JP2003326637A - Manganic acid nano-sheet ultrathin film and manufacturing method therefor - Google Patents

Manganic acid nano-sheet ultrathin film and manufacturing method therefor

Info

Publication number
JP2003326637A
JP2003326637A JP2002142285A JP2002142285A JP2003326637A JP 2003326637 A JP2003326637 A JP 2003326637A JP 2002142285 A JP2002142285 A JP 2002142285A JP 2002142285 A JP2002142285 A JP 2002142285A JP 2003326637 A JP2003326637 A JP 2003326637A
Authority
JP
Japan
Prior art keywords
manganate
nanosheet
polymer
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002142285A
Other languages
Japanese (ja)
Other versions
JP3697513B2 (en
Inventor
Takayoshi Sasaki
高義 佐々木
Renshu O
王連洲
Yasuo Ebina
保男 海老名
Jun Watanabe
遵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002142285A priority Critical patent/JP3697513B2/en
Publication of JP2003326637A publication Critical patent/JP2003326637A/en
Application granted granted Critical
Publication of JP3697513B2 publication Critical patent/JP3697513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese oxide ultrathin film of which the ultrafine film thickness can be controlled in a sub-nanometer range by a method perfectly different from a conventional method, and a manufacturing method therefor. <P>SOLUTION: A colloid solution in which a manganic acid nano-sheet is suspended and a cationic polymer solution are prepared. A substrate is alternately immersed in these solutions and this immersion operation is repeated to respectively adsorb the nano-sheet and the polymer on the substrate. Both components are alternately and repeatedly laminated at an interval of from a sub-nm to nm level to form a film. Subsequently, the polymer is removed to obtain a manganic acid nano-sheet ultrathin film. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マンガン酸ナノシート
と有機ポリマーが交互に累積された超薄膜、ポリマーを
除去して得たマンガン酸ナノシート超薄膜、及びこれら
の各超薄膜の製造方法に関するものである。特に、固相
レドックス性を利用して電極材料などとして期待されて
いるマンガン酸ナノシート超薄膜と、その製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrathin film in which manganate nanosheets and organic polymers are alternately accumulated, a manganate nanosheet ultrathin film obtained by removing the polymer, and a method for producing each of these ultrathin films. Is. In particular, it relates to a manganate nanosheet ultrathin film expected to be used as an electrode material and the like by utilizing the solid-state redox property, and a manufacturing method thereof.

【0002】[0002]

【従来の技術と発明の課題】近年、新機能創製の一環か
ら遷移金属酸化物に注目が集まっている。特に、その薄
膜技術について活発な提言、報告が各種学会、刊行物等
に寄せられている。マンガン酸化物の薄膜もその一つで
例外ではない。その研究の方向については、極めて基礎
的なものから、具体的利用技術の提言まで幅広い報告が
なされている。 また、このような研究動向は特許文献
においてもこれを反映して、各種分野において、マンガ
ン酸化物の薄膜化技術に関する発明が活発になされてい
る。その成膜技術は、ゾル・ゲル法、電着、CVD法な
どにより製造されている。
2. Description of the Related Art In recent years, attention has been focused on transition metal oxides as part of the creation of new functions. In particular, active proposals and reports on the thin film technology have been sent to various academic societies and publications. The manganese oxide thin film is one of them and is no exception. As for the direction of the research, a wide range of reports have been made from extremely basic to proposals for specific utilization technologies. In addition, such research trends are reflected in the patent literature as well, and in various fields, inventions relating to a technique for forming a thin film of manganese oxide have been actively made. The film forming technique is manufactured by a sol-gel method, electrodeposition, a CVD method, or the like.

【0003】しかしながら、上記従来法は、ゾル・ゲル
法、電解酸化法では、ナノメートルレンジでの膜厚のコ
ントロールは難しく、CVD法は極めて高価な装置によ
らなければならず、一長一短があった。今後、マンガン
酸化物薄膜の高度利用が進むにつれて、極めて厳密な膜
厚コントロールが求められることが予想される。本発明
は、如上の事情を考慮し、従来法とは全く異なる方法に
よって、膜厚を超微細な膜厚レベルで制御することので
きるマンガン酸ナノシート超薄膜とその製造方法を提供
しようと言うものである。
However, in the above-mentioned conventional method, it is difficult to control the film thickness in the nanometer range by the sol-gel method and the electrolytic oxidation method, and the CVD method requires an extremely expensive apparatus, and has advantages and disadvantages. . It is expected that extremely strict control of the film thickness will be required in the future as the advanced use of manganese oxide thin films progresses. In consideration of the above circumstances, the present invention intends to provide an ultrathin manganate nanosheet thin film capable of controlling the film thickness at an ultrafine film thickness level by a method completely different from the conventional method and a method for producing the same. Is.

【0004】[0004]

【課題を解決するための手段】そのため鋭意研究した結
果、後述するように層状マンガン酸化物を特定の化学的
処理に付すことによってマンガン酸ナノシートを得、得
られたマンガン酸ナノシートと別途調製された有機ポリ
カチオンをそれぞれ液相から自己組織化的にサブnm〜
nmレンジの厚みで基板材料に交互に吸着させ、これを
繰り返すことによって製膜することができること、その
吸着回数を調整、選定することによって極めて微細な膜
厚の制御が可能であり、膜の組成、構造をナノレベルで
制御しながらレイヤーバイレイヤーで製膜してなる超薄
膜とその製造方法を提供することができることを知見し
た。本発明はこの知見に基づいてなされたものである。
[Means for Solving the Problems] Therefore, as a result of diligent research, a manganate nanosheet was obtained by subjecting a layered manganese oxide to a specific chemical treatment as described later, and was prepared separately from the obtained manganate nanosheet. Organic polycations are self-assembled from the liquid phase to sub-nm ~
Films can be formed by alternately adsorbing to the substrate material with a thickness in the nm range and repeating this, and extremely fine control of the film thickness is possible by adjusting and selecting the number of adsorptions, and the film composition , It has been found that it is possible to provide an ultrathin film formed by layer-by-layer film formation while controlling the structure at the nano level, and a manufacturing method thereof. The present invention has been made based on this finding.

【0005】すなわち、本発明は、マンガン酸ナノシー
トと有機ポリカチオンをそれぞれ交互に基板に吸着さ
せ、これによってマンガン酸ナノシートの超薄膜とその
製造方法を提供しようと言うものであり、従来困難であ
った極めて精密なサブnmでの厚みのコントロールを容
易に達成しうる新しい超薄膜とその製造方法を提供する
ことを課題とするもので、そのために講じた構成は、下
記(1)〜(7)に記載する通りである。
That is, the present invention intends to alternately adsorb manganate nanosheets and organic polycations onto a substrate, thereby providing an ultrathin film of manganate nanosheets and a method for producing the same, which has been difficult in the past. It is an object of the present invention to provide a new ultra-thin film capable of easily achieving extremely precise control of the thickness in sub-nm and a method for producing the same, and the configuration taken for that purpose is as follows (1) to (7) As described in.

【0006】(1) 層状マンガン酸化物微結晶を剥離
して得られるマンガン酸ナノシート(2次元結晶子)と
ポリマーとが交互に積層されてなることを特徴とするマ
ンガン酸ナノシートとポリマーとからなる超薄膜。 (2) 該2次元結晶子がMnO2で示されるマンガン
酸ナノシートからなることを特徴とする前記(1)項に
記載のマンガン酸ナノシートとポリマーとからなる超薄
膜。 (3) マンガン酸ナノシートが懸濁したコロイド溶液
とカチオン性ポリマー溶液に基板を交互に浸漬する操作
を反復することにより、基板上にナノシートとポリマー
をそれぞれ吸着させ、該両成分がサブnm〜nmレベル
の間隔で交互に繰り返す多層膜を累積することを特徴と
するマンガン酸ナノシートとポリマーとからなる超薄膜
の製造方法。 (4) 層状マンガン酸化物微結晶を剥離して得られる
2次元結晶子(マンガン酸ナノシート)とポリマーとが
交互に積層され、次いでポリマーを除去してマンガン酸
ナノシート超薄膜を得ることを特徴とするマンガン酸ナ
ノシート超薄膜。 (5) 該2次元結晶子がMnO2で示されるマンガン
酸ナノシートからなることを特徴とする前記(4)項に
記載のマンガン酸ナノシート超薄膜。 (6) マンガン酸ナノシートが懸濁したコロイド溶液
とカチオン性ポリマー溶液に基板を交互に浸漬する操作
を反復することにより、基板上にナノシートとポリマー
をそれぞれ吸着させ、該両成分がサブnm〜nmレベル
の間隔で交互に繰り返してなる膜を積層させ、次いでポ
リマーを除去してマンガン酸ナノシート超薄膜を得るこ
とを特徴とするマンガン酸ナノシート超薄膜の製造方
法。 (7) ポリマーを除去する手段が加熱することによっ
て行われ、分解により除去されることを特徴とする前記
(6)項に記載のマンガン酸化物超薄膜の製造方法。
(1) Manganese oxide nanosheets (two-dimensional crystallites) obtained by exfoliating layered manganese oxide microcrystals and polymers are alternately laminated, and are composed of manganate nanosheets and polymers. Ultra thin film. (2) The ultrathin film comprising a manganate nanosheet and a polymer as described in the above item (1), wherein the two-dimensional crystallite is a manganate nanosheet represented by MnO 2 . (3) The nanosheet and the polymer are respectively adsorbed on the substrate by repeating the operation of alternately immersing the substrate in the colloidal solution in which the manganate nanosheets are suspended and the cationic polymer solution, and the components are sub-nm to nm. A method for producing an ultra-thin film composed of a manganate nanosheet and a polymer, characterized by accumulating multilayer films which are alternately repeated at level intervals. (4) A two-dimensional crystallite (manganese acid nanosheet) obtained by exfoliating layered manganese oxide microcrystals and a polymer are alternately laminated, and then the polymer is removed to obtain an ultrathin manganate nanosheet film. Ultra thin film of manganate nanosheet. (5) The manganate nanosheet ultrathin film according to item (4), wherein the two-dimensional crystallite is a manganate nanosheet represented by MnO 2 . (6) By repeating the operation of alternately immersing the substrate in the colloidal solution in which the manganate nanosheets are suspended and the cationic polymer solution, the nanosheet and the polymer are adsorbed on the substrate, respectively, and both components are sub-nm to nm. A method for producing an ultra-thin manganate nanosheet thin film, which comprises stacking films that are alternately repeated at level intervals and then removing the polymer to obtain an ultra-thin manganate nanosheet thin film. (7) The method for producing an ultrathin manganese oxide film according to the item (6), wherein the means for removing the polymer is performed by heating and is removed by decomposition.

【0007】ここに基板上に積層する直接的原料となる
マンガン酸ナノシートは、層状構造を有するチタン酸化
物に特殊な化学処理を施すことによって、ホスト層1枚
にまで剥離して得られてなるものであり、1nm以下の
分子的な厚み、高い2次元異方性などこれまでのマンガ
ン酸化物にはない形態的、構造的特徴を具備したマンガ
ン酸化物系ナノ素材(なお、これについては、同日付け
にて別途特許出願中)である。
The manganate nanosheet, which is a direct raw material to be laminated on the substrate, is obtained by peeling up to one host layer by subjecting titanium oxide having a layered structure to a special chemical treatment. The manganese oxide-based nanomaterials have morphological and structural characteristics such as a molecular thickness of 1 nm or less and a high two-dimensional anisotropy that are not present in conventional manganese oxides. A separate patent application is pending on the same date).

【0008】ここに、本発明においてその出発物質とし
て使用する層状構造を有するマンガン酸化物は、組成式
XMnO2(AはLi、Na、K、Rb、またはCsよ
り選ばれる一種または2種以上のアルカリ金属、x≦
1)で与えられる化合物群である。本発明において使用
した層状マンガン酸化物(K0.45MnO2)は、後述す
る実施例に記載するように本発明者らにおいて開発した
独自の方法により合成し、これを使用した。層状マンガ
ン酸化物については、C.Delmas、C.Foua
ssierらによって“Les Phases KX
nO2(x<1)”なる表題にてZ.anorg.al
lg.Chem.vol.420、p.184−192
(1976)にも報告されている。
The manganese oxide having a layered structure used as the starting material in the present invention is a composition formula A x MnO 2 (A is one or two selected from Li, Na, K, Rb, or Cs). Alkali metal above, x ≦
It is a group of compounds given in 1). The layered manganese oxide (K 0.45 MnO 2 ) used in the present invention was synthesized by a unique method developed by the present inventors as described in Examples below and used. For the layered manganese oxide, see C.I. Delmas, C.I. Foua
by Ssier et al. “Les Phases K X M
nO 2 (x <1) ”under the title Z. anorg.
lg. Chem. vol. 420, p. 184-192
(1976).

【0009】本発明者らにおいては、鋭意研究の結果、
この層状マンガン酸化物を酸処理して水素型HX'MnO
2・nH2O(x’≦1、0≦n≦3)に変換後、適当な
アミンなどの水溶液中で振とうすることにより、母結晶
を構成している層すなわちナノシートが1枚ずつ水中に
剥離、分散したコロイド溶液を導くことに成功した。な
お、このナノシートは、それ自体を層状酸化物から単離
して独立して提供したことは、本発明者らにおいて始め
てであり、その形態や、性質等の特異性は、後述するよ
うに出発結晶である母結晶とも、そして従来法によるマ
ンガン酸化物の微粉末とも全く異なる形態、構造、特性
を有していることが明らかとなった。ナノシートの厚み
はその出発母結晶の結晶構造に依存するが、1nm以下
と極めて薄い。一方横サイズはサブμm〜μmオーダー
であり、非常に高い2次元異方性を有するものである。
As a result of earnest research, the present inventors have found that
Hydrogen form H X 'MnO this layered manganese oxide by acid treatment
After being converted into 2 · nH 2 O (x ′ ≦ 1, 0 ≦ n ≦ 3), by shaking in an aqueous solution of an appropriate amine or the like, the layers constituting the mother crystal, that is, the nanosheets, are formed one by one in water. We succeeded in introducing a colloidal solution that was peeled off and dispersed into. It is the first time that the present inventors have isolated this nanosheet from the layered oxide and provided it independently, and its morphology, specificity of properties, and the like are the starting crystals as described later. It was revealed that they have completely different morphology, structure, and characteristics from both the mother crystal and the conventional fine powder of manganese oxide. The thickness of the nanosheet depends on the crystal structure of the starting mother crystal, but it is extremely thin at 1 nm or less. On the other hand, the lateral size is on the order of sub-μm to μm, and has a very high two-dimensional anisotropy.

【0010】このマンガン酸ナノシートは負電荷を持つ
一種のポリアニオンであるため、正電荷を持つポリマー
と組み合わせることにより、適当に処理した基板表面上
に自己組織化的に交互に吸着させることが可能となる。
すなわち表面が正に帯電した基板をマンガン酸ナノシー
トが分散したコロイド溶液に浸漬させると、静電相互作
用によりナノシートが基板表面に吸着すると言う特異な
性質を有することが明らかとなった。
Since this manganate nanosheet is a kind of polyanion having a negative charge, by combining it with a polymer having a positive charge, it is possible to adsorb the manganate nanosheets in a self-assembled manner alternately on the surface of a properly treated substrate. Become.
That is, it was revealed that when a substrate whose surface was positively charged was immersed in a colloidal solution in which manganate nanosheets were dispersed, the nanosheets had a unique property of being adsorbed on the substrate surface by electrostatic interaction.

【0011】そして、表面が完全にマンガン酸ナノシー
トで覆われると、基板表面の電荷状態は負に変化し、そ
れ以上のナノシートの累積は静電反発により進まず、吸
着反応は自己停止する。次にこの基板を有機ポリカチオ
ン溶液に浸漬すると、今後はポリカチオンにより表面が
被覆される。この自己組織化的吸着反応を繰り返すこと
によりレイヤーバイレイヤーでマンガン酸ナノシートと
ポリマーを交互に累積し、超薄膜の合成が可能となる。
When the surface is completely covered with the manganate nanosheets, the charge state on the substrate surface changes negatively, and the accumulation of further nanosheets does not proceed due to electrostatic repulsion, and the adsorption reaction self-stops. Then, the substrate is dipped in an organic polycation solution so that the surface is coated with the polycation in the future. By repeating this self-organizing adsorption reaction, manganate nanosheets and polymers are alternately accumulated in a layer-by-layer manner, and an ultrathin film can be synthesized.

【0012】その結果、得られた薄膜中ではマンガン酸
ナノシートと有機ポリマーがnmレンジで積み重なった
ナノ構造を持つ。実際の製膜操作は、以下に示す手順、
要領による。先ず基板を、(1)マンガン酸ナノシート
コロイド溶液に浸漬→(2)純水で洗浄→(3)有機ポ
リカチオン溶液に浸漬→(4)純水で洗浄するという一
連の操作を1サイクルとしてこれを必要回数分反復す
る。
As a result, the obtained thin film has a nanostructure in which manganate nanosheets and organic polymers are stacked in the nm range. The actual film-forming operation is the following procedure,
According to the point. First, a series of operations, in which the substrate is (1) immersed in a manganate nanosheet colloidal solution, (2) washed with pure water, (3) immersed in an organic polycation solution, and (4) washed with pure water, is defined as one cycle. Is repeated as many times as necessary.

【0013】有機ポリカチオンとしてはポリ(ジアリル
ジメチルアンモニウムクロリド)(PDDA)、ポリエ
チレンイミン(PEI)、塩酸ポリアリルアミン(PA
H)などが適当である。基板は石英ガラス板、Siウエ
ハー、マイカ板、グラファイト板、アルミナ板等、様々
な素材を用いることが可能で、大きさも原理的に制限は
ない。
As the organic polycation, poly (diallyldimethylammonium chloride) (PDDA), polyethyleneimine (PEI), polyallylamine hydrochloride (PA)
H) and the like are suitable. Various materials such as a quartz glass plate, a Si wafer, a mica plate, a graphite plate, and an alumina plate can be used as the substrate, and the size is not limited in principle.

【0014】ただし、積層操作の前の表面の清浄および
前処理は必要不可欠である。清浄化処理は代表的には中
性洗剤による洗浄、有機溶剤による脱脂、濃硫酸などに
よる洗浄を行う。前処理は自己組織化反応を安定に開始
するための操作であり、PEI等の有機ポリカチオン溶
液に浸漬して、ポリカチオンを吸着させ基板表面に正電
荷を導入する。
However, surface cleaning and pretreatment prior to the laminating operation is essential. The cleaning treatment is typically performed by washing with a neutral detergent, degreasing with an organic solvent, and washing with concentrated sulfuric acid. The pretreatment is an operation for stably starting the self-assembly reaction, and is immersed in an organic polycation solution such as PEI to adsorb the polycation and introduce a positive charge onto the substrate surface.

【0015】多層超薄膜の成長は紫外・可視吸収スペク
トルを累積操作ごとに測定することによってモニター可
能である。図1に代表例としてマンガン酸ナノシートと
PDDAを組み合わせて超薄膜を構築した場合の紫外・
可視吸収スペクトルのデータを示す。このデータは、マ
ンガン酸ナノシートコロイド溶液の濃度が、0.08g
dm-3の下で測定した観測データである。PDDAは
本測定波長領域に意味ある吸収を持たず、観測された吸
収はマンガン酸ナノシートに由来するものである。その
吸光度が累積回数にほぼ比例して増大することにより
(図2)、累積操作ごとに一定量のマンガン酸ナノシー
トが基板上に累積されていることがわかり、規則的な薄
膜成長が起きていることが証明される。図3は、このよ
うにして製膜したサンプルの色調の変化を示すものであ
り、累積回数の増加に伴い次第にマンガン酸化物特有の
焦げ茶色を呈している様子が確認される。
The growth of the multilayer ultrathin film can be monitored by measuring the UV-visible absorption spectrum for each cumulative operation. Fig. 1 shows a typical example of ultra-thin UV film obtained by combining manganate nanosheets and PDDA.
The data of visible absorption spectrum are shown. This data shows that the concentration of manganate nanosheet colloidal solution is 0.08g.
It is the observation data measured under dm -3 . PDDA has no significant absorption in this measurement wavelength region, and the observed absorption is derived from the manganate nanosheet. By increasing the absorbance almost in proportion to the number of times of accumulation (Fig. 2), it was found that a certain amount of manganate nanosheets were accumulated on the substrate for each accumulation operation, and regular thin film growth occurred. It is proved. FIG. 3 shows the change in color tone of the sample formed in this way, and it is confirmed that the dark brown characteristic of manganese oxide is gradually exhibited as the number of accumulation increases.

【0016】図4は、同一製膜過程でのサンプルのX線
回折データである。累積が進むに従い2θ=10°付近
にブロードな回折ピークが出現し、その強度が徐々に増
大する(図4)。このピークはマンガン酸ナノシートと
PDDAの繰り返し周期を反映したものと考えることが
でき、やはり多層超薄膜が規則的に成長していることを
裏付けている。その面間隔が0.80nm前後であるこ
とにより、サブnmレンジのナノ構造を有していること
が確証された。
FIG. 4 shows X-ray diffraction data of a sample in the same film forming process. As the accumulation progresses, a broad diffraction peak appears near 2θ = 10 ° and its intensity gradually increases (FIG. 4). This peak can be considered to reflect the repetition period of the manganate nanosheet and PDDA, which also supports the regular growth of the multilayer ultrathin film. The fact that the plane spacing is around 0.80 nm confirms that it has a nanostructure in the sub-nm range.

【0017】本多層超薄膜へのマンガン酸ナノシートの
累積量は、上記吸着サイクルのプロセスパラメータのう
ちナノシートコロイド溶液の濃度、pH、浸漬時間等を
変化させることにより広い範囲で制御することができ
る。図5に1例として、マンガン酸ナノシートコロイド
溶液の濃度が0.01g dm-3における濃度のマンガ
ン酸ナノシートコロイド溶液を用いて製膜した場合の累
積回数と紫外・可視吸収スペクトルの関係を示してい
る。明らかに低い濃度の溶液を用いるとマンガン酸ナノ
シートの累積量を抑えることが可能である。このような
場合でもレイヤーバイレイヤーの多層膜の規則正しい成
長は可能である。
The cumulative amount of manganate nanosheets in the multilayer ultrathin film can be controlled in a wide range by changing the concentration, pH, immersion time and the like of the nanosheet colloidal solution among the process parameters of the adsorption cycle. As an example, FIG. 5 shows the relationship between the cumulative number of times and the UV / visible absorption spectrum when a film was formed using a manganate nanosheet colloidal solution having a concentration of 0.01 g dm -3 . There is. It is possible to suppress the cumulative amount of manganate nanosheets by using a solution having an apparently low concentration. Even in such a case, regular growth of a layer-by-layer multilayer film is possible.

【0018】このようにして調製されるマンガン酸ナノ
シートとポリマーが累積した有機/無機コンポジット超
薄膜から有機ポリマーを加熱して除去し、無機膜化する
こともできる。図6は、マンガン酸ナノシート/PDD
A超薄膜の累積回数と加熱過程の関係を示すX線回折パ
ターンに基づいて明らかにした図である。この図におい
て、矢印は、累積多層膜の積層周期(0.8nm)を示
すブラッグピーク、黒丸はMn23の222反射を示
す。2θが15〜30°におけるハロは、石英ガラス基
板に由来するものである。図6に示すように100℃ま
ではマンガン酸ナノシート/ポリマーのナノ構造を反映
した回折ピークが見られるが、200℃以上の加熱によ
りこの回折線が消失する。これはポリマーが熱分解・除
去されたためであり、無機膜が得られたことがわかる。
さらに加熱すると500℃以上でMn23が結晶化し、
マンガン酸化物薄膜が得られる。
It is also possible to form an inorganic film by heating and removing the organic polymer from the organic / inorganic composite ultrathin film in which the manganate nanosheets and the polymer thus prepared are accumulated. Figure 6 shows manganate nanosheets / PDD
It is a figure clarified based on the X-ray diffraction pattern showing the relationship between the cumulative number of A ultrathin films and the heating process. In this figure, the arrow indicates the Bragg peak indicating the stacking period (0.8 nm) of the cumulative multilayer film, and the black circle indicates 222 reflection of Mn 2 O 3 . The halo in which 2θ is 15 to 30 ° is derived from the quartz glass substrate. As shown in FIG. 6, a diffraction peak reflecting the nanostructure of the manganate nanosheet / polymer is seen up to 100 ° C., but this heating line disappears by heating at 200 ° C. or higher. This is because the polymer was thermally decomposed and removed, and it can be seen that an inorganic film was obtained.
When heated further, Mn 2 O 3 crystallizes above 500 ° C,
A manganese oxide thin film is obtained.

【0019】[0019]

【発明の実施の態様】以上説明したように本発明は、層
状マンガン酸化物を特定の化学的処理に付すことによっ
てえられたマンガンナノシートのコロイド溶液とポリマ
ー溶液とを基板に交互に浸漬するだけで、膜厚が自立的
にコントロールされ、その回数等を制御することにより
サブナノメートルレンジで簡単に厚みを制御しうるマン
ガン酸化物の成膜に成功した。次に、本発明を実施例に
基づいて具体的に説明する。ただし、この実施例は、あ
くまでも本発明の態様を具体例に基づいて説明し、発明
の理解の一助とするためのものであり、本発明をこの限
定する趣旨ではない。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, a colloidal solution of manganese nanosheets obtained by subjecting a layered manganese oxide to a specific chemical treatment and a polymer solution are alternately immersed in a substrate. Then, the film thickness was controlled autonomously, and by controlling the number of times, etc., we succeeded in forming a manganese oxide film whose thickness can be easily controlled in the sub-nanometer range. Next, the present invention will be specifically described based on Examples. However, this example is merely for the purpose of explaining the aspects of the present invention based on specific examples and for helping the understanding of the present invention, and is not intended to limit the present invention.

【0020】[0020]

【実施例1】組成式K0.45MnO2で示される層状マン
ガン酸カリウムを酸処理して得られる層状マンガン酸粉
末(H0.13MnO2・0.7H2O)0.4gをテトラブ
チルアンモニウム水酸化物溶液100cm3に加えて室
温で1週間程度振とう(150rpm)し、マンガン酸
ナノシートが分散したコロイド溶液を得た。これを希釈
して濃度を0.08g dm-3とし、さらに塩酸を添加
してpHを9に調整した。一方2wt%のポリジメチル
ジアリルアンモニウム(PDDA)塩化物水溶液を調製
し、そのpHを9に調整した。次に石英ガラス板(5c
m×1cm)をメルク製ExtranMA022%液にて
洗浄した後、濃硫酸、メタノールの1:1溶液にそれぞ
れ30分間浸漬した。30分後溶液より取り出し、Mi
lli−Q純水で充分に洗浄した。
Example 1 0.4 g of layered manganic acid powder (H 0.13 MnO 2 .0.7H 2 O) obtained by acid-treating layered potassium manganate represented by the composition formula K 0.45 MnO 2 was tetrabutylammonium hydroxide. The resultant solution was added to 100 cm 3 and shaken (150 rpm) at room temperature for about 1 week to obtain a colloidal solution in which manganate nanosheets were dispersed. This was diluted to a concentration of 0.08 g dm -3 and hydrochloric acid was added to adjust the pH to 9. On the other hand, a 2 wt% polydimethyldiallylammonium (PDDA) chloride aqueous solution was prepared and its pH was adjusted to 9. Next, a quartz glass plate (5c
m × 1 cm) was washed with a 2% solution of Extran MA02 manufactured by Merck, and then immersed in a 1: 1 solution of concentrated sulfuric acid and methanol for 30 minutes each. Remove from solution after 30 minutes
It was thoroughly washed with li-Q pure water.

【0021】次にこの基板を濃度0.25wt%のポリ
エチレンイミン水溶液中に20分間浸漬し、Milli
−Q純水で充分に洗浄した。このようにして洗浄・前処
理を行った基板を(1)上記のマンガン酸ナノシートコ
ロイド溶液に浸漬した。(2)20分経過後、Mill
i−Q純水で充分に洗浄し、アルゴン気流を吹きつけて
乾燥させた。(3)次にこの基板をPDDA溶液に20
分間浸漬し、(4)続いてMilli−Q純水で充分に
洗浄した。以上の(1)〜(4)の操作を反復すること
により、マンガン酸ナノシート超薄膜の合成を行った。
Next, this substrate was immersed in a polyethyleneimine aqueous solution having a concentration of 0.25 wt% for 20 minutes to obtain Milli.
-Q It was thoroughly washed with pure water. The substrate thus washed and pretreated was immersed in (1) the manganate nanosheet colloidal solution. (2) After 20 minutes, Mill
It was thoroughly washed with i-Q pure water and dried by blowing an argon stream. (3) Next, this substrate was added to PDDA solution 20
It was soaked for a minute, and then (4) followed by thorough washing with Milli-Q pure water. By repeating the above operations (1) to (4), a manganate nanosheet ultrathin film was synthesized.

【0022】上記の製膜サイクルを1回繰り返すごと
に、紫外・可視吸収スペクトルを測定したところマンガ
ン酸ナノシートに起因するブロードな吸収がみられ(図
1)、その吸光度が1回の吸着サイクルごとにほぼリニ
アーに増大することが確認された(図2)。これにより
ほぼ等量のナノシートが基板に吸着・累積されているこ
とが判明した。また図4に示したX線回折データからは
約0.8nmの周期構造を示すブラックピークが出現
し、吸着回数の増大にしたがって強度が増大した。以上
のデータから、マンガン酸ナノシートとPDDAがナノ
メータースケールレンジで交互に繰り返した多層超薄膜
が構築できることが確認された。
When the UV-visible absorption spectrum was measured every time the above film-forming cycle was repeated, a broad absorption due to the manganate nanosheet was observed (Fig. 1), and the absorbance was measured at each adsorption cycle. It was confirmed that it increased almost linearly (Fig. 2). As a result, it was found that almost equal amounts of nanosheets were adsorbed and accumulated on the substrate. From the X-ray diffraction data shown in FIG. 4, a black peak showing a periodic structure of about 0.8 nm appeared, and the intensity increased as the number of adsorptions increased. From the above data, it was confirmed that a multi-layer ultrathin film in which manganate nanosheets and PDDA were alternately repeated in the nanometer scale range could be constructed.

【0023】[0023]

【実施例2】実施例1と同様の手順でクリーニング、前
処理を行った石英ガラス基板を(1)濃度0.01g
dm-3のマンガン酸ナノシートコロイド溶液(pH=
9)に浸漬した。(2)20分経過後、Milli−Q
純水で充分に洗浄し、アルゴン気流を吹きつけて乾燥さ
せた。(3)次にこの基板を実施例1のPDDA溶液に
20分間浸漬し、(4)続いてMilli−Q純水で充
分に洗浄した。以上の(1)〜(4)の操作を反復し、
製膜過程を実施例1と同様な方法にて調べた結果(図
5)、マンガン酸ナノシートの累積量を実施例1の1/
4以下に抑えた多層超薄膜の生成が確認された。
Example 2 A quartz glass substrate which had been cleaned and pretreated in the same procedure as in Example 1 had a concentration of (1) 0.01 g.
dm -3 manganate nanosheet colloidal solution (pH =
9). (2) After 20 minutes, Milli-Q
It was thoroughly washed with pure water and dried by blowing an argon stream. (3) Next, this substrate was immersed in the PDDA solution of Example 1 for 20 minutes, and (4) subsequently, it was thoroughly washed with Milli-Q pure water. The above operations (1) to (4) are repeated,
As a result of investigating the film forming process in the same manner as in Example 1 (FIG. 5), the cumulative amount of manganate nanosheets was 1/100 of that in Example 1.
It was confirmed that a multilayer ultra-thin film having a thickness of 4 or less was produced.

【0024】[0024]

【実施例3】実施例1により合成したマンガン酸ナノシ
ート/PDDA多層超薄膜を白金るつぼに入れ、電気炉
で加熱した。加熱は室温から5℃ min-1の速度で昇
温し、目的温度で1時間保持後、ヒーターを切り放冷し
た。室温に戻った後、サンプルを取りだしそのX線回折
パターンを測定した(図6)。その結果、多層膜のナノ
構造は200℃で破壊されることが明らかになった。こ
れはPDDAが熱分解されたためと考えられ、無機膜の
生成が確認された。500℃以上の加熱によりMn23
の薄膜に変化することも分かった。
Example 3 The manganate nanosheet / PDDA multilayer ultrathin film synthesized in Example 1 was placed in a platinum crucible and heated in an electric furnace. The heating was performed by raising the temperature from room temperature at a rate of 5 ° C. min −1 , maintaining the target temperature for 1 hour, and then cooling the heater and allowing it to cool. After returning to room temperature, a sample was taken out and its X-ray diffraction pattern was measured (FIG. 6). As a result, it was revealed that the nanostructure of the multilayer film was destroyed at 200 ° C. It is considered that this is because PDDA was thermally decomposed, and formation of an inorganic film was confirmed. Mn 2 O 3 by heating above 500 ° C
It was also found to change to a thin film of.

【0025】[0025]

【発明の効果】以上開示したように、本発明は、これま
でにない成膜方法によってマンガン酸化物の薄膜を提供
することに成功した。その操作は、マンガン酸ナノシー
トのコロイド溶液と、有機ポリマー溶液の2種の溶液を
準備し、成膜しようとする材料基板等をこの溶液に交互
に浸漬するだけで、サブナノメートルレンジで厚みを自
立的にコントロールすることができるという、極めて簡
単で再現性に富んだユニークな方法によって可能となっ
たものであり、その意義は、極めて大きい。
As disclosed above, the present invention has succeeded in providing a thin film of manganese oxide by a film forming method that has never existed before. The operation is to prepare two kinds of solutions, a colloidal solution of manganate nanosheets and an organic polymer solution, and immerse the material substrate, etc. to form a film in this solution alternately, and make the thickness self-sustaining in the sub-nanometer range. It is made possible by an extremely simple and reproducible unique method that can be controlled dynamically, and its significance is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 マンガン酸ナノシート/PDDA多層超薄膜
の累積過程の紫外・可視吸収スペクトル。
FIG. 1 is an ultraviolet-visible absorption spectrum of a manganate nanosheet / PDDA multilayer ultrathin film during the accumulation process.

【図2】 マンガン酸ナノシート/PDDA超薄膜の累
積過程の吸光度(340nm)と累積回数の関係を示す
図。
FIG. 2 is a diagram showing the relationship between the absorbance (340 nm) and the number of accumulations in the accumulation process of manganate nanosheets / PDDA ultrathin films.

【図3】 マンガン酸ナノシート/PDDA超薄膜の累
積回数と色調の関係を観測した図。
FIG. 3 is a diagram observing the relationship between the cumulative number of manganate nanosheets / PDDA ultrathin films and the color tone.

【図4】 マンガン酸ナノシート/PDDA多層超薄膜
の累積過程のX線回折パターン。
FIG. 4 is an X-ray diffraction pattern of a cumulative process of manganate nanosheet / PDDA multilayer ultrathin film.

【図5】 マンガン酸ナノシート/PDDA多層超薄膜
の累積過程の紫外・可視吸収スペクトル。
FIG. 5 is an ultraviolet / visible absorption spectrum of a manganate nanosheet / PDDA multilayer ultrathin film during the accumulation process.

【図6】 マンガン酸ナノシート/PDDA多層超薄膜
(10層)の加熱過程のX線回折パターン。
FIG. 6 is an X-ray diffraction pattern of a heating process of a manganate nanosheet / PDDA multilayer ultrathin film (10 layers).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 遵 茨城県つくば市千現一丁目2番1号 独立 行政法人物質・材料研究機構内 Fターム(参考) 4F100 AA02A AA02C AA17A AA17C AK01B AK31 BA03 BA04 BA05 BA08 BA10A BA10B BA10C GB41 JA11A JA11C JL02 JM02A JM02C 4G048 AA02 AB02 AC06 AD02 AD04 AD06 AE05 4G075 AA24 AA30 BA05 BB04 BB10 CA02 CA51 EE12 FA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Watanabe             1-2-1, Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science F-term (reference) 4F100 AA02A AA02C AA17A AA17C                       AK01B AK31 BA03 BA04                       BA05 BA08 BA10A BA10B                       BA10C GB41 JA11A JA11C                       JL02 JM02A JM02C                 4G048 AA02 AB02 AC06 AD02 AD04                       AD06 AE05                 4G075 AA24 AA30 BA05 BB04 BB10                       CA02 CA51 EE12 FA12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 層状マンガン酸化物微結晶を剥離して得
られる2次元結晶子(以下マンガン酸ナノシートと呼
ぶ)とポリマーとが交互に積層されてなることを特徴と
するマンガン酸化物ナノシートとポリマーとからなる超
薄膜。
1. A manganese oxide nanosheet and a polymer, wherein a two-dimensional crystallite (hereinafter referred to as a manganate nanosheet) obtained by exfoliating layered manganese oxide microcrystals and a polymer are alternately laminated. An ultra thin film consisting of.
【請求項2】 該2次元結晶子がMnO2で示されるマ
ンガン酸ナノシートからなることを特徴とする請求項1
に記載のマンガン酸ナノシートとポリマーとからなる超
薄膜。
2. The manganic acid nanosheet represented by MnO 2 is used as the two-dimensional crystallite.
An ultra-thin film comprising the manganate nanosheet according to 1. and a polymer.
【請求項3】 マンガン酸ナノシートが懸濁したコロイ
ド溶液とカチオン性ポリマー溶液に基板を交互に浸漬す
る操作を反復することにより、基板上にナノシートとポ
リマーをそれぞれ吸着させ、該両成分がサブnm〜nm
レベルの間隔で交互に繰り返す多層膜を累積することを
特徴とするマンガン酸ナノシートとポリマーとからなる
超薄膜の製造方法。
3. The nanosheet and the polymer are respectively adsorbed on the substrate by repeating the operation of alternately immersing the substrate in the colloidal solution in which the manganate nanosheets are suspended and the cationic polymer solution, and the both components are sub-nm. ~ Nm
A method for producing an ultra-thin film composed of a manganate nanosheet and a polymer, characterized by accumulating multilayer films which are alternately repeated at level intervals.
【請求項4】 層状マンガン酸化物微結晶を剥離して得
られる2次元結晶子(マンガン酸ナノシート)とポリマ
ーとが交互に積層され、次いでポリマーを除去してマン
ガン酸ナノシート超薄膜を得ることを特徴とするマンガ
ン酸ナノシート超薄膜。
4. A two-dimensional crystallite (manganate nanosheet) obtained by exfoliating layered manganese oxide microcrystals and a polymer are alternately laminated, and then the polymer is removed to obtain an ultrathin manganate nanosheet film. Ultra-thin manganate nanosheet thin film.
【請求項5】 該2次元結晶子がMnO2で示されるマ
ンガン酸ナノシートからなることを特徴とする請求項4
に記載のマンガン酸ナノシート超薄膜。
5. The manganic acid nanosheet represented by MnO 2 is used as the two-dimensional crystallite.
The ultrathin film of manganate nanosheet according to 1.
【請求項6】 マンガン酸ナノシートが懸濁したコロイ
ド溶液とカチオン性ポリマー溶液に基板を交互に浸漬す
る操作を反復することにより、基板上にナノシートとポ
リマーをそれぞれ吸着させ、該両成分がサブnm〜nm
レベルの間隔で交互に繰り返してなる膜を積層させ、次
いでポリマーを除去してマンガン酸ナノシート超薄膜を
得ることを特徴とするマンガン酸ナノシート超薄膜の製
造方法。
6. The nanosheet and the polymer are adsorbed on the substrate by repeating the operation of alternately immersing the substrate in the colloidal solution in which the manganate nanosheets are suspended and the cationic polymer solution, respectively, and the components are sub-nm. ~ Nm
A method for producing an ultra-thin manganate nanosheet thin film, which comprises stacking films that are alternately repeated at level intervals and then removing the polymer to obtain an ultra-thin manganate nanosheet thin film.
【請求項7】 ポリマーを除去する手段が加熱すること
により行われ、分解によって除去されることを特徴とす
る請求項6に記載のマンガン酸化物超薄膜の製造方法。
7. The method for producing an ultrathin manganese oxide film according to claim 6, wherein the means for removing the polymer is performed by heating and is removed by decomposition.
JP2002142285A 2002-05-17 2002-05-17 Manganate nanosheet ultrathin film and method for producing the same Expired - Lifetime JP3697513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142285A JP3697513B2 (en) 2002-05-17 2002-05-17 Manganate nanosheet ultrathin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142285A JP3697513B2 (en) 2002-05-17 2002-05-17 Manganate nanosheet ultrathin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003326637A true JP2003326637A (en) 2003-11-19
JP3697513B2 JP3697513B2 (en) 2005-09-21

Family

ID=29702609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142285A Expired - Lifetime JP3697513B2 (en) 2002-05-17 2002-05-17 Manganate nanosheet ultrathin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3697513B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for manufacturing layered manganese oxide
JP2006272296A (en) * 2005-03-30 2006-10-12 Yamaguchi Univ Adsorbent exhibiting selective adsorbent property to silver ion and lead ion
JP2007022856A (en) * 2005-07-19 2007-02-01 National Institute For Materials Science Synthetic method of manganese oxide nanomesh
JP2009224145A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Electrode for lithium secondary battery and lithium secondary battery using the same
WO2009139397A1 (en) * 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
KR101317517B1 (en) 2011-10-28 2013-10-15 동국대학교 산학협력단 Method for Mn3O4 nanoparticles by solid-state decomposition of exfoliated MnO2 nanosheet
US9935308B2 (en) 2014-03-11 2018-04-03 Panasonic Corporation Turbostratic material, active material for electricity storage devices, electrode, and electricity storage device
CN114645273A (en) * 2020-12-21 2022-06-21 丰田自动车株式会社 Coating film and composite material having coating film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for manufacturing layered manganese oxide
JP4547495B2 (en) * 2004-09-13 2010-09-22 国立大学法人山口大学 Method for producing layered manganese oxide thin film
JP2006272296A (en) * 2005-03-30 2006-10-12 Yamaguchi Univ Adsorbent exhibiting selective adsorbent property to silver ion and lead ion
JP2007022856A (en) * 2005-07-19 2007-02-01 National Institute For Materials Science Synthetic method of manganese oxide nanomesh
JP2009224145A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Electrode for lithium secondary battery and lithium secondary battery using the same
WO2009139397A1 (en) * 2008-05-01 2009-11-19 日本碍子株式会社 Plate-like crystal grain and production method thereof, and secondary lithium battery
JPWO2009139397A1 (en) * 2008-05-01 2011-09-22 日本碍子株式会社 Plate-like crystal particles, method for producing the same, and lithium secondary battery
KR101317517B1 (en) 2011-10-28 2013-10-15 동국대학교 산학협력단 Method for Mn3O4 nanoparticles by solid-state decomposition of exfoliated MnO2 nanosheet
US9935308B2 (en) 2014-03-11 2018-04-03 Panasonic Corporation Turbostratic material, active material for electricity storage devices, electrode, and electricity storage device
CN114645273A (en) * 2020-12-21 2022-06-21 丰田自动车株式会社 Coating film and composite material having coating film
JP7431150B2 (en) 2020-12-21 2024-02-14 トヨタ自動車株式会社 Coatings and composite materials with coatings

Also Published As

Publication number Publication date
JP3697513B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP2001270022A (en) Titania ultrathin film and method of manufacture it
Chen et al. The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process
Dubal et al. A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application
Gracia et al. Photoefficiency and optical, microstructural, and structural properties of TiO2 thin films used as photoanodes
WO2009142325A1 (en) Dielectric film, dielectric element, and process for producing the dielectric element
Chen et al. Novel synthesis of highly ordered BiVO4 nanorod array for photoelectrochemical water oxidation using a facile solution process
Sinha et al. Effects of various parameters on structural and optical properties of CBD-grown ZnS thin films: a review
JP3726140B2 (en) High-grade titania nanosheet ultrathin film and method for producing the same
Karuppuchamy et al. A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature
WO2007094244A1 (en) Nano-sized ultrathin film dielectric, process for producing the same and nano-sized ultrathin film dielectric device
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
JP2003326637A (en) Manganic acid nano-sheet ultrathin film and manufacturing method therefor
Karuppuchamy et al. Cathodic electrodeposition of nanoporous ZnO thin films from new electrochemical bath and their photoinduced hydrophilic properties
JP5205675B2 (en) Photocatalyst nanosheet and photocatalyst material
JP2004149367A (en) Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
JP3505574B2 (en) Ultra thin titania film and method for producing the same
WO2012093658A1 (en) Method for producing conductive zinc oxide film
JP4958086B2 (en) Epitaxial nano TiO2 particle coating and method for producing the same
JP2015105202A (en) Titanium oxide film and method for forming the same
JP5683594B2 (en) Superporous photocatalytic material, method for producing the same, and use thereof
JP2011111346A (en) HYBRID FILM MADE FROM Zn(OH)2 NANO-SHEET AND ZnO NANO-WHISKER FILM, HYBRID FILM MADE FROM ZnO NANO-SHEET AND ZnO NANO-WHISKER FILM AND METHODS FOR MANUFACTURING THE SAME
Mushtaq et al. Review on the synthesis methods of nano-tungsten oxide dihydrate colloid
JP4104899B2 (en) Porous titanium oxide thin film and method for producing the same
JP2006054421A (en) Semiconductor film
JP4944707B2 (en) Manufacturing method of gas sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Ref document number: 3697513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term