JP4969051B2 - Method for producing lithium cobaltate positive electrode active material - Google Patents

Method for producing lithium cobaltate positive electrode active material Download PDF

Info

Publication number
JP4969051B2
JP4969051B2 JP2005097134A JP2005097134A JP4969051B2 JP 4969051 B2 JP4969051 B2 JP 4969051B2 JP 2005097134 A JP2005097134 A JP 2005097134A JP 2005097134 A JP2005097134 A JP 2005097134A JP 4969051 B2 JP4969051 B2 JP 4969051B2
Authority
JP
Japan
Prior art keywords
metal salt
positive electrode
active material
electrode active
lithium cobaltate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097134A
Other languages
Japanese (ja)
Other versions
JP2006278196A (en
Inventor
安展 岩見
伸道 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005097134A priority Critical patent/JP4969051B2/en
Publication of JP2006278196A publication Critical patent/JP2006278196A/en
Application granted granted Critical
Publication of JP4969051B2 publication Critical patent/JP4969051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質として使用するコバルト酸リチウムの合成方法に関し、特に異種元素を含有させたコバルト酸リチウムの合成方法に関する。   The present invention relates to a method for synthesizing lithium cobaltate used as a positive electrode active material, and more particularly, to a method for synthesizing lithium cobaltate containing a different element.

携帯電話やノートパソコン等の移動情報端末の小型・軽量化の急速に進展にあって、軽量かつ高容量の非水電解質二次電池の利用が拡大している。非水電解質二次電池は、正負極間でのリチウムの移動により充放電を行う電池であり、この種の電池の正極活物質としては、主にコバルト酸リチウムが使用されている。コバルト酸リチウムは、電位が高く、電気導電性に優れ、しかもリチウムイオンを比較的安定して挿入離脱することができる等の長所を有する。   With the rapid progress of miniaturization and weight reduction of mobile information terminals such as mobile phones and laptop computers, the use of lightweight and high capacity non-aqueous electrolyte secondary batteries is expanding. A nonaqueous electrolyte secondary battery is a battery that charges and discharges by movement of lithium between positive and negative electrodes, and lithium cobaltate is mainly used as the positive electrode active material of this type of battery. Lithium cobaltate has advantages such as high potential, excellent electrical conductivity, and relatively stable insertion and removal of lithium ions.

しかしながら、コバルト酸リチウムを正極活物質として用いた非水電解質二次電池は、サイクル特性や電池温度が上昇した場合における安全性が十分でないという問題を有している。このためにコバルト酸リチウムの性質を改変する手段が種々検討されており、その中の一つに、コバルト酸リチウムにZr,Mg、Alなどの異種元素を配合する技術がある。   However, a nonaqueous electrolyte secondary battery using lithium cobaltate as a positive electrode active material has a problem that the cycle characteristics and the safety when the battery temperature rises are not sufficient. For this purpose, various means for modifying the properties of lithium cobalt oxide have been studied, and one of them is a technique of blending different elements such as Zr, Mg, Al and the like into lithium cobalt oxide.

この技術では、添加したい異種元素を有する化合物と、コバルト酸リチウム原料としてのコバルト含有化合物とリチウム含有化合物との三者を混合した後、焼成する方法等により異種元素を含有させたコバルト酸リチウムを合成する。しかし、この技術によっても未だ十分には上記問題を解消できるには至っていない。よって、更なる改良が待たれている。   In this technology, after mixing a compound having a different element to be added, a cobalt-containing compound as a lithium cobaltate raw material and a lithium-containing compound, lithium cobalt oxide containing a different element by a method such as firing is mixed. Synthesize. However, this technique has not yet fully solved the above problem. Therefore, further improvement is awaited.

この技術に関連する技術としては、下記文献がある。   The following documents are related to this technology.

特開2003−331846公報(段落0022)JP 2003-331846 A (paragraph 0022) 特開2004−55472公報(請求項1)JP 2004-55472 A (Claim 1)

本発明は、上記に鑑みなされたものであって、コバルト酸リチウムにZr,Mg、Alなどの異種元素を配合する技術の完成度を高め、もってサイクル特性や安全性に優れ、かつ一層の高容量化を図ることのできるコバルト酸リチウム正極活物質を提供することを目的とする。   The present invention has been made in view of the above, and enhances the completeness of the technology of blending different elements such as Zr, Mg, Al and the like into lithium cobaltate, and thus has excellent cycle characteristics and safety, and is further enhanced. An object of the present invention is to provide a lithium cobaltate positive electrode active material capable of increasing the capacity.

上記課題は次の構成の本発明により達成できる。
〈第1の態様〉
オキシ水酸化コバルトを主要原料としてコバルト酸リチウムを合成するコバルト酸リチウム合成工程を有する正極活物質の製造方法において、前記コバルト酸リチウム合成工程は、ジルコニウム塩,マグネシウム塩、アルミニウム塩からなる群より選択される2種類の金属塩を溶解した2成分系金属塩溶液にオキシ水酸化コバルトを浸漬した状態で、当該2成分系金属塩溶液の溶媒を蒸発させることにより、オキシ水酸化コバルトの表面に前記金属塩を付着させる金属塩付着工程と、前記金属塩の付着したオキシ水酸化コバルトと、リチウム含有化合物とを混合し焼成することにより2種類の異種元素を含有したコバルト酸リチウムを作製する工程と、を備え、前記2成分系金属塩溶液に溶解した金属塩の金属モル数の比が、前記金属塩溶液に浸漬されたオキシ水酸化コバルトのコバルトモル数を1とするとき、ジルコニウムが0.0001〜0.01、マグネシウムが0.0001〜0.03、アルミニウムモル比が0.0001〜0.03の範囲内に規制されていることを特徴とする正極活物質の製造方法。
The above object can be achieved by the present invention having the following configuration.
<First embodiment>
In the method for producing a positive electrode active material having a lithium cobaltate synthesis step of synthesizing lithium cobaltate using cobalt oxyhydroxide as a main raw material, the lithium cobaltate synthesis step is selected from the group consisting of a zirconium salt, a magnesium salt, and an aluminum salt In a state where cobalt oxyhydroxide is immersed in a two-component metal salt solution in which two kinds of metal salts are dissolved, the solvent of the two-component metal salt solution is evaporated to form a surface on the surface of cobalt oxyhydroxide. A metal salt adhering step for adhering a metal salt, a step of producing lithium cobaltate containing two different kinds of elements by mixing and firing a cobalt oxyhydroxide adhering to the metal salt and a lithium-containing compound; And the ratio of the number of moles of the metal salt dissolved in the binary metal salt solution is the metal salt solution. When the cobalt mole number of the immersed cobalt oxyhydroxide is 1, the zirconium is 0.0001 to 0.01, the magnesium is 0.0001 to 0.03, and the aluminum molar ratio is 0.0001 to 0.03. The manufacturing method of the positive electrode active material characterized by being regulated in the inside.

この構成では、ジルコニウム塩,マグネシウム塩、アルミニウム塩からなる群より選択される2種類の金属塩を溶解した2成分系金属塩溶液にオキシ水酸化コバルトを浸漬した状態で、溶媒を蒸発させることにより、オキシ水酸化コバルトに上記選択された金属塩を付着させるが、この方法によると、オキシ水酸化コバルトの表面に微小な金属塩析出物を均一に付着させることができる。このようにして作製した異種元素含有化合物が好適に付着されたオキシ水酸化コバルト(コバルト源原料)を、リチウム含有化合物(リチウム源原料)と混合すると、コバルト源とリチウム源の双方の近傍に異種元素が存在する好適な混合物が調製できるので、これを焼成することにより、異種元素がコバルト酸リチウム結晶中に都合よく取り込まれた異種元素含有コバルト酸リチウムを合成できることになる。   In this configuration, by evaporating the solvent in a state where cobalt oxyhydroxide is immersed in a binary metal salt solution in which two kinds of metal salts selected from the group consisting of zirconium salt, magnesium salt and aluminum salt are dissolved. The metal salt selected above is attached to cobalt oxyhydroxide. According to this method, fine metal salt precipitates can be uniformly attached to the surface of cobalt oxyhydroxide. When the thus prepared cobalt oxyhydroxide (cobalt source material) to which the heterogeneous element-containing compound is suitably attached is mixed with the lithium-containing compound (lithium source material), different types of compounds are present in the vicinity of both the cobalt source and the lithium source. Since a suitable mixture in which the elements are present can be prepared, by firing the mixture, it is possible to synthesize the different element-containing lithium cobalt oxide in which the different elements are conveniently incorporated into the lithium cobalt oxide crystal.

この異種元素含有コバルト酸リチウムは、ジルコニウム、マグネシウム、アルミニウムより選択された2種類の異種元素がコバルト酸リチウムの結晶構造中に、より安定した状態で取り込まれているので、従前の方法(液添法以外の方法)で合成された異種元素含有コバルト酸リチウムに比較し、熱的安定性が高く、かつ異種元素の配合に起因する電気容量の低下が殆どなく、しかもサイクル劣化が少ない、という好適な特性を備える。よって、上記構成によると、非水電解質二次電池の正極活物質として好適なコバルト酸リチウムを製造することができる。   This different element-containing lithium cobalt oxide contains two different elements selected from zirconium, magnesium and aluminum in a more stable state in the lithium cobalt oxide crystal structure. Compared to foreign element-containing lithium cobalt oxide synthesized by a method other than the above method, the thermal stability is high, there is almost no decrease in electric capacity due to the blending of different elements, and there is little cycle deterioration. It has special characteristics. Therefore, according to the said structure, lithium cobaltate suitable as a positive electrode active material of a nonaqueous electrolyte secondary battery can be manufactured.

〈第2の態様〉
オキシ水酸化コバルトを主要原料としてコバルト酸リチウムを合成するコバルト酸リチウム合成工程を有する正極活物質の製造方法において、前記コバルト酸リチウム合成工程は、ジルコニウム塩とマグネシウム塩とアルミニウム塩とを溶解した3成分系金属塩溶液にオキシ水酸化コバルトを浸漬した状態で、当該3成分系金属塩溶液の溶媒を蒸発させることにより、オキシ水酸化コバルトの表面に前記金属塩を付着させる金属塩付着工程と、前記金属塩の付着したオキシ水酸化コバルトと、リチウム含有化合物とを混合し焼成することにより3種類の異種元素を含有したコバルト酸リチウムを作製する工程と、を備え、前記3成分系金属塩溶液に溶解した金属塩の金属モル数の比が、前記金属塩溶液に浸漬されたオキシ水酸化コバルトのコバルトモル数を1とするとき、ジルコニウムが0.0001〜0.01、マグネシウムが0.0001〜0.03、アルミニウムモル比が0.0001〜0.03の範囲内に規制されていることを特徴とする正極活物質の製造方法。
<Second embodiment>
In the method for producing a positive electrode active material having a lithium cobaltate synthesis step of synthesizing lithium cobaltate using cobalt oxyhydroxide as a main raw material, the lithium cobaltate synthesis step comprises dissolving a zirconium salt, a magnesium salt, and an aluminum salt. In the state where cobalt oxyhydroxide is immersed in the component metal salt solution, by evaporating the solvent of the three component metal salt solution, the metal salt attaching step of attaching the metal salt to the surface of the cobalt oxyhydroxide, And a step of preparing lithium cobaltate containing three kinds of different elements by mixing and baking a cobalt oxyhydroxide to which the metal salt is adhered and a lithium-containing compound, and the three-component metal salt solution. The ratio of the number of moles of the metal salt dissolved in the metal salt is the ratio of cobalt oxyhydroxide immersed in the metal salt solution. When the ltmol number is 1, zirconium is regulated within the range of 0.0001 to 0.01, magnesium is 0.0001 to 0.03, and the aluminum molar ratio is regulated within the range of 0.0001 to 0.03. A method for producing a positive electrode active material.

この構成では、ジルコニウム塩,マグネシウム塩、アルミニウム塩の全てを含む3成分系金属塩溶液を用いるが、上記した本発明第1の態様で述べた作用効果は、3成分系金属塩溶液を用いた場合において一層顕著に発揮される。すなわち、ジルコニウム塩,マグネシウム塩、アルミニウム塩の群から選択される1種類の金属塩のみを用いた場合には、十分な作用効果が得られない。これに対し、2種類の金属塩を用いると、それぞれの金属が相乗的に作用する結果、十分な効果が得られ、3種類とすると一段と優れた効果が得られる。よって、本発明第2の態様によると、正極活物質として一層好適に機能する異種元素含有コバルト酸リチウムを製造することができる。   In this configuration, a ternary metal salt solution containing all of a zirconium salt, a magnesium salt, and an aluminum salt is used. However, the action and effect described in the first aspect of the present invention uses a ternary metal salt solution. In some cases, it is more prominent. That is, when only one type of metal salt selected from the group of zirconium salt, magnesium salt, and aluminum salt is used, a sufficient effect cannot be obtained. On the other hand, when two kinds of metal salts are used, each metal acts synergistically, and as a result, a sufficient effect is obtained, and when three kinds are used, a more excellent effect is obtained. Therefore, according to the second aspect of the present invention, it is possible to produce a heterogeneous element-containing lithium cobalt oxide that functions more suitably as a positive electrode active material.

本発明によると、熱的安定性に優れ、かつ電池初期容量およびサイクル容量維持性にも優れた正極活物質としてのコバルト酸リチウムを簡便な方法で提供できるという顕著な効果が得られる。
According to the present invention, it is possible to obtain a remarkable effect that lithium cobaltate as a positive electrode active material having excellent thermal stability and excellent battery initial capacity and cycle capacity maintainability can be provided by a simple method.

本発明を実施するための最良の形態を、実施例に基づいて説明する。   The best mode for carrying out the present invention will be described based on examples.

(実施例1)
[正極活物質の作製]
先ず、コバルト酸リチウムを合成するためのコバルト源原料であるオキシ水酸化コバルト(CoOOH)を91.9gと、金属塩としての硫酸ジルコニウム4水和物( Zr(SO4)2・4H2O)3.55g、塩化マグネシウム6水和物 (MgCl2・6H2O)2.03gを秤量した。この秤量は、金属モル比がCo:Zr:Mg=1:0.01:0.01となるように設定されている。
Example 1
[Preparation of positive electrode active material]
First, 91.9 g of cobalt oxyhydroxide (CoOOH), which is a cobalt source material for synthesizing lithium cobaltate, and zirconium sulfate tetrahydrate (Zr (SO 4 ) 2 .4H 2 O) as a metal salt 3.55 g and 2.03 g of magnesium chloride hexahydrate (MgCl 2 .6H 2 O) were weighed. This weighing is set so that the metal molar ratio is Co: Zr: Mg = 1: 0.01: 0.01.

次に、上記で秤量した硫酸ジルコニウム4水和物、塩化マグネシウム6水和物を水100mlに溶解して2成分系金属塩溶液を作製した。この金属塩溶液に上記で秤量したオキシ水酸化コバルトを入れ、攪拌しながら溶液を沸騰させ水を蒸発させて除去した。このようにして2種類の異種元素をオキシ水酸化コバルトに付着させた。   Next, the zirconium sulfate tetrahydrate and magnesium chloride hexahydrate weighed above were dissolved in 100 ml of water to prepare a binary metal salt solution. The cobalt oxyhydroxide weighed above was added to this metal salt solution, and the solution was boiled with stirring to remove water by evaporation. In this way, two kinds of different elements were adhered to cobalt oxyhydroxide.

上記で作製した異種元素を付着させたオキシ水酸化コバルト46.7gと、炭酸リチウム(Li2CO3)18.5gとを乳鉢内で粉砕混合し、この混合末を空気雰囲気下において400℃から徐徐に850℃まで昇温させる方法で20時間焼成した。これにより、ジルコニウムとマグネシウムを含有したコバルト酸リチウムを作製した。この異種元素含有コバルト酸リチウムを乳鉢内で平均粒径10μmにまで粉砕し、正極活物質とした。 46.7 g of cobalt oxyhydroxide to which the different elements prepared above were attached and 18.5 g of lithium carbonate (Li 2 CO 3 ) were pulverized and mixed in a mortar, and this mixed powder was heated from 400 ° C. in an air atmosphere. Firing was carried out for 20 hours by gradually raising the temperature to 850 ° C. Thereby, lithium cobaltate containing zirconium and magnesium was produced. This different element-containing lithium cobalt oxide was pulverized in a mortar to an average particle size of 10 μm to obtain a positive electrode active material.

上記正極活物質中のジルコニウム量(アルミニウムについても同様)をICP(Inductivery Coupled Plasma :プラズマ発光分析)で分析し、マグネシウム量については原子吸光法により分析した。その結果、上記正極活物質には、所期の仕込どおりに各異種金属が含有されていることが確認された。   The amount of zirconium in the positive electrode active material (the same applies to aluminum) was analyzed by ICP (Inductivery Coupled Plasma), and the amount of magnesium was analyzed by atomic absorption spectrometry. As a result, it was confirmed that the above-described positive electrode active material contained different kinds of metals as intended.

なお、本明細書においては、硫酸ジルコニウム、塩化マグネシウム、塩化アルミニウムなどの金属塩を溶解した金属塩溶液にオキシ水酸化コバルトを浸漬した状態で溶液を蒸発し除去する本発明にかかる方法を液添法と称し、固体状態の金属塩をオキシ水酸化コバルトなどのコバルト源原料に添加する従来の方法を固添法と称する。   In this specification, the method according to the present invention for evaporating and removing a solution of cobalt oxyhydroxide in a metal salt solution in which a metal salt such as zirconium sulfate, magnesium chloride or aluminum chloride is dissolved is liquid-added. The conventional method of adding a solid state metal salt to a cobalt source material such as cobalt oxyhydroxide is referred to as a solid addition method.

[正極の作製]
上記で作製した正極活物質(Zr、Mg、Al含有LiCoO2粉末)が90重量部、導電剤としての炭素粉末が5重量部、結着剤としてのポリフッ化ビニリデン粉末が5重量部となるよう混合し、さらにこれをN-メチルピロリドン(NMP)液と混合して正極活物質スラリーを調製した。このスラリーを厚さ15μmのアルミニウム製の集電体の両面にドクターブレード法により塗布して、正極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて170μmに圧縮し、短辺の長さが40mm、長辺の長さが600mmの正極を作製した。
[Preparation of positive electrode]
Mix so that the positive electrode active material (Zr, Mg, Al-containing LiCoO2 powder) prepared above is 90 parts by weight, carbon powder as a conductive agent is 5 parts by weight, and polyvinylidene fluoride powder as a binder is 5 parts by weight. This was further mixed with an N-methylpyrrolidone (NMP) solution to prepare a positive electrode active material slurry. This slurry was applied to both surfaces of a 15 μm thick aluminum current collector by a doctor blade method to form active material layers on both surfaces of the positive electrode current collector. Then, it compressed to 170 micrometers using the compression roller, and produced the positive electrode whose short side length is 40 mm and long side length is 600 mm.

[負極の作製]
天然黒鉛(d002値:3.356Å、Lc値:1000Å、平均粒径:20μm)が95重量部、ポリフッ化ビニリデン粉末が5重量部となるよう混合し、これをNMP溶液と混合して負極活物質スラリーを調製した。このスラリーを厚さ12μmの銅製の集電体の両面にドクターブレード法により塗布して活物質層を形成し、乾燥後、圧縮ローラを用いて厚さ150μmに圧縮し、短辺の長さが45mm、長辺の長さが630mmの負極を作製した。
[Preparation of negative electrode]
Natural graphite (d 002 value: 3.356 Å, Lc value: 1000 平均, average particle size: 20 μm) is mixed with 95 parts by weight, and polyvinylidene fluoride powder is mixed with 5 parts by weight. An active material slurry was prepared. This slurry is applied to both sides of a 12 μm thick copper current collector by a doctor blade method to form an active material layer, dried, and then compressed to a thickness of 150 μm using a compression roller. A negative electrode having a length of 45 mm and a long side of 630 mm was produced.

[電解液の作製]
エチレンカーボネートとジエチルカーボネートとを等体積(25℃)で混合し混合溶媒となし、これにLiPF6を1mol/L溶解して電解液とした。
[Preparation of electrolyte]
Ethylene carbonate and diethyl carbonate were mixed at an equal volume (25 ° C.) to form a mixed solvent, and 1 mol / L of LiPF6 was dissolved therein to obtain an electrolytic solution.

[電池の作製]
上記で作製した正極と負極とを、ポリプロピレン製の微多孔膜からなるセパレータを介して巻回し、巻回型電極体となした。これを円筒型外装缶内に挿入し、上記電解液を注液した後、カシメ封口することにより、高さ50mm、直径18mmの円筒型非水電解質二次電池(設計容量1300mA)を作製した。
[Battery fabrication]
The positive electrode and the negative electrode produced above were wound through a separator made of a polypropylene microporous film to obtain a wound electrode body. This was inserted into a cylindrical outer can, and after pouring the electrolytic solution, the cylindrical nonaqueous electrolyte secondary battery (design capacity 1300 mA) having a height of 50 mm and a diameter of 18 mm was produced.

(実施例2)
上記[正極活物質の作製]での金属塩溶液の作製に際して、塩化マグネシウム6水和物に代えて、塩化アルミニウム6水和物(AlCl3・6H2O)2.41gを用いて2成分系金属塩溶液を作製した。その他の事項については全て実施例1におけると同様にして実施例2にかかる非水電解質二次電池を作製した。この実施例2における金属モル比はCo:Zr:Al=1:0.01:0.01である。
(Example 2)
When preparing the metal salt solution in the above [Preparation of positive electrode active material], instead of magnesium chloride hexahydrate, 2.41 g of aluminum chloride hexahydrate (AlCl 3 .6H 2 O) is used. A metal salt solution was prepared. A non-aqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as in Example 1 for all other matters. The metal molar ratio in Example 2 is Co: Zr: Al = 1: 0.01: 0.01.

(実施例3)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物を用いることなく、塩化マグネシウム6水和物 (MgCl2・6H2O)2.03gと塩化アルミニウム6水和物(AlCl3・6H2O)2.41gとを用いて2成分系金属塩溶液を作製した。その他の事項については全て実施例1におけると同様にして実施例3にかかる非水電解質二次電池を作製した。実施例3における金属モル比は、Co:Mg:Al=1:0.01:0.01である。
(Example 3)
When preparing the metal salt solution in [Preparation of positive electrode active material], 2.03 g of magnesium chloride hexahydrate (MgCl 2 .6H 2 O) and 6 mL of aluminum chloride are used without using zirconium sulfate tetrahydrate. A binary metal salt solution was prepared using 2.41 g of Japanese (AlCl 3 .6H 2 O). A nonaqueous electrolyte secondary battery according to Example 3 was produced in the same manner as in Example 1 for all other matters. The metal molar ratio in Example 3 is Co: Mg: Al = 1: 0.01: 0.01.

(実施例4)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物( Zr(SO4)2・4H2O)3.55g、塩化マグネシウム6水和物 (MgCl2・6H2O)2.03g、塩化アルミニウム6水和物(AlCl3・6H2O)2.41gを用いて3成分系金属塩溶液を作製した。その他の事項については全て実施例1におけると同様にして実施例4にかかる非水電解質二次電池を作製した。実施例4における金属モル比は、Co:Zr:Mg:Al=1:0.01:0.01:0.01である。
Example 4
In preparation of the metal salt solution in [Preparation of positive electrode active material], 3.55 g of zirconium sulfate tetrahydrate (Zr (SO 4 ) 2 .4H 2 O), magnesium chloride hexahydrate (MgCl 2 .6H A ternary metal salt solution was prepared using 2.03 g of 2 O) and 2.41 g of aluminum chloride hexahydrate (AlCl 3 .6H 2 O). A non-aqueous electrolyte secondary battery according to Example 4 was produced in the same manner as in Example 1 for all other matters. The metal molar ratio in Example 4 is Co: Zr: Mg: Al = 1: 0.01: 0.01: 0.01.

実施例5〜9では、2成分系において各金属塩の組合せと金属モル比を変化させた。
(実施例5)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ硫酸ジルコニウム4水和物の添加量を減量して、金属モル比がCo:Zr:Mg=1:0.0001:0.01である正極活物質を作製した。これ以外については、上記実施例1と同様にして実施例5にかかる非水電解質二次電池を作製した。
In Examples 5 to 9, the combination of metal salts and the metal molar ratio were changed in a two-component system.
(Example 5)
In the preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of zirconium sulfate tetrahydrate was reduced. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.0001: 0.01 was produced. Except for this, a nonaqueous electrolyte secondary battery according to Example 5 was produced in the same manner as in Example 1.

(実施例6)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ塩化マグネシウム6水和物の添加量を減量して、金属モル比がCo:Zr:Mg=1:0.01:0.0001である正極活物質を作製した。これ以外については、上記実施例1と同様にして実施例6にかかる非水電解質二次電池を作製した。
(Example 6)
In the preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of magnesium chloride hexahydrate was reduced to reduce the metal mole. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.01: 0.0001 was produced. Except for this, a nonaqueous electrolyte secondary battery according to Example 6 was produced in the same manner as in Example 1.

(実施例7)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ塩化マグネシウム6水和物の添加量を増量して、金属モル比がCo:Zr:Mg=1:0.01:0.03である正極活物質を作製した。これ以外については、上記実施例1と同様にして実施例7にかかる非水電解質二次電池を作製した。
(Example 7)
In preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of magnesium chloride hexahydrate was increased to increase the metal mole. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.01: 0.03 was produced. Except for this, a nonaqueous electrolyte secondary battery according to Example 7 was produced in the same manner as in Example 1.

(実施例8)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化アルミニウム6水和物を用い、かつ塩化アルミニウム6水和物の添加量を減量して、金属モル比がCo:Zr:Al=1:0.01:0.0001である正極活物質を作製した。これ以外については、上記実施例1と同様にして実施例8にかかる非水電解質二次電池を作製した。
(Example 8)
In preparation of the metal salt solution in the above [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and aluminum chloride hexahydrate were used, and the addition amount of aluminum chloride hexahydrate was reduced to reduce the metal mole. A positive electrode active material having a ratio of Co: Zr: Al = 1: 0.01: 0.0001 was produced. Except for this, a nonaqueous electrolyte secondary battery according to Example 8 was produced in the same manner as in Example 1.

(実施例9)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化アルミニウム6水和物を用い、かつ塩化アルミニウム6水和物の添加量を増量して、金属モル比がCo:Zr:Al=1:0.01:0.03である正極活物質を作製した。これ以外については、上記実施例1と同様にして実施例9にかかる非水電解質二次電池を作製した。
Example 9
In preparation of the metal salt solution in the above [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and aluminum chloride hexahydrate were used, and the addition amount of aluminum chloride hexahydrate was increased to increase the metal mole. A positive electrode active material having a ratio of Co: Zr: Al = 1: 0.01: 0.03 was produced. Except for this, a nonaqueous electrolyte secondary battery according to Example 9 was produced in the same manner as in Example 1.

(比較例1)
上記[正極活物質の作製]で金属塩を全く用いないで正極活物質を作製したこと以外は、上記実施例1と同様にして非水電解質二次電池を作製した。この場合における金属モル比は、Co:Zr:Mg:Al=1:0:0:0である。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the production of the positive electrode active material was carried out in the above [Production of positive electrode active material] without using any metal salt. The metal molar ratio in this case is Co: Zr: Mg: Al = 1: 0: 0: 0.

(比較例2〜4)
比較例2〜4は1成分系の金属塩溶液を用いた例であり、上記[正極活物質の作製]での金属塩溶液の作製に際して、比較例2は硫酸ジルコニウム4水和物のみ(Co:Zr=1:0.01)、比較例3は塩化マグネシウム6水和物のみ(Co:Mg=1:0.01)、比較例4は塩化アルミニウム6水和物のみ(Co:Al=1:0.01)を用いて正極活物質を作製した。これ以外については、上記実施例1と同様にして比較例2〜4にかかる非水電解質二次電池を作製した。
(Comparative Examples 2 to 4)
Comparative Examples 2 to 4 are examples using a one-component metal salt solution. When preparing the metal salt solution in [Preparation of Positive Electrode Active Material], Comparative Example 2 includes only zirconium sulfate tetrahydrate (Co : Zr = 1: 0.01), Comparative Example 3 includes only magnesium chloride hexahydrate (Co: Mg = 1: 0.01), and Comparative Example 4 includes only aluminum chloride hexahydrate (Co: Al = 1: 0.01). The positive electrode active material was produced using this. Except for this, non-aqueous electrolyte secondary batteries according to Comparative Examples 2 to 4 were produced in the same manner as in Example 1.

(比較例5)
上記[正極活物質の作製]において、金属塩(Zr、Mg、Alの各塩)を溶解した金属塩溶液にオキシ水酸化コバルトを浸漬する方法(液添法)を用いないで、コバルト源原料であるオキシ水酸化コバルトと、硫酸ジルコニウム4水和物、塩化マグネシウム6水和物、及び塩化アルミニウム6水和物とを粉末状態で直接混合する方法により、3種類の異種元素を添加したオキシ水酸化コバルトを作製した。これ以外の事項については上記実施例1と同様にして比較例5にかかる非水電解質二次電池を作製した。なお、金属塩を固体状態で添加する方法を固添法と称する。
(Comparative Example 5)
In the above [Preparation of positive electrode active material], a cobalt source material is used without using a method of immersing cobalt oxyhydroxide in a metal salt solution in which a metal salt (Zr, Mg, or Al salt) is dissolved (liquid addition method). Oxy water to which three different elements are added by a method of directly mixing cobalt oxyhydroxide, zirconium sulfate tetrahydrate, magnesium chloride hexahydrate, and aluminum chloride hexahydrate in a powder state Cobalt oxide was produced. Other than this, a nonaqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same manner as in Example 1 above. In addition, the method of adding a metal salt in a solid state is referred to as a solid addition method.

(比較例6)
上記[正極活物質の作製]において、オキシ水酸化コバルトに代えて、水酸化コバルトを用いたこと以外は、上記実施例4と同様にして比較例6にかかる非水電解質二次電池を作製した。
(Comparative Example 6)
A non-aqueous electrolyte secondary battery according to Comparative Example 6 was produced in the same manner as in Example 4 except that cobalt hydroxide was used instead of cobalt oxyhydroxide in [Preparation of positive electrode active material]. .

(比較例7)
上記[正極活物質の作製]において、オキシ水酸化コバルトに代えて、四酸化三コバルトを用いたこと以外は、上記実施例4と同様にして比較例7にかかる非水電解質二次電池を作製した。
(Comparative Example 7)
A nonaqueous electrolyte secondary battery according to Comparative Example 7 was prepared in the same manner as in Example 4 except that tricobalt tetroxide was used in place of cobalt oxyhydroxide in [Preparation of positive electrode active material]. did.

(比較例8)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ硫酸ジルコニウム4水和物の添加量を減量して、金属モル比がCo:Zr:Mg=1:0.00005:0.01である正極活物質を作製した。これ以外の事項については上記実施例1と同様にして比較例8にかかる非水電解質二次電池を作製した。
(Comparative Example 8)
In the preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of zirconium sulfate tetrahydrate was reduced. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.00005: 0.01 was prepared. Other than this, a nonaqueous electrolyte secondary battery according to Comparative Example 8 was produced in the same manner as in Example 1 above.

(比較例9)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ硫酸ジルコニウム4水和物の添加量を増量して、金属モル比がCo:Zr:Mg=1:0.015:0.01である正極活物質を作製した。これ以外の事項については上記実施例1と同様にして比較例9にかかる非水電解質二次電池を作製した。
(Comparative Example 9)
In the preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of zirconium sulfate tetrahydrate was increased to increase the metal mole. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.015: 0.01 was produced. Other than this, a non-aqueous electrolyte secondary battery according to Comparative Example 9 was produced in the same manner as in Example 1 above.

(比較例10)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ塩化マグネシウム6水和物の添加量を減量して、金属モル比がCo:Zr:Mg=1:0.01:0.00005である正極活物質を作製した。これ以外の事項については上記実施例1と同様にして比較例10にかかる非水電解質二次電池を作製した。
(Comparative Example 10)
In the preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of magnesium chloride hexahydrate was reduced to reduce the metal mole. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.01: 0.00005 was produced. Other than this, a nonaqueous electrolyte secondary battery according to Comparative Example 10 was produced in the same manner as in Example 1 above.

(比較例11)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化マグネシウム6水和物を用い、かつ塩化マグネシウム6水和物の添加量を増量して、金属モル比がCo:Zr:Mg=1:0.01:0.04である正極活物質を作製した。これ以外の事項については上記実施例1と同様にして比較例11にかかる非水電解質二次電池を作製した。
(Comparative Example 11)
In preparation of the metal salt solution in [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and magnesium chloride hexahydrate were used, and the addition amount of magnesium chloride hexahydrate was increased to increase the metal mole. A positive electrode active material having a ratio of Co: Zr: Mg = 1: 0.01: 0.04 was prepared. Other than this, a nonaqueous electrolyte secondary battery according to Comparative Example 11 was produced in the same manner as in Example 1 above.

(比較例12)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化アルミニウム6水和物を用い、かつ塩化アルミニウム6水和物の添加量を減量して、金属モル比がCo:Zr:Al=1:0.01:0.00005である正極活物質を作製した。これ以外の事項については上記実施例1と同様にして比較例12にかかる非水電解質二次電池を作製した。
(Comparative Example 12)
In preparation of the metal salt solution in the above [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and aluminum chloride hexahydrate were used, and the addition amount of aluminum chloride hexahydrate was reduced to reduce the metal mole. A positive electrode active material having a ratio of Co: Zr: Al = 1: 0.01: 0.00005 was produced. Other than this, a non-aqueous electrolyte secondary battery according to Comparative Example 12 was produced in the same manner as in Example 1 above.

(比較例13)
上記[正極活物質の作製]での金属塩溶液の作製に際して、硫酸ジルコニウム4水和物と塩化アルミニウム6水和物を用い、かつ塩化アルミニウム6水和物の添加量を増量して、金属モル比がCo:Zr:Al=1:0.01:0.04である正極活物質を作製した。これ以外の事項については上記実施例1と同様にして比較例13にかかる非水電解質二次電池を作製した。
(Comparative Example 13)
In preparation of the metal salt solution in the above [Preparation of positive electrode active material], zirconium sulfate tetrahydrate and aluminum chloride hexahydrate were used, and the addition amount of aluminum chloride hexahydrate was increased to increase the metal mole. A positive electrode active material having a ratio of Co: Zr: Al = 1: 0.01: 0.04 was produced. Other than this, a nonaqueous electrolyte secondary battery according to Comparative Example 13 was produced in the same manner as in Example 1 above.

[正極活物質の評価]
以上で作製した各種電池を用いて正極活物質の特性を評価したので、その評価方法と評価結果について説明する。
[Evaluation of positive electrode active material]
Since the characteristics of the positive electrode active material were evaluated using the various batteries prepared above, the evaluation method and evaluation results will be described.

(充電正極活物質の自己発熱開始温度の測定)
25℃において電流値1300mAの定電流で電池電圧4.3Vまで充電し、その後4.3Vの定電圧で終止電流26mAまで充電した。充電後の電池をドライボックス内で分解し、正極を取り出して真空乾燥した。この正極から試料として正極活物質層を5mg採取し、これとエチレンカーボネート2mgとをアルゴン雰囲気中でアルミニウム製セル内に封入し、示差走査熱量計を用いて昇温速度5℃/minで昇温する方法により、正極活物質が自己発熱を開始する温度を測定した。
(Measurement of self-heating start temperature of charged positive electrode active material)
The battery was charged to a battery voltage of 4.3 V at a constant current of 1300 mA at 25 ° C., and then charged to a termination current of 26 mA at a constant voltage of 4.3 V. The battery after charging was disassembled in a dry box, and the positive electrode was taken out and vacuum-dried. As a sample, 5 mg of a positive electrode active material layer was sampled from this positive electrode, and 2 mg of ethylene carbonate and 2 mg of ethylene carbonate were sealed in an aluminum cell in an argon atmosphere, and the temperature was raised at a rate of temperature rise of 5 ° C./min using a differential scanning calorimeter. By this method, the temperature at which the positive electrode active material starts self-heating was measured.

なお、正極活物質の自己発熱開始温度が高いほど熱的安定性に優れているので、自己発熱開始温度の高い正極活物質を使用すると、電池の安全性が高まる。   Note that the higher the self-heating start temperature of the positive electrode active material, the better the thermal stability. Therefore, the use of a positive electrode active material having a high self-heating start temperature increases the safety of the battery.

(電池初期容量の測定)
各電池について25℃で、 定電流充電(電流1300mA、終止電圧4.2V)−定電圧充電(電圧4.2V、終止電流26mA )後、電流値1300mAで2.75Vまで放電した。この放電における電池容量を測定し、これを電池初期容量とした。
(Measurement of initial battery capacity)
Each battery was discharged at 25 ° C. at a current value of 1300 mA to 2.75 V after constant current charge (current 1300 mA, end voltage 4.2 V) -constant voltage charge (voltage 4.2 V, end current 26 mA). The battery capacity in this discharge was measured and used as the battery initial capacity.

(25℃サイクル容量維持率)
各電池について、電池初容量の測定条件と同様な条件で充電と放電(一対の充放電を1サイクルとする)を300サイクル繰り返し、300サイクル目の放電容量を測定した。そして、1サイクル目の放電容量(電池初期容量)に対する300サイクル目の放電容量の百分率を算出しこれを25℃放電容量維持率とした。
これらの結果を、正極活物質の作製条件とともに表1,2に一覧表示した。
(25 ° C cycle capacity maintenance rate)
For each battery, charging and discharging (a pair of charging and discharging as one cycle) were repeated for 300 cycles under the same conditions as the battery initial capacity measurement conditions, and the discharge capacity at the 300th cycle was measured. And the percentage of the discharge capacity of the 300th cycle with respect to the discharge capacity (battery initial capacity) of the 1st cycle was computed, and this was made into 25 ° C discharge capacity maintenance rate.
These results are listed in Tables 1 and 2 together with the preparation conditions of the positive electrode active material.

Figure 0004969051
Figure 0004969051

Figure 0004969051
Figure 0004969051

<金属塩の組合せ効果>
表1から、金属塩溶液成分として、コバルトに対するモル比でジルコニウムを0.01とマグネシウムを0.01溶解した実施例1、ジルコニウム0.01とアルミニウム0.01とを溶解した実施例2、マグネシウム0.01とアルミニウム0.01とを溶解した実施例3、及びジルコニウム0.01とマグネシウム0.01とアルミニウム0.01の三者を溶解した実施例4についは、異種元素を全く添加しなかった比較例1に比較して、自己発熱開始温度及び25℃サイクル容量維持率が大幅に向上し、しかも直接発電に寄与しない異種元素(直接発電に寄与しない)を添加したことによる電池初期容量の低下が殆ど認められなかった。
<Combination effect of metal salt>
From Table 1, as the metal salt solution component, Example 1 in which 0.01 and zirconium were dissolved in 0.01 and magnesium in a molar ratio with respect to cobalt, Example 2 in which 0.01 and zirconium were dissolved in 0.01, magnesium In Example 3 in which 0.01 and 0.01 were dissolved, and in Example 4 in which 0.01, 0.01, magnesium and 0.01 were dissolved, no different elements were added. Compared to Comparative Example 1, the self-heating start temperature and the 25 ° C. cycle capacity retention rate are significantly improved, and the initial capacity of the battery is increased by adding a different element that does not directly contribute to power generation (does not contribute directly to power generation). Almost no decrease was observed.

更に実施例1〜3と実施例4との比較から、ジルコニウム塩、マグネシウム塩、アルミニウム塩の群から選択した2成分系金属塩を用いたものに比較し3成分系金属塩溶液を用いた場合において、諸特性が特に顕著に向上することが認められた。   Further, from the comparison between Examples 1 to 3 and Example 4, a ternary metal salt solution was used in comparison with the one using a binary metal salt selected from the group of zirconium salt, magnesium salt and aluminum salt. It was confirmed that various characteristics were significantly improved.

他方、異種元素を全く添加しない比較例1と1成分系の比較例2〜4との比較において次のことが認められた。すなわち、ジルコニウムのみを0.01溶解した比較例2については、自己発熱開始温度の上昇が殆ど認められなかった。また、マグネシウムのみを0.01溶解した比較例3については、25℃サイクルル容量維持率の向上が殆ど認められなかった。また、アルミニウムムのみを0.01溶解した比較例4についても、上記比較例3の場合と同様、25℃サイクルル容量維持率の向上が殆ど認められなかった。   On the other hand, in the comparison between Comparative Example 1 in which no different element was added and Comparative Examples 2 to 4 of a one-component system, the following was observed. That is, in Comparative Example 2 in which only zirconium was dissolved, almost no increase in the self-heating start temperature was observed. Moreover, about the comparative example 3 which melt | dissolved 0.01 only of magnesium, the improvement of a 25 degreeC cycling capacity maintenance rate was hardly recognized. Further, in Comparative Example 4 in which only aluminum was dissolved, as in Comparative Example 3, almost no improvement in the 25 ° C. cycle capacity maintenance rate was observed.

以上の結果から、自己発熱開始温度を上昇させ、かつ25℃サイクル容量維持率を向上させるには、ジルコニウム塩、マグネシウム塩、アルミニウム塩の群から選択される2種類以上の金属塩を溶解した金属塩溶液を用いることが必要である。また、上記した群の全ての金属塩を用いると、電池の安全性と電池容量特性を一層向上させることができることが判る。   From the above results, in order to increase the self-heating start temperature and improve the 25 ° C. cycle capacity retention rate, a metal in which two or more metal salts selected from the group of zirconium salt, magnesium salt, and aluminum salt are dissolved is dissolved. It is necessary to use a salt solution. It can also be seen that the use of all the metal salts in the above group can further improve battery safety and battery capacity characteristics.

<異種元素の添加方法とその効果>
表1の実施例4は本発明にかかる液添法を用いて異種元素を添加したものであり、比較例5は金属塩を固体状態でオキシ水酸化コバルトに添加したものである。よって、実施例4と比較例5とは、異種元素の添加方法のみが異なる。ここで、比較例1と比較例5との比較において、比較例5は比較例1に対し自己発熱開始温度と25℃サイクル容量維持率に若干の改善傾向が認められるが、電池初期容量が大きく低下することが認められた。これに対して、比較例1と実施例4との比較において、実施例4が自己発熱開始温度、電池初期容量、25℃サイクル容量維持率の何れについても顕著に優れていること、及び比較例5と実施例4との比較においても、実施例4が顕著に優れていることが認められる。
<Methods for adding different elements and their effects>
Example 4 in Table 1 is obtained by adding a different element using the liquid addition method according to the present invention, and Comparative Example 5 is obtained by adding a metal salt to cobalt oxyhydroxide in a solid state. Therefore, Example 4 and Comparative Example 5 differ only in the addition method of different elements. Here, in comparison between Comparative Example 1 and Comparative Example 5, Comparative Example 5 shows a slight improvement trend in the self-heating start temperature and the 25 ° C. cycle capacity maintenance rate compared to Comparative Example 1, but the battery initial capacity is large. A decline was observed. On the other hand, in comparison between Comparative Example 1 and Example 4, Example 4 is remarkably superior in all of the self-heating start temperature, the initial battery capacity, and the 25 ° C. cycle capacity maintenance rate, and the comparative example. Also in the comparison between 5 and Example 4, it is recognized that Example 4 is remarkably superior.

これの結果により、本発明にかかる液添法は自己発熱開始温度等の特性を向上させるのに極めて有効な方法であることが裏付けられた。なお、比較例5において、電池初期容量が低下した原因としては、金属塩を固体状態で添加した場合には、異種元素とオキシ水酸化コバルトとの混合状態が不均一となり、このために、このものと炭酸リチウム(リチウム源原料)との反応において、Liが挿入離脱できない部分を有する不均質なコバルト酸リチウムが合成されるためと考えられる。   From these results, it was confirmed that the liquid addition method according to the present invention is an extremely effective method for improving characteristics such as a self-heating start temperature. In Comparative Example 5, the cause of the decrease in the initial capacity of the battery was that when the metal salt was added in a solid state, the mixed state of the different element and the cobalt oxyhydroxide became non-uniform. This is considered to be because heterogeneous lithium cobalt oxide having a portion where Li cannot be inserted and removed is synthesized in the reaction between the lithium carbonate and the lithium carbonate (raw material of lithium source).

<コバルト源原料の違いとその効果>
コバルト酸リチウムのコバルト供給原料としてオキシ水酸化コバルトを用いた実施例4と、水酸化コバルトを用いた比較例6と、四酸化三コハ゛ルトを用いた比較例7と、オキシ水酸化コバルトを用いたが異種元素を添加しなかった比較例1との比較から次のことが明らかになった。
<Differences in cobalt source materials and their effects>
Example 4 using cobalt oxyhydroxide as a cobalt feedstock for lithium cobaltate, Comparative Example 6 using cobalt hydroxide, Comparative Example 7 using tricobalt tetroxide, and Cobalt oxyhydroxide were used From the comparison with Comparative Example 1 in which a different element was not added, the following became clear.

先ず、何れも電池初期容量については、大きな変動は認められなかった。他方、自己発熱開始温度及び25℃サイクル容量維持率については、異種元素が添加された比較例6,7および実施例4の何れにもが比較例1に比較し向上していた。しかし、比較例6,7の向上程度は、実施例4に比べて顕著に小さかった。これらの結果は、オキシ水酸化コバルトとリチウム源原料(コバルト酸リチウムのリチウム供給原料)との反応性が、水酸化コバルトや四酸化三コバルトとリチウム源原料との反応性よりも高いので、コバルト源原料としてオキシ水酸化コバルトを用いると、異種元素によりコバルト酸リチウムの結晶成長が阻害されにくい。よって、都合よくコバルト酸リチウム内に異種元素を取り込まれた良質の異種元素含有コバルト酸リチウム結晶が得られるためであると考えられる。   First, no significant variation was observed in the initial battery capacity. On the other hand, with respect to the self-heating start temperature and the 25 ° C. cycle capacity retention rate, both Comparative Examples 6 and 7 and Example 4 to which different elements were added were improved as compared with Comparative Example 1. However, the degree of improvement in Comparative Examples 6 and 7 was significantly smaller than that in Example 4. These results indicate that the reactivity of cobalt oxyhydroxide with the lithium source material (lithium feedstock of lithium cobaltate) is higher than the reactivity of cobalt hydroxide or tricobalt tetroxide with the lithium source material. When cobalt oxyhydroxide is used as a source material, the crystal growth of lithium cobaltate is hardly inhibited by different elements. Therefore, it is considered that this is because a good quality heterogeneous element-containing lithium cobaltate crystal in which a different element is incorporated into lithium cobaltate is obtained.

以上から、2種類以上の異種元素を液添法で添加する方法においては、コバルト源原料としてオキシ水酸化コバルトを用いるのがよい。   From the above, in the method of adding two or more kinds of different elements by the liquid addition method, it is preferable to use cobalt oxyhydroxide as the cobalt source material.

<異種元素の添加量について>
表2に示すように、ジルコニウム添加量(モル比)を0.00005から0.015に変化させた比較例8、実施例5,実施例1,実施例9において、ジルコニウムモル比が0.00005の比較例8は、実施例品(ジルコニウムモル比0.0001〜0.01)に比較し25℃サイクルル容量維持率が劣る。他方、ジルコニウムモル比が0.015の比較例9は実施例品に比較し自己発熱開始温度特性及び電池初期容量が劣る。この結果から、ジルコニウムモル比は、0.0001〜0.01とする必要がある。
<Addition of different elements>
As shown in Table 2, in Comparative Example 8, Example 5, Example 1, and Example 9 in which the zirconium addition amount (molar ratio) was changed from 0.00005 to 0.015, the zirconium molar ratio was 0.00005. In Comparative Example 8, the 25 ° C cycle capacity maintenance rate is inferior to that of the example product (zirconium molar ratio: 0.0001 to 0.01). On the other hand, Comparative Example 9 having a zirconium molar ratio of 0.015 is inferior in self-heating start temperature characteristics and battery initial capacity as compared with the Example product. From this result, the zirconium molar ratio needs to be 0.0001 to 0.01.

また、ジルコニウムモル比を0.01一定とし、マグネシウムモル比を0.00005から0.04に変化させた比較例10,実施例6,実施例7,比較例11において、マグネシウムモル比が0.00005の比較例10は、実施例品(マグネシウムモル比0.0001〜0.03)に比較し、自己発熱開始温度特性が劣る。他方、マグネシウムモル比が0.04の比較例11は、実施例品に比較し、電池初期容量が劣る。この結果から、マグネシウムモル比は、0.0001〜0.03とする必要がある。   Further, in Comparative Example 10, Example 6, Example 7, and Comparative Example 11 in which the zirconium molar ratio was kept constant at 0.01 and the magnesium molar ratio was changed from 0.00005 to 0.04, the magnesium molar ratio was 0.00. Comparative Example 10 of 00005 is inferior in self-heating start temperature characteristics as compared to the product of Example (magnesium molar ratio 0.0001 to 0.03). On the other hand, Comparative Example 11 having a magnesium molar ratio of 0.04 is inferior in battery initial capacity as compared with Example products. From this result, the magnesium molar ratio needs to be 0.0001 to 0.03.

また、ジルコニウムモル比を0.01一定とし、アルミニウムモル比を0.00005から0.04に変化させた比較例12,実施例8,実施例9,比較例13において、アルミニウムモル比が0.00005の比較例12は、実施例品(アルミニウムモル比0.0001〜0.03)に比較し、自己発熱開始温度特性が劣る。他方、アルミニウムモル比が0.04の比較例13は、実施例品に比較し、電池初期容量が劣る。この結果から、アルミニウムモル比は、0.0001〜0.03とする必要がある。   Further, in Comparative Example 12, Example 8, Example 9, and Comparative Example 13 in which the zirconium molar ratio was kept constant at 0.01 and the aluminum molar ratio was changed from 0.00005 to 0.04, the aluminum molar ratio was 0.00. The comparative example 12 of 00005 is inferior in self-heating start temperature characteristics as compared with the example product (aluminum molar ratio 0.0001 to 0.03). On the other hand, Comparative Example 13 having an aluminum molar ratio of 0.04 is inferior in battery initial capacity as compared with Example products. From this result, the aluminum molar ratio needs to be 0.0001 to 0.03.

[その他の事項]
上記実施例では金属塩溶液の溶媒を水としたが、溶媒は金属塩が溶解するものであればよく、混合系でもよい。例えば水とエタノールの混合溶媒を用いると、溶媒の除去時間を短くできるという利点がある。
[Other matters]
In the above embodiment, the solvent of the metal salt solution is water, but the solvent may be any solvent as long as the metal salt is dissolved, and may be a mixed system. For example, when a mixed solvent of water and ethanol is used, there is an advantage that the time for removing the solvent can be shortened.

本発明によると、熱的安定性に優れ、かつ電池初期容量およびサイクル容量維持性にも優れた正極活物質としてのコバルト酸リチウムを簡便な方法で提供できる。このコバルト酸リチウムは非水電解質二次電池用正極活物質として有用である。よって、その産業上の利用可能性は大きい。   According to the present invention, lithium cobalt oxide as a positive electrode active material having excellent thermal stability and excellent battery initial capacity and cycle capacity maintainability can be provided by a simple method. This lithium cobaltate is useful as a positive electrode active material for nonaqueous electrolyte secondary batteries. Therefore, the industrial applicability is great.

Claims (2)

オキシ水酸化コバルトを主要原料としてコバルト酸リチウムを合成するコバルト酸リチウム合成工程を有する正極活物質の製造方法において、
前記コバルト酸リチウム合成工程は、
ジルコニウム塩,マグネシウム塩、アルミニウム塩からなる群より選択される2種類の金属塩を溶解した2成分系金属塩溶液にオキシ水酸化コバルトを浸漬した状態で、当該2成分系金属塩溶液の溶媒を蒸発させることにより、オキシ水酸化コバルトの表面に前記金属塩を付着させる金属塩付着工程と、
前記金属塩の付着したオキシ水酸化コバルトと、リチウム含有化合物とを混合し焼成することにより2種類の異種元素を含有したコバルト酸リチウムを作製する工程と、を備え、
前記2成分系金属塩溶液に溶解した金属塩の金属モル数の比が、前記金属塩溶液に浸漬されたオキシ水酸化コバルトのコバルトモル数を1とするとき、ジルコニウムが0.0001〜0.01、マグネシウムが0.0001〜0.03、アルミニウムが0.0001〜0.03の範囲内に規制されている、
ことを特徴とする正極活物質の製造方法。
In the method for producing a positive electrode active material having a lithium cobaltate synthesis step of synthesizing lithium cobaltate using cobalt oxyhydroxide as a main raw material,
The lithium cobaltate synthesis step includes
In a state where cobalt oxyhydroxide is immersed in a binary metal salt solution in which two kinds of metal salts selected from the group consisting of zirconium salt, magnesium salt and aluminum salt are dissolved, the solvent of the binary metal salt solution is changed. A metal salt attaching step of attaching the metal salt to the surface of cobalt oxyhydroxide by evaporating;
A step of preparing lithium cobaltate containing two different kinds of elements by mixing and firing a cobalt oxyhydroxide to which the metal salt is attached and a lithium-containing compound,
When the ratio of the number of moles of metal in the metal salt dissolved in the two-component metal salt solution is defined as 1 when the number of moles of cobalt oxyhydroxide immersed in the metal salt solution is 1, zirconium is 0.0001-0. 01, magnesium is 0.0001-0.03, aluminum is regulated within the range of 0.0001-0.03,
A method for producing a positive electrode active material.
オキシ水酸化コバルトを主要原料としてコバルト酸リチウムを合成するコバルト酸リチウム合成工程を有する正極活物質の製造方法において、
前記コバルト酸リチウム合成工程は、
ジルコニウム塩とマグネシウム塩とアルミニウム塩とを溶解した3成分系金属塩溶液にオキシ水酸化コバルトを浸漬した状態で、当該3成分系金属塩溶液の溶媒を蒸発させることにより、オキシ水酸化コバルトの表面に前記金属塩を付着させる金属塩付着工程と、
前記金属塩の付着したオキシ水酸化コバルトと、リチウム含有化合物とを混合し焼成することにより3種類の異種元素を含有したコバルト酸リチウムを作製する工程と、を備え、
前記3成分系金属塩溶液に溶解した金属塩の金属モル数の比が、前記金属塩溶液に浸漬されたオキシ水酸化コバルトのコバルトモル数を1とするとき、ジルコニウムが0.0001〜0.01、マグネシウムが0.0001〜0.03、アルミニウムが0.0001〜0.03の範囲内に規制されている、
ことを特徴とする正極活物質の製造方法。


In the method for producing a positive electrode active material having a lithium cobaltate synthesis step of synthesizing lithium cobaltate using cobalt oxyhydroxide as a main raw material,
The lithium cobaltate synthesis step includes
The surface of cobalt oxyhydroxide is obtained by evaporating the solvent of the ternary metal salt solution in a ternary metal salt solution in which zirconium salt, magnesium salt and aluminum salt are dissolved, and evaporating the solvent of the ternary metal salt solution. A metal salt attaching step of attaching the metal salt to
A step of preparing lithium cobaltate containing three different kinds of elements by mixing and firing a cobalt oxyhydroxide to which the metal salt is adhered and a lithium-containing compound,
When the ratio of the number of moles of metal of the metal salt dissolved in the ternary metal salt solution is 1, the zirconium is 0.0001-0. 01, magnesium is 0.0001-0.03, aluminum is regulated within the range of 0.0001-0.03,
A method for producing a positive electrode active material.


JP2005097134A 2005-03-30 2005-03-30 Method for producing lithium cobaltate positive electrode active material Expired - Fee Related JP4969051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097134A JP4969051B2 (en) 2005-03-30 2005-03-30 Method for producing lithium cobaltate positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097134A JP4969051B2 (en) 2005-03-30 2005-03-30 Method for producing lithium cobaltate positive electrode active material

Publications (2)

Publication Number Publication Date
JP2006278196A JP2006278196A (en) 2006-10-12
JP4969051B2 true JP4969051B2 (en) 2012-07-04

Family

ID=37212738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097134A Expired - Fee Related JP4969051B2 (en) 2005-03-30 2005-03-30 Method for producing lithium cobaltate positive electrode active material

Country Status (1)

Country Link
JP (1) JP4969051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019892B2 (en) * 2007-01-23 2012-09-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5172231B2 (en) * 2007-07-20 2013-03-27 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
EP3561920B1 (en) * 2016-12-22 2021-04-28 Posco Positive electrode active material, method for preparing same, and lithium secondary battery comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JP4224143B2 (en) * 1997-07-30 2009-02-12 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4833058B2 (en) * 2004-04-02 2011-12-07 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
KR100751746B1 (en) * 2004-04-30 2007-08-27 에이지씨 세이미 케미칼 가부시키가이샤 Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery

Also Published As

Publication number Publication date
JP2006278196A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
US11201328B2 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US8287828B2 (en) Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
EP2985822B1 (en) Positive electrode active material and non-aqueous elecrolyte cell
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
EP1094532A1 (en) Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
US7842268B2 (en) Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
KR20110122095A (en) Surface-modified lithium-containing complex oxide for positive electrode active material for lithium ion secondary battery, and method for producing same
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7412264B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
WO2014100529A1 (en) Lmfp cathode materials with improved electrochemical performance
JP2019096612A (en) Cathode active material for lithium secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112424976A (en) Positive electrode active material and secondary battery
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP2018014208A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same
US11127939B2 (en) Electrode material, use of an electrode material for a lithium-ion-based electrochemical cell, lithium-ion-based electrochemical cell
JP2018137122A (en) Positive electrode active material for sodium ion secondary battery and manufacturing method of the same, and sodium ion secondary battery
KR101676687B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP4969051B2 (en) Method for producing lithium cobaltate positive electrode active material
KR20200094783A (en) Manganese phosphate coated lithium nickel oxide material
JP2019040675A (en) Method for manufacturing positive electrode active material for nonaqueous secondary battery, and transition metal compound
KR102602699B1 (en) Method for manufacturing aluminium-doped electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees