JP2008156163A - Spinel type lithium manganese oxide and method for manufacturing the same - Google Patents

Spinel type lithium manganese oxide and method for manufacturing the same Download PDF

Info

Publication number
JP2008156163A
JP2008156163A JP2006347083A JP2006347083A JP2008156163A JP 2008156163 A JP2008156163 A JP 2008156163A JP 2006347083 A JP2006347083 A JP 2006347083A JP 2006347083 A JP2006347083 A JP 2006347083A JP 2008156163 A JP2008156163 A JP 2008156163A
Authority
JP
Japan
Prior art keywords
manganese oxide
lithium manganese
type lithium
spinel type
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006347083A
Other languages
Japanese (ja)
Other versions
JP4673287B2 (en
Inventor
Takashi Endo
孝志 遠藤
Hiroki Hashiba
裕樹 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2006347083A priority Critical patent/JP4673287B2/en
Publication of JP2008156163A publication Critical patent/JP2008156163A/en
Application granted granted Critical
Publication of JP4673287B2 publication Critical patent/JP4673287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spinel type lithium manganese oxide as a positive electrode active material for a secondary battery having a small particle diameter and less irregularity in the crystal structure and providing charged electrical energy to the outside of the cell even if large current discharge is carried out, and a method for manufacturing the same. <P>SOLUTION: The spinel type lithium manganese oxide has a chemical composition represented by the general formula: Li<SB>1+x</SB>M<SB>y</SB>Mn<SB>2-x-y</SB>O<SB>4</SB>, a maximum particle diameter D<SB>100</SB>of ≤15 μm, a half-value width by X-ray diffraction of (400) face being ≤0.30 and a ratio (I<SB>400</SB>/I<SB>111</SB>) of peak intensity I<SB>400</SB>of (400) face to peak intensity I<SB>111</SB>of (111) face being ≥0.33, wherein M is one or more metal elements selected from Al, Co, Ni, Mg, Zr and Ti, 0≤x≤0.33, and 0≤y≤0.2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スピネル型リチウムマンガン酸化物及びその製造方法に係り、特に、結晶粒径が小さく、結晶構造に乱れが少なく、大電流条件でも大きな放電容量を与えることができる二次電池用の正極活物質であるリチウムマンガン酸化物及びその製造方法に関する。   The present invention relates to a spinel-type lithium manganese oxide and a method for producing the same, and in particular, a positive electrode for a secondary battery that has a small crystal grain size, little crystal structure disturbance, and can provide a large discharge capacity even under a large current condition. The present invention relates to an active material lithium manganese oxide and a method for producing the same.

リチウム二次電池は起電力やエネルギー密度の点で優れており、小型ビデオカメラ、携帯電話、ノートパソコンなどの携帯電子・通信機器用の電池として広く使用されている。近年では携帯用の電子機器のみならず自転車や電動バイク、自動車用などの移動体向け電源としても注目されてきており、これら分野向けのリチウム二次電池の開発も活発に進められてきている。   Lithium secondary batteries are excellent in terms of electromotive force and energy density, and are widely used as batteries for portable electronic / communication devices such as small video cameras, mobile phones, and notebook computers. In recent years, attention has been paid not only to portable electronic devices but also to power sources for mobile bodies such as bicycles, electric motorcycles, and automobiles, and development of lithium secondary batteries for these fields has been actively promoted.

現在リチウム二次電池用の正極活物質としては、コバルト酸リチウム(LiCoO)が広く利用されているが、主原料であるコバルトがレアメタルであり、高価である上に資源の枯渇化等による供給不安が指摘されている。これに対して、スピネル型リチウムマンガン酸化物(化学式:LiMn,マンガン酸リチウム、リチウムマンガンスピネルとも称される)はその主原料となるマンガンは資源が豊富である上に経済性の面からも有利であり、その将来性が期待されている。 Currently, lithium cobaltate (LiCoO 2 ) is widely used as a positive electrode active material for lithium secondary batteries, but cobalt, the main raw material, is a rare metal and is expensive and supplied by depleting resources. Anxiety has been pointed out. On the other hand, spinel-type lithium manganese oxide (chemical formula: LiMn 2 O 4 , lithium manganate, also called lithium manganese spinel) has abundant resources and is economical in terms of manganese. Therefore, the future is expected.

携帯用電子機器用などの電源では機器の電源を入れてから使用可能となるまでの時間の短縮が求められており、自動車用についても移動体の急激な加減速に対応するため瞬間的に大電流が通電できる電池が必要とされる状況にある。   For power supplies for portable electronic devices, there is a demand for shortening the time from when the device is turned on until it can be used. For automobiles as well, it is instantaneously large in order to respond to sudden acceleration / deceleration of moving objects. There is a need for a battery that can be energized.

通常、リチウムと遷移金属の複合酸化物は、スピネル型リチウムマンガン酸化物も含め、一般に導電性が低く、二次電池用正極活物質として用いる場合には電極内の導電性を確保するために導電材の配合が必要であり、リチウム二次電池の正極は、スピネル型リチウムマンガン酸化物等の正極活物質とカーボンブラックや黒鉛等の導電材及び結着材を混合してスラリーを調製し、これをアルミニウム箔に塗工することによって作製されるのが一般的である。   In general, composite oxides of lithium and transition metals, including spinel-type lithium manganese oxides, generally have low conductivity, and when used as a positive electrode active material for secondary batteries, they are conductive to ensure conductivity within the electrodes. The positive electrode of the lithium secondary battery is prepared by mixing a positive electrode active material such as spinel type lithium manganese oxide with a conductive material such as carbon black or graphite and a binder to prepare a slurry. In general, it is produced by coating the material on an aluminum foil.

スピネル型リチウムマンガン酸化物を正極活物質として用いる二次電池においても、通常の電池と同様に、大電流放電に際しては、電池内部の抵抗によるオーム損や正負極間の分極等による影響のため、充電された電気エネルギーを電池外に完全に取り出すことができないという問題がある。その問題に対して電極の薄膜化やその他の手法で電池内部抵抗を低減させる試みがなされている。   Even in a secondary battery using spinel type lithium manganese oxide as a positive electrode active material, like a normal battery, during a large current discharge, due to the effect of ohmic loss due to internal resistance of the battery or polarization between positive and negative electrodes, There is a problem that the charged electric energy cannot be completely taken out of the battery. In order to solve this problem, attempts have been made to reduce the internal resistance of the battery by reducing the thickness of the electrode or using other techniques.

かかる電極の薄膜化を図るためには、正極活物質の粒径を可能な限り小さくすることが有利であることが知られている。粒径を小さくするためには、スピネル型リチウムマンガン酸化物を粉砕する方法が有効であると考えられおり、例えば、特許文献1には、正極活物質の比表面積が5.0m/g以上であり、X線回折分析による結晶子径が70nm以下であり、かつ、50%累積粒子径が1μm以下である正極活物質を非水電解質二次電池用電極として利用することが開示されている。 In order to reduce the thickness of the electrode, it is known that it is advantageous to make the particle size of the positive electrode active material as small as possible. In order to reduce the particle size, it is considered that a method of pulverizing spinel type lithium manganese oxide is effective. For example, Patent Document 1 discloses that the specific surface area of the positive electrode active material is 5.0 m 2 / g or more. It is disclosed that a positive electrode active material having a crystallite diameter of 70 nm or less by X-ray diffraction analysis and a 50% cumulative particle diameter of 1 μm or less is used as an electrode for a nonaqueous electrolyte secondary battery. .

また、特許文献2には、電解析出した二酸化マンガンを粉砕し、得られた平均粒子径3〜20μmの電解二酸化マンガンを利用してリチウムマンガン酸化物を製造するという方法が開示されている。さらに、特許文献3には、二酸化マンガンを平均粒径0.5μmに粉砕し、これに水酸化リチウム水溶液を加えてスラリーとなし、乾燥後、650〜950℃で焼成することにより、真球に近い形状で平均粒径約10μmの幅の狭い分布を有するマンガン酸リチウムの製造方法が開示されている。   Patent Document 2 discloses a method of producing lithium manganese oxide by pulverizing electrolytically deposited manganese dioxide and using the obtained electrolytic manganese dioxide having an average particle diameter of 3 to 20 μm. Furthermore, in Patent Document 3, manganese dioxide is pulverized to an average particle size of 0.5 μm, and an aqueous lithium hydroxide solution is added to form a slurry. After drying, firing is performed at 650 to 950 ° C. A method for producing lithium manganate having a narrow distribution with a close shape and an average particle size of about 10 μm is disclosed.

特開2006−202724号公報JP 2006-202724 A 特開2000−169151号公報JP 2000-169151 A 特開10−172567号公報JP 10-172567 A

しかしながら、特許文献1に開示されたスピネル型リチウムマンガン酸化物を粉砕する手段では、粉砕工程においてリチウムマンガン酸化物の結晶構造が損傷するために粒径が小さくなるものの電池特性が損なわれるという問題があった。一方、特許文献2あるいは3に開示されるような、予め原料である二酸化マンガンを粉砕しておく方法では、焼成時に粒子の成長が避けられず、結局、優れた電池特性を与えることができる正極活物質を得ることができない。   However, the means for pulverizing the spinel type lithium manganese oxide disclosed in Patent Document 1 has a problem in that the battery characteristics are impaired although the particle size is reduced because the crystal structure of the lithium manganese oxide is damaged in the pulverization step. there were. On the other hand, in the method of preliminarily pulverizing manganese dioxide as a raw material as disclosed in Patent Document 2 or 3, the growth of particles is unavoidable at the time of firing, and eventually a positive electrode capable of giving excellent battery characteristics. An active material cannot be obtained.

本発明は、粒径が小さく、かつ、結晶構造に乱れが少なく、大電流放電を行っても充電された電気エネルギーを電池外に十分に取り出すことができる二次電池用正極活物質としてのスピネル型リチウムマンガン酸化物及びその製造方法を提供することを目的とする。   The present invention provides a spinel as a positive electrode active material for a secondary battery that has a small particle size, little disorder in the crystal structure, and can sufficiently take out charged electric energy outside the battery even when a large current discharge is performed. An object of the present invention is to provide a type lithium manganese oxide and a method for producing the same.

本発明者は、化学的に合成されたスピネル型リチウムマンガン酸化物を十分微細に粉砕した後に特定の温度条件で熱処理を行えば、微細でかつ結晶構造に乱れがないスピネル型リチウムマンガン酸化物が得られることを知見し、かつそれにより得られたスピネル型リチウムマンガン酸化物の特性を確認して本発明を完成した。   The present inventor has developed a spinel type lithium manganese oxide that is fine and has no disorder in the crystal structure if the chemically synthesized spinel type lithium manganese oxide is sufficiently finely pulverized and then heat-treated at a specific temperature condition. The present invention was completed by confirming that it was obtained and confirming the properties of the spinel type lithium manganese oxide obtained thereby.

本発明に係るスピネル型リチウムマンガン酸化物は、化学組成が一般式:Li1+xMn2−x−yで表され、最大粒子径D100が15μm以下、(400)面のX線回折による半価幅が0.30以下、かつ、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111が0.33以上である。ここに、MはAl,Co,Ni,Mg,Zr及びTiから選ばれた1種又は2種以上の金属元素であり、xは0≦x≦0.33の範囲を、yは0≦y≦0.2の範囲をとる。 The spinel-type lithium manganese oxide according to the present invention has a chemical composition represented by a general formula: Li 1 + x M y Mn 2−xy O 4 , a maximum particle diameter D 100 of 15 μm or less, and (400) plane X-rays half-width due to diffraction is 0.30 or less, and is (400) the ratio I 400 / I 111 to the peak intensity I 111 of (111) plane peak intensity I 400 of the surface 0.33 or more. Here, M is one or more metal elements selected from Al, Co, Ni, Mg, Zr and Ti, x is in the range 0 ≦ x ≦ 0.33, and y is 0 ≦ y. The range is ≦ 0.2.

上記本発明に係るスピネル型リチウムマンガン酸化物は、化学組成が一般式Li1+xMn2−x−yで表されるスピネル型リチウムマンガン酸化物を化学的に合成する段階と、前記段階で合成されたスピネル型リチウムマンガン酸化物を最大粒子径D100が15μm以下に粉砕する段階と、前記粉砕によって得られた粉砕物を500〜750℃以下で熱処理する段階とを順次行うことによって製造できる。 The spinel-type lithium manganese oxide according to the present invention includes a step of chemically synthesizing a spinel-type lithium manganese oxide having a chemical composition represented by the general formula Li 1 + x M y Mn 2-xy O 4 , By sequentially performing a step of pulverizing the spinel-type lithium manganese oxide synthesized in the step so that the maximum particle size D 100 is 15 μm or less, and a step of heat-treating the pulverized product obtained by the pulverization at 500 to 750 ° C. or less. Can be manufactured.

前記スピネル型リチウムマンガン酸化物の合成段階において、マンガン原料を電解二酸化マンガンとすることが好適である。   In the synthesis step of the spinel type lithium manganese oxide, it is preferable that the manganese raw material is electrolytic manganese dioxide.

前記本発明のスピネル型リチウムマンガン酸化物の製造工程における粉砕段階をジェットミルにより行うものとすることができる。   The pulverization step in the production process of the spinel type lithium manganese oxide of the present invention can be performed by a jet mill.

本発明に係るスピネル型リチウムマンガン酸化物は、二次電池の正極活物質として好適に利用することができる。   The spinel type lithium manganese oxide according to the present invention can be suitably used as a positive electrode active material for a secondary battery.

本発明により、粒径が小さく、かつ、結晶構造に乱れが少ないスピネル型リチウムマンガン酸化物を提供することができ、それを正極活物質として利用することにより、短時間で大電流放電を可能にできる二次電池を提供することができる。   According to the present invention, it is possible to provide a spinel type lithium manganese oxide having a small particle size and less disordered crystal structure. By using it as a positive electrode active material, a large current discharge can be achieved in a short time. The secondary battery which can be provided can be provided.

本発明に係るスピネル型リチウムマンガン酸化物は、化学組成が一般式:Li1+xMn2−x−yで表され、最大粒子径D100が15μm以下、(400)面のX線回折による半価幅が0.30以下、かつ、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111が0.33以上である。ここに、MはAl,Co,Ni,Mg,Zr及びTiから選ばれた1種又は2種以上の金属元素であり、xは0≦x≦0.33の範囲を、yは0≦y≦0.2の範囲をとる。 The spinel-type lithium manganese oxide according to the present invention has a chemical composition represented by a general formula: Li 1 + x M y Mn 2−xy O 4 , a maximum particle diameter D 100 of 15 μm or less, and (400) plane X-rays half-width due to diffraction is 0.30 or less, and is (400) the ratio I 400 / I 111 to the peak intensity I 111 of (111) plane peak intensity I 400 of the surface 0.33 or more. Here, M is one or more metal elements selected from Al, Co, Ni, Mg, Zr and Ti, x is in the range 0 ≦ x ≦ 0.33, and y is 0 ≦ y. The range is ≦ 0.2.

本発明に係るスピネル型リチウムマンガン酸化物は、化学組成が一般式:Li1+xMn2−x−yで表される。すなわち、基本物質であるスピネル型リチウムマンガン酸化物(化学式:LiMn)のMnの一部を第三の金属元素Mに置換したもののも含まれ、また、Mnに対してLiをやや過剰に含むものも含まれる。この金属元素Mは、電池内部へのマンガン成分の溶出抑制や高温特性の改善に効果があるものとして選択され、Al,Co,Ni,Mg,Zr及びTiから選ばれた元素の1種又は2種以上を充当することができる。金属元素Mの置換量は、化学式:Li1+xMn2−x−yにおいて、yが0≦y≦0.2の範囲とする。置換量が多すぎると、これらを正極活物質として利用した二次電池の放電容量が低下する傾向があるためであり、放電容量の極端な低下は好ましくないため、y≦0.2に制限する。また、本発明のスピネル型リチウムマンガン酸化物においては、Mn(置換された金属元素Mを含む)に対するLiの原子比の範囲は、1〜1.33とする。Mnに対するLiの比が大きくなるにしたがい、リチウムマンガン二次電池の放電容量が低下し、例えばx:1.33では、Mn価数がほぼ4となって理論上4V領域では充放電しなくなるためである。 Spinel-type lithium manganese oxide according to the present invention, the chemical composition formula: represented by Li 1 + x M y Mn 2 -x-y O 4. That is, the basic substance spinel-type lithium manganese oxide (chemical formula: LiMn 2 O 4 ) in which a part of Mn is replaced with the third metal element M is included, and Li is slightly excessive with respect to Mn. Also included in This metal element M is selected as one that is effective in suppressing elution of manganese components into the battery and improving high temperature characteristics, and is one or two elements selected from Al, Co, Ni, Mg, Zr and Ti. More than seeds can be allocated. The substitution amount of the metal element M is set such that y is in the range of 0 ≦ y ≦ 0.2 in the chemical formula: Li 1 + x M y Mn 2−xy O 4 . This is because if the amount of substitution is too large, the discharge capacity of secondary batteries using these as a positive electrode active material tends to decrease, and an extreme decrease in discharge capacity is not preferable, so y ≦ 0.2 is limited. . In the spinel type lithium manganese oxide of the present invention, the range of the atomic ratio of Li to Mn (including the substituted metal element M) is set to 1 to 1.33. As the ratio of Li to Mn increases, the discharge capacity of the lithium manganese secondary battery decreases. For example, at x: 1.33, the Mn valence is almost 4 and theoretically no charge / discharge occurs in the 4V region. It is.

本発明においては、リチウムマンガン酸化物の最大粒子径D100が15μm以下である。ここで最大粒子径とは、レーザー回折・散乱法の粒度分布測定装置により、計測された粒度分布において、累積値が100%を示す粒子径をいい、日機装(株)のマイクロトラック粒度分布測定装置(型式HRA9320−X100)を用いて測定することができる。この最大粒子径D100は、電極の薄膜化を考慮すると極力小さくすることが望ましいが、現実の塗工厚さを考慮すると最大粒子径D100が15μm以下で十分である。このような超微粉への粉砕は、例えば、ジェットミルを用いて粉砕することによって達成することができる。 In the present invention, the maximum particle diameter D 100 of the lithium manganese oxide is 15μm or less. Here, the maximum particle size means a particle size with a cumulative value of 100% in the particle size distribution measured by the particle size distribution measuring device of the laser diffraction / scattering method. Microtrack particle size distribution measuring device of Nikkiso Co., Ltd. (Model HRA9320-X100) can be used for measurement. The maximum particle size D 100 is desirably as small as possible in consideration of the thinning of the electrode, but the maximum particle size D 100 of 15 μm or less is sufficient in consideration of the actual coating thickness. Such pulverization into ultrafine powder can be achieved, for example, by pulverization using a jet mill.

また、本発明では、結晶の(400)面のX線回折による半価幅が0.30以下、かつ、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111が0.33以上であり、結晶構造の乱れが極めて小さくなっている。これにより正極材料として相対的に結晶性が高く、電池特性に優れるという利点がある。なお、半価幅とは、回折ピークの1/2の高さにおけるピーク幅をいい、ピーク強度比I400/I111は、44°付近のピーク高さと18°付近のピーク高さの比である。 In the present invention, the half-value width of the (400) plane of the crystal by X-ray diffraction is 0.30 or less, and the ratio of the peak intensity I 400 of the ( 400 ) plane to the peak intensity I 111 of the (111) plane is I. 400 / I 111 is 0.33 or more, and the disorder of the crystal structure is extremely small. As a result, the positive electrode material has an advantage of relatively high crystallinity and excellent battery characteristics. The half width is the peak width at half the height of the diffraction peak, and the peak intensity ratio I 400 / I 111 is the ratio of the peak height near 44 ° to the peak height near 18 °. is there.

上記の特性を有するリチウムマンガン酸化物は、下記の方法によって製造することができる。   The lithium manganese oxide having the above characteristics can be produced by the following method.

まず、化学組成が一般式Li1+xMn2−x−yで表されるスピネル型リチウムマンガン酸化物を化学的に合成する。この工程は、既存のスピネル型リチウムマンガン酸化物を製造する工程によればよく、特に制限されない。例えば、特開平10−255798号公報に記載されているような、水溶性リチウム塩と硝酸マンガンを、カチオン担持体として非イオン水溶性高分子物質の存在下に反応せしめてリチウムマンガン酸化物を得、これを乾燥・焼成するという方法をとってもよい。しかしながら、粉砕された電解二酸化マンガンと水酸化リチウム等のリチウム原料を混合後、焼成する方法をとるときは、内部空隙の少ないスピネル型リチウムマンガン酸化物を経済的に合成することができ有利である。 First, a spinel-type lithium manganese oxide having a chemical composition represented by the general formula Li 1 + x M y Mn 2−xy O 4 is chemically synthesized. This step may be a step of producing an existing spinel type lithium manganese oxide, and is not particularly limited. For example, as described in JP-A-10-255798, a water-soluble lithium salt and manganese nitrate are reacted as a cation carrier in the presence of a nonionic water-soluble polymer substance to obtain a lithium manganese oxide. A method of drying and baking this may be used. However, when a method of firing after mixing pulverized electrolytic manganese dioxide and lithium raw material such as lithium hydroxide is advantageous, it is advantageous because it can economically synthesize spinel-type lithium manganese oxide with less internal voids. .

ついで、前記段階で得られたスピネル型リチウムマンガン酸化物を最大粒子径D100が15μm以下になるように粉砕する。粉砕する手段は、特に制限する必要はないが、超微粉砕機として知られるジェットミルを用いると最大粒子径D100が15μm以下への粉砕を容易に行うことができる。 Then, the spinel-type lithium-manganese oxide obtained in the step is the maximum particle diameter D 100 is ground to be 15μm or less. Means for pulverizing is not particularly necessary to limit the maximum particle diameter D 100 By using a jet mill known as micronizer can be easily ground to 15μm or less.

上記のようにして得られた粉砕されたスピネル型リチウムマンガン酸化物は、ついで粉砕過程で生じた結晶構造の乱れを回復するために行うもので、その温度範囲は下記実験等に基づいて決定する。   The pulverized spinel type lithium manganese oxide obtained as described above is then performed to recover the disorder of the crystal structure generated in the pulverization process, and its temperature range is determined based on the following experiment etc. .

原子比でLi:Mn:Al:Co=1.1:1.82:0.04:0.04の比となるように、炭酸リチウム、電解二酸化マンガン、四酸化三コバルト及び水酸化アルミニウムを、精密混合機を用いて乾式混合し、800℃で20時間大気中において焼成して組成式がLi1.1Mn1.82Al0.04Co0.04となるスピネル型リチウムマンガン酸化物を合成した。得られたスピネル型リチウムマンガン酸化物を、ジェットミルを用いて、最大粒子径D100が11μmになるように粉砕した。この粉砕物からサンプルを切り出し、それぞれ350〜800℃の温度で大気雰囲気下において20時間熱処理し、得られたスピネル型リチウムマンガン酸化物の最大粒子径D100、(400)面のX線回折による半価幅及び(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111を測定する実験を行った。図1は、上記実験の結果を熱処理温度と特性値との関係図として整理した結果である。 Lithium carbonate, electrolytic manganese dioxide, tricobalt tetroxide and aluminum hydroxide so that the atomic ratio is Li: Mn: Al: Co = 1.1: 1.82: 0.04: 0.04, Spinel-type lithium manganese oxide having a composition formula of Li 1.1 Mn 1.82 Al 0.04 Co 0.04 O 4 by dry mixing using a precision mixer and firing in the air at 800 ° C. for 20 hours. Was synthesized. The resulting spinel-type lithium manganese oxide, using a jet mill, a maximum particle diameter D 100 is ground to be 11 [mu] m. A sample was cut out from this pulverized product, heat-treated at 350 to 800 ° C. in the air atmosphere for 20 hours, and the maximum particle diameter D 100 of the obtained spinel type lithium manganese oxide was obtained by X-ray diffraction of (400) plane. the half width and (400) plane of the ratio I 400 / I 111 for (111) plane peak intensity I 111 of the peak intensity I 400 was carried out an experiment to measure. FIG. 1 shows the results of the above experiment arranged as a relationship diagram between the heat treatment temperature and the characteristic value.

図1から明らかなように、熱処理温度が500℃未満では、(400)面のX線回折による半価幅の低下が認められず、また、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111の上昇も認められない。一方、熱処理温度が750℃を超えると、半価幅の低下及び比I400/I111の上昇は十分大きいが、最大結晶粒径が15μmを超えるようになり、本願発明の目的である粒径が小さく塗工厚さを薄くすることができるスピネル型リチウムマンガン酸化物を提供することができなくなる。 As is apparent from FIG. 1, when the heat treatment temperature is less than 500 ° C., no decrease in half width due to X-ray diffraction of the (400) plane is observed, and (111) of the peak intensity I 400 of the (400) plane is not observed. increase in specific I 400 / I 111 to the peak intensity I 111 of the surface not also recognized. On the other hand, when the heat treatment temperature exceeds 750 ° C., the decrease in the half width and the increase in the ratio I 400 / I 111 are sufficiently large, but the maximum crystal grain size exceeds 15 μm. Therefore, it becomes impossible to provide a spinel type lithium manganese oxide that can be applied with a small coating thickness.

このような結果を生ずる原因は、熱処理温度が500℃未満では、粉砕によって受けた結晶構造の乱れの回復が不十分であり、一方、750℃を超えると、リチウムマンガン酸化物からの酸素の脱離反応が起きるためであると推測される。したがって、熱処理温度は500〜750℃の範囲に限定される。なお、熱処理時間は、上記結晶構造の乱れの回復を達成できればよく、また熱処理雰囲気は大気雰囲気でよい。なお、好ましくは、上記熱処理温度は600〜700℃とするのが好適である。   The cause of such a result is that when the heat treatment temperature is less than 500 ° C., recovery of the disorder of the crystal structure received by pulverization is insufficient, while when it exceeds 750 ° C., oxygen desorption from the lithium manganese oxide is not achieved. This is presumed to be due to a separation reaction. Therefore, the heat treatment temperature is limited to a range of 500 to 750 ° C. Note that the heat treatment time only needs to achieve recovery of the disorder of the crystal structure, and the heat treatment atmosphere may be an air atmosphere. In addition, Preferably, the said heat processing temperature is 600-700 degreeC.

上記のようにして熱処理されたリチウムマンガン酸化物は、篩い分けされて製品とされ、二次電池の正極材料として提供される。この篩い分けは上記粒径が得られるように行えばよく、その手段に特に制限はない。   The lithium manganese oxide heat-treated as described above is sieved into a product and provided as a positive electrode material for a secondary battery. This sieving may be performed so as to obtain the above particle diameter, and the means is not particularly limited.

本発明に係る上記リチウムマンガン系複合酸化物を正極活物質として使用する場合にも、通常のリチウムマンガン酸化物と同様、負極活物質には炭素材料、リチウム吸蔵合金等のリチウム吸蔵放出可能な物質を用い、電解液としてはリチウム塩を非水系電解液または樹脂に溶解した非水系電解液を用いる。すなわち、リチウム塩として6フッ化リン酸リチウム(LIPF6)を用い、非水系電解液としてエチレンカーボネートとジメチルカーボネートの混合溶液を用いた。このほかにもリチウム塩としてLiClO、LiAsF、LiBF、LiSOCF、LiN(SOCF)になどやそれらの混合物が用いられる。また、非水電解液としてはジエチルカーボネート、プロピレンカーボネート等やその混合物、及びエチレンオキシド、エチレンスルフイド、エチレンイミン等を主鎖とした高いイオン伝導性を有する高分子固体電解質(樹脂)等を用いることが可能である。 Even when the lithium manganese based composite oxide according to the present invention is used as a positive electrode active material, the negative electrode active material is a material capable of inserting and extracting lithium, such as a carbon material and a lithium storage alloy, as in the case of a normal lithium manganese oxide. As the electrolytic solution, a non-aqueous electrolytic solution obtained by dissolving a lithium salt in a non-aqueous electrolytic solution or a resin is used. That is, lithium hexafluorophosphate (LIPF6) was used as the lithium salt, and a mixed solution of ethylene carbonate and dimethyl carbonate was used as the non-aqueous electrolyte. In addition, LiClO 4 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , LiN (SO 3 CF 3 ), and the like and mixtures thereof are used as lithium salts. Further, as the non-aqueous electrolyte, diethyl carbonate, propylene carbonate or the like or a mixture thereof, and a polymer solid electrolyte (resin) having high ion conductivity having ethylene oxide, ethylene sulfide, ethyleneimine or the like as a main chain are used. It is possible.

炭酸リチウム、電解二酸化マンガン及び必要に応じて第三金属元素を含有する物質を所定の比率になるように精密混合機で乾式混合し、大気中で800℃20時間焼成してスピネル型リチウムマンガン酸化物を合成した。得られたスピネル型リチウムマンガン酸化物を、ジェットミルを用いて、最大粒子径が15μm以下になるように粉砕し、表1に示す条件で熱処理を行って製品とした。   Lithium carbonate, electrolytic manganese dioxide and, if necessary, a substance containing a third metal element are dry-mixed with a precision mixer to a predetermined ratio, and calcined in air at 800 ° C. for 20 hours to oxidize spinel lithium manganese The product was synthesized. The obtained spinel-type lithium manganese oxide was pulverized using a jet mill so that the maximum particle size was 15 μm or less, and heat-treated under the conditions shown in Table 1 to obtain a product.

得られた製品の特性値として最大粒子径D100、(400)面のX線回折による半価幅、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111を測定するとともに、これらを正極活物質として用い、3極式の開放型試験セルを組み立てて電池特性の測定を行った。測定は、対極及び参照極として金属Liを用い3.0V−4.3Vの電位範囲で充放電させ、1時間でセル全体が放電し切る電流密度を1Cとして、0.2Cおよび3.0Cの条件で放電容量を測定した。また、0.2Cの条件で測定した放電容量に対する3.0Cの条件での放電容量をレート特性として算出した。 As the characteristic values of the obtained product, the maximum particle diameter D 100 , the half width by X-ray diffraction of the (400) plane, the ratio I 400 of the (400) plane peak intensity I 400 to the (111) plane peak intensity I 111 / I 111 was measured, and these were used as positive electrode active materials to assemble a three-electrode open-type test cell to measure battery characteristics. The measurement was performed by charging and discharging in a potential range of 3.0 V to 4.3 V using metal Li as a counter electrode and a reference electrode, and assuming that the current density at which the entire cell was discharged in 1 hour was 1 C, 0.2 C and 3.0 C The discharge capacity was measured under the conditions. Further, the discharge capacity under the condition of 3.0 C relative to the discharge capacity measured under the condition of 0.2 C was calculated as the rate characteristic.

Figure 2008156163
Figure 2008156163

表1から明らかなように、ジェットミルによる粉砕後、600℃、650℃あるいは700℃で20時間の熱処理を行ったものでは、熱処理を行わなかったもの、あるいは本発明の範囲より低温側の450℃で熱処理を行ったものに比べて(400)面のピーク幅が狭く、また(400)面のピーク強度は、(111)面に対する相対強度で比べると強くなっており、結晶性が高いことが確認された。このことから、粉砕後の熱処理によりスピネル型リチウムマンガン酸化物の結晶性が改善されていることが確認された。   As is clear from Table 1, when the heat treatment was performed at 600 ° C., 650 ° C., or 700 ° C. for 20 hours after pulverization with a jet mill, the heat treatment was not performed, or 450 at a lower temperature side than the range of the present invention. The peak width of the (400) plane is narrower than that subjected to heat treatment at ℃, and the peak intensity of the (400) plane is stronger than the relative intensity with respect to the (111) plane, and the crystallinity is high. Was confirmed. From this, it was confirmed that the crystallinity of the spinel type lithium manganese oxide was improved by the heat treatment after pulverization.

また、電池特性から分かるように本発明によって製造されたものは、同一の成分組成において、いずれも0.2C放電容量、3C放電容量が比較例に対して優れており、また、レート特性、すなわち、0.2C放電容量に対する3C放電容量の比も大きく、過酷な条件下でも短時間で大電流での放電が可能であることが確認された。   Further, as can be seen from the battery characteristics, those manufactured according to the present invention are superior in the 0.2C discharge capacity and 3C discharge capacity with respect to the comparative example in the same component composition. The ratio of the 3C discharge capacity to the 0.2C discharge capacity was also large, and it was confirmed that discharge with a large current was possible in a short time even under severe conditions.

図2は、上記実施例を含めて、スピネル型リチウムマンガン酸化物を正極活物質として用いたときの0.2Cでの放電容量、3Cでの放電容量及びレート特性を測定した結果を表2に示す条件で層別して示したグラフである。   FIG. 2 shows the results of measurement of the discharge capacity at 0.2 C and the discharge capacity at 3 C and rate characteristics when spinel type lithium manganese oxide was used as the positive electrode active material, including the above examples. It is the graph shown as layered under the conditions shown.

Figure 2008156163
Figure 2008156163

図2から、(400)面のX線回折による半価幅が0.25以下と極めて狭く、かつ、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111が0.33以上のもの(A)は、0.2C放電容量、3.0C放電容量がともに優れ、かつレート特性も90%を超え、短時間で大電流での放電が可能である。これに対して半価幅が本発明の範囲内にあるが、強度比が小さいもの(B)及び半価幅、強度比とも本発明の範囲外のもの(C)は、3.0C放電容量の低下、ひいてはレート特性において劣り短時間で大電流での放電には適さない。 From FIG. 2, the half width by X-ray diffraction of the (400) plane is extremely narrow as 0.25 or less, and the ratio I 400 of the peak intensity I 400 of the ( 400 ) plane to the peak intensity I 111 of the (111) plane. (A) with / I 111 of 0.33 or more has excellent 0.2C discharge capacity and 3.0C discharge capacity, and the rate characteristics exceed 90%, enabling discharge with large current in a short time. is there. On the other hand, the half width is within the range of the present invention, but the strength ratio is small (B) and the half width and the strength ratio are outside the range of the present invention (C) are 3.0 C discharge capacity. The rate characteristics are inferior, and the rate characteristics are inferior.

合成されたスピネル型リチウムマンガン酸化物の粉砕後の熱処理温度と特性値との関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature after the grinding | pulverization of the synthesized spinel type lithium manganese oxide, and a characteristic value. スピネル型リチウムマンガン酸化物を正極活物質として用いたときの放電容量及びレート特性を測定した結果を(400)面のX線回折による半価幅及び(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111の値によって層別して示したグラフである。The result of measuring the discharge capacity and rate characteristics when spinel type lithium manganese oxide was used as the positive electrode active material was calculated as (111) of the (400) plane X-ray diffraction half width and (400) plane peak intensity I 400 (111). ) is a graph showing stratified by the ratio value of the I 400 / I 111 to the peak intensity I 111 of the surface.

Claims (5)

化学組成が一般式Li1+xMn2−x−yで表され、最大粒子径D100が15μm以下であり、(400)面のX線回折による半価幅が0.30以下、かつ、(400)面のピーク強度I400の(111)面のピーク強度I111に対する比I400/I111が0.33以上であることを特徴とするスピネル型リチウムマンガン酸化物。
ここに、MはAl,Co,Ni,Mg,Zr及びTiから選ばれた1種又は2種以上の金属元素であり、xは0≦x≦0.33の範囲を、yは0≦y≦0.2の範囲をとる。
The chemical composition is represented by the general formula Li 1 + x M y Mn 2−xy O 4 , the maximum particle diameter D 100 is 15 μm or less, and the half width by X-ray diffraction of (400) plane is 0.30 or less, and (400) plane spinel-type lithium manganese oxide ratio I 400 / I 111 to the peak intensity I 111 of (111) plane peak intensity I 400 is characterized in that 0.33 or more.
Here, M is one or more metal elements selected from Al, Co, Ni, Mg, Zr and Ti, x is in the range 0 ≦ x ≦ 0.33, and y is 0 ≦ y. The range is ≦ 0.2.
化学組成が一般式Li1+xMn2−x−yで表されるスピネル型リチウムマンガン酸化物を合成する段階と、前記段階で合成されたスピネル型リチウムマンガン酸化物を最大粒子径D100が15μm以下に粉砕する段階と、前記粉砕段階によって得られた粉砕物を500〜750℃で熱処理する段階と、からなることを特徴とする請求項1記載のスピネル型リチウムマンガン酸化物の製造方法。 A step of synthesizing a spinel type lithium manganese oxide having a chemical composition represented by the general formula Li 1 + x M y Mn 2−x−y O 4 , and a spinel type lithium manganese oxide synthesized in the above step having a maximum particle size D The process for producing spinel type lithium manganese oxide according to claim 1, characterized by comprising: a step of pulverizing 100 to 15 μm or less; and a step of heat-treating the pulverized product obtained by the pulverization step at 500 to 750 ° C. Method. スピネル型リチウムマンガン酸化物の合成段階におけるマンガン原料が電解二酸化マンガンであることを特徴とする請求項2記載のスピネル型リチウムマンガン酸化物の製造方法。   3. The method for producing a spinel type lithium manganese oxide according to claim 2, wherein the manganese raw material in the synthesis stage of the spinel type lithium manganese oxide is electrolytic manganese dioxide. 粉砕がジェットミルにより行われることを特徴とする請求項2又は3記載のスピネル型リチウムマンガン酸化物の製造方法。   The method for producing a spinel type lithium manganese oxide according to claim 2 or 3, wherein the pulverization is performed by a jet mill. 請求項1記載のスピネル型リチウムマンガン酸化物を正極活物質として用いた二次電池。   A secondary battery using the spinel type lithium manganese oxide according to claim 1 as a positive electrode active material.
JP2006347083A 2006-12-25 2006-12-25 Spinel type lithium manganese oxide and method for producing the same Expired - Fee Related JP4673287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347083A JP4673287B2 (en) 2006-12-25 2006-12-25 Spinel type lithium manganese oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347083A JP4673287B2 (en) 2006-12-25 2006-12-25 Spinel type lithium manganese oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008156163A true JP2008156163A (en) 2008-07-10
JP4673287B2 JP4673287B2 (en) 2011-04-20

Family

ID=39657516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347083A Expired - Fee Related JP4673287B2 (en) 2006-12-25 2006-12-25 Spinel type lithium manganese oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4673287B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137996A (en) * 2007-11-12 2010-06-24 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery
KR101092400B1 (en) 2009-03-26 2011-12-09 한국과학기술원 Method For Preparing Lithium manganese oxide And Lithium manganese metal oxide With Spinel And Nanostructure
JP2012051744A (en) * 2010-08-31 2012-03-15 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide, method for manufacturing the same, and application of the same
WO2018163519A1 (en) 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
WO2018220882A1 (en) 2017-05-29 2018-12-06 パナソニックIpマネジメント株式会社 Positive electrode active substance and battery
WO2019064816A1 (en) 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US10886529B2 (en) 2018-01-17 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material and battery
US11201319B2 (en) 2017-07-27 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material, and battery including positive electrode active material
US11557760B2 (en) 2017-04-24 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172567A (en) * 1996-12-17 1998-06-26 Nikki Kagaku Kk Manufacture of lithium manganate
JPH10255798A (en) * 1997-03-13 1998-09-25 Japan Metals & Chem Co Ltd Positive electrode material for lithium ion secondary battery
JP2000169151A (en) * 1998-12-02 2000-06-20 Mitsui Mining & Smelting Co Ltd Production of lithium manganate
JP2000281349A (en) * 1999-03-29 2000-10-10 Japan Energy Corp Lithium-manganese multiple oxide, its production and lithium secondary battery using the multiple oxide
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2001146426A (en) * 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2002316823A (en) * 2001-02-16 2002-10-31 Tosoh Corp Lithium manganese multi component oxide and method for manufacturing the same as well as application for the same
JP2003081637A (en) * 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery
JP2003081638A (en) * 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd Lithium - manganese compound oxide for secondary battery, production method therefor, and nonaqueous electrolytic solution secondary battery
JP2006202724A (en) * 2004-12-21 2006-08-03 Nissan Motor Co Ltd Positive electrode for nonaqueous electrolyte secondary battery and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172567A (en) * 1996-12-17 1998-06-26 Nikki Kagaku Kk Manufacture of lithium manganate
JPH10255798A (en) * 1997-03-13 1998-09-25 Japan Metals & Chem Co Ltd Positive electrode material for lithium ion secondary battery
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2000169151A (en) * 1998-12-02 2000-06-20 Mitsui Mining & Smelting Co Ltd Production of lithium manganate
JP2000281349A (en) * 1999-03-29 2000-10-10 Japan Energy Corp Lithium-manganese multiple oxide, its production and lithium secondary battery using the multiple oxide
JP2001146426A (en) * 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2002316823A (en) * 2001-02-16 2002-10-31 Tosoh Corp Lithium manganese multi component oxide and method for manufacturing the same as well as application for the same
JP2003081637A (en) * 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery
JP2003081638A (en) * 2001-09-05 2003-03-19 Japan Metals & Chem Co Ltd Lithium - manganese compound oxide for secondary battery, production method therefor, and nonaqueous electrolytic solution secondary battery
JP2006202724A (en) * 2004-12-21 2006-08-03 Nissan Motor Co Ltd Positive electrode for nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137996A (en) * 2007-11-12 2010-06-24 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery
KR101092400B1 (en) 2009-03-26 2011-12-09 한국과학기술원 Method For Preparing Lithium manganese oxide And Lithium manganese metal oxide With Spinel And Nanostructure
JP2012051744A (en) * 2010-08-31 2012-03-15 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide, method for manufacturing the same, and application of the same
WO2018163519A1 (en) 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US11271200B2 (en) 2017-03-06 2022-03-08 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
US11557760B2 (en) 2017-04-24 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
WO2018220882A1 (en) 2017-05-29 2018-12-06 パナソニックIpマネジメント株式会社 Positive electrode active substance and battery
US11605814B2 (en) 2017-05-29 2023-03-14 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
US11201319B2 (en) 2017-07-27 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material, and battery including positive electrode active material
WO2019064816A1 (en) 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US10886529B2 (en) 2018-01-17 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material and battery

Also Published As

Publication number Publication date
JP4673287B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
US11735726B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
US11196048B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery containing the positive electrode active material
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
EP2264815A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US10263244B2 (en) Lithium metal composite oxide having layered structure
KR20140047044A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP2010092848A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2011134708A (en) Particulate powder of positive active material for nonaqueous-electrolyte secondary battery and method of manufacturing the same, and nonaqueous-electrolyte secondary battery
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
EP4023603A1 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2014197556A (en) Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material
JP2006147499A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP4798962B2 (en) Lithium manganese composite oxide and method for producing the same
JP2005044722A (en) Cathode active substance for nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3998235A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2008146903A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method as well as nonaqueous electrolyte secondary battery using this positive electrode active material
JP2004002066A (en) Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP7197825B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP3998238A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees