の正極が製造される。   When producing a positive electrode for a lithium secondary battery from the lithium-containing composite oxide thus produced, a carbon-based conductive material such as acetylene black, graphite, and Ketchen black is added to the composite oxide powder. It is formed by mixing binders. For the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used. The lithium-containing composite oxide powder, conductive material and binder of the present invention are made into a slurry or kneaded product using a solvent or a dispersion medium. This is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like to produce a positive electrode for a lithium secondary battery.

本発明のリチウム含有複合酸化物を正極活物質に用いるリチウム二次電池において、セパレータとしては、多孔質ポリエチレン、多孔質ポリプロピレンのフィルムなどが使用される。また、電池の電解質溶液の溶媒としては、種々の溶媒が使用できるが、なかでも炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)などが例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、メチルイソプロピルカーボネートなどが例示される。   In the lithium secondary battery using the lithium-containing composite oxide of the present invention as the positive electrode active material, a porous polyethylene film, a porous polypropylene film, or the like is used as the separator. Various solvents can be used as the solvent for the electrolyte solution of the battery, and among them, carbonate ester is preferable. The carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.

本発明では、上記炭酸エステルを単独で又は2種以上を混合して使用できる。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。   In this invention, the said carbonate ester can be used individually or in mixture of 2 or more types. Moreover, you may mix and use with another solvent. Moreover, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, cycle durability, and charge / discharge efficiency may be improved.

また、本発明のリチウム含有複合酸化物を正極活物質に用いるリチウム二次電池においては、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えばアトケム社製:商品名カイナー)あるいはフッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体を含むゲルポリマー電解質としても良い。上記の電解質溶媒又はポリマー電解質に添加される溶質としては、ClO4−、CF3SO3−、BF4−、PF6−、AsF6−、SbF6−、CF3CO2−、(CF3SO22N−などをアニオンとするリチウム塩のいずれか1種以上が好ましく使用される。上記リチウム塩からなる電解質溶媒又はポリマー電解質に対して、0.2〜2.0mol/l(リットル)の濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。なかでも、0.5〜1.5mol/lが特に好ましい。In the lithium secondary battery using the lithium-containing composite oxide of the present invention as the positive electrode active material, a vinylidene fluoride-hexafluoropropylene copolymer (for example, product name: Kyner manufactured by Atchem Co.) or vinylidene fluoride-perfluoro is used. A gel polymer electrolyte containing a propyl vinyl ether copolymer may be used. Solutes added to the electrolyte solvent or polymer electrolyte include ClO 4 —, CF 3 SO 3 —, BF 4 —, PF 6 —, AsF 6 —, SbF 6 —, CF 3 CO 2 —, (CF 3 Any one or more of lithium salts having SO 2 ) 2 N— or the like as an anion is preferably used. It is preferable to add at a concentration of 0.2 to 2.0 mol / l (liter) with respect to the electrolyte solvent or polymer electrolyte made of the lithium salt. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. Of these, 0.5 to 1.5 mol / l is particularly preferable.

本発明のリチウム含有複合酸化物を正極活物質に用いるリチウム電池において、負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、又は15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物などが挙げられる。炭素材料としては、種々の熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛などを使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔などが用いられる。かかる負極は、上記活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、プレスして得ることにより好ましくは製造される。   In the lithium battery using the lithium-containing composite oxide of the present invention as the positive electrode active material, a material capable of inserting and extracting lithium ions is used as the negative electrode active material. The material for forming the negative electrode active material is not particularly limited. For example, an oxide, a carbon compound, a silicon carbide compound, or a silicon oxide compound mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Titanium sulfide, boron carbide compounds and the like. As the carbon material, those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used. Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.

本発明のリチウム含有複合酸化物を正極活物質に用いるリチウム電池の形状には特に制約はない。シート状、フィルム状、折り畳み状、巻回型有底円筒形、ボタン形などが用途に応じて選択される。
以下に実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
There is no restriction | limiting in particular in the shape of the lithium battery which uses the lithium containing complex oxide of this invention for a positive electrode active material. A sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[例1−1]
既知の方法に従って、硫酸コバルト水溶液と水酸化アンモニウムとの混合液と苛性ソーダ水溶液とを連続的に混合し、連続的に水酸化コバルトスラリーを調製した。次いで、スラリーを、凝集、ろ過及び乾燥工程を経て水酸化コバルト粉末を得た。得られた水酸化コバルトは、CuKα線を使用した粉末X線回折において、2θ=19±1°の(001)面の回折ピーク半値幅は0.27°であり、2θ=38°±1の(101)面の回折ピーク半値幅は0.23°であり、走査型電子顕微鏡観察の結果、微粒子が凝集して、略球状の二次粒子から形成されていることが判った。走査型電子顕微鏡観察の画像解析から求めた体積基準の粒度分布解析の結果、平均粒径D50が17.5μm、D10が7.1μm、D90が26.4μmであった。水酸化コバルト粉末のコバルト含有量は61.5質量%であった。
[Example 1-1]
According to a known method, a cobalt hydroxide aqueous solution and ammonium hydroxide mixed solution and a caustic soda aqueous solution were continuously mixed to continuously prepare a cobalt hydroxide slurry. Next, the slurry was subjected to agglomeration, filtration, and drying steps to obtain cobalt hydroxide powder. The obtained cobalt hydroxide has a diffraction peak half-width of (001) plane of 2θ = 19 ± 1 ° in powder X-ray diffraction using CuKα ray is 0.27 °, and 2θ = 38 ° ± 1. The diffraction peak half-value width of the (101) plane was 0.23 °, and as a result of observation with a scanning electron microscope, it was found that the fine particles were aggregated and formed from substantially spherical secondary particles. As a result of volume-based particle size distribution analysis obtained from image analysis under scanning electron microscope observation, the average particle size D50 was 17.5 μm, D10 was 7.1 μm, and D90 was 26.4 μm. The cobalt content of the cobalt hydroxide powder was 61.5% by mass.

一方、硝酸マグネシウム6水和物5.28gにジエチレングリコール1.75gとトリエチレングリコール2.47gを加え、完全に溶解するまで攪拌した。完全に溶解した後、エタノール33.82gを加えさらに攪拌した。得られた溶液にチタンアセチルアセトネートのキシレン/1−ブタノール(1:1)混合溶液(Ti含有量:9.8質量%)を1.01g加え、さらにアルミニウムエチルアセトアセテートジイソプロピレートを5.67gを加え攪拌することで、添加元素を含む錯体溶液を得た。   On the other hand, 1.75 g of diethylene glycol and 2.47 g of triethylene glycol were added to 5.28 g of magnesium nitrate hexahydrate, and the mixture was stirred until completely dissolved. After complete dissolution, 33.82 g of ethanol was added and further stirred. To the obtained solution, 1.01 g of a mixed solution of titanium acetylacetonate in xylene / 1-butanol (1: 1) (Ti content: 9.8% by mass) was added, and aluminum ethyl acetoacetate diisopropylate was added in 5. 67 g was added and stirred to obtain a complex solution containing the additive element.

上記水酸化コバルト粉末193.18gと上記添加元素溶液をスラリー状になるように混合した。このスラリーをロータリーエバポレーターにて脱溶媒した後、比表面積が1.2m/gの炭酸リチウム粉末76.56gを混合し、10日間室温にて保管した。保管後の外観は特に変化が見られなかった。この混合物を空気中、950℃で12時間焼成した。得られた複合酸化物の組成はLiAl0.01Co0.979Mg0.01
Ti0.0012であった。
The cobalt hydroxide powder 193.18 g and the additive element solution were mixed in a slurry state. The slurry was desolvated with a rotary evaporator, mixed with 76.56 g of lithium carbonate powder having a specific surface area of 1.2 m 2 / g, and stored at room temperature for 10 days. There was no particular change in the appearance after storage. This mixture was calcined in air at 950 ° C. for 12 hours. The composition of the obtained composite oxide was LiAl 0.01 Co 0.979 Mg 0.01
Ti 0.001 O 2 .

得られた1次粒子が凝集してなる、略球状のリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水溶媒中にて測定した。その結果、平均粒径D50が15.9μm、D10が6.5μm、D90が23.5μmであり、また、BET法により求めた比表面積が0.35m2/gであった。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.107°であった。この粉末のプレス密度は3.24g/cm3であった。このリチウム含有複合酸化物粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。The particle size distribution of the substantially spherical lithium-containing composite oxide powder formed by aggregation of the obtained primary particles was measured in an aqueous solvent using a laser scattering particle size distribution measuring device. As a result, the average particle diameter D50 was 15.9 μm, D10 was 6.5 μm, D90 was 23.5 μm, and the specific surface area determined by the BET method was 0.35 m 2 / g. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.107 °. The press density of this powder was 3.24 g / cm 3 . 10 g of this lithium-containing composite oxide powder was dispersed in 100 g of pure water, filtered, and potentiometrically titrated with 0.1 N HCl to determine the residual alkali amount, which was 0.02% by mass.

上記のリチウム含有複合酸化物粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。乾燥し、ロールプレス圧延を5回行うことによりリチウム電池用の正極体シートを作製した。   The lithium-containing composite oxide powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, N-methylpyrrolidone is added to prepare a slurry, and aluminum having a thickness of 20 μm is prepared. The foil was coated on one side using a doctor blade. The positive electrode sheet for lithium batteries was produced by drying and performing roll press rolling 5 times.

上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF6/EC+DEC(1:1)溶液(LiPF6を溶質とするECとDECとの質量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で2個組み立てた。The positive electrode sheet is used for the positive electrode, a metal lithium foil having a thickness of 500 μm is used for the negative electrode, a nickel foil of 20 μm is used for the negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used for the separator. Further, the electrolytic solution is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC in a mass ratio (1: 1) containing LiPF 6 as a solute. Solvents described later are also this). The two stainless steel simple sealed cell type lithium batteries were assembled in an argon glove box.

上記1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。さらに電極層の密度を求めた。また、この電池について、引き続き充放電サイクル試験を30回行なった。その結果、25℃、2.5〜4.3Vにおける正極電極層の初期重量容量密度は、162mAh/gであり、30回充放電サイクル後の容量維持率は99.3%であった。   For the one battery, the initial discharge capacity was charged at 25 ° C. with a load current of 75 mA per gram of the positive electrode active material to 4.3 V and discharged with a load current of 75 mA per gram of the positive electrode active material to 2.5 V. Asked. Furthermore, the density of the electrode layer was determined. Moreover, about this battery, the charging / discharging cycle test was done 30 times continuously. As a result, the initial weight capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V was 162 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.3%.

また、他方の電池については、それぞれ4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出した。その正極体シートを洗滌後、径3mmに打ち抜き、ECとともにアルミニウムカプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.3V充電品の発熱開始温度は174℃であった。   The other battery was charged at 4.3 V for 10 hours, disassembled in an argon glove box, and the charged positive electrode sheet was taken out. The positive electrode sheet was washed, punched out to a diameter of 3 mm, sealed in an aluminum capsule together with EC, and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the 4.3V charged product was 174 ° C.

[例1−2]
硝酸マグネシウム6水和物5.28gにジエチレングリコール1.75gとトリエチレングリコール2.47gを加え、完全に溶解するまで攪拌し、完全に溶解した後、エタノール25.60gを加えて攪拌した。この溶液にジルコニウムトリブトキシドモノアセチルアセトネートのキシレン/1−ブタノール(1:1)混合溶液(ZrO:13.8質量%)を9.24g加え、さらにアルミニウムエチルアセトアセテートジイソプロピレートを5.66g加え攪拌することにより添加元素溶液を調製した。
[Example 1-2]
To 5.28 g of magnesium nitrate hexahydrate, 1.75 g of diethylene glycol and 2.47 g of triethylene glycol were added and stirred until completely dissolved. After completely dissolved, 25.60 g of ethanol was added and stirred. To this solution, 9.24 g of a mixed solution of zirconium tributoxide monoacetylacetonate in xylene / 1-butanol (1: 1) (ZrO 2 : 13.8% by mass) was added, and aluminum ethyl acetoacetate diisopropylate was added in an amount of 5.24 g. An additive element solution was prepared by adding 66 g and stirring.

得られた添加元素を含む錯体溶液と水酸化コバルト粉末を191.99gとを混合したほかは例1−1と同様にして乾燥処理を行った。得られた混合物と比表面積が1.2m/gの炭酸リチウム粉末76.40gを混合し、10日間室温にて保管した。保管後の外観は特に変化が見られなかった。この混合物を空気中、950℃で12時間焼成した。得られた複合酸化物の組成はLiAl0.01Co0.975Mg0.01Zr0.0052であった。A drying treatment was performed in the same manner as in Example 1-1 except that the complex solution containing the obtained additive element and 191.99 g of cobalt hydroxide powder were mixed. The obtained mixture and 76.40 g of lithium carbonate powder having a specific surface area of 1.2 m 2 / g were mixed and stored at room temperature for 10 days. There was no particular change in the appearance after storage. This mixture was calcined in air at 950 ° C. for 12 hours. The composition of the obtained composite oxide was LiAl 0.01 Co 0.975 Mg 0.01 Zr 0.005 O 2 .

得られた1次粒子が凝集してなる、略球状のリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて測定した。その結果、平均粒径D50が16.3μm、D10が6.0μm、D90が23.3μmであり、また、BET法により求めた比表面積が0.33m2/gであった。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.107°であった。上記粉末のプレス密度は3.21g/cm3であった。また、上記粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。The particle size distribution of the substantially spherical lithium-containing composite oxide powder formed by aggregation of the obtained primary particles was measured using a laser scattering particle size distribution measuring device. As a result, the average particle diameter D50 was 16.3 μm, D10 was 6.0 μm, D90 was 23.3 μm, and the specific surface area determined by the BET method was 0.33 m 2 / g. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane in the vicinity of 2θ = 66.5 ± 1 ° was 0.107 °. The press density of the powder was 3.21 g / cm 3 . Further, 10 g of the above powder was dispersed in 100 g of pure water, filtered and subjected to potentiometric titration with 0.1N HCl to determine the residual alkali amount, which was 0.02% by mass.

上記のリチウム含有複合酸化物粉末を使用し、例1−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は、161mAh/gであり、30回充放電サイクル後の容量維持率は、99.5%であった。4.3V充電品の発熱開始温度は175℃であった。   Using the above lithium-containing composite oxide powder, a positive electrode body was produced in the same manner as in Example 1-1, a battery was assembled, and its characteristics were measured. The initial weight capacity density of the positive electrode layer was 161 mAh / g, and the capacity retention after 30 charge / discharge cycles was 99.5%. The heat generation start temperature of the 4.3V charged product was 175 ° C.

[例1−3]
例1−1において使用したのと同じ、水酸化コバルト粉末を193.18gと炭酸リチウム粉末76.56gとを混合した混合物に、エタノール30gを余分に加えた添加元素を含む錯体溶液を混合したほかは例1−1と同様にして乾燥した後、10日間室温にて保管した。保管後の外観が緑褐色から茶褐色に変化した。この混合物を空気中、950℃で12時間焼成した。得られた複合酸化物の組成はLiAl0.01Co0.979Mg0.01Ti0.0012であった。
[Example 1-3]
In addition to the same mixture used in Example 1-1, a complex solution containing an additive element in which 30 g of ethanol was added to a mixture of 193.18 g of cobalt hydroxide powder and 76.56 g of lithium carbonate powder was mixed. Was dried in the same manner as in Example 1-1 and stored at room temperature for 10 days. The appearance after storage changed from greenish brown to brown. This mixture was calcined in air at 950 ° C. for 12 hours. The composition of the obtained composite oxide was LiAl 0.01 Co 0.979 Mg 0.01 Ti 0.001 O 2 .

得られた塊状のリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて測定した。その結果、平均粒径D50が12.1μm、D10が4.3μm、D90が19.4μmであり、また、BET法により求めた比表面積が0.48m2/gであった。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.117°であった。上記粉末のプレス密度は3.06g/cm3であった。The particle size distribution of the obtained bulk lithium-containing composite oxide powder was measured using a laser scattering type particle size distribution measuring device. As a result, the average particle diameter D50 was 12.1 μm, D10 was 4.3 μm, D90 was 19.4 μm, and the specific surface area determined by the BET method was 0.48 m 2 / g. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane in the vicinity of 2θ = 66.5 ± 1 ° was 0.117 °. The press density of the powder was 3.06 g / cm 3 .

また、上記粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。例1−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は、157mAh/gであり、30回充放電サイクル後の容量維持率は98.1%であった。4.3V充電品の発熱開始温度は169℃であった。   Further, 10 g of the above powder was dispersed in 100 g of pure water, filtered and subjected to potentiometric titration with 0.1N HCl to determine the residual alkali amount, which was 0.02% by mass. In the same manner as in Example 1-1, a positive electrode body was manufactured, a battery was assembled, and its characteristics were measured. The initial weight capacity density of the positive electrode layer was 157 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.1%. The heat generation start temperature of the 4.3V charged product was 169 ° C.

[例1−4]
例1−1において使用したのと同じ、水酸化コバルト粉末を191.99gと炭酸リチウム粉末76.40gとを混合した混合物に、エタノール30gを余分に加えた添加元素を含む錯体溶液を混合したほかは例1−2と同様にして乾燥した後、10日間室温にて保管した。保管後の外観が緑褐色から茶褐色に変化した。この混合物を空気中、950℃で12時間焼成した。得られた複合酸化物の組成はLiAl0.01Co0.975Mg0.01Zr0.0052であった。
[Example 1-4]
In addition to the same mixture used in Example 1-1, a mixture solution containing 191.99 g of cobalt hydroxide powder and 76.40 g of lithium carbonate powder was mixed with a complex solution containing additional elements added with 30 g of ethanol. Was dried in the same manner as in Example 1-2 and then stored at room temperature for 10 days. The appearance after storage changed from greenish brown to brown. This mixture was calcined in air at 950 ° C. for 12 hours. The composition of the obtained composite oxide was LiAl 0.01 Co 0.975 Mg 0.01 Zr 0.005 O 2 .

得られた塊状のリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて測定した。その結果、平均粒径D50が12.5μm、D10が3.6μm、D90が18.5μmであり、また、BET法により求めた比表面積が0.51m2/gであった。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.125°であった。上記粉末のプレス密度は3.00g/cm3であった。The particle size distribution of the obtained bulk lithium-containing composite oxide powder was measured using a laser scattering type particle size distribution measuring device. As a result, the average particle diameter D50 was 12.5 μm, D10 was 3.6 μm, D90 was 18.5 μm, and the specific surface area determined by the BET method was 0.51 m 2 / g. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane around 2θ = 66.5 ± 1 ° was 0.125 °. The press density of the powder was 3.00 g / cm 3 .

また、例1−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は、159mAh/gであり、30回充放電サイクル後の容量維持率は97.9%であった。4.3V充電品の発熱開始温度は169℃であった。
[例2−1]
既知の方法に従って、硫酸コバルト水溶液と水酸化アンモニウムとの混合液と苛性ソーダ水溶液とを連続的に混合し、連続的に水酸化コバルトスラリーを調製した。次いで、スラリーを、凝集、ろ過及び乾燥工程を経て水酸化コバルト粉体を得た。得られた水酸化コバルトは、CuKα線を使用した粉末X線回折において、2θ=19±1°の(001)面の回折ピーク半値幅は0.27°であり、2θ=38°±1の(101)面の回折ピーク半値幅は0.23°であり、走査型電子顕微鏡観察の結果、微粒子が凝集して、略球状の二次粒子から形成されていることが判った。走査型電子顕微鏡観察の画像解析から求めた体積基準の粒度分布解析の結果、平均粒径D50が17.5μm、D10が7.1μm、D90が26.4μmであった。水酸化コバルトのコバルト含量は61.5質量%であった。
上記水酸化コバルト粉末190.61gと、比表面積が1.2m2/gの炭酸リチウム粉末76.24gとを混合した。
Moreover, it carried out similarly to Example 1-1, manufactured the positive electrode body, assembled the battery, and measured the characteristic. The initial weight capacity density of the positive electrode layer was 159 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.9%. The heat generation start temperature of the 4.3V charged product was 169 ° C.
[Example 2-1]
According to a known method, a cobalt hydroxide aqueous solution and ammonium hydroxide mixed solution and a caustic soda aqueous solution were continuously mixed to continuously prepare a cobalt hydroxide slurry. Next, the slurry was subjected to agglomeration, filtration, and drying steps to obtain cobalt hydroxide powder. The obtained cobalt hydroxide has a diffraction peak half-width of (001) plane of 2θ = 19 ± 1 ° in powder X-ray diffraction using CuKα ray is 0.27 °, and 2θ = 38 ° ± 1. The diffraction peak half-value width of the (101) plane was 0.23 °, and as a result of observation with a scanning electron microscope, it was found that the fine particles were aggregated and formed from substantially spherical secondary particles. As a result of volume-based particle size distribution analysis obtained from image analysis under scanning electron microscope observation, the average particle size D50 was 17.5 μm, D10 was 7.1 μm, and D90 was 26.4 μm. The cobalt content of cobalt hydroxide was 61.5% by mass.
190.61 g of the cobalt hydroxide powder was mixed with 76.24 g of lithium carbonate powder having a specific surface area of 1.2 m 2 / g.

一方、硝酸マグネシウム6水和物5.26gにジエチレングリコール1.74gとトリエチレングリコール2.46gを加え、完全に溶解するまで攪拌した。完全に溶解した後、エタノール44.87gを加えさらに攪拌した。得られた溶液にチタンアセチルアセトネートのキシレン/1−ブタノール(1:1)混合溶液(Ti含有量:9.8質量%)を10.02g加え、さらにアルミニウムエチルアセトアセテートジイソプロピレートを5.65g加え攪拌することで、添加元素溶液を得た。   On the other hand, 1.74 g of diethylene glycol and 2.46 g of triethylene glycol were added to 5.26 g of magnesium nitrate hexahydrate and stirred until it was completely dissolved. After complete dissolution, 44.87 g of ethanol was added and further stirred. To the resulting solution was added 10.02 g of a mixed solution of titanium acetylacetonate in xylene / 1-butanol (1: 1) (Ti content: 9.8 mass%), and aluminum ethyl acetoacetate diisopropylate was added in an amount of 5. An additive element solution was obtained by adding 65 g and stirring.

上記水酸化コバルト粉末と炭酸リチウム粉末との混合物に、上記添加元素溶液をスラリー状になるように混合した。この場合、水酸化コバルト、炭酸リチウム、硝酸マグネシウム6水和物、アルミニウムエチルアセトアセテートジイソプロピレート、チタンアセチルアセトネートの混合比は焼成後LiAl0.01Co0.97Mg0.01Ti0.012となるように配合した。The additive element solution was mixed with the mixture of the cobalt hydroxide powder and the lithium carbonate powder so as to form a slurry. In this case, the mixing ratio of cobalt hydroxide, lithium carbonate, magnesium nitrate hexahydrate, aluminum ethyl acetoacetate diisopropylate, titanium acetylacetonate was LiAl 0.01 Co 0.97 Mg 0.01 Ti 0. 0 after firing . It was formulated as a 01 O 2.

このスラリーをロータリーエバポレーターにて脱溶媒した後、空気中、950℃で12時間焼成した。焼成物を解砕し得られた1次粒子が凝集してなるリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水溶媒中にて測定した結果、平均粒径D50が13.0μm、D10が7.0μm、D90が18.0μmであり、BET法により求めた比表面積が0.38m2/gの略球状のリチウム含有複合酸化物粉末を得た。このリチウム含有複合酸化物粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.110°であった。この粉末のプレス密度は3.21g/cm3であった。このリチウム含有複合酸化物粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。The slurry was desolvated with a rotary evaporator and then calcined in air at 950 ° C. for 12 hours. As a result of measuring the particle size distribution of the lithium-containing composite oxide powder obtained by agglomerating primary particles obtained by crushing the fired product in a water solvent using a laser scattering type particle size distribution measuring device, the average particle size D50 Was 13.0 μm, D10 was 7.0 μm, D90 was 18.0 μm, and a substantially spherical lithium-containing composite oxide powder having a specific surface area of 0.38 m 2 / g determined by the BET method was obtained. With respect to this lithium-containing composite oxide powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.110 °. The press density of this powder was 3.21 g / cm 3 . 10 g of this lithium-containing composite oxide powder was dispersed in 100 g of pure water, filtered, and potentiometrically titrated with 0.1 N HCl to determine the residual alkali amount, which was 0.02% by mass.

上記のリチウム含有複合酸化物粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。乾燥し、ロールプレス圧延を5回行うことによりリチウム電池用の正極体シートを作製した。   The lithium-containing composite oxide powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, N-methylpyrrolidone is added to prepare a slurry, and aluminum having a thickness of 20 μm is prepared. The foil was coated on one side using a doctor blade. The positive electrode sheet for lithium batteries was produced by drying and performing roll press rolling 5 times.

上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF6/EC+DEC(1:1)溶液(LiPF6を溶質とするECとDECとの質量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で2個組み立てた。The positive electrode sheet is used for the positive electrode, a metal lithium foil having a thickness of 500 μm is used for the negative electrode, a nickel foil of 20 μm is used for the negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used for the separator. Further, the electrolytic solution is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC in a mass ratio (1: 1) containing LiPF 6 as a solute. Solvents described later are also this). The two stainless steel simple sealed cell type lithium batteries were assembled in an argon glove box.

上記1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。さらに電極層の密度を求めた。また、この電池について、引き続き充放電サイクル試験を30回行なった。その結果、25℃、2.5〜4.3Vにおける正極電極層の初期重量容量密度は、162mAh/gであり、30回充放電サイクル後の容量維持率は99.2%であった。   For the one battery, the initial discharge capacity was charged at 25 ° C. with a load current of 75 mA per gram of the positive electrode active material to 4.3 V and discharged with a load current of 75 mA per gram of the positive electrode active material to 2.5 V. Asked. Furthermore, the density of the electrode layer was determined. Moreover, about this battery, the charging / discharging cycle test was done 30 times continuously. As a result, the initial weight capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V was 162 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.2%.

また、他方の電池については、それぞれ4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出した。その正極体シートを洗滌後、径3mmに打ち抜き、ECとともにアルミニウムカプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.3V充電品の発熱開始温度は176℃であった。   The other battery was charged at 4.3 V for 10 hours, disassembled in an argon glove box, and the charged positive electrode sheet was taken out. The positive electrode sheet was washed, punched out to a diameter of 3 mm, sealed in an aluminum capsule together with EC, and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the 4.3V charged product was 176 ° C.

[例2−2]
例2−1において、添加元素の溶液として、次の溶液を使用したほかは例2−1と同様に行った。即ち、硝酸マグネシウム6水和物5.26gにジエチレングリコール1.74gとトリエチレングリコール2.46gを加え、完全に溶解するまで攪拌し、完全に溶解した後、エタノール36.45gを加えて攪拌した。この溶液にジルコニウムトリブトキシドモノアセチルアセトネートのキシレン/1−ブタノール(1:1)混合溶液(ZrO含有量:13.8質量%)を18.44g加え、さらにアルミニウムエチルアセトアセテートジイソプロピレートを5.65g加え攪拌することにより添加元素の溶液を調製した。
[Example 2-2]
Example 2-1 was carried out in the same manner as Example 2-1 except that the following solution was used as the additive element solution. That is, 1.74 g of diethylene glycol and 2.46 g of triethylene glycol were added to 5.26 g of magnesium nitrate hexahydrate, and the mixture was stirred until completely dissolved. After completely dissolved, 36.45 g of ethanol was added and stirred. To this solution was added 18.44 g of a mixed solution of zirconium tributoxide monoacetylacetonate in xylene / 1-butanol (1: 1) (ZrO 2 content: 13.8 mass%), and aluminum ethyl acetoacetate diisopropylate was further added. A solution of the additive element was prepared by adding 5.65 g and stirring.

このようにして、焼成物に、LiAl0.01Co0.97Mg0.01Zr0.012を有する正極活物質を合成した。焼成物を解砕し得られた1次粒子が凝集してなるリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて測定した結果、平均粒径D50が15.9μm、D10が4.1μm、D90が23.8μmであり、BET法により求めた比表面積が0.40m2/gの略球状の粉末を得た。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.111°であった。上記粉末のプレス密度は3.19g/cm3であった。また、上記粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。In this way, a positive electrode active material having LiAl 0.01 Co 0.97 Mg 0.01 Zr 0.01 O 2 was synthesized in the fired product. As a result of measuring the particle size distribution of the lithium-containing composite oxide powder obtained by agglomerating primary particles obtained by crushing the fired product using a laser scattering type particle size distribution measuring device, the average particle size D50 is 15.9 μm, A substantially spherical powder having a D10 of 4.1 μm, a D90 of 23.8 μm and a specific surface area of 0.40 m 2 / g determined by the BET method was obtained. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane in the vicinity of 2θ = 66.5 ± 1 ° was 0.111 °. The press density of the powder was 3.19 g / cm 3 . Further, 10 g of the above powder was dispersed in 100 g of pure water, filtered and subjected to potentiometric titration with 0.1N HCl to determine the residual alkali amount, which was 0.02% by mass.

上記のリチウム含有複合酸化物粉末を使用し、例2−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は、160mAh/gであり、30回充放電サイクル後の容量維持率は99.5%であった。4.3V充電品の発熱開始温度は175℃であった。   Using the above lithium-containing composite oxide powder, a positive electrode body was produced in the same manner as in Example 2-1, a battery was assembled, and its characteristics were measured. The initial weight capacity density of the positive electrode layer was 160 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.5%. The heat generation start temperature of the 4.3V charged product was 175 ° C.

[例2−3]比較例
添加元素の溶液を加えない他は例2−1と同様な方法で、焼成後LiCoO2となるリチウム含有酸化物を合成した。平均粒径D50が14.0μm、D10が11.2μm、D90が17.3μmであり、BET法により求めた比表面積が0.25m2/gの塊状のLiCoO2粉末を得た。LiCoO2粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.108°であった。得られたLiCoO2粉末のプレス密度は3.22g/cm3であった。
例2−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は、160mAh/gであり、30回充放電サイクル後の容量維持率は96.9%であった。4.3V充電品の発熱開始温度は157℃であった。
[Example 2-3] Comparative Example A lithium-containing oxide that becomes LiCoO 2 after firing was synthesized in the same manner as in Example 2-1, except that the additive element solution was not added. An agglomerated LiCoO 2 powder having an average particle diameter D50 of 14.0 μm, D10 of 11.2 μm, D90 of 17.3 μm and a specific surface area determined by the BET method of 0.25 m 2 / g was obtained. With respect to the LiCoO 2 powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane in the vicinity of 2θ = 66.5 ± 1 ° was 0.108 °. The press density of the obtained LiCoO 2 powder was 3.22 g / cm 3 .
In the same manner as in Example 2-1, a positive electrode body was manufactured, a battery was assembled, and its characteristics were measured. The initial weight capacity density of the positive electrode layer was 160 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 96.9%. The heat generation start temperature of the 4.3V charged product was 157 ° C.

[例2−4]比較例
例2−1において、添加元素の溶液に代えて、固体の水酸化マグネシウム(Mg含有量:25.26質量%)を1.97g、水酸化アルミニウムを1.60g、酸化チタンを1.64g用い、固相で混合した他は、例2−1と同様に焼成後LiAl0.01Co0.97Mg0.01Ti0.012とである正極活物質を合成した。この粉末のプレス密度は2.99g/cm3であった。
また、例2−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は161mAh/g、30回サイクル後の容量維持率は97.8%、発熱開始温度161℃であった。
[Example 2-4] Comparative Example In Example 2-1, instead of the additive element solution, 1.97 g of solid magnesium hydroxide (Mg content: 25.26 mass%) and 1.60 g of aluminum hydroxide were used. A positive electrode active material which is LiAl 0.01 Co 0.97 Mg 0.01 Ti 0.01 O 2 after firing in the same manner as in Example 2-1, except that 1.64 g of titanium oxide was used and mixed in a solid phase. Was synthesized. The press density of this powder was 2.99 g / cm 3 .
Moreover, it carried out similarly to Example 2-1, the positive electrode body was manufactured, the battery was assembled, and the characteristic was measured. The initial weight capacity density of the positive electrode layer was 161 mAh / g, the capacity retention after 30 cycles was 97.8%, and the heat generation starting temperature was 161 ° C.

[例2−5](比較例)
例2−2において、添加元素の溶液に代えて、固体の水酸化マグネシウムを1.97g、水酸化アルミニウムを1.60g、酸化ジルコニウムを1.87g用い、固相で混合したほかは例2−2と同様にして、焼成後LiAl0.01Co0.97Mg0.01Zr0.012である正極活物質を合成した。
この粉末のプレス密度は 2.95g/cm3であった。また、この粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。
例2−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は161mAh/g、30回サイクル後の容量維持率は97.9%、発熱開始温度は163℃であった。
[Example 2-5] (Comparative Example)
In Example 2-2, instead of the additive element solution, 1.97 g of solid magnesium hydroxide, 1.60 g of aluminum hydroxide and 1.87 g of zirconium oxide were used and mixed in the solid phase, except for Example 2- In the same manner as in Example 2 , a positive electrode active material that was LiAl 0.01 Co 0.97 Mg 0.01 Zr 0.01 O 2 was synthesized after firing.
The press density of this powder was 2.95 g / cm 3 . Further, 10 g of this powder was dispersed in 100 g of pure water, filtered and subjected to potentiometric titration with 0.1N HCl to obtain the residual alkali amount, which was 0.02% by mass.
In the same manner as in Example 2-1, a positive electrode body was manufactured, a battery was assembled, and its characteristics were measured. The initial weight capacity density of the positive electrode layer was 161 mAh / g, the capacity retention rate after 30 cycles was 97.9%, and the heat generation starting temperature was 163 ° C.

[例2−6]
例2−2において、水酸化コバルトと炭酸リチウムを混合するにあたり、さらにフッ化リチウム粉末を添加した他は例2−1と同様に正極活物質を合成した。上記水酸化コバルト190.61g、炭酸リチウム75.86gとフッ化リチウム0.27gとの混合物に、例2−2において用いた添加元素溶液を混合してスラリー状になるように混合した。焼成後LiAl0.01Co0.97Mg0.01Zr0.011.9950.005である正極活物質を合成した。
この粉末のプレス密度は3.19g/cm3であった。
また、例2−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は161mAh/g、30回サイクル後の容量維持率は99.7%、発熱開始温度175℃であった。
[Example 2-6]
In Example 2-2, a positive electrode active material was synthesized in the same manner as in Example 2-1, except that lithium fluoride powder was further added to mix cobalt hydroxide and lithium carbonate. The additive element solution used in Example 2-2 was mixed with a mixture of 190.61 g of cobalt hydroxide, 75.86 g of lithium carbonate, and 0.27 g of lithium fluoride so as to form a slurry. After firing, a positive electrode active material that was LiAl 0.01 Co 0.97 Mg 0.01 Zr 0.01 O 1.995 F 0.005 was synthesized.
The press density of this powder was 3.19 g / cm 3 .
Moreover, it carried out similarly to Example 2-1, the positive electrode body was manufactured, the battery was assembled, and the characteristic was measured. The initial weight capacity density of the positive electrode layer was 161 mAh / g, the capacity retention ratio after 30 cycles was 99.7%, and the heat generation start temperature was 175 ° C.

[例2−7](比較例)
例2−6において、添加元素の溶液に代えて、固体の水酸化マグネシウム、水酸化アルミニウム、酸化ジルコニウムを用い、固相で混合した他は例2−6と同様に焼成後LiAl0.01Co0.97Mg0.01Zr0.011.9950.005である正極活物質を合成した。
この粉末のプレス密度は3.08g/cm3であった。
また、例2−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は160mAh/g、30回サイクル後の容量維持率は98.3%、発熱開始温度168℃であった。
[Example 2-7] (Comparative Example)
In Example 2-6, instead of the additive element solution, solid magnesium hydroxide, aluminum hydroxide, and zirconium oxide were used, and the mixture was mixed in a solid phase, and then calcined and LiAl 0.01 Co. A positive electrode active material of 0.97 Mg 0.01 Zr 0.01 O 1.995 F 0.005 was synthesized.
The press density of this powder was 3.08 g / cm 3 .
Moreover, it carried out similarly to Example 2-1, the positive electrode body was manufactured, the battery was assembled, and the characteristic was measured. The initial weight capacity density of the positive electrode layer was 160 mAh / g, the capacity retention rate after 30 cycles was 98.3%, and the heat generation start temperature was 168 ° C.

[例3−1]
硫酸コバルト水溶液と水酸化アンモニウムの混合液と苛性ソーダ水溶液とを連続的に混合して、連続的に水酸化コバルトスラリーを既知の方法により合成し、凝集、ろ過及び乾燥工程を経て水酸化コバルト粉体を得た。得られた水酸化コバルトは、CuKα線を使用した粉末X線回折において、2θ=19±1°の(001)面の回折ピーク半値幅は0.27°であり、2θ=38°±1の(101)面の回折ピーク半値幅は0.23°であり、走査型電子顕微鏡観察の結果、微粒子が凝集して、略球状の二次粒子から形成されていることが判った。走査型電子顕微鏡観察の画像解析から求めた体積基準の粒度分布解析の結果、平均粒径D50が13.2μm、D10が9.1μm、D90が17.0μmであった。水酸化コバルトのコバルト含量は61.5%であった。
[Example 3-1]
Cobalt hydroxide powder and ammonium hydroxide mixed solution and caustic soda aqueous solution are continuously mixed to synthesize a cobalt hydroxide slurry continuously by a known method, and then go through agglomeration, filtration and drying steps to obtain cobalt hydroxide powder. Got. The obtained cobalt hydroxide has a diffraction peak half-width of (001) plane of 2θ = 19 ± 1 ° in powder X-ray diffraction using CuKα ray is 0.27 °, and 2θ = 38 ° ± 1. The diffraction peak half-value width of the (101) plane was 0.23 °, and as a result of observation with a scanning electron microscope, it was found that the fine particles were aggregated and formed from substantially spherical secondary particles. As a result of volume-based particle size distribution analysis obtained from image analysis under scanning electron microscope observation, the average particle size D50 was 13.2 μm, D10 was 9.1 μm, and D90 was 17.0 μm. The cobalt content of cobalt hydroxide was 61.5%.

上記水酸化コバルト粉末191.46gと、比表面積が1.2m2/gの炭酸リチウム粉末76.58gとを混合した後、空気中、950℃で12時間焼成してコバルト酸リチウム粉末を合成した。191.46 g of the above cobalt hydroxide powder and 76.58 g of lithium carbonate powder having a specific surface area of 1.2 m 2 / g were mixed and then calcined in air at 950 ° C. for 12 hours to synthesize lithium cobalt oxide powder. .

一方、硝酸マグネシウム6水和物5.26gにジエチレングリコール1.74gとトリエチレングリコール2.46gを加え、完全に溶解するまで攪拌した。完全に溶解した後、エタノール54.87gを加えさらに攪拌した。この溶液にチタンアセチルアセトネートのキシレン/1−ブタノール(1:1)混合溶液(Ti含有量:9.8質量%)を10.02g加え、さらに、アルミニウムエチルアセトアセテートジイソプロピレートを5.65g加え攪拌することで、添加元素を含む錯体溶液を得た。   On the other hand, 1.74 g of diethylene glycol and 2.46 g of triethylene glycol were added to 5.26 g of magnesium nitrate hexahydrate and stirred until it was completely dissolved. After complete dissolution, 54.87 g of ethanol was added and further stirred. To this solution was added 10.02 g of a mixed solution of titanium acetylacetonate in xylene / 1-butanol (1: 1) (Ti content: 9.8 mass%), and 5.65 g of aluminum ethyl acetoacetate diisopropylate. By adding and stirring, a complex solution containing the additive element was obtained.

上記コバルト酸リチウム粉末に、上記添加元素を含む錯体溶液を混合してスラリー状になるように混合した。硝酸マグネシウム6水和物、アルミニウムエチルアセトアセテートジイソプロピレート、チタンアセチルアセトネートの混合比は焼成後の組成がLiAl0.01Co0.97Mg0.01Ti0.012となるように配合した。The lithium cobaltate powder was mixed with a complex solution containing the additive element so as to form a slurry. The mixing ratio of magnesium nitrate hexahydrate, aluminum ethyl acetoacetate diisopropylate and titanium acetylacetonate is such that the composition after firing is LiAl 0.01 Co 0.97 Mg 0.01 Ti 0.01 O 2 Blended.

このスラリーをロータリーエバポレーターにて脱溶媒した後、空気中、900℃で12時間焼成した。焼成物を解砕し、得られた1次粒子が凝集してなるリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水溶媒中にて測定した結果、平均粒径D50が13.1μm、D10が9.2μm、D90が16.9μmであり、BET法により求めた比表面積が0.37m2/gの略球状のリチウム含有複合酸化物粉末LiAl0.01Co0.97Mg0.01Ti0.012を得た。The slurry was desolvated with a rotary evaporator and then calcined in air at 900 ° C. for 12 hours. As a result of measuring the particle size distribution of the lithium-containing composite oxide powder obtained by crushing the fired product and aggregating the obtained primary particles in a water solvent using a laser scattering type particle size distribution analyzer, the average particle size D50 is 13.1 μm, D10 is 9.2 μm, D90 is 16.9 μm, and a substantially spherical lithium-containing composite oxide powder LiAl 0.01 Co 0 having a specific surface area of 0.37 m 2 / g determined by the BET method. .97 Mg 0.01 Ti 0.01 O 2 was obtained.

このリチウム含有複合酸化物粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.112°であった。この粉末のプレス密度は3.03g/cm3であった。このリチウム含有複合酸化物粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。With respect to this lithium-containing composite oxide powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.112 °. The press density of this powder was 3.03 g / cm 3 . 10 g of this lithium-containing composite oxide powder was dispersed in 100 g of pure water, filtered, and potentiometrically titrated with 0.1 N HCl to determine the residual alkali amount, which was 0.02% by mass.

上記のリチウム含有複合酸化物粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。乾燥し、ロールプレス圧延を5回行うことによりリチウム電池用の正極体シートを作製した。   The lithium-containing composite oxide powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, N-methylpyrrolidone is added to prepare a slurry, and aluminum having a thickness of 20 μm is prepared. The foil was coated on one side using a doctor blade. The positive electrode sheet for lithium batteries was produced by drying and performing roll press rolling 5 times.

そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF6/EC+DEC(1:1)溶液(LiPF6を溶質とするECとDECとの質量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で2個組み立てた。The positive electrode sheet is punched out as a positive electrode, a metal lithium foil having a thickness of 500 μm is used as a negative electrode, a nickel foil of 20 μm is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used as a separator. Further, the electrolytic solution used is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC having a mass ratio (1: 1) of LiPF 6 as a solute. Solvents described later) In accordance with this, two stainless steel simple sealed cell type lithium batteries were assembled in an argon glove box.

上記1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。さらに電極層の密度を求めた。また、この電池について、引き続き充放電サイクル試験を30回行なった。その結果、25℃、2.5〜4.3Vにおける正極電極層の初期重量容量密度は、160mAh/gであり、30回充放電サイクル後の容量維持率は99.7%であった。   For the one battery, the initial discharge capacity was charged at 25 ° C. with a load current of 75 mA per gram of the positive electrode active material to 4.3 V and discharged with a load current of 75 mA per gram of the positive electrode active material to 2.5 V. Asked. Furthermore, the density of the electrode layer was determined. Moreover, about this battery, the charging / discharging cycle test was done 30 times continuously. As a result, the initial weight capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V was 160 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.7%.

また、他方の電池については、それぞれ4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗滌後、径3mmに打ち抜き、ECとともにアルミニウムカプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.3V充電品の発熱開始温度は177℃であった。   The other battery was charged at 4.3 V for 10 hours, disassembled in an argon glove box, taken out of the positive electrode sheet after charging, washed the positive electrode sheet, punched into a diameter of 3 mm, and together with EC The container was sealed in an aluminum capsule and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the 4.3V charged product was 177 ° C.

[例3−2]
例3−1の水酸化コバルト粉末190.61gと、比表面積が1.2m2/gの炭酸リチウム粉末76.24gとを混合した後、空気中、950℃で12時間焼成してリチウムコバルト複合酸化物粉末を合成した。
[Example 3-2]
After mixing 190.61 g of the cobalt hydroxide powder of Example 3-1 and 76.24 g of lithium carbonate powder having a specific surface area of 1.2 m 2 / g, the mixture was calcined in the air at 950 ° C. for 12 hours to form a lithium cobalt composite. Oxide powder was synthesized.

一方、硝酸マグネシウム6水和物5.26gにジエチレングリコール1.74gとトリエチレングリコール2.46gを加え、完全に溶解するまで攪拌した。完全に溶解した後、エタノール46.45gを加えて攪拌した。この溶液にジルコニウムトリブトキシドアセチルアセトナートのキシレン/1−ブタノール(1:1)混合溶液(ZrO含有量:13.8質量%)を18.44gを加え、次いで、アルミニウムエチルアセトアセテートジイソプロピレートを5.65gを加えて攪拌することにより添加元素を含む錯体溶液を得た。On the other hand, 1.74 g of diethylene glycol and 2.46 g of triethylene glycol were added to 5.26 g of magnesium nitrate hexahydrate and stirred until it was completely dissolved. After complete dissolution, 46.45 g of ethanol was added and stirred. To this solution was added 18.44 g of a mixed solution of zirconium tributoxide acetylacetonate in xylene / 1-butanol (1: 1) (ZrO 2 content: 13.8% by mass), and then aluminum ethyl acetoacetate diisopropylate. Was added and stirred to obtain a complex solution containing the additive element.

上記のリチウム含有複合酸化物粉末及び添加元素液を使用した他は、例3−1と同様に行った。その結果得られた焼成物を解砕し、得られた1次粒子が凝集してなるリチウム含有複合酸化物粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水溶媒中にて測定した結果、平均粒径D50が13.5μm、D10が9.9μm、D90が17.2μmであった。また、BET法により求めた比表面積が0.35m2/gであり、LiAl0.01Co0.97Mg0.01Zr0.012の組成を有する略球状の粉末であった。Except having used said lithium containing complex oxide powder and additive element liquid, it carried out similarly to Example 3-1. The resulting fired product was crushed, and the particle size distribution of the lithium-containing composite oxide powder obtained by agglomerating the primary particles was measured in a water solvent using a laser scattering particle size distribution analyzer. As a result, the average particle diameter D50 was 13.5 μm, D10 was 9.9 μm, and D90 was 17.2 μm. The specific surface area determined by the BET method was 0.35 m 2 / g, and the powder was a substantially spherical powder having a composition of LiAl 0.01 Co 0.97 Mg 0.01 Zr 0.01 O 2 .

このリチウム含有複合酸化物粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.120°であった。この粉末のプレス密度は3.00g/cm3であった。このリチウム含有複合酸化物粉末10gを純水100g中に分散し、濾過後0.1NHClで電位差滴定して残存アルカリ量を求めたところ、0.02質量%であった。With respect to this lithium-containing composite oxide powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.120 °. The press density of this powder was 3.00 g / cm 3 . 10 g of this lithium-containing composite oxide powder was dispersed in 100 g of pure water, filtered, and potentiometrically titrated with 0.1 N HCl to determine the residual alkali amount, which was 0.02% by mass.

上記のリチウム含有複合酸化物粉末を使用し、例3−1と同様にして、正極体を製造し、電池を組み立ててその特性を測定した。その結果、正極電極層の初期重量容量密度は、163mAh/gであり、30回充放電サイクル後の容量維持率は99.5%であった。また、4.3V充電品の発熱開始温度は177℃であった。   Using the above lithium-containing composite oxide powder, a positive electrode body was produced in the same manner as in Example 3-1, a battery was assembled, and its characteristics were measured. As a result, the initial weight capacity density of the positive electrode layer was 163 mAh / g, and the capacity retention after 30 charge / discharge cycles was 99.5%. Moreover, the heat generation start temperature of the 4.3V charged product was 177 ° C.

[例3−3]比較例
例3−1において、添加元素を含む錯体溶液を使用せずその代わりに、水酸化マグネシウムを1.20g、水酸化アルミニウムを1.60g、及び酸化チタンを1.65gの混合粉末を使用し、かつ焼成後の組成がLiAl0.01Co0.97Mg0.01Ti0.012となるように配合した他は例3−1と同様に実施した。この粉末を、空気中、950℃で12時間焼成した。
[Example 3-3] Comparative Example In Example 3-1, a complex solution containing an additive element was not used. Instead, 1.20 g of magnesium hydroxide, 1.60 g of aluminum hydroxide, and 1.1 of titanium oxide were used. The same procedure as in Example 3-1 was performed except that 65 g of the mixed powder was used and the composition after firing was LiAl 0.01 Co 0.97 Mg 0.01 Ti 0.01 O 2 . This powder was calcined in air at 950 ° C. for 12 hours.

得られた粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水溶媒中にて測定した結果、平均粒径D50が13.1μm、D10が9.0μm、D90が16.8μmであった。BET法により求めた比表面積は0.35m2/gであった。また、同様にCuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.131°であった。この粉末のプレス密度は
2.91g/cm3であった。
As a result of measuring the particle size distribution of the obtained powder in an aqueous solvent using a laser scattering particle size distribution measuring device, the average particle size D50 was 13.1 μm, D10 was 9.0 μm, and D90 was 16.8 μm. . The specific surface area determined by the BET method was 0.35 m 2 / g. Similarly, in the powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane near 2θ = 66.5 ± 1 ° was 0.131 °. The press density of this powder was 2.91 g / cm 3 .

また、例3−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は159mAh/g、30回サイクル後の容量維持率は98.2%、発熱開始温度は156℃であった。   Moreover, it carried out similarly to Example 3-1, the positive electrode body was manufactured, the battery was assembled, and the characteristic was measured. The initial weight capacity density of the positive electrode layer was 159 mAh / g, the capacity retention after 30 cycles was 98.2%, and the heat generation starting temperature was 156 ° C.

[例3−4](比較例)
例3−2において、添加元素を含む錯体溶液を使用せず、その代わりに、水酸化マグネシウムを1.60g、水酸化アルミニウムを1.60g、及び酸化ジルコニウムを2.53gの混合粉末を使用し、かつ焼成後の組成がLiAl0.01Co0.97Mg0.01Zr0.012となるように配合した他は例3−1と同様に実施した。この粉末を、空気中、950℃で12時間焼成した。
[Example 3-4] (Comparative Example)
In Example 3-2, the complex solution containing the additive element was not used, and instead, a mixed powder of 1.60 g of magnesium hydroxide, 1.60 g of aluminum hydroxide, and 2.53 g of zirconium oxide was used. and except that the composition after firing was blended so that LiAl 0.01 Co 0.97 Mg 0.01 Zr 0.01 O 2 was carried out in the same manner as example 3-1. This powder was calcined in air at 950 ° C. for 12 hours.

得られた粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水溶媒中にて測定した結果、平均粒径D50が13.3μm、D10が9.3μm、D90が17.1μmであった。BET法により求めた比表面積は0.33m2/gであった。また、同様にCuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.128°であった。この粉末のプレス密度は2.88g/cm3であった。
また、例3−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は160mAh/g、30回サイクル後の容量維持率は98.5%、発熱開始温度は160℃であった。
As a result of measuring the particle size distribution of the obtained powder in an aqueous solvent using a laser scattering particle size distribution measuring apparatus, the average particle size D50 was 13.3 μm, D10 was 9.3 μm, and D90 was 17.1 μm. . The specific surface area determined by the BET method was 0.33 m 2 / g. Similarly, in powder X-ray diffraction using CuKα rays, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.128 °. The press density of this powder was 2.88 g / cm 3 .
Moreover, it carried out similarly to Example 3-1, the positive electrode body was manufactured, the battery was assembled, and the characteristic was measured. The initial weight capacity density of the positive electrode layer was 160 mAh / g, the capacity retention after 30 cycles was 98.5%, and the heat generation starting temperature was 160 ° C.

〔例4−1〕
水酸化コバルト粉末の代りに、コバルト源として、平均粒径が13.5μmの市販のオキシ水酸化コバルトを用いた。オキシ水酸化コバルトは、走査型電子顕微鏡観察の結果、微粒子が凝集して、略球状の二次粒子から形成されていることが判った。走査型電子顕微鏡観察の画像解析から求めた体積基準の粒度分布解析の結果、平均粒径D50が13.5μm、D10が6.6μm、D90が18.2μmであった。オキシ水酸化コバルトのコバルト含量は62.0質量%であった。
[Example 4-1]
Instead of the cobalt hydroxide powder, a commercially available cobalt oxyhydroxide having an average particle size of 13.5 μm was used as a cobalt source. As a result of observation with a scanning electron microscope, cobalt oxyhydroxide was found to be formed of substantially spherical secondary particles by agglomeration of fine particles. As a result of volume-based particle size distribution analysis obtained from image analysis under scanning electron microscope observation, the average particle size D50 was 13.5 μm, D10 was 6.6 μm, and D90 was 18.2 μm. The cobalt content of the cobalt oxyhydroxide was 62.0% by mass.

一方、硝酸マグネシウム6水和物1.32gにジエチレングリコール0.44gとトリエチレングリコール0.62gを加え、完全に溶解するまで攪拌した。また、ニオブ(V)エトキシド0.65gにアセチルアセトン0.41gを加え、70℃で30分還流して室温まで冷却した後、エタノール0.84gを加えて10分間攪拌して10質量%のニオブ溶液を得た。硝酸マグネシウムのグリコール/エタノール溶液と10質量%ニオブ溶液とを混合し、攪拌した溶液にアルミニウムエチルアセトアセテートジイソプロピレートを4.27g、エタノール41.45g加え攪拌することで、添加元素を含む錯体溶液を得た。   On the other hand, 0.44 g of diethylene glycol and 0.62 g of triethylene glycol were added to 1.32 g of magnesium nitrate hexahydrate and stirred until it was completely dissolved. Further, 0.41 g of acetylacetone is added to 0.65 g of niobium (V) ethoxide, refluxed at 70 ° C. for 30 minutes and cooled to room temperature, then added with 0.84 g of ethanol and stirred for 10 minutes to give a 10 mass% niobium solution. Got. A complex solution containing an additive element by mixing 4.27 g of aluminum ethyl acetoacetate diisopropylate and 41.45 g of ethanol in a stirred solution after mixing a glycol / ethanol solution of magnesium nitrate with a 10 mass% niobium solution. Got.

上記オキシ水酸化コバルト192.69gと上記添加元素溶液をスラリー状になるように混合した。この混合物をロータリーエバポレーターにて脱溶媒した後、比表面積が1.2m/gの炭酸リチウム76.08gとを混合した。この混合物を酸素含有雰囲気中、990℃で12時間焼成し、LiAl0.0075Co0.989Mg0.0025Nb0.001組成のリチウム含有複合酸化物を得た。平均粒径D50が15.5μm、D10が7.3μm、D90が19.6μmであり、BET法により求めた比表面積が0.30m/gの塊状のリチウム含有複合酸化物粉末を得た。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.101°であった。得られたリチウム含有複合酸化物粉末のプレス密度は3.15g/cmであった。また、pHは10.8であり、滴定によるアルカリ量は0.02質量%であった。
また、例1−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は156mAh/g、30回サイクル後の容量維持率は98.3%、発熱開始温度172℃であった。
192.69 g of the cobalt oxyhydroxide and the additive element solution were mixed so as to form a slurry. The mixture was desolvated with a rotary evaporator and then mixed with 76.08 g of lithium carbonate having a specific surface area of 1.2 m 2 / g. This mixture was baked at 990 ° C. for 12 hours in an oxygen-containing atmosphere to obtain a lithium-containing composite oxide having a LiAl 0.0075 Co 0.989 Mg 0.0025 Nb 0.001 O 2 composition. An agglomerated lithium-containing composite oxide powder having an average particle diameter D50 of 15.5 μm, D10 of 7.3 μm, D90 of 19.6 μm and a specific surface area of 0.30 m 2 / g determined by the BET method was obtained. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane around 2θ = 66.5 ± 1 ° was 0.101 °. The press density of the obtained lithium-containing composite oxide powder was 3.15 g / cm 3 . Moreover, pH was 10.8 and the alkali amount by titration was 0.02 mass%.
Moreover, it carried out similarly to Example 1-1, manufactured the positive electrode body, assembled the battery, and measured the characteristic. The initial weight capacity density of the positive electrode layer was 156 mAh / g, the capacity retention after 30 cycles was 98.3%, and the heat generation starting temperature was 172 ° C.

〔例4−2〕
硝酸マグネシウム6水和物5.28gにジエチレングリコール1.75gとトリエチレングリコール2.47gを加え、完全に溶解するまで攪拌した。この溶液にアルミニウムエチルアセトアセテートジイソプロピレートを5.66g、エタノール34.84gを加え攪拌することで、添加元素を含む錯体溶液を得た。得られた添加元素を含む錯体溶液と市販のメタル含量61.0質量%のNi0.8Co0.2(OH)粉末194.54gとを混合し、例4−1と同様にして乾燥処理を行った。得られた混合物とリチウム含量28.8質量%の水酸化リチウム49.68gとを混合し、酸素含有雰囲気中、500℃で12時間焼成したものを乳鉢で粉砕、混合した後、酸素含有雰囲気中、760℃で12時間焼成した。
[Example 4-2]
To 5.28 g of magnesium nitrate hexahydrate, 1.75 g of diethylene glycol and 2.47 g of triethylene glycol were added and stirred until completely dissolved. To this solution, 5.66 g of aluminum ethyl acetoacetate diisopropylate and 34.84 g of ethanol were added and stirred to obtain a complex solution containing additional elements. The obtained complex solution containing the additive element was mixed with 194.54 g of Ni 0.8 Co 0.2 (OH) 2 powder having a metal content of 61.0% by mass and dried in the same manner as in Example 4-1. Processed. The mixture obtained was mixed with 49.68 g of lithium hydroxide having a lithium content of 28.8% by mass, baked at 500 ° C. for 12 hours in an oxygen-containing atmosphere, mixed in a mortar, and then mixed in an oxygen-containing atmosphere. And baked at 760 ° C. for 12 hours.

得られたリチウム含有複合酸化物の組成はLiNi0.784Co0.196Al0.01Mg0.01であった。平均粒径D50が13.6μm、D10が5.8μm、D90が17.1μmであり、BET法により求めた比表面積が0.35m/gの塊状のリチウム含有複合酸化物粉末を得た。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した。粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.131°であった。得られたリチウム含有複合酸化物粉末のプレス密度は3.00g/cmであった。また、pHは11.8であり、滴定によるアルカリ量は3.10質量%であった。
また、例1−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は188mAh/g、30回サイクル後の容量維持率は98.7%、発熱開始温度161℃であった。
The composition of the obtained lithium-containing composite oxide was LiNi 0.784 Co 0.196 Al 0.01 Mg 0.01 O 2 . An agglomerated lithium-containing composite oxide powder having an average particle diameter D50 of 13.6 μm, D10 of 5.8 μm, D90 of 17.1 μm, and a specific surface area determined by the BET method of 0.35 m 2 / g was obtained. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). CuKα radiation was used. In powder X-ray diffraction, the half value width of the diffraction peak of (110) plane around 2θ = 66.5 ± 1 ° was 0.131 °. The press density of the obtained lithium-containing composite oxide powder was 3.00 g / cm 3 . Moreover, pH was 11.8 and the alkali amount by titration was 3.10 mass%.
Moreover, it carried out similarly to Example 1-1, manufactured the positive electrode body, assembled the battery, and measured the characteristic. The initial weight capacity density of the positive electrode layer was 188 mAh / g, the capacity retention after 30 cycles was 98.7%, and the heat generation starting temperature was 161 ° C.

〔例4−3〕
ジルコニウムトリブトキシドモノアセチルアセトネートのキシレン/1−ブタノール(1:1)混合溶液(ZrO:13.8質量%)1.90gとエタノール48.10gとを混合、攪拌することで、添加元素を含む錯体溶液を得た。得られた添加元素を含む錯体溶液とメタル含量60.0質量%のNi1/3Co1/3Mn1/3OOH粉末193.64gとを混合し、例4−1と同様にして乾燥処理を行った。得られた混合物とリチウム含量18.7質量%の炭酸リチウム82.95gとを混合し、酸素含有雰囲気中1000℃で12時間焼成した。
[Example 4-3]
By mixing and stirring 1.90 g of a mixed solution of zirconium tributoxide monoacetylacetonate in xylene / 1-butanol (1: 1) (ZrO 2 : 13.8% by mass) and 48.10 g of ethanol, the added elements were mixed. A complex solution containing was obtained. The obtained complex solution containing the additive element was mixed with 193.64 g of Ni 1/3 Co 1/3 Mn 1/3 OOH powder having a metal content of 60.0% by mass, followed by drying treatment in the same manner as in Example 4-1. Went. The obtained mixture was mixed with 82.95 g of lithium carbonate having a lithium content of 18.7% by mass and calcined at 1000 ° C. for 12 hours in an oxygen-containing atmosphere.

得られたリチウム含有複合酸化物の組成はLi1.05(Ni1/3Co1/3Mn1/30.949Zr0.001であった。平均粒径D50が12.6μm、D10が6.2μm、D90が17.5μmであり、BET法により求めた比表面積が0.38m/gの塊状のリチウム含有複合酸化物粉末を得た。この粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.190°であった。得られたリチウム含有複合酸化物粉末のプレス密度は3.10g/cmであった。また、pHは11.0であり、滴定によるアルカリ量は0.33重量%であった。
また、例1−1と同様にして、正極体を製造し、電池を組み立てて、その特性を測定した。正極電極層の初期重量容量密度は159mAh/g、30回サイクル後の容量維持率は97.2%、発熱開始温度197℃であった。
The composition of the obtained lithium-containing composite oxide was Li 1.05 (Ni 1/3 Co 1/3 Mn 1/3 ) 0.949 Zr 0.001 O 2 . A bulky lithium-containing composite oxide powder having an average particle diameter D50 of 12.6 μm, D10 of 6.2 μm, D90 of 17.5 μm and a specific surface area of 0.38 m 2 / g determined by the BET method was obtained. With respect to this powder, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane in the vicinity of 2θ = 66.5 ± 1 ° was 0.190 °. The press density of the obtained lithium-containing composite oxide powder was 3.10 g / cm 3 . Moreover, pH was 11.0 and the alkali amount by titration was 0.33 weight%.
Moreover, it carried out similarly to Example 1-1, manufactured the positive electrode body, assembled the battery, and measured the characteristic. The initial weight capacity density of the positive electrode layer was 159 mAh / g, the capacity retention after 30 cycles was 97.2%, and the heat generation start temperature was 197 ° C.

本発明によれば、体積容量密度が大きく、安全性が高く、優れた充放電サイクル耐久性及び低温特性を有し、更に生産性の高いリチウム二次電池正極用リチウム含有複合酸化物の製造方法、製造されたリチウム含有複合酸化物を含む、リチウム二次電池用正極、及びリチウム二次電池が提供される。   According to the present invention, a method for producing a lithium-containing composite oxide for a lithium secondary battery positive electrode having a large volumetric capacity density, high safety, excellent charge / discharge cycle durability and low temperature characteristics, and high productivity The positive electrode for lithium secondary batteries containing the manufactured lithium containing complex oxide, and a lithium secondary battery are provided.

Claims (14)

一般式Li(但し、NはCo、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、MはN以外の遷移金属元素、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素である。0.9≦p≦1.2、0.9≦x<1.00、0<m≦0.03、1.9≦z≦2.2、x+m=1、0≦a≦0.02)で表されるリチウム含有複合酸化物の製造方法であって、上記M元素源として、M元素を含む錯体が有機溶媒中に溶解している溶液を使用することを特徴とするリチウム二次電池正極用リチウム含有複合酸化物の製造方法。Formula Li p N x M m O z F a ( where, N is the Co, at least one element selected from the group consisting of Mn and Ni, M is a transition metal element other than N, Al and alkaline earth It is at least one element selected from the group consisting of metal elements: 0.9 ≦ p ≦ 1.2, 0.9 ≦ x <1.00, 0 <m ≦ 0.03, 1.9 ≦ z ≦ 2.2, x + m = 1, 0 ≦ a ≦ 0.02), wherein the complex containing M element is dissolved in an organic solvent as the M element source. The manufacturing method of the lithium containing complex oxide for lithium secondary battery positive electrodes characterized by using the solution which is used. M元素を含む錯体が、M元素のキレート錯体、M元素の硝酸塩若しくは塩化物のグリコール錯体、又はM元素の硝酸塩若しくは塩化物のβ-ジケトン錯体であり、有機溶媒が極性有機溶媒である請求項1に記載の製造方法。   The complex containing the M element is a chelate complex of the M element, a glycol complex of the nitrate or chloride of the M element, or a β-diketone complex of the nitrate or chloride of the M element, and the organic solvent is a polar organic solvent. 2. The production method according to 1. M元素を含む錯体が、M元素のβ-ジケトン基とアルコキシド基を含有する錯体、又はM元素の硝酸塩のジエチレングリコールとトリエチレングリコールの錯体である請求項1に記載の製造方法。   2. The production method according to claim 1, wherein the complex containing M element is a complex containing a β-diketone group of M element and an alkoxide group, or a complex of diethylene glycol and triethylene glycol of nitrate of M element. M元素が、Ti、Zr、Hf、Nb、Ta、Mg、Cu、Sn、Zn、及びAlからなる群から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the M element is at least one selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Mg, Cu, Sn, Zn, and Al. M元素が少なくともAlとMgからなり、Al/Mgが原子比で1/5〜5/1であり、かつ0.002≦m≦0.025である請求項1〜4のいずれかに記載の製造方法。   5. The element according to claim 1, wherein the M element comprises at least Al and Mg, Al / Mg is 1/5 to 5/1 in atomic ratio, and 0.002 ≦ m ≦ 0.025. Production method. M元素がMgとM2(M2は少なくともTi、Zr、Ta、及びNbからなる群から選ばれる少なくとも1種の元素)からなり、M2/Mgが原子比で1/40〜2/1であり、かつ0.002≦m≦0.025である請求項1〜4のいずれかに記載の製造方法。   M element consists of Mg and M2 (M2 is at least one element selected from the group consisting of at least Ti, Zr, Ta, and Nb), and M2 / Mg is 1/40 to 2/1 in atomic ratio, And it is 0.002 <= m <= 0.025, The manufacturing method in any one of Claims 1-4. M元素を含む錯体が有機溶媒中に溶解している溶液、N源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、得られる混合物から有機溶媒を除去した後、リチウム源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、次いで酸素含有雰囲気において800〜1050℃で焼成して製造する請求項1〜6のいずれかに記載の製造方法。 A solution in which a complex containing M element is dissolved in an organic solvent, an N source compound powder, and, if necessary, a fluorine source compound powder are mixed, and after removing the organic solvent from the resulting mixture, a lithium source compound powder, And the fluorine source compound powder is mixed as needed, and then it is manufactured by firing at 800 to 1050 ° C. in an oxygen-containing atmosphere. M元素を含む錯体が有機溶媒中に溶解している溶液、N源化合物粉末、リチウム源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、得られる混合物から有機溶媒を除去した後、酸素含有雰囲気において800〜1050℃で焼成する請求項1〜6のいずれかに記載の製造方法。   A solution in which a complex containing M element is dissolved in an organic solvent, an N source compound powder, a lithium source compound powder, and, if necessary, a fluorine source compound powder are mixed, and after removing the organic solvent from the resulting mixture, The production method according to any one of claims 1 to 6, wherein the firing is performed at 800 to 1050C in an oxygen-containing atmosphere. リチウム源化合物粉末、N源化合物粉末、及び必要に応じてフッ素源化合物粉末を混合し、焼成して得られるリチウム含有複合酸化物粉末とM元素を含む錯体が有機溶媒中に溶解している溶液とを混合し、得られる混合物から有機溶媒を除去した後、酸素含有雰囲気において300〜1050℃で焼成する請求項1〜6のいずれかに記載の製造方法。   Lithium source compound powder, N source compound powder, and, if necessary, a solution containing a lithium source compound powder and a lithium-containing composite oxide powder obtained by firing and a complex containing M element dissolved in an organic solvent And the organic solvent is removed from the resulting mixture, followed by firing at 300 to 1050 ° C. in an oxygen-containing atmosphere. リチウム含有複合酸化物の、CuKαを線源とするX線回折によって測定される、2θ=66〜67°の(110)面の回折ピークの積分幅が0.08〜0.14、表面積が0.2〜0.6m2/g、発熱開始温度が160℃以上である請求項1〜9のいずれかに記載の製造方法。The integrated width of the diffraction peak of the (110) plane of 2θ = 66 to 67 ° measured by X-ray diffraction using CuKα as the radiation source of the lithium-containing composite oxide is 0.08 to 0.14, and the surface area is 0. .2~0.6m 2 / g, the process according to any one of claims 1 to 9 heat generation starting temperature of 160 ° C. or higher. リチウム含有複合酸化物の充填プレス密度が3.15〜3.60g/cm3である請求項1〜10のいずれかに記載の製造方法。The manufacturing method according to any one of claims 1 to 10, wherein the lithium-containing composite oxide has a filling press density of 3.15 to 3.60 g / cm 3 . リチウム含有複合酸化物に含有される残存アルカリ量が0.03質量%以下である請求項1〜11のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 11, wherein the amount of residual alkali contained in the lithium-containing composite oxide is 0.03% by mass or less. 請求項1〜12のいずれかに記載の製造方法により製造されたリチウム含有複合酸化物を含むリチウム二次電池用正極。   The positive electrode for lithium secondary batteries containing the lithium containing complex oxide manufactured by the manufacturing method in any one of Claims 1-12. 請求項13に記載された正極を使用したリチウム二次電池。   A lithium secondary battery using the positive electrode according to claim 13.
JP2006511851A 2004-04-02 2005-04-01 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery Expired - Fee Related JP4833058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511851A JP4833058B2 (en) 2004-04-02 2005-04-01 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004110392 2004-04-02
JP2004110392 2004-04-02
JP2004119620 2004-04-14
JP2004119620 2004-04-14
JP2004119618 2004-04-14
JP2004119618 2004-04-14
JP2006511851A JP4833058B2 (en) 2004-04-02 2005-04-01 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
PCT/JP2005/006516 WO2005096416A1 (en) 2004-04-02 2005-04-01 Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery

Publications (2)

Publication Number Publication Date
JPWO2005096416A1 true JPWO2005096416A1 (en) 2008-02-21
JP4833058B2 JP4833058B2 (en) 2011-12-07

Family

ID=35064091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511851A Expired - Fee Related JP4833058B2 (en) 2004-04-02 2005-04-01 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery

Country Status (4)

Country Link
US (1) US8101143B2 (en)
JP (1) JP4833058B2 (en)
KR (1) KR100824247B1 (en)
WO (1) WO2005096416A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895225B1 (en) * 2002-09-26 2009-05-04 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active substance for lithium secondary battery and process for producing the same
CN1981396A (en) * 2004-07-20 2007-06-13 清美化学股份有限公司 Positive electrode active material for lithium secondary battery and method for producing same
KR101104664B1 (en) * 2005-02-14 2012-01-13 에이지씨 세이미 케미칼 가부시키가이샤 Method for producing lithium containing complex oxide for positive electrode of lithium secondary battery
JP4969051B2 (en) * 2005-03-30 2012-07-04 三洋電機株式会社 Method for producing lithium cobaltate positive electrode active material
WO2006123710A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
CN101176226B (en) 2005-05-17 2010-07-21 Agc清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode in lithium rechargeable battery
WO2007052712A1 (en) * 2005-11-02 2007-05-10 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and method for production thereof
JP4240060B2 (en) 2006-05-26 2009-03-18 ソニー株式会社 Positive electrode active material and battery
WO2009057777A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Granulated powder of transition metal compound for raw material for positive electrode active material of lithium secondary battery, and method for producing the same
WO2009057722A1 (en) 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
JP2009212021A (en) * 2008-03-06 2009-09-17 Hitachi Maxell Ltd Electrode for electrochemical element, nonaqueous secondary battery, and battery system
KR101689214B1 (en) 2011-10-28 2016-12-26 삼성에스디아이 주식회사 Nickel composite hydroxide for lithium secondary battery, lithium complex oxide for lithium secondary battery prepared therefrom, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the same
US10076737B2 (en) * 2013-05-06 2018-09-18 Liang-Yuh Chen Method for preparing a material of a battery cell
TWI600202B (en) * 2014-03-06 2017-09-21 烏明克公司 Doped and coated lithium transition metal oxide cathode materials for batteries in automotive applications
CN105895904B (en) * 2014-08-13 2019-02-22 孚能科技(赣州)有限公司 The method of the positive electrode active materials of preparation and recycling lithium ion battery
CN114709417B (en) * 2021-12-07 2024-01-26 北京当升材料科技股份有限公司 Multielement positive electrode material, preparation method and application thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512239B2 (en) * 1991-03-11 1996-07-03 松下電器産業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
JPH08290917A (en) * 1995-04-18 1996-11-05 Kansai Shin Gijutsu Kenkyusho:Kk Production of compound oxide
JP3290355B2 (en) * 1996-07-12 2002-06-10 株式会社田中化学研究所 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
JP3359235B2 (en) * 1996-09-02 2002-12-24 キヤノン株式会社 Press forming equipment for optical elements
JP3842348B2 (en) * 1996-09-02 2006-11-08 日本化学工業株式会社 Method for producing Ni-Mn composite hydroxide
US7393612B2 (en) * 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
WO1998029914A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, method for manufacturing the same, and lithium ion secondary cell using the same
US6117410A (en) * 1997-05-29 2000-09-12 Showa Denko Kabushiki Kaisha Process for producing lithiated manganese oxides by a quenching method
DE19849343A1 (en) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
US6749965B1 (en) * 1999-02-10 2004-06-15 Samsung Sdi Co., Ltd. Positive active material for lithium secondary batteries and method of preparing the same
KR100300334B1 (en) * 1999-06-17 2001-11-01 김순택 Positive active material for lithium secondary battery and method of preparing the same
JP2001076728A (en) * 1999-06-30 2001-03-23 Seimi Chem Co Ltd Manufacture of positive electrode active material for lithium secondary battery
US6312565B1 (en) * 2000-03-23 2001-11-06 Agere Systems Guardian Corp. Thin film deposition of mixed metal oxides
JP2001283847A (en) * 2000-03-29 2001-10-12 Mitsubishi Electric Corp Manufacturing method of positive active material and positive active material as well as lithium secondary battery using same
JP2001319652A (en) * 2000-05-11 2001-11-16 Sony Corp Positive active material and non-aqueous electrolyte battery, and their manufacturing method
JP4592931B2 (en) * 2000-11-30 2010-12-08 Jx日鉱日石金属株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP2003007298A (en) * 2001-06-26 2003-01-10 Yuasa Corp Positive electrode active material, manufacturing method therefor, and secondary battery using the same
KR100437340B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
US20040057142A1 (en) * 2002-07-10 2004-03-25 Denglas Technologies, L.L.C. Method of making stress-resistant anti-reflection multilayer coatings containing cerium oxide
TW200423458A (en) * 2002-11-29 2004-11-01 Seimi Chem Kk Method for preparing positive electrode active material for lithium secondary cell
KR100751746B1 (en) 2004-04-30 2007-08-27 에이지씨 세이미 케미칼 가부시키가이샤 Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2005112152A1 (en) 2004-05-14 2005-11-24 Seimi Chemical Co., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery

Also Published As

Publication number Publication date
US8101143B2 (en) 2012-01-24
US20070026314A1 (en) 2007-02-01
KR100824247B1 (en) 2008-04-24
KR20060132924A (en) 2006-12-22
WO2005096416A1 (en) 2005-10-13
JP4833058B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4512590B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4666653B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5486516B2 (en) Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
US7981547B2 (en) Process for positive electrode active substance for lithium secondary battery
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP5253808B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5065884B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4167654B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2006302542A (en) Manufacturing method of lithium-containing composite oxide for lithium secondary battery positive electrode
JP4927369B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4979319B2 (en) Method for producing lithium-containing composite oxide
JP2003002661A (en) Method for producing lithium cobalt composite oxide
JP2006298699A (en) Method for manufacturing lithium cobalt composite oxide having large particle size
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4472430B2 (en) Method for producing lithium composite oxide for positive electrode of lithium secondary battery
JP4209646B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees